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In the present paper we propose a new proof of the Grosset–Veselov formula connecting one-
soliton solution of the Korteweg–de Vries equation to the Bernoulli numbers. The approach involves
Eulerian numbers and Riccati’s differential equation.

Keywords: Eulerian numbers; Riccati’s equation; Bernoulli numbers; KdV equation; soliton.

Mathematics Subject Classification: 11B68, 35Q51

1. Introduction

By Bn (n = 0, 1, 2, . . .) we denote the nth Bernoulli number. The Bernoulli numbers have
the following generating function B(ξ) (see [4])

B(ξ) = B0 +B1ξ +B2
ξ2

2!
+ · · · = ξ

eξ − 1
, |ξ| < 2π. (1.1)

It is well known that Bn vanishes for odd n ≥ 3. The numbers are rational and they appear
in relations such that

∞∑
k=1

1
k2n

= (−1)n+1 22n−1π2n

(2n)!
B2n n = 1, 2, . . . .

The first few nonzero Bernoulli numbers are as follows

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42
,

B8 = − 1
30
, B10 =

5
66
, B12 = − 691

2730
.

The Korteweg–de Vries (KdV) equation

ut − 6uux + uxxx = 0 (1.2)
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is well known and widely present in the literature. Miura, Gardner and Kruskal, in a seminal
paper [8], proved that KdV equation has infinitely many conservation laws. The equation is
famous for its family of solutions known as solitons, the simplest of which is one-dimensional
soliton solution

u = − 2
cosh2(x− 4t)

,

corresponding to the initial profile u(x, 0) = −2/ cosh2 x. Fairlie and Veselov [3] proved,
by using the conservation laws, that KdV equation is directly related to the Faulhaber
polynomials and the Bernoulli polynomials (see [1,7]). Grosset and Veselov [5] demonstrated
the formula

B2m =
(−1)m−1

22m+1

∫ +∞

−∞

(
dm−1

dxm−1

1
cosh2 x

)2

dx, (1.3)

in two ways, using the previously cited results and then adapting an idea due to Logan
described in the book [4]. Boyadzhiev [2] gave the alternative proof of (1.3), based on the
Fourier transform theory.

In the present article we would like to indicate some formulas, relating to KdV equation,
which explain the appearance of Bernoulli numbers in this theory and imply (1.3).

In order to do this we will need Eulerian numbers (see [4]). The Eulerian number
〈
n
k

〉
is defined as the number of permutations of the set {1, 2, . . . , n} having k permutation
ascents. Let {a1, a2, . . . , an} be a permutation of the set {1, 2, . . . , n}. Then {aj , aj+1} is an
ascent of the permutation if aj < aj+1. For example for n = 3 the permutation {1, 2, 3} has
two ascents, namely {1, 2} and {2, 3}, and {3, 2, 1} has no ascents. Each of the other four
permutations of the set has exactly one ascent. Thus

〈
3
0

〉
= 1,

〈
3
1

〉
= 4, and

〈
3
2

〉
= 1. It is

well known that Eulerian numbers satisfy the following relations:
〈
n

k

〉
=
〈

n

n− k − 1

〉
,

〈
n+ 1
k

〉
= (k + 1)

〈
n

k

〉
+ (n− k + 1)

〈
n

k − 1

〉
. (1.4)

2. Two Theorems

We will reformulate, to the case of complex holomorphic functions, some results of the
paper [9]. Consider a holomorphic function z = z(t), defined in a domain t ∈ D ⊂ C which
fulfils Riccati’s differential equation with constant coefficients

z′(t) = az2 + bz + c (2.1)

where a, b, c are complex numbers, a �= 0, b2 − 4ac �= 0. Examples of such functions and
equations are:

(1) z(t) = tan t, z′(t) = z2 + 1,
(2) z(t) = tanh t, z′(t) = −z2 + 1,
(3) z(t) = 1/(1 + et), z′(t) = z2 − z,
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(4) z(t) = 1/(1 + e−t), z′(t) = −z2 + z, (more generally the logistic function
z(t) = q/(1 + pe−rt), z′(t) = r

q (q − z)z with p > 1, q > 0, r > 0).

