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1. Two fundamental questions in coding theory

Two of the most basic questions in coding theory are: (i) what is A(n ,d), the maximal number

of binary vectors of length n with Hamming distance d apart?, and (ii) what is A(n ,d ,w), the

maximal number of binary vectors of length n, Hamming distance d apart, and where each vector

contains precisely w ones?

The Hamming distance dist (u ,v) between two binary vectors u = (u 1 , ... , u n ) and

v = (v 1 , ... , v n ) is the number of i such that u i ≠ v i; the weight wt (u) of u is the number of

nonzero u i (so that dist (u ,v) = wt (u − v)); and a code in which dist (u ,v) ≥ d for every pair of

distinct vectors u ,v can correct
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errors. We may always assume (without loss of generality) that d is even. See [25] for further

information about codes.

A. E. Brouwer, J. B. Shearer, W. D. Smith and the author have recently made an extensive

study [4] of the functions A(n ,d) and A(n ,d ,w), and in particular have computed a table of lower

bounds on these functions for n ≤ 28. Portions of these tables are shown in Tables 1 and 2 below.

In the course of this work a number of unsolved graph theory problems were encountered.

________________
* This paper appeared in Graph Theory Notes of New York, Vol. 18, 1989, pp. 11-20.
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2. Finding maximal cliques

The Hamming graph H(n ,d) has 2n vertices labeled by the binary vectors of length n, two

vertices being joined by an edge if and only if the Hamming distance between the corresponding

vectors is at least d. Then A(n ,d) is simply the size of a maximal clique in H(n ,d).

Table 1, which is taken from [4], shows the best lower bounds presently known on A(n ,d) for

n ≤ 28. A period after an entry indicates that this is the exact value of A(n ,d). In particular it

can be seen that the exact value is known for all n ≤ 10.

For example, it is known that A( 16 , 8 ) = 32. In this case the optimal code is a first-order

Reed-Muller code of length 16, formed from the rows of a Hadamard matrix of order 16 and its

negative [25]. On the other hand for A( 17 , 8 ) it is known only that

36 ≤ A( 17 , 8 ) ≤ 37 .

(Upper bounds on A(n ,d) can be found for example in [25] or [5], p. 248.)

The first undetermined value is A( 11 , 4 ), for which it is known only that

72 ≤ A( 11 , 4 ) ≤ 79 .

H( 11 , 4 ) is a graph with only 2048 vertices: would some graph theorist please determine the size

of a largest clique in it? (A number of algorithms for clique-finding have been published in recent

years [1], [2], [14], [15], [26].) Every entry in Table 1 not followed by a period is an unsolved

problem of this type.

If a reader should find a larger clique than is presently known in any of these problems, please

write down the vertices of the clique (which form a record-breaking code), and notify the author!



- 3 -

TABLE 1
Lower bounds on A(n ,d)

n ,d 4 6 8 10 12 14 16 18 20_ ____________________________________________________________________________
5 2. 1. 1. 1. 1. 1. 1. 1. 1.
6 4. 2. 1. 1. 1. 1. 1. 1. 1.
7 8. 2. 1. 1. 1. 1. 1. 1. 1.
8 16.1 2. 2. 1. 1. 1. 1. 1. 1.
9 20.2 4. 2. 1. 1. 1. 1. 1. 1.

10 40.3 6. 2. 2. 1. 1. 1. 1. 1.
11 72 12. 2. 2. 1. 1. 1. 1. 1.
12 1444 24.8 4. 2. 2. 1. 1. 1. 1.
13 256. 32.8a 4. 2. 2. 1. 1. 1. 1.
14 512. 64. 8. 2. 2. 2. 1. 1. 1.
15 1024. 128. 16. 4. 2. 2. 1. 1. 1.
16 2048.1 256.9 32.14 4. 2. 2. 2. 1. 1.
17 27205 256 362 6.17 2. 2. 2. 1. 1.
18 5248 512 64 10. 4. 2. 2. 2. 1.
19 104966 1024 128 20. 4. 2. 2. 2. 1.
20 204807 204810 256 40.8 6.17 2. 2. 2. 2.
21 36864 256011 512. 4218 8.17 4. 2. 2. 2.
22 73728 4096 1024. 4817 12. 4. 2. 2. 2.
23 147456 8192 2048. 6819 24. 4. 2. 2. 2.
24 2949127 1638412 4096.15 12820 48.8 6.17 4. 2. 2.
25 524288 16384 4096 15121 522 8.17 4. 2. 2.
26 1048576 32768 4096 256 64 14. 4. 2. 2.
27 2097152 65536 8192 512 12823 28. 6.17 4. 2.
28 41943041 13107213 1638416 102422 128 56.8 8.17 4. 2.
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KEY TO TABLE 1
Unmarked entries are either trivial or are obtained by shortening the code below.

An entry followed by a period is known to be exact.

1 = Extended Hamming code ([25], p. 23).
2 = Conference matrix code ([25], p.585).
3 = Found by M. Best ([5], p. 140).
4 = From the Steiner system S(5,6,12) ([5], p. 139, [25], p. 585).
5 = Romanov – see Sect. VI of [4].
6 = From Hamming code over GF(5) [16].
7 = From the u  u + v construction ([25], p. 76).
8 = Hadamard matrix code ([25], p. 49).

