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Abstract We study the totally asymmetric exclusion process on the positive integers with
a single particle source at the origin. Liggett (Trans. Am. Math. Soc. 213, 237–261, 1975)
has shown that the long term behaviour of this process has a phase transition: If the particle
production rate at the source and the original density are below a critical value, the station-
ary measure is a product measure, otherwise the stationary measure is spatially correlated.
Following the approach of Derrida et al. (J. Phys. A 26(7), 1493, 1993) it was shown by
Grosskinsky (2004) that these correlations can be described by means of a matrix product
representation. In this paper we derive a large deviation principle with explicit rate function
for the particle density in a macroscopic box based on this representation. The novel and
rigorous technique we develop for this problem combines spectral theoretical and combi-
natorial ideas and is potentially applicable to other models described by matrix products.
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1 Introduction

Many natural systems are not in thermodynamic equilibrium, which loosely speaking means
that there is a permanent exchange of energy or matter of the system with its surroundings
or within the system itself. In statistical physics, the asymmetric exclusion process is often
considered the paradigm of such a system out of equilibrium. In the absence of a general
theory for systems out of equilibrium, it has been argued that large deviation rate functions
play an important role as a replacement for the thermodynamical potential [4]. The principal
aim of the present paper is to develop a rigorous mathematical technique to derive such
rate functions from a particular type of representation of the stationary state of the system,
the matrix products, which twenty years after the pioneering work of Derrida et al. [11] is
available for a wide range of particle systems out of equilibrium, see for example Blythe
and Evans [6] for a survey.

We present our method in the case of the totally asymmetric exclusion process (TASEP)
on the positive integers with a single particle source at the origin, a case which has
apparently not been treated in the literature so far. In this Markovian model, particles are
positioned on the sites of the semi-infinite lattice N = {1, 2, . . . } in such a way that no site
carries more than one particle. The dynamics of the model can be informally described as
follows: A particle source carries a Poisson clock with intensity α > 0. If this clock rings,
the source attempts to inject a particle at site one. If this site is vacant the injection takes
place, otherwise it is suppressed and nothing happens. Also, every particle in the system car-
ries an independent Poisson clock with rate one, and when the clock rings the particle tries
to jump to the neighbouring site on its right. If this site is vacant the jump takes place, oth-
erwise it is suppressed. Note that the exclusion interaction originating from the suppression
of jumps and injections ensures that no site ever carries more than one particle.

The exclusion interaction in this model has a profound effect on the behaviour of the
system. Most notably the detailed balance equations for this Markov chain have no non-
trivial solution. Hence the system is not reversible, in other words it is out of equilibrium.
The long-term behaviour of the process shows local convergence to a stationary measure
which depends on the initial configuration of the system. Assuming that initially particles
are iid Bernoulli with density ρ, this stationary measure has an interesting phase transition
described by Liggett [16]. If the injection rate α satisfies α ≤ 1

2 and ρ ≤ 1 − α the system
does not feel the interaction and the stationary measure is the product measure with density
α. If however α > 1

2 or ρ > 1− α, the exclusion of particles leads to spatial correlations in
the stationary measure, which is no longer a product measure. In this case, the overall par-
ticle density at stationarity is the maximum of 1/2 and the initial density ρ, independently
of the injection rate α.

There have been considerable efforts to describe the long range correlations of the sta-
tionary measures and the microscopic transition kernels in the exclusion process explicitly.
For instance, Sasamoto and Williams [19] and Tracy and Widom [21] derive explicit for-
mulas from combinatorial identities, and Sasamoto [18] uses an ansatz based on orthogonal
polynomials. A particularly successful approach to describe spatial correlations is the matrix
product ansatz first suggested in 1993 by Derrida, Evans, Hakim and Pasquier [11] and
refined and extended in a large number of papers, see [10, 13, 15] for a few further examples.
Large deviation principles have been derived for the hydrodynamical limits of a range of
boundary driven exclusion processes by Bertini and coauthors [3, 5] and the method should
be extendable to our case. In principle, large deviation principles for the particle density in
a macroscopic box then follow from these results by contraction, see [7]. However, the opti-
misation in path space, which is required to get an explicit rate function, is often unwieldy
and technical as Bahadoran’s paper [2] readily testifies.
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In the light of these difficulties it is a natural idea to try and derive large deviation prin-
ciples directly from the matrix product ansatz. This plan was carried out by Derrida et al.
[12] in the case of an asymmetric exclusion process on a finite interval of sites. Key to their
method is a saddle point argument, which allows to derive an additivity formula which com-
pares the stationary measure on the interval with stationary measures on complementary
subintervals. From this formula an explicit rate function for the particle density is derived.
The paper [12] was a spectacular success, but we have not been able to implement this
method in the case of a semi-infinite lattice. In a different development, Angeletti et al. [1]
show that already for matrix product representations with finite matrices the large deviation
principles that arise from this exhibit a rich phenomenology. Finite matrix representations
have the advantage that they can be studied using the Perron-Frobenius theory, which is
unavailable for infinite matrices. Physical examples, however, are almost always based on
representations by infinite matrices.

In this paper we present a rigorous and novel approach to calculate large deviations for
the macroscopic particle density in the semi-infinite totally asymmetric exclusion process.
We use the matrix product representation as a starting point, and base the analysis on the
Gärtner-Ellis theorem. To study the asymptotics of the cumulant generating function of the
particle density, we use quite different approaches for the lower and upper bounds. The
lower bound is based on the spectral theory of Toeplitz operators in a suitable weighted
sequence space, while the upper bound exploits combinatorial identities coming directly
from the matrix product ansatz. As our method is not too technical, we believe that it is very
promising to deal with a wide range of other particle systems whose stationary measure can
be described by a matrix product representation.

The paper is organised as follows. In Section 2 we give a rigorous definition of the model,
state background results and formulate and interpret our main result. Section 3 discusses the
matrix product representation in this case and describes our approach to the large deviation
problem. The proof of the upper bound for the cumulant generating function is carried out
in Section 4, while the lower bound is derived in Section 5. The proof is completed in
Section 6, in which we also provide some further comments on our technique.

2 The Semi-infinite TASEP

2.1 Background

To give a formal definition of the model, we first define the auxiliary switching and
swapping functions σx, σ x,y : {0, 1}N → {0, 1}N by

(σ x,yη)z =
⎧
⎨

⎩

ηy if z = x

ηx if z = y

ηz if z /∈ {x, y},
(σ xη)z =

{
1 − ηx if z = x

ηz if z �= x.