Let az2 + bz + c = a(z − α)(z − β).

Theorem 2.1. If a function z(t) fulfils Eq. (2.1)

z′(t) = a(z − α)(z − β) (2.2)

then the nth derivative of z(t) can be expressed by the following formula

z(n)(t) = an
(〈n

0

〉
(z − α)(z − β)n +

〈n
1

〉
(z − α)2(z − β)n−1

+
〈n

2

〉
(z − α)3(z − β)n−2 + · · · +

〈
n

n− 1

〉
(z − α)n(z − β)

)

= an
n−1∑
k=0

〈n
k

〉
(z − α)k+1(z − β)n−k (2.3)

where n = 2, 3, . . . .

For convenience of the reader we give a proof of the theorem.

Proof. The proof is based on mathematical induction. By (2.2) we get

z′′(t) = a[(z − α) + (z − β)]z′(t) = a2[(z − α)(z − β)2 + (z − α)2(z − β)]

which establishes (2.3) for n = 2. Let us assume that for an integer n ≥ 2 formula (2.3)
holds. Using recurrence formula (1.4), in the last step of the following calculation, we get

z(n+1)(t) = an
d

dt

n−1∑
k=0

〈n
k

〉
(z − α)k+1(z − β)n−k

= an+1
n−1∑
k=0

〈n
k

〉[
(k + 1)(z − α)k+1(z − β)n−k+1 + (n− k)(z − α)k+2(z − β)n−k

]

= an+1

[〈n
0

〉
(z − α)(z − β)n+1 +

n−1∑
k=1

(
(k + 1)

〈n
k

〉
+ (n− k + 1)

〈
n

k − 1

〉)

× (z − α)k+1(z − β)n−k+1 +
〈

n

n− 1

〉
(z − α)n+1(z − β)

]

= an+1
n∑
k=0

〈
n+ 1
k

〉
(z − α)k+1(z − β)n−k+1,

which ends the proof.



April 16, 2010 16:41 WSPC/1402-9251 259-JNMP 00063

124 G. Rza̧dkowski

Let us denote the polynomial (2.3) of z (of degree n + 1) by Pn+1(z). Therefore for
n = 2, 3, . . . we have

Pn(z) =
n−2∑
k=0

〈
n− 1
k

〉
(z − α)k+1(z − β)n−k−1. (2.4)

For n = 1, we put P1(z) = z − α. Since Pn(z) is the entire function in C we can consider
the integral

∫ β
α Pn(z)dz over any curve (piecewise smooth) joining the points α and β.

Theorem 2.2. For n = 1, 2, . . . it holds
∫ β

α
Pn(z)dz = −(β − α)n+1Bn. (2.5)

Proof. Substituting in integral on the left-hand side of (2.5) z = z(w), z − α = (β − α)w
or equivalently z − β = (β −α)(w− 1) (z(0) = α, z(1) = β) we see that it suffices to prove
formula (2.5) in the particular case when α = 0, β = 1, where the respective Riccati’s
equation z′(t) = z2 − z has a solution z = f(t) = 1/(1 + exp(t)). We will prove that in case
of

Pn(z) =
n−2∑
k=0

〈
n− 1
k

〉
zk+1(z − 1)n−k−1, P1(z) = z, (2.6)

one gets
∫ 1

0
Pn(z)dz = −Bn. (2.7)

Let us observe that the generating function, for the polynomials (2.6),

g(z, ξ) = P1(z) + P2(z)ξ + P3(z)
ξ2

2!
· · ·

is the Taylor expansion of f(t+ ξ) at the point t = log((1 − z)/z) (i.e. z = 1/(1 + exp(t)).
Thus

g(z, ξ) = f(t+ ξ) =
1

1 + et+ξ
=

1
1 + eteξ

=
1

1 + 1−z
z eξ

=
z

z + (1− z)eξ . (2.8)