8a = ‘‘Nadler’’ code ([25], pp. 75, 79).
9 = Nordstrom-Robinson code ([25], p. 73).

10 = Nonlinear code from Construction X ([25], p. 583).
11 = From Construction X4 ([25], p. 585, Example 7).
12 = Wagner [34].
13 = Shortened non-primitive BCH code of length 32 ([25], p. 586).
14 = Reed-Muller code ([25], Chap. 13).
15 = Golay code ([5], Chaps. 3,11, [25], Chap. 20).
16 = Self-dual double circulant code ([5], p. 189, [25], p. 509).
17 = From Hadamard matrices using Levenshtein’s construction ([25], p. 50).
18 = Extended quasi-cyclic code [18].
19 = Extended cyclic code [19] (see Table 11 of [4]).
20 = Hashim-Pozdniakov linear code [17].
21 = Cyclic code (see Table 11 of [4]).
22 = Piret [29].
23 = Linear code (Eq. (51) of [4], [25], p. 593).

Similar problems arise in studying constant weight codes. The Johnson graph J(n ,d ,w) has


w

n
 vertices labeled by binary vectors of length n and weight w, two vertices being joined by an

edge if and only if the Hamming distance between the corresponding vectors is at least d.

Equivalently, the vertices represent w-subsets of an n-set, two vertices being joined by an edge if

and only if the corresponding subsets intersect in at most w − 1⁄2 d points. Then A(n ,d ,w) is the

size of a maximal clique in J(n ,d ,w).

Table 2, also taken from [4], shows the best lower bounds on A(n , 10 ,w) for n ≤ 28. Again

every entry not followed by a period is an open problem. The first open case is A( 20 , 10 , 9 ),

where we know only that
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20 ≤ A( 20 , 10 , 9 ) ≤ 24 .

The lower bound is a cyclic code: take all cyclic shifts of the vector

00010001001010011111

(see Table 11 of [4]), while the upper bound comes from [3].

It should be said at this point that there is a tiny bit of doubt about some of the upper bounds

on A(n ,d ,w) in [3] in the case d = 10; we are planning to recompute them. While it is usually

easy to verify a lower bound on A(n ,d) or A(n ,d ,w) (by checking the Hamming distance

between the codewords) upper bounds are much harder to verify.

TABLE 2
Lower bounds on A(n,10,w)

n ,w 6 7 8 9 10 11 12 13 14_ ______________________________________________________________________
12 2. 2 1 1 1 1 1 0 0
13 2. 2 2 1 1 1 1 1 0
14 2. 2. 2 2 1 1 1 1 1
15 3. j 3. j 3 3 3 1 1 1 1
16 3. 4. j 4. j 4 3 3 1 1 1
17 3. 5. j 6. j 6 5 3 3 1 1
18 4. j 6. j 9.q2 10.s 9 6 4 3 1
19 4. 8.x 12.sb 19.c 19 12 8 4 3
20 5.s 10.q2 17.m 20c 38.hm 20 17 10 5
21 7.a 13.xh 21.c 27pc 38 38 27 21 13
22 7. 16.pc 24sd 35pc 42ec 46c 42 35 24
23 8.x2 20y 33pc 45pc 54pc 63pc 63 54 45
24 9.x2 24c 38pc 56c 72c 90pc 96c 90 72
25 10.s 28ec 48ec 72ec 100c 125c 130ec 130 125
26 13.q2 28 54pc 84pc 130c 168pc 185y 191y 185
27 14.q9 36q3 66pc 111c 159pc 213ya 257y 283ya 283
28 16.m 37q4 78pc 132pc 195yd 280ya 356ya 414ya 435yd
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KEY TO TABLE 2
An entry followed by a period is known to be exact.

Section and table references are to [4].

a = From a trivial design or its dual (Sect. III).
c = Cyclic code (Table 11).

ec = Extended cyclic code (Table 12).
hm = Hadamard matrix code (Theorem 10).

j = Juxtaposing (Eq. (1) of Sect. III).
m = Miscellaneous construction (Sect. XI).
pc = Orbits under a single permutation (Table 14).
qi = Quasi-cyclic code, for 2 ≤ i ≤ 9 – fixed by a permutation containing i cycles of length n / i

(Table 13).
s = Section of code below or diagonally down to right, obtained from (5) of Sect. III.

sb = Section of code below, obtained by direct examination of the code (Sect. III).
sd = Section of code diagonally down to right, obtained by direct examination of the code (Sect. III).
x = Lexicographic code (Sect. VIII).

xh = Lexicode with seed (Table 8).
x2 = Complement of lexicode with sum constraint (Table 7).

y = No known structure (Table 16).
ya = Obtained by extending the code above it in the table; no other structure.
yd = Obtained by extending the code diagonally above it to left; no other structure.