A semi-infinite totally asymmetric exclusion process (TASEP) with injection rate α ∈ (0, 1)
is a Markov process {ξ(t)}t≥0 in continuous time with state space {0, 1}N and semigroup
S(t) identified by its infinitesimal generator G defined by

Gf (η) = α(1 − η1)
(
f (σ 1η) − f (η)

)

+
∑

k∈N
ηk(1 − ηk+1)

(
f (σ k,k+1η) − f (η)

)
, (1)
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where f : {0, 1}N → R is a function that depends only on a finite number of sites.
Denote by να the product measure with constant density α, that is

να{η ∈ {0, 1}N : ηj1 = 1, ηj2 = 1, . . . , ηjn = 1} = αn

for all distinct choices of j1, j2, . . . , jn ∈ N and all n ∈ N. We say a measure μρ on {0, 1}N
is asymptotically product with density ρ if

lim
k→∞ μρ{η ∈ {0, 1}N : ηj1+k = 1, ηj2+k = 1, . . . , ηjn+k = 1} = ρn

for all distinct choices of j1, j2, . . . , jn ∈ N and all n ∈ N. It is known that the semi-infinite
TASEP is not an ergodic process and there is no uniqueness of the stationary measure as
proved in Theorem 1.8 of [16].

Theorem 2.1 [16, Theorem 1.8] Let μ be a product measure on {0, 1}N for which ρ :=
limk→∞ μ{η : ηk = 1} exists. Then there exist probability measures μα

� defined if

• either α ≤ 1
2 and � > 1 − α,

• or α > 1
2 and 1

2 ≤ � ≤ 1,

which are asymptotically product with density �, such that

if α ≤ 1
2 then lim

t→∞ μS(t) =
{

να if ρ ≤ 1 − α

μα
ρ if ρ > 1 − α,

and if α > 1
2 then lim

t→∞ μS(t) =
{

μα
1/2 if ρ ≤ 1

2
μα

ρ if ρ > 1
2 .

Observe the notation we adopt throughout this paper: The initial particle density for the
TASEP is denoted ρ, whereas � is the stationary particle density under μα

� . Convergence in
Theorem 2.1 is not uniform and slows down the further sites are from the origin. The initial
density ρ determines the stationary measure the process will converge to. In particular,
starting from all sites empty, if the injection rate satisfies α ≤ 1

2 , the distribution of the
process converges to the product measure with constant density α. If α > 1

2 , the distribution
of the process converges to μα

1
2
, which has spatial correlations and an asymptotic density

equal to 1
2 . Observe that the injection mechanism is not able to produce a stationary particle

density larger than 1
2 unless there is initially a high density of particles in the system.

We will explore matrix representations of the measures μα
� in Section 3.

2.2 Main Result

Our problem at hand is to find the rate function for a large deviation principle of the
empirical density on the first n sites

Zn = 1

n

n∑

k=1

ηk (2)

under the stationary measure, as n goes to infinity. Recall from Theorem 2.1 that the answer
to this problem depends in a subtle way on the spatial correlations occurring in the case
α > 1

2 .
The theory of large deviations analyses the exponential decay of probabilities of increas-

ingly unlikely events. Formally, a sequence of random variables {Zn}n∈N taking values in
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[0, 1] satisfies a large deviation principle with rate function I : [0, 1] → [0, ∞] under the
probability measure P if

(i) the function I is lower semicontinuous,
(ii) for all open sets G ⊂ [0, 1] we have

lim inf
n→∞

1

n
logP{Zn ∈ G} ≥ − inf

z∈G
I (z),

(iii) and for all closed sets F ⊂ [0, 1] we have

lim sup
n→∞

1

n
logP{Zn ∈ F } ≤ − inf

z∈F
I (z).

The main result of this paper is the following large deviation principle.

Theorem 2.2 Let {Zn}n∈N be the sequence of random variables defined as the empirical
density (2) of a semi-infinite TASEP with injection rate α ∈ (0, 1) and initial asymptotically
product measure for which ρ as defined in Theorem 2.1 exists. Then, under the stationary
probability measure given by Theorem 2.1, {Zn}n∈N satisfies a large deviation principle
with convex rate function I : [0, 1] → [0, ∞] given as follows.

(a) If α ≤ 1
2 and ρ < 1 − α, then

I (z) = z log
z

α
+ (1 − z) log

1 − z

1 − α
.

(b) If α > 1
2 and 0 ≤ ρ ≤ 1

2 , then

I (z) =

⎧
⎪⎪⎨

⎪⎪⎩

z log
z

α
+ (1 − z) log

1 − z

1 − α
+ log (4α(1 − α)) if 0 ≤ z ≤ 1 − α,

2
[
z log z + (1 − z) log(1 − z) + log 2

]
if 1 − α < z ≤ 1

2 ,

z log z + (1 − z) log(1 − z) + log 2 if 1
2 < z ≤ 1.

(c) If α > 1
2 and 1

2 < ρ < α, then

I (z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z log
z

α
+ (1 − z) log

1 − z

1 − α
+ log

α(1 − α)

ρ(1 − ρ)
if 0 ≤ z ≤ 1 − α,

2
[
z log z + (1 − z) log(1 − z) − log

√
ρ(1 − ρ)

]
if 1 − α < z ≤ 1 − ρ,

z log
z

ρ
+ (1 − z) log

1 − z

1 − ρ
if 1 − ρ < z ≤ 1.

Recall that part (a) is well-known and included for completeness. It implies the weak law
of large numbers, saying that the empirical density converges in probability to α if α ≤ 1

2 ,
see Fig. 1. The unique zero of the rate function moves from 0 to 1

2 with the value of α, at
the same time it is getting easier to achieve any given density larger than 1

2 .
Part (b) shows that the empirical density converges to 1

2 if α > 1
2 and ρ < 1

2 . Looking at
Fig. 1 we see that the rate function is still convex and its zero stays fixed at 1

2 . Now reaching
high densities has always the same cost regardless of the value of α, but low densities
become increasingly expensive as the value of α increases. Note that the rate function is
non-analytic at the value z = 1−α, which reveals a dynamical phase transition in the sense
of [17].
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Fig. 1 Rate functions for case (a) and (b) of Theorem 2.2

For part (c), the minimum of the rate function is now at ρ. Low densities still become
increasingly expensive as α increases; yet, high densities now become cheaper, see the left
diagram of Fig. 2. In this case, we observe that both α and ρ play a role in the rate function,
see the right diagram of Fig. 2 to appreciate the joint effect. The phase transitions are seen
at z = 1−α, as in the previous case, and z = 1−ρ. As ρ → α we recover the rate function
of Bernoulli product measures.

In parts (b) and (c), the cost in the first regime, when z ≤ 1 − α, is up to a shift by a
negative constant equal to the cost of changing the boundary density. The rates in the third
regime, when 1 − z is smaller than the typical density, represent the cost of replacing the
typical density in the asymptotic Bernoulli product measure by the desired value, so the cost
in this regime is bulk dominated. In the second regime the cost is larger than in the third,
indicating that both a bulk and a boundary cost have to be paid.

The regimes when α ≤ 1
2 and ρ ≥ 1 − α, or when α > 1

2 and ρ ≥ α are not covered
by the techniques of this paper and remain open, see Fig. 3. In the former case we have no
matrix product representation.