Since the generating function (2.8) is a rational function of the variable z we find easily its
antiderivative

1
1− eξ

[
z − eξ

1− eξ log(z + (1− z)eξ)
]
,

and then use it to compute
∫ 1
0 g(z, ξ)dz. We get
∫ 1

0
g(z, ξ)dz =

1− eξ + ξeξ

(1− eξ)2 (2.9)

and check that the right-hand side of (2.9) is equal to −B′(ξ) (where B(ξ) is defined by
(1.1)). By comparing the coefficients of ξn−1/(n − 1)! we get (2.7) and the theorem is
proved.
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Corollary. Putting in (2.5) z = z(t) (a solution of Riccati’s equation (2.2)) and using (2.3)
we get

∫
γ
z(n−1)(t)z′(t)dt = −an−1(β − α)n+1Bn, (2.10)

over a curve γ, such that its image z(γ) is the curve joining the points α and β.

3. Applications to KdV Equation

When looking for soliton solutions of KdV equation (1.2) of the form u = f(x− ct), we see
that the function f(x) must fulfill the ordinary differential equation

−cf ′(x)− 6ff ′(x) + f ′′′(x) = 0

i.e. for a constant A

d2f

dx2
= 3f2 + cf +A. (3.1)

Multiplying both sides of (3.1) by df
dx one gets

1
2
d

dx

(
df

dx

)2

= (3f2 + cf +A)
df

dx
,

and then
(
df

dx

)2

= 2f3 + cf2 + 2Af +B (3.2)

for a constant B. Denote by F (x) a primitive function of f(x). It is easy to check that in
case A = B = 0 the function F (x), under assumption that dF/dx = h(F ), must fulfill the
following equation

dF

dx
=

1
2
F 2 + c1F +

1
2
c21 −

1
2
c (3.3)

for some constant c1.
We see that equation (3.3) is a particular case of the Riccati equation (2.1), and we can

apply, for its solution F (x), the formula (2.10). We have
∫
γ
F (n−1)(x)F ′(x)dx = −(β − α)n+1

2n−1
Bn. (3.4)

For example if c1 = 0, c = 1, Eq. (3.3) takes the form

dF

dx
=

1
2
(F 2 − 1),

and one of its solutions is F (x) = − tanh(x/2). As the curve γ we may take the real
axis, which is the preimage of the interval (−1, 1) under the function F . Thus we get
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(β = 1, α = −1)

−
∫ ∞

−∞
(− tanh(x/2))(n−1)(− tanh(x/2))′dx = −4Bn.

Substituting, in the above formula, t = x/2, n = 2m and then integrating by parts m− 1
times we get (1.3), the main result of the paper [5].

4. Concluding Remarks

Hoffman [6] considers more general case of a function f(x) which fulfills the equation f ′(x) =
P (f(x)), where P is a polynomial. By computing successive derivatives of f(x) he obtains,
on the right-hand side of this equation, a sequence of polynomials (derivative polynomials).
Next he finds, for them, a generating function and a recurrence formula and uses the results
to get exact formulas for some integrals and series. The formulas derived by Hoffman could
be applied to find e.g. the generating function of derivative polynomials of the function
f(x) = tanh(x). Then proceeding similarly as in paper [5] one could get the Grosset–Veselov
formula (1.3).

Formula (2.3) can be seen as a closed form formula for the derivative polynomials of a
function satisfying the Riccati equation with constant coefficients. The two Theorems 2.1
and 2.2 can be used not only in KdV equation theory, but in each case of such function.
The results of the paper might be applied e.g. to the logistic function (see item 4 at the
beginning of the second section), which has a great importance in physics (the Fermi–
Dirac statistics), medicine (modeling of growth of tumors), economics (production function,
population growth). Theorem 2.1 allows us to calculate, at any point, all derivatives of the
logistic function.
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