3. Finding maximal weighted cliques

Weighted clique problems arise in the following way. In many cases a code containing the

maximal number (A(n ,d ,w) ) of vectors has a nontrivial symmetry group. For example

A( 18 , 8 , 6 ) = 21 is realized by the code

(110100)(100000)(110000),
(000010)(110100)(100001),
(000011)(100001)(010100),
(010101)(010101)(000000),
(000000)(000000)(111111).

The parentheses indicate that the permutation

( 1 , 2 , 3 , 4 , 5 , 6 ) ( 7 , 8 , 9 , 10 , 11 , 12 ) ( 13 , 14 , 15 , 16 , 17 , 18 )

of order six is to be applied to the indicated vectors. The first three vectors each give rise to six

codewords, the fourth vector to two codewords and the last vector to a single codeword (since it
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is fixed by the permutation).

To generalize this construction, we choose some permutation group G on n letters, and divide

the vectors of length n into orbits under G (two vectors are in the same orbit if and only if some

permutation in G sends one to the other). We form a weighted graph as follows. The vertices

represent good orbits (orbits in which the Hamming distance between any two distinct vectors is

at least d), and two vertices are joined by an edge if and only if the Hamming distance between

every vector in one orbit and every vector in the other orbit is at least d. Each vertex is weighted

by the size of the corresponding orbit. Then the size of a maximal weighted clique in this graph

is the largest constant weight code invariant under G.

Tables 11-15 of [4] contain many examples of codes found in this way. Better weighted-

clique finding algorithms should produce many more.

4. Graph coloring problems

Besides looking for group-invariant codes we used many other constructions in [1], as can be

seen in Table 2 above. A particularly powerful construction, applicable to codes with d = 4, is the

partitioning construction (see [4], [13]). For this one needs good colorings of the graphs

H(n , 4 ,w).

Let Π(n ,w) = (X 1 , ... , X m ) be a collection of disjoint sets or color classes X 1 , ... , X m , each

of which is a code of length n, distance 4 and constant weight w, and whose union contains all


w

n
 vectors of weight w. In other words Π(n ,w) is a coloring of the graph H(n , 4 ,w). We

assume X 1 ≥ . . . ≥ X m . The vector π(n ,w) = (X 1, ... , X m) is the index vector of

Π(n ,w), and

π(n ,w) . π(n ,w) =
i = 1
Σ
m

X i2
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is its norm. When several different colorings are known for a given n and w we denote them by

Π 1 (n ,w), Π 2 (n ,w) , ..., and their index vectors by π 1 (n ,w), π 2 (n ,w) , ... .

The reader is referred to [4] or [13] for details of the partitioning construction. The important

point here is that the best colorings Π(n ,w) to use in the construction are those that are maximal

in the following sense. We say that one coloring Π(n ,w) with index vector

π(n 1 , w 1 ) = (a 1 , ... , a m ) dominates another Π(n ′ , w ′ ) with index vector π′ (n 1 , w 1 ) =

(b 1 , ... , b m ′ ) if and only if

i = 1
Σ
j

a i ≥
i = 1
Σ
j

b i

holds for all j = 1 , ... , max {m , m ′ }. A coloring is maximal if it is not dominated by any other.

In [4] we made an extensive investigation of colorings with small values of n, and found over

a thousand Π(n ,w) with n ≤ 16, no one of which is dominated by any other. A portion of this

list is shown in the following table.

TABLE 3
Good colorings Π(n ,w)

n w i m Norm Notes Index vector of Π i (n , w)

6 3 1 6 72 * 4,4,4,4,2,2
7 3 1 6 211 * 7,7,6,6,5,4
8 3 1 7 448 * 8,8,8,8,8,8,8
8 4 1 6 844 * 14,14,12,12,10,8
9 3 1 7 1008 * 12,12,12,12,12,12,12
9 4 1 8 2066 18,18,18,18,16,15,15,8
9 4 2 10 2036 18,18,18,18,18,14,13,7,1,1

10 3 1 10 1530 * 13,13,13,13,13,13,13,13,13,3
10 4 1 10 5620 [13] 30,30,30,30,30,22,22,12,2,2
10 4 2 9 5614 30,30,30,30,26,25,22,15,2
10 5 1 8 8044 36,36,34,34,29,29,27,27

An asterisk indicates that the coloring is known to be maximal. In general it does not seem that

there is unique maximal coloring for given values of n and w. In some rare cases it is possible to
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color H(n , 4 ,w) so that each color class is a t-design: such colorings are said to form a large set

of designs. See [6]-[13], [20]-[24], [27], [28], [30]-[33], and other references cited in [4].

The problem of finding a good coloring is a generalization of usual problem of finding a good

code. Each color class is code with d = 4, so now the goal is to find a small number of large

disjoint codes.

We would like to know whether any of the colorings in Table 3 not marked with an asterisk

(or those in Table 6 of [4]) can be improved.

A more important problem, however, is to bring some order into this subject: at present

almost all the best colorings known have no mathematical structure, and can be described only by

listing the vectors in each color class.
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ABSTRACT

Recent work on binary codes has revealed a number of unsolved problems in graph theory.

Three types of problems arise: finding maximal cliques in certain graphs, finding maximal

weighted cliques, and finding good colorings.
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