Fig. 2 Rate functions for case (c) of Theorem 2.2
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Fig. 3 The range of validity of Theorem 2.2 in parameter space is shaded in grey

If α > 1
2 and ρ < α it is worth comparing our large deviation result for the semi-infinite

TASEP with that for the finite TASEP studied in [12]. The stationary measure on the semi-
infinite TASEP can be obtained as a limit of the stationary measures on the finite TASEP
with n sites and boundary densities chosen as α on the left boundary, and min{1 − ρ, 1

2 }
on the right boundary, see [16, Section 3]. However, the transition rates across bonds in the
semi-infinite TASEP are not equal to min{1−ρ, 1

2 }. It is therefore somewhat surprising that
the large deviation rate of the sequence of densities in the finite TASEP with increasing sys-
tem size obtained in [12, (3.12)] still agrees with the rate we have obtained for the average
density over increasing blocks in the infinite TASEP at stationarity.

3 Matrix Product Ansatz

Grosskinsky [14], following the seminal work of [11], has given a characterisation of the
long range dependence in μα

� with a matrix product ansatz.

Theorem 3.1 [14, Theorem 3.2] Suppose there exist (possibly infinite) nonnegative matri-
ces D, E and vectors w and v, fulfilling the algebraic relations

DE = D + E, (3a)

αwTE = wT, (3b)

c(D + E)v = v, (3c)

for some c > 0. Then

(a) the probability measure ν̄α
c defined by
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ν̄α
c {ζ ∈ {0, 1}N : ζ1 = η1, . . . , ζn = ηn} = wT

(∏n
k=1 ηkD + (1 − ηk)E

)
v

wT(D + E)nv
(4)

is invariant for the generator (1) if and only if

• either α ≤ 1
2 and 0 ≤ c ≤ α(1 − α)

• or α > 1
2 and 0 ≤ c ≤ 1

4 .

(b) The measure ν̄α
c has stationary current Eν̄α

c
[ηk(1−ηk+1)] = c, for all k ≥ 1. It equals

να if c = α(1−α) and α ≤ 1
2 , and otherwise it is asymptotically product with density

� given as the solution of c = �(1 − �) which satisfies � ≥ 1
2 .

Very often, to apply Theorem 3.1, no explicit solution of Eq. 3 is needed. Below we only
use the recursive structure of these equations to show that the measures ν̄α

c and μα
� agree

under certain conditions. Note that this does not follow directly from Theorem 2.1 as this
result does not describe the long-term behaviour of the TASEP started in ν̄α

c , which is not
necessarily a product measure.

Proposition 3.2 If α ≥ 1
2 , � ≥ 1

2 and c = �(1 − �), then the measures ν̄α
c and μα

� agree.

Proof By part (e) in [16, Theorem 3.10] the measure μα
� is uniquely determined by the

following two properties, numbered as in [16],

(c) If u, n ∈ N with 1 < u < u + 1 < n, and η ∈ {0, 1}n with ηu = 1, ηu+1 = 0, then

μα
�{ζ : ζk = ηk for k ≤ n}
= c μα

�{ζ : ζk = ηk for k ≤ u − 1, ζk = ηk+1 for u + 1 ≤ k ≤ n − 1}.
(d) If n > 1 and η ∈ {0, 1}n with η1 = 0, then

αμα
�{ζ : ζk = ηk for k ≤ n} = c μα

�{ζ : ζk = ηk+1 for k ≤ n − 1}.
We show that ν̄α

c satisfies these properties. Under the assumptions of (c) we get from
properties (3a) in the second equality and Eq. 3c in the third one

ν̄α
c {ζ : ζk = ηk for k ≤ n}

=
wT

(∏u−1
k=1 ηkD + (1 − ηk)E

)
DE

(∏n
k=u+2 ηkD + (1 − ηk)E

)
v

wT(D + E)nv

=
wT

(∏u−1
k=1 ηkD + (1 − ηk)E

)
(D + E)

(∏n
k=u+2 ηkD + (1 − ηk)E

)
v

wT(D + E)nv

= c ν̄α
c {ζ : ζk = ηk for k ≤ u − 1, ζk = ηk+1 for u + 1 ≤ k ≤ n − 1}.

Under the assumptions of (d) we get from conditions (3b) in the second equality and Eq. 3c
in the third one,

αν̄α
c {ζ : ζk = ηk for k ≤ n} = α

wTE
(∏n

k=2 ηkD + (1 − ηk)E
)
v

wT(D + E)nv

= wT
(∏n

k=2 ηkD + (1 − ηk)E
)
v

wT(D + E)nv

= c ν̄α
c {ζ : ζk = ηk+1 for k ≤ n − 1}.

Hence ν̄α
c satisfies (c) and (d) and therefore agrees with μα

� .
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We now explain our approach to find a large deviation principle of the empirical density
under this measure. We will approach this via the Gärtner-Ellis theorem, see Theorem V.6
in [9]. Here we state the conditions specific for our case.

Theorem 3.3 (Gärtner-Ellis) Let {Zn}n∈N be a sequence of random variables on a proba-
bility space (
,A,P), where 
 is a non-empty subset of R. If the limit cumulant generating
function � : R → R defined by

�(θ) = lim
n→∞

1

n
logE[enθZn ]

exists and is differentiable on all R, then {Zn}n∈N satisfies a large deviation principle with
rate function I : 
 → [−∞, ∞] defined by

I (z) = sup
θ∈R

{zθ − �(θ)}.

To calculate the moment generating function Mn(θ) of Zn we use Theorem 3.1 and
Proposition 3.2 in the third equality and condition (3c) in the fifth one, to get

Mn(θ) = vE
[
enθZn

]
= E

[

exp

(

θ

n∑

k=1

ξk

)]

=
∑

η∈{0,1}n
ν̄α
c {ξ : ξk = ηk for k ≤ n} exp

(

θ

n∑

k=1

ηk

)

= wT(eθD + E)nv

wT(D + E)nv
= cn

wTv
wT(eθD + E)nv,

and the cumulant generating function simplifies to

�(θ) = lim
n→∞

1

n
logMn(θ)

= lim
n→∞

1

n
logwT(eθD + E)nv + log c. (5)

If D and E were finite matrices, we could identify this limit using the Perron-Frobenius
theorem as the spectral radius of the matrix eθD + E. However in our example (and in
almost all physically interesting examples) the matrices solving Eq. 3 are necessarily infi-
nite. A first idea would be to truncate the matrices to finite size, calculate the spectral radius
and taking a limit, but this turns out to lead to a wrong result, as it neglects the important
information contained in the vectors v and w.

We will look at lower and upper bounds in Eq. 5 separately. For the upper bound we
exploit that matrices D and E, as well as the vectors v and w, solving Eq. 3 are explicitly
known. We introduce weighted 
2 spaces, denoted 
2s , and interpret the matrix eθD + E as
an operator on these spaces. If the weights are such that v is an element of 
2s , and wT an
element of its dual, we can get a bound on Eq. 5 from the spectral radius of the operator,
which can be optimised by minimising the bound over all admissible weights. In order to
obtain the spectral radius we use a simple isomorphism between weighted and unweighted

2 spaces. Acting on the unweighted spaces, the operator has a Toeplitz structure and from
the general theory of Toeplitz operators on 
2 an explicit formula for the spectral radius is
available. This estimate will be carried out in detail in Section 4.

