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Abstract

Robots are poised to interact with humans in unstructured environments. Despite increasingly robust control algorithms,
failure modes arise whenever the underlying dynamics are poorly modeled, especially in unstructured environments. We
contribute a set of recovery policies to deal with anomalies produced by external disturbances. The recoveries work
when various different types of anomalies are triggered any number of times at any point in the task, including during
already running recoveries. Our recovery critic stands atop of a tightly-integrated, graph-based online motion-generation
and introspection system. Policies, skills, and introspection models are learned incrementally and contextually over time.
Recoveries are studied via a collaborative kitting task where a wide range of anomalous conditions are experienced in
the system. We also contribute an extensive analysis of the performance of the tightly integrated anomaly identification,
classification, and recovery system under extreme anomalous conditions. We show how the integration of such a system

achieves performances greater than the sum of its parts.
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1 Introduction
1.1 Problems

As robots experience increased levels of unstructured envi-
ronments and shared workspaces with humans, so will the
possibility of anomalies and failure. Even as manipulation
and control algorithms become increasingly robust, failure
modes continue to exist.

Numerous sources of failure and execution anomaly
arise from the complex dynamics found in robots, limited
modeling ability, and robot’s interactions with the world. We
specify anomalies to be executions whose sensor signatures
deviate from a robot’s learned expected models.! Sources
of anomaly include: (i) internal errors that can result from
improper modeling of visual, kinematic, or dynamic models

IThis does not imply that a robot’s learned expected models always
align with success. A robot’s observation may confirm a learned model
and yet fail in actuality. This would equate to a misjudgment on the
part of a human. Evaluating a model’s reciprocity with true events in
the world is an important open problem but outside the scope of this
work
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and (ii) external anomalies that arise from the inability to
model accidental collisions (human-robot, robot-world, or
robot-object-world), object slips due to inertial dynamics,
misgrasps; or even a chain reaction where one anomaly
triggers other anomalies. Figure 1 illustrates two examples
of possible anomalies in a kitting experiment. Anomalous
conditions are also hard to model as similar anomalies
can occur with wide variability, making it challenging for
robots to recognize. Recovery system performance will
depend significantly on the ability to properly identify and
understand the nature of the anomaly.

Under the recovery domain, there are many other con-
siderations: am I recovering from an accidental error or a
persistent one? Can I leverage different recovery policies
without deleterious effects between them? Can the recov-
ery policies work consistently when the robot experiences
repeated and strenuous anomaly conditions? Are any parts
of the task more susceptible to failure? Can my recovery
system overcome anomalies triggered whilst a recovery skill
is executing?

1.2 Related Works

Few papers have studied the development of explicit recov-
ery policies for recovery of anomalous conditions, espe-
cially those that are characterized by random or unstructured
qualities that are hard to model or anticipate.

1.2.1 Manipulation Skills

Recovery action design shares fundamentals with skill learn-
ing and skill sequencing, where there has been much ongo-
ing research in the last two decades. Ijspeert et al. introduced
goal-directed dynamic motion primitives (DMPs) that could
learn arbitrarily complex shaped skills from one demon-
stration [1]. Paraschos et al. conceived probabilistic motion
primitives where demonstrations were approximated by a
linear combination of weighted basis functions, where the
weight vector was modeled by a distribution [2]. Other prob-
abilistic method derive the regression function instead of
learning it [3]. Beyond skill bootstrapping, incremental cor-
rections of motions has been another branch of study that
has been studied and one that closely connects to this work.
In [4], Jain et al. use human demonstrators to iteratively pro-
vide trajectories that are used to update the encoded skill
via co-activations. In [5], Konidaris et al. learn to build
skill trees by segmenting a demonstration into skills with
specific goals and which are encoded with suitable abstrac-
tions. These abstractions are improved via policy learning
and finally merged into skill trees. In [6], Gutierrez et al.
design a method that takes a given demonstration and selects
between possible model updates by either adding new nodes
or new transitions in the FSM. In [7], focuses on iteratively
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Fig.1 Anomaly examples when a robot performs a kitting experiment
in a shared workspace with a human. Top: an accidental collision
between the robot and the human as the human places a new object
in the collection area. Bottom: a tool collision as the end-effector
prepares to pick an object

improving skill learning by only focusing on one-feature-at-
a-time rather than all features. None of these works consider
how to corrections could take place in view of the presence
of (a myriad) of anomalies that could drastically alter the
state of the skill and the environment in which the robot is
working. To begin to think about correcting robot skills in
this context, one must first have the ability to understand
anomalies.