The technique for the lower bound only relies on the structure of the equations (3). These
provide an algorithmic way to reduce arbitrary products of D and E to linear combinations
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of monomials of the form Ep−jDj with 0 ≤ j ≤ p. We expand the product (eθD + E)n

into a polynomial with nonnegative coefficients f n
p,j (θ), and use Eq. 3 to derive a recursion

formula for the coefficients. While it seems to be too complicated to fully resolve this recur-
sion, we focus on selected key terms which can be derived explicitly. Note that for a lower
bound we can drop all inaccessible terms in the expansion. In our case, to obtain the growth
rate it suffices to include the fastest growing terms f n

p,pDp and f n
p,0E

p corresponding to
all summands in the product which can be reduced to monomials of just one variable. It
is quite a typical phenomenon that only a small number of boundary summands contribute
to the growth of the sum, and that these coefficients can be identified without solving the
entire system of equations. This estimate will be carried out explicitly in Section 5.

4 Upper Bound: Spectral Theory of Toeplitz Operators

4.1 Weighted l2 Spaces

To find an upper bound for the cumulant generating function we consider the weighted
spaces


2s =
{

x = (xk)k∈N :
∞∑

k=1

|xk|2sk < ∞
}

with s > 0. Note that imposing s = 1 recovers the usual 
2 space. Moreover for fixed s, 
2s
with its corresponding norm

|x|2

2s

=
∞∑

k=1

|xk|2sk

is a Banach space. The next lemma will help us to translate classic 
2 theory to 
2s .

Lemma 4.1 The function Ts : 
2→ 
2s defined by

(Tsx)k = xk

sk/2

for s > 0 is a bijective isometry.

Proof We can define the inverse T −1
s : 
2s → 
2 by (T −1

s x)k = xks
k/2 and hence Ts is

bijective. We just need to prove it is an isometry, so let x∈ 
2s and calculate

|T −1
s x|2


2
=

∞∑

k=1

|(T −1
s x)k|2 =

∞∑

k=1

|xks
k/2|2 = |x|2


2s
.

Analogously, for x ∈ 
2 we have |Tsx|
2s = |x|
2 .

Lemma 4.2 The dual space 
2∗s can be identified with 
2
s−1 .

Proof Define the dual product 〈·, ·〉D : 
2
s−1×
2s → R by 〈y, x〉D = 〈T −1

s−1y, T −1
s x〉, where

〈·, ·〉 is the usual inner product in 
2. We first prove that for each vector y ∈ 
2
s−1 there

exists a function fy ∈ 
2∗s such that fy(x) = 〈y, x〉D . To this end, let y ∈ 
2
s−1 and define

fy : 
2s → R by

fy(x) = 〈y, x〉D =
∑

k∈N
xkyk.
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The linearity of fy follows easily from the definition; the Cauchy-Schwarz inequality in 
2

shows it is also bounded,

|fy(x)| =
∣
∣
∣
∣
∣

∑

k∈N
xkyk

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

∑

k∈N
xks

k
2 yks

− k
2

∣
∣
∣
∣
∣

≤
(
∑

k∈N
|xk|2sk

) 1
2
(
∑

k∈N
|yk|2s−k

) 1
2

= |x|
2s |y|
2
s−1

.

Conversely, let f ∈ 
2∗s . Define g : 
2 → R by g(x) = (f ◦Ts)(x). Since f and Ts are both
linear, so is g, and since f is bounded,

|g(x)| = |(f ◦ Ts)(x)| ≤ |f |
2∗s
|Ts(x)|
2s = |f |
2∗s

|x|
2 < ∞.

Hence, g ∈ 
2∗ and by the Riesz Representation theorem there exists a unique ỹ ∈ 
2 such
that g(x) = 〈x, ỹ〉 for all x ∈ 
2. Let y = Ts−1 ỹ ∈ 
2

s−1 . Since Ts is invertible we have that

for all x∈ 
2s

f (x) = (g ◦ T −1
s )(x) = 〈T −1

s x, ỹ〉 =
∑

k∈N
(T −1

s x)k(T
−1
s−1y)k =

∑

k∈N
xkyk = 〈y, x〉D,

whence f ∈ 
2∗s is represented by y ∈ 
2
s−1 .

We now need an explicit solution for Eq. 3, so we first define the values

λ1 = 1 − 2c + √
1 − 4c

2c
, (6)

λ2 = 1 − 2c − √
1 − 4c

2c
. (7)

Elementary calculations show that the matrices D, E and the vectors v and w defined by

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1 · · ·
0 0 0 1

. . .

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 · · ·
1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1

. . .

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (8a)

wT =
(

1, 1
α

− 1,
(
1
α

− 1
)2

, · · ·
)

and v = 1

λ1 − λ2

⎛

⎜
⎜
⎜
⎝

λ1 − λ2
λ21 − λ22
λ31 − λ32

...

⎞

⎟
⎟
⎟
⎠

(8b)

satisfy the matrix product conditions (3). In the boundary case c = 1
4 we have λ1 = 1 = λ2

and we take vT = (1, 2, 3, . . .).
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To simplify notation, define for fixed θ ∈ R the operator A(θ) : 
2s→ 
2s with the infinite
matrix representation

A(θ) = eθD + E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + eθ eθ 0 0 · · ·
1 1 + eθ eθ 0 · · ·
0 1 1 + eθ eθ · · ·
0 0 1 1 + eθ

. . .

...
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)

and then the k-th component of the vector A(θ)x is

(A(θ)x)k =
{

x1(1 + eθ ) + x2e
θ if k = 1

xk−1 + xk(1 + eθ ) + xk+1e
θ if k > 1.

Proposition 4.3 The operator A(θ) : 
2s→ 
2s is bounded.

Proof Let x∈ 
2s . Using Cauchy-Schwarz in R2 and R3 for each term of A(θ)x gives

|A(θ)x|2

2s

=
n∑

k=1

|(A(θ)x)k|2sk

= |x1(1 + eθ ) + x2e
θ |2s +

n∑

k=2

|xk−1 + xk(1 + eθ ) + xk+1e
θ |2sk

≤ (x2
1 + x2

2 )((1 + eθ )2 + e2θ ) +
n∑

k=2

(x2
k−1 + x2

k + x2
k+1)(1 + (1 + eθ )2 + e2θ )sk

≤ Cs |x|2

2s

,

where Cs > 0 is a constant independent of x and hence we see that A(θ) is a bounded linear
operator.

Lemma 4.4 LetL ∈ L(
2s ), that is a bounded linear operator from 
2s to itself. The operator
L̃ = T −1

s ◦ L ◦ Ts satisfies L̃ ∈ L(
2).

Proof Take x ∈ 
2. Then by Lemma 4.1,

|L̃x|
2 ≤ |T −1
s |L(
2s ,


2)|L|L(
2s )
|Ts |L(
2,
2s )

|x|
2 < ∞.

By Lemma 4.1 we conclude that |L̃|L(
2) ≤ |L|L(
2s )
. Analogously, since L = Ts ◦L ◦T −1

s ,

we have that |L̃|L(
2) = |L|L(
2s )
.

The tilde operator commutes with exponentiation.

Lemma 4.5 Let L ∈ L(
2s ), then L̃n = L̃n.

Proof We proceed by induction over n. For n = 1, the proposition is a tautology. We assume
the proposition true for n, let x ∈ 
2 and calculate

L̃n+1x = L̃ ◦ L̃nx = T −1
s ◦ L ◦ Ts ◦ T −1

s ◦ Ln ◦ Tsx = T −1
s ◦ Ln+1 ◦ Tsx = L̃n+1x.
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Recall from Eq. 8 the explicit form of w and v and note that if s ∈ (0, 1)

|v|2

2s

=
∑

k∈N
k2sk = s(1 + s)

(1 − s)3
< ∞. (10)

On the other hand, if s >
(
1
α

− 1
)2
,

|w|2

2
s−1

=
∑

k∈N

(
1

α
− 1

)2(k−1)

s−k = 1

s −
(
1
α

− 1
)2 < ∞. (11)

Therefore, for s ∈
(
( 1
α

− 1)2, 1
)
we have that v∈ 
2s and w ∈ 
2

s−1 .

4.2 Toeplitz Operators

Before stating the main result of this section, we need to review some properties of Toeplitz
operators. Let a = {ak}k∈Z ∈ 
2(C), that is, a double sequence of complex numbers such
that

∑
k∈Z |ak|2 < ∞. A Toeplitz operator A defined by the double sequence a ∈ 
2(C) is

an infinite matrix with the structure

A =

⎛

⎜
⎜
⎜
⎝

a0 a−1 a−2 · · ·
a1 a0 a−1 · · ·
a2 a1 a0 · · ·
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎠

.

The symbol κ : {z ∈ C : |z| = 1} → C of a Toeplitz operator is defined by

κ(z) =
∑

k∈Z
akz

k.

We recall Theorem 7.1 in [22] that deals with spectra of Toeplitz operators.

Theorem 4.6 [22, Theorem 7.1] Let A be a Toeplitz operator. If A has a continuous symbol
κ , then its spectrum is given by the image of the unit circle under κ together with all the
points enclosed by this curve with non-zero winding number.

For fixed θ ∈ R, the operator A(θ) defined by Eq. 9 is by Proposition 4.3 in L(
2s ). By
Lemma 4.4 the operator Ã(θ) is a Toeplitz operator in 
2 with its symbol κ given by

κ(ζ ) = eθ

ζ
√

s
+ 1 + eθ + ζ

√
s.

Writing ζ = eiϕ as an element of the unit circle,

κ(eiϕ) = 1 + eθ +
(√

s + eθ

√
s

)

cosϕ +
(√

s − eθ

√
s

)

i sinϕ,

which we recognise as a parametrised ellipse centred at 1 + eθ , with major axis of length√
s + eθ√

s
along the real line, and minor axis of length |√s − eθ√

s
|. Therefore, the spectral

radius is found when z = 1 and

ρ(Ã(θ)) = κ(1) = 1 + √
s + eθ

(

1 + 1√
s

)

. (12)
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We now state the main result of this section: the upper bound for the cumulant generating
function �.

Proposition 4.7 For � defined by Eq. 5, an upper bound is

�(θ) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log
(

eθ

1−α
+ 1

α

)
+ log c if − ∞ < θ ≤ 2 log

(
1
α

− 1
)

,

log
(
1 + eθ/2

)2 + log c if 2 log
(
1
α

− 1
)

< θ ≤ −2 log λ1,

log
(
1 + λ1e

θ
)+ log

(
1 + 1

λ1

)
+ log c if − 2 log λ1 < θ < ∞.

Proof Recall from Eq. 10 that v∈ 
2s ; by Proposition 4.3 A(θ) ∈ L(
2s ) and therefore
A(θ)v∈ 
2s . Also w ∈ 
2

s−1 from Eq. 11. Hence, by Eq. 5 and Cauchy-Schwarz,

�(θ) = lim
n→∞

1

n
log(wTA(θ)nv) + log c

≤ lim
n→∞

1

n
log

(

|w|
2
s−1

|A(θ)nv|
2s
)

+ log c.

The norm of w does not contribute to the limit since it does not depend on n. By Lemma 4.4,
Lemma 4.1, and Lemma 4.5 we can continue the previous estimate

= lim
n→∞

1

n
log(|Ts ◦ Ã(θ)n ◦ T −1

s v|
2) + log c

≤ lim
n→∞

1

n
log(|Ã(θ)n|L(
2)|T −1

s v|
2) + log c;
once again, the norm of T −1

s v does not contribute to the limit since it does not depend on n.
We insert the factor 1

n
to the logarithm by continuity and use the definition of spectral radius

= lim
n→∞ log

(

|Ã(θ)n|
1
n

L(
2)

)

+ log c

= log ρ(Ã(θ)) + log c.

We now use Eq. 12 to find the spectral radius

= log

[

1 + √
s + eθ

(

1 + 1√
s

)]

+ log c.

Since the left hand side does not depend on s, it is a lower bound on the right hand side for

s, so we take the infimum over the interval

(

( 1
α

− 1)2, 1
λ21

)

.

�(θ) ≤ inf
s∈
((

1
α
−
)2

, 1
λ21

) log

[

1 + √
s + eθ

(

1 + 1√
s

)]

+ log c.

Given θ , the value of s that reaches the infimum of this function is given by

s∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1
α

− 1
)2

if − ∞ < θ ≤ 2 log
(
1
α

− 1
)

,

eθ if log
(
1
α

− 1
)2

< θ ≤ −2 log λ1,

1
λ21

if − 2 log λ1 < θ < ∞.

Plugging s∗ into the formula gives the result of the lemma.
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5 Lower Bound: A Combinatorial Approach

In order to find the lower bound we use a completely different approach. We will focus on
the powers of eθD + E.

Proposition 5.1 There exists a sequence of polynomials f n
p,j (θ) in eθ such that

(eθD + E)n =
n∑

p=1

p∑

j=0

f n
p,j (θ)Ep−jDj (13)

and they can be defined recursively in two ways: Starting with

f 1
1,0(θ) = 1, f 1

1,1(θ) = eθ ,

the first characterisation for f n
p,j with n > 1 is

f n
p,j (θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑n−1
k=1 f n−1

k,k (θ) if n > 1, p = 1, j ∈ {0, 1}
f n−1

p−1,0(θ) +∑n−1
k=p f n−1

k,k−p+1(θ) if n > 1, 1 < p < n, j = 0

eθf n−1
p−1,j−1(θ) +∑n−1

k=p f n−1
k,k−p+j (θ) if n > 1, j ≤ p < n, j > 0

f n−1
n−1,0(θ) if n > 1, p = n, j = 0

eθf n−1
n−1,j−1(θ) if n > 1, p = n, 0 < j ≤ p;

(14)
and the second characterisation is

f n
p,j (θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑n−1
k=1 eθf n−1

k,0 (θ) if n > 1, p = 1, j ∈ {0, 1}
f n−1

p−1,j (θ) +∑n−1
k=p eθf n−1

k,j (θ) if n > 1, 1 < p < n, 0 ≤ j < p

eθf n−1
p−1,p−1(θ) +∑n−1

k=p eθf n−1
k,p−1(θ) if n > 1, 1 < p < n, j = p

f n−1
n−1,j (θ) if n > 1, p = n, 0 ≤ j < n

eθf n−1
n−1,n−1(θ) if n > 1, p = n, j = n.