1.2.2 Anomaly Identification and Classification

We define anomalies as the deviation of sensor-related sig-
natures from those experienced in nominal executions. In
this work, we abuse terminology some and use anomalies
and failure interchangeably. Evidently, not all anomalies
need lead to failures). Anomalies in robotic environments
have been studied particularly in structured and uni-modal
formats [8, 9]. More recently, anomaly identification and
classification in unstructured environments have been stud-
ied. The majority of these are based on Hidden Markov
Models (HMMs) and differ in the way they try to learn the
HMMs parameters. In [10], language is used to generate
motion, and a simple HMM is used to detect success or fail-
ure based on trajectory position information. In [11], visual,
audio, and proprioceptive features are used through Hidden
Markov Models (HMMs) and other heuristics on a table-
top task to detect failure. In [12], a hierarchical Dirichlet
process (HDP) prior was used with HMMs and a Gaussian
observation model and Gibbs sampling to do anomaly iden-
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tification and multi-class classification. This work used sim-
ple threshold based to do flag anomalies. In [13], knowledge-
based process models are combined with HMMs. Operation-
invariant characteristics such as screwdriving mechanics
and stage transition graph, support generalization across dif-
ferent screwdriver sizes that have varying tightening current,
motor velocity, insertion force, and tightening force. The
knowledge-based models, diminished the need for data and
labeling. In [14], the sticky version of HDP was used along
a vector autoregressive observation model to do anomaly
identification and multi-class classification with a dynamic
threshold that updates its parameters according to the latent
state of a sub-task. In [15], anomaly identification was
conducted with HMMs whose detection threshold varied
according to clusters of execution progress. In [16], the
work was improved by seeking to eliminate discontinu-
ities between clusters and opted to use a Gaussian-process
regressor function. In [17], built on top of the sHDP-HMM
models to design a more robust anomaly identification
method that leverages the gradient of the forward model’s
log-likelihood achieving robustness even in recovery sce-
narios. In [18], an artificial neural network was used to
identify and classify anomalies. The network used the latent
HMM states as input features along with a convolutional
neural network for image input.

1.2.3 Recovery

Few works design recovery policies that explicitly handle
the occurrence of various anomalies at different times
in a task. For example, in [19, 20], the entire task is
only re-attempted upon failure. In [21], Chang et al.
devised an error recovery system based on Petri Nets
learned from demonstration. Error conditions however
were defined based on object location: if objects were
not located in expected states, an error was triggered.
This forced the system to maintain a growing list of
expected object locations. The work did not consider
other anomaly sources. In [22], failure classification was
performed for only one perturbation and it was pre-taught.
No failure identification was presented nor was there an
explicit recovery policy. Instead, a recovery behavior was
inserted manually in a specific place in the task and no
explicit experimental results quantified recovery versatility
and robustness. Likewise the ability to grow recovery
behaviors incrementally over time was absent. In [23], a
system that allows for the incremental addition of skills
is taught, but there is no mentions on how anomalies
could be explicitly classified. Adaptive behavior was taught
for two anomalies that occurred predictably and were
characterized by a consistent structure. No explicit recovery
policy was presented in this work to handle anomalies.
In [24], proposes an approach to improve the robustness

of a policy learned from demonstration for contact tasks.
Contact is modeled via a multimodal state transition
function. Then, a reinforcement learning-based policy is
learned to optimize skill and recovery skill selection. The
policy is incrementally improved by expanding the action
space by generating recovery skills with a heuristic. In
this work, the environment is assume to be quasi-static,
failures are not explicitly classified—they primarily arise
in the form of obstructions, so the policy learns to re-route
around them. The work is demonstrated via three simulation
problems. While the work is promising, it is questionable
whether it can scale to unstructured scenarios, especially
where there is collaboration with humans, and a diverse set
of errors occur.

As the literature stands, the works that have carried out
recovery with some anomaly identification or classification
used a fixed point in the task to return to upon failure
sometimes resulting in very inefficient policies [20]. The
works that address recovery more directly do not explicitly
consider anomaly classification; as such, they address single
error-types under similar conditions. There is a lack of
work studying how recoveries look like with various types
of anomalies at different points in the task. No study
considers how anomalies with different “eccentricities”
(temporary vs. persistent natures) could use different types
of recovery policies (simpler and more complex) to resolve
their consequences more efficiently and how different
policies influence each other when enacted in an interleaved
fashion throughout the task. Existing research also does
not provide an in-depth study of whether the policies
work equally well at different points in time of the task?
That is, are some parts of the task more susceptible or
fragile than other parts? Furthermore, what if anomalies
re-occur repeatedly? How much strain can the recovery
framework resolve? An interesting case here is how the
system responds to cascaded-anomalies? That is anomalies,
that trigger anomalies. Can the system recognize them
and recover from them? Another consideration that has
been ignored is how do these recovery (and anomaly
identification and classification) systems work during an
ongoing recovery? That is, can we continue to effectively
identify, classify, and recover when anomalies take place
in the midst of a recovery effort? This is an important
consideration because it is imperative that the system has an
ongoing introspective ability at all times. Finally, the works
that do consider anomaly identification and classification
lack a comprehensive study of the interdependence of these
systems and their combined effect.