(15)

Proof We prove this by induction. For n = 1 we have (eθD + E)1 = eθD + E which
settles the initial values f 1

1,0(θ) = 1 and f 1
1,1(θ) = eθ . To find the recursion we assume the

induction hypothesis:

(eθD + E)n =
n∑

p=1

p∑

j=0

f n
p,j (θ)Ep−jDj

and expand the next power. However, there are two ways we can use to expand, namely
(eθD + E)n+1 = (eθD + E)n(eθD + E) or (eθD + E)(eθD + E)n. The former will give
Eq. 14, the latter Eq. 15. The functions f n

p,j are all polynomials in eθ because this holds for
the induction hypothesis and the operations in the induction step are only multiplications
and additions of polynomials with positive coefficients.

We now state an auxiliary result.

Lemma 5.2 For n ≥ 2 and 1 ≤ p ≤ r ≤ n − 1, we have the identity
r∑

k=p

k

(
n − 1 − k

r − k

)

= np − pr + r

n − r + 1

(
n − p

r − p

)

. (16)
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Proof First note that the cases p = r and r = n − 1 are easy to check directly. We prove
the general case by induction over n. The case n = 2 is again easy to see. We now assume
that Eq. 16 holds for fixed n ≥ 2 and all 1 ≤ p ≤ r ≤ n − 1.

To show the result for n+ 1 we may assume 1 ≤ p < r ≤ n− 1, ignoring the easy cases
settled at the beginning of the proof. Starting from the left hand side for n + 1 and using the
induction hypothesis on the third equality,

r∑

k=p

k

(
n − k

r − k

)

=
r−1∑

k=p

k

[(
n − k − 1

r − k − 1

)

+
(

n − k − 1

r − k

)]

+ r

=
r−1∑

k=p

k

(
n − k − 1

r − k − 1

)

+
r∑

k=p

k

(
n − k − 1

r − k

)

= np − p(r − 1) + (r − 1)

n − (r − 1) + 1

(
n − p

(r − 1) − p

)

+ np − pr + r

n − r + 1

(
n − p

r − p

)

= (n + 1)p − pr + r

(n + 1) − r + 1

(
(n + 1) − p

r − p

)

.

We now identify the coefficients f n
p,p(θ), for 1 ≤ p ≤ n.

Proposition 5.3 For the coefficients defined in Proposition 5.1,

f n
p,p(θ) =

{∑n−1
r=p

p
n

(
n−p−1

r−p

)(
n
r

)
erθ if 1 ≤ p < n,

enθ if p = n.
(17)

Proof Putting j = p in Eq. 14 of Proposition 5.1 we get a simplified recursion:

f 1
1,1(θ) = eθ

and

f n
p,p(θ) =

⎧
⎪⎨

⎪⎩

∑n−1
k=1 f n−1

k,k (θ) if n > 1, p = 1

eθf n−1
p−1,p−1(θ) +∑n−1

k=p f n−1
k,k (θ) if n > 1, 1 < p < n

eθf n−1
n−1,n−1(θ) if n > 1, p = n.

(18)

If p = n, it is easy to see by induction that

f n
n,n(θ) = enθ . (19)

Now, if p < n, we proceed again by induction. Here the base of induction has to be n = 2.
The recursion Eq. 18 gives f 2

1,1(θ) = f 1
1,1(θ) = eθ , as required by formula (17). We now

assume that Eq. 17 holds for fixed n ≥ 2 and all p < n. We first consider the branch
of Eq. 18, referring to the case p = 1. Using Eq. 19 and the induction hypothesis we
obtain

f n+1
1,1 (θ) =

n∑

k=1

f n
k,k(θ) =

n−1∑

k=1

f n
k,k(θ) + f n

n,n(θ) =
n−1∑

k=1

n−1∑

r=k

k

n

(
n − k − 1

r − k

)(
n

r

)

erθ + enθ ,
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changing the order of summation and using Lemma 5.2 gives

=
n−1∑

r=1

r∑

k=1

k

n

(
n − k − 1

r − k

)(
n

r

)

erθ + enθ =
n−1∑

r=1

1

n

(
n

r

)

erθ
r∑

k=1

k

(
n − k − 1

r − k

)

+ enθ

=
n−1∑

r=1

1

n

(
n

r

)

erθ n

n − r + 1

(
n − 1

r − 1

)

+ enθ =
n∑

r=1

1

n + 1

(
n − 1

r − 1

)(
n + 1

r

)

erθ .

Since this is the result required by the induction step, the case p = 1 is settled. We can
therefore turn our attention to the remaining branch of Eq. 18, covering 1 < p ≤ n. We
obtain from the induction hypothesis

f n+1
p,p (θ) = eθf n

p−1,p−1(θ) +
n∑

k=p

f n
k,k(θ)

= eθ

n−1∑

r=p−1

p − 1

n

(
n − p

r − p + 1

)(
n

r

)

erθ +
n−1∑

k=p

n−1∑

r=k

k

n

(
n − k − 1

r − k

)(
n

r

)

erθ + enθ ;

changing the summation order and grouping the terms by powers of eθ yields

=
n∑

r=p

p − 1

n

(
n − p

r − p

)(
n

r − 1

)

erθ +
n−1∑

r=p

r∑

k=p

k

n

(
n − k − 1

r − k

)(
n

r

)

erθ + enθ

=
n−1∑

r=p

⎡

⎣
p − 1

n

(
n − p

r − p

)(
n

r − 1

)

+
r∑

k=p

k

n

(
n − k − 1

r − k

)(
n

r

)
⎤

⎦ erθ

+
[

p − 1

n

(
n − p

n − p

)(
n

n − 1

)

+ 1

]

enθ ;

simplifying and using Lemma 5.2 in the second line gives

=
n−1∑

r=p

⎡

⎣
r(p − 1)

n − r + 1

(
n − p

r − p

)

+
r∑

k=p

k

(
n − k − 1

r − k

)
⎤

⎦
1

n

(
n

r

)

erθ + penθ

=
n−1∑

r=p

[
r(p − 1)

n − r + 1

(
n − p

r − p

)

+ np − pr + r

n − r + 1

(
n − p

r − p

)]
1

n

(
n

r

)

erθ + penθ

=
n−1∑

r=p

[
r(p − 1)

n − r + 1
+ np − pr + r

n − r + 1

]
1

n

(
n − p

r − p

)(
n

r

)

erθ + penθ ;

grouping that last term with the rest of the terms in the sum finally results in

=
n∑

r=p

p

n + 1

(
n − p

r − p

)(
n + 1

r

)

erθ .

Proposition 5.4 For all n ∈ N, 1 ≤ p ≤ n and 0 ≤ j ≤ p we have the symmetry

f n
p,j (θ) = enθf n

p,p−j (−θ).
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Proof Defining the polynomials gn
p,j (θ) := enθf n

p,p−j (−θ), we can write

f n
p,j (θ) = enθgn

p,p−j (−θ),

and by the definition Eq. 13 of the polynomials f n
p,j (θ) we obtain by changing the

summation index

(eθD + E)n =
n∑

p=1

p∑

j=0

f n
p,j (θ)Ep−jDj =

n∑

p=1

p∑

j=0

enθgn
p,p−j (−θ)Ep−jDj

=
n∑

p=1

p∑

j=0

enθgn
p,j (−θ)EjDp−j . (20)

Evaluating this expression for n = 1, we find

eθD + E = eθg1
1,0(−θ)D + eθg1

1,1(−θ)E,

and hence g1
1,1(θ) = eθ and g1

1,0(θ) = 1. Next we find a recursive relation for these
polynomials by expanding and employing Eq. 20,

(eθD + E)n+1 = (eθD + E)n(eθD + E)

=
⎛

⎝
n∑

p=1

p∑

j=0

enθgn
p,j (−θ)EjDp−j

⎞

⎠ (eθD + E)

and equating the coefficients to

(eθD + E)n+1 =
n+1∑

p=1

p∑

j=0

enθgn
p,j (−θ)EjDp−j

we find that the polynomials gn
p,j satisfy the following recursion:

g1
1,0(θ) = 1, g1

1,1(θ) = eθ

gn
p,j (θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑n−1
k=1 eθgn−1

k,0 (θ) if n > 1, p = 1, j ∈ {0, 1}
gn−1

p−1,j (θ) +∑n−1
k=p eθgn−1

k,j (θ) if n > 1, 1 < p < n, 0 ≤ j < p

eθgn−1
p−1,p−1(θ) +∑n−1

k=p eθgn−1
k,p−1(θ) if n > 1, 1 < p < n, j = p

gn−1
n−1,j (θ) if n > 1, p = n, 0 ≤ j < n

eθgn−1
n−1,n−1(θ) if n > 1, p = n, j = n.

This is the recursion Eq. 15 of Proposition 5.1, and hence f n
p,j (θ) = gn

p,j (θ). Thus from the
definition of gn

p,j (θ) we conclude that f n
p,j (θ) = enθf n

p,p−j (−θ) as claimed.

From the symmetry rule of Proposition 5.4 we obtain a simple characterisation of the
coefficients f n

p,0(θ).

Corollary 5.5

f n
p,0(θ) =

⎧
⎪⎨

⎪⎩

n−p∑

r=1

p

n

(
n − p − 1

r − 1

)(
n

r

)

erθ if 1 ≤ p < n

1 if p = n.

Proof The result follows by combining Proposition 5.4 for j = p, and Proposition 5.3.
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We plug the expansion (13) into Eq. 5 and obtain

�(θ) = lim
n→∞

1

n
log

⎧
⎨

⎩

n∑

p=1

p∑

j=0

f n
p,j (θ)wTEp−jDjv

⎫
⎬

⎭
+ log c. (21)

Since all terms are positive, we can find lower bounds by considering only the terms for
which j = 0 or j = p. This is the content of the next couple of results.

Proposition 5.6 For the cumulant generating function � defined by Eq. 5,

�(θ) ≥
{
2 log

(
1 + eθ/2

)+ log c if θ ≤ −2 log λ1,

log
(
1 + λ1e

θ
)+ log

(
1 + 1

λ1

)
+ log c if θ > −2 log λ1.

Proof From the explicit form of D, w, and v in Eq. 8 it can be shown by induction that

wTDpv = (1 + λ1)
p α

λ1 − λ2

{
λ1

α − λ1(1 − α)
−
(
1 + λ2

1 + λ1

)p
λ2

α − λ2(1 − α)

}

. (22)

We consider only the terms for which j = p in Eq. 21 and note that the expression in the
square parenthesis in Eq. 22 vanishes in the limit taken in Eq. 21. Hence, using the Laplace
principle and Proposition 5.3,

�(θ) ≥ lim
n→∞

1

n
log

⎧
⎨

⎩

n∑

p=1

f n
p,p(θ)(1 + λ1)

p

⎫
⎬

⎭
+ log c

= lim
n→∞ sup

1≤p≤r≤n

1

n
log

{
p

n

(
n − p − 1

r − p

)(
n

r

)

erθ (1 + λ1)
p

}

+ log c.

We now use Stirling’s formula and a change of variables ε = r
n
and δ = p

n
to obtain

�(θ) ≥ sup
0<δ≤ε≤1

[

lim
n→∞

1

n
log

{

δ

(
n(1 − δ)

n(ε − δ)

)(
n

nε

)}

+ εθ + δ log(1 + λ1)

]

+ log c

= sup
0<ε≤1

[

sup
0<δ≤ε

{−(ε − δ) log(ε − δ) + (1 − δ) log(1 − δ) + δ log(1 + λ1)}

+ εθ − 2(1 − ε) log(1 − ε) − ε log ε

]

+ log c.

The inner problem, when ε is fixed, is solved by choosing δmax = 0, if ε ≤ 1
1+λ1

, and

δmax = (1+λ1)ε−1
λ1

, if ε > 1
1+λ1

. So now we have

�(θ) ≥ max

⎧
⎨

⎩
sup

0<ε≤ 1
1+λ1

[
εθ − 2ε log ε − 2(1 − ε) log(1 − ε)

]
,

sup
1

1+λ1
<ε≤1

[
εθ − ε log ε − (1 − ε) log[λ1(1 − ε)] + log(1 + λ1)

]

⎫
⎬

⎭
+ log c.
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This problem is solved by choosing

εmax =

⎧
⎪⎨

⎪⎩

eθ/2

1+eθ/2 if θ ≤ −2 log λ1

λ1e
θ

1+λ1e
θ if θ > −2 log λ1.

Plugging this value of εmax yields the result of the proposition.

Proposition 5.7 For the cumulant generating function � defined by Eq. 5,

�(θ) ≥
⎧
⎨

⎩

log
(

eθ

1−α
+ 1

α

)
+ log c if θ ≤ 2 log

(
1
α

− 1
)

,

2 log
(
1 + eθ/2

)+ log c if θ > 2 log
(
1
α

− 1
)

.

Proof We follow the same technique as in the previous proposition, but now consider only
those values for which j = 0 in Eq. 13. Hence, using Corollary 5.5

�(θ) ≥ lim
n→∞

1

n
log

⎧
⎨

⎩

n∑

p=1

f n
p,0(θ)

1

αp

⎫
⎬

⎭
+ log c

= lim
n→∞ sup

1≤p≤n
0≤r≤n−p

1

n
log

{
p

n

(
n − p − 1

r − 1

)(
n

r

)

erθα−p

}

+ log c

With the same change of variables as before, ε = r
n
and δ = p

n
, we have

�(θ) ≥ sup
0<δ≤1

0≤ε≤1−δ

[

lim
n→∞

1

n
log

{

δ

(
n(1 − δ)

nε

)(
n

nε

)}

+ εθ − δ logα

]

+ log v

= sup
0≤δ≤1

0≤ε≤1−δ

{(1 − δ) log(1 − δ) − (1 − δ − ε) log(1 − δ − ε) − δ logα

−2ε log ε − (1 − ε) log(1 − ε) + εθ} + log c.

Splitting the problem in two, for a fixed ε, we find the optimal δ as δmax = 0, if 1 − α ≤
ε ≤ 1, and δmax = 1 − ε

1−α
, if 0 ≤ ε < 1 − α. And the remaining problem is solved by

choosing the optimum ε as

εmax =
⎧
⎨

⎩

eθ/2

1+eθ/2 if θ ≤ 2 log
(
1
α

− 1
)

,

α
α+e−θ (1−α)

if θ > 2 log
(
1
α

− 1
)

.

With these values of ε we get the desired result.

Corollary 5.8 For � defined by Eq. 5,

�(θ) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log
(

eθ

1−α
+ 1

α

)
+ log c if − ∞ < θ ≤ 2 log

(
1
α

− 1
)

,

2 log
(
1 + eθ/2

)+ log c if 2 log
(
1
α

− 1
)

< θ ≤ −2 log λ1,

log
(
1 + λ1e

θ
)+ log

(
1 + 1

λ1

)
+ log c if − 2 log λ1 < θ < ∞.

Proof The bounds from Propositions 5.6 and 5.7 are the same in the interval

2 log
(
1
α

− 1
)

≤ θ ≤ −2 log λ1. In the other intervals, a comparison of the bounds

establishes the claim.
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6 The Rate Function

Summarising, we have the following result.

Corollary 6.1 For the cumulant generating function � defined by Eq. 5,

�(θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log
(

eθ

1−α
+ 1

α

)
+ log c if − ∞ < θ ≤ 2 log

(
1
α

− 1
)

,

2 log
(
1 + eθ/2

)+ log c if 2 log
(
1
α

− 1
)

< θ ≤ −2 log λ1,

log
(
1 + λ1e

θ
)+ log

(
1 + 1

λ1

)
+ log c if − 2 log λ1 < θ < ∞.

(23)

Proof This follows from the fact that the upper and lower bounds from Proposition 4.7 and
Corollary 5.8, respectively, are the same.

Finally we have the necessary tools to prove Theorem 2.2.

Proof The rate function in the case (a) α ≤ 1/2 and ρ < 1 − α is known from Cramér’s
theorem, see e.g. Exercise 2.2.23 (b) in [8]. For the case (c), α > 1/2 and 1

2 < ρ < α, we
show that the function � defined by Eq. 5, given explicitly in Corollary 6.1, satisfies the
hypotheses of the Gärtner-Ellis theorem 3.3. Note that � is defined for all real numbers. An
evaluation at the boundaries of the domains gives

�

(

2 log

(
1

α
− 1

))

= −2 logα + log c = lim
h→0+ �

(

2 log

(
1

α
− 1

)

− h

)

and

�(−2 log λ1) = 2 log

(

1 + 1

λ1

)

+ log c = lim
h→0+ �(−2 log λ1 + h) ,

which implies that it is continuous in all R. Moreover,

lim
h→0±

�
(
2 log( 1

α
− 1) + h

)
− �

(
2 log

(
1
α

− 1
))

h
= 1 − α

and

lim
h→0±

�(−2 log λ1 + h) − �(−2 log λ1)

h
= 1

1 + λ1
.

Therefore, � is differentiable in R. By the Gärtner-Ellis theorem we find the rate function,

I (z) = sup
θ∈R

{zθ − �(θ)} for z ∈ (0, 1).

For fixed z ∈ (0, 1) the function θ �→ zθ − �(θ) is well-defined, continuous, and differen-
tiable in all R. It is also a concave function and hence the maximum is reached at a value of
θ where the derivative vanishes. Since

d

dθ
(zθ − �(θ)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z − αeθ

αeθ+1−α
if − ∞ < θ ≤ log

(
1
α

− 1
)2

,

z − eθ/2

1+eθ/2 if log
(
1
α

− 1
)2

< θ ≤ −2 log λ1,

z − λ1e
θ

1+λ1e
θ if − 2 log λ1 < θ < ∞,
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we get d
dθ

(zθ − �(θ)) = 0 if and only if

θ = log z(1−α)
α(1−z)

and θ ≤ 2 log
(
1
α

− 1
)

,

or θ = 2 log z
1−z

and 2 log
(
1
α

− 1
)

< θ ≤ −2 log λ1,

or θ = log z
λ1(1−z)

and θ > −2 log λ1.

This means that
θ = log z(1−α)

α(1−z)
⇔ 0 < z < 1 − α,

θ = 2 log z
1−z

⇔ 1 − α < z ≤ 1
1+λ1

,

θ = log z
λ1(1−z)

⇔ 1
1+λ1

< z < 1.

Since the value of θ that satisfies d
dθ

(zθ − �(θ)) = 0 is unique it must be the maximum.
By plugging in this value in Eq. 23, we reach the desired result. The remaining case (b) is
obtained simply by taking the limit of case (c) as c → 1

4 .

An alternative approach to the problems studied here is based on translation into a random
walk problem. Rewriting the infinite matrix eθD + E as 2(1 + eθ )Qθ , one can see that
Qθ can be interpreted as the probability transition matrix of a discrete time random walk
{Xn}n≥0 onN0 killed at the origin. By the form of the vectorwT, shown in Eq. 8, the product
wTQn

θ is, up to a normalising constant, the sub-probability distribution of the n-th step of
the random walk starting from a geometric distribution with parameter 2 − 1

α
. If T denotes

the killing time of the random walk, then Eq. 23 becomes

�(θ) = lim
n→∞

1

n
logwT(eθD + E)nv + log c

= log
(
2c(1 + eθ )

)+ lim
n→∞

1

n
logE

[
(λ

Xn

1 − λ
Xn

2 )1{T >n}
]
,

using the form of v given in Eq. 8. The latter rate may be evaluated using a functional large
deviation principle for the random walk. This alternative method hinges on the availability
of the large deviation result and the resolvability of the variational problems that come out
of its application, which may be more complicated than our original approach. In principle,
however, the method seems suited to not only reveal large deviations for the asymptotic
density, but also for a density profile depending on a macroscopic space variable, as done
by Derrida et al. in [12] in the case of the finite TASEP.

By contrast, the technique presented in this paper is more elementary and direct. It there-
fore seems to be more flexible, giving hope to produce large deviation principles for a range
of other systems with spatially correlated distributions given by a matrix product represen-
tation. In particular there are several natural variants even of the example of a semi-infinite
TASEP considered in this paper: For example, we would be interested in identifying a large
deviation principle for the semi-infinite TASEP process starting from a configuration given
by a value of ρ in Theorem 2.1 with ρ > α > 1

2 , which was so far excluded for techni-
cal reasons. It also seems feasible to generalise the large deviation principle for the overall
density to a large deviation principle for a density profile. Finally, it would be interesting to
analyse the non-stationary TASEP using a time dependent matrix representation, as given
by Stinchcombe and Schütz in [20].
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