1.3 Contributions

The research question that we studied in this work is: “Given
the ability to classify anomalies, to what extent can we

@ Springer
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extend long-term autonomy when using a simple set of
task-level recovery policies that grow over time”.

In this paper we make policy contributions, analytical
contributions, and resource contributions as listed below:

1) The learning of contextual recovery policies that
provide unique recoveries for both accidental and
persistent anomalies at specific locations in the task
graph.

2) The ability to recover (and introspect) reliably whilst
the robot executes a recovery behavior triggered by a
previous anomalous condition.

We believe that we also offer contributions in the knowledge
created by two extensive analysis as follows:

1) An extended performance analysis of the anomaly
identifier and multi-class anomaly classification (aided
by improved variational inference) across more than
700 trials that take place everywhere during the nominal
task, but also extensively during recovery skills in
real-robot experiments.

2) The knowledge that arises by contrasting the joint
and disjoint performance of the anomaly identifier,
classifier, and recovery systems through comprehensive
experimentation and evaluation across more than 700
trials showing that when studied together the system
is able to self repair when incorrect classification and
recovery policies are originally selected.

We also claim a novel dataset and open-source code
framework with details as follows:

1) An extensive anomaly dataset of a co-bot Kitting exper-
iment that consists of 538 rosbags with multimodal-
sensory, RGB, and motor information across a wide
range of anomalous conditions and recoveries that take
place all throughout the task different parts of the task
(details in Supplement 2). The code is completely open-
sourced, including the entire manipulation-introspection-
and recovery framework built on ROS and python.

1.4 Relation to Previous Work

Our contribution builds on top of our previous introspec-
tion system which could introspect into nominal skills and
identify anomalies, but not classify them or recover contex-
tually from them [25]. We also use our improved anomaly
identification method presented in [17]. In this paper, we
significantly expanded introspection to deal with the online
classification of a challenging set of anomalies with faster
and more accurate inference memoized variational infer-
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ence with scalable adaptation as the modeling mechanism.
In this paper we also offer better recovery policies than
the naive recovery policy design of [20]. The policy pre-
sented can only address one-off accidental anomalies, and
often does so inefficiently. In this work, we improve how we
resolve accidental anomalies and also introduce a new con-
textual recovery policy for persistent anomalies that cannot
be resolved with the previous policy.

1.5 Methodology

Once an anomaly is classified, a recovery policy is executed.
Recovery policies include re-enacting or adaptive policies.
Re-enacting policies resolve accidental (one-off) anomalies,
while adaptive policies resolve persistent anomalies. Re-
enactments re-attempt either a current or previous manip-
ulation skill but with new goal parameterizations. Re-
enactments are learned from human users by modeling
human recovery choices through a multinomial distribu-
tion of task nodes. Once learned, new node transitions are
introduced in the graph for specific accidental anomalies
at specific nodes. For adaptive policies, the robot requires
user intervention to provide skill training to overcome a per-
sistent anomaly at a given point in the task graph. Once
an adaptive recovery is trained (including both skill gen-
eration and introspection models), it is introduced into the
graph while retaining previously learned policies from the
parent node. The approach fashions a system that incremen-
tally learns anomalies globally and recoveries contextually
(Section 5).

1.6 Experiments and Results

A co-bot experiment performing kitting tasks is used as
a proof-of-concept. Anomaly identification across more
than 700 trials were recognized with 93.09% accuracy;
mutli-class classifications with 96.15% accuracy, and as
for recoveries, we recovered consistently and reliably.
In particular, 82% across all our anomaly scenarios and
95% in more typical scenarios. Of significance was
the system’s ability to self-correct. In situations where
a misclassification was triggered and consequently an
incorrect recovery policy, the system quickly self-corrected
and completed the task successfully. The current framework
has broad applicability to all manipulation domains that
suffer from uncertainties in unstructured environments:
making industrial and service robots prime candidates for
this technology. Supplemental information found at [26]
include video, dataset, results and analysis, and robot-
agnostic source-code for the co-bot kitting experiment with
anomalies and recovery information.
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2 Overview

In this section we introduce a system overview. A summary
of all notation is found in Appendix C, which is accessible
through our supplementary page [26]

Directed graphs are a useful tool to manage complexity in
manipulation tasks [22, 23, 27]. Motion comprises structure,
not unlike that of grammar, encoded as a set of motion prim-
itives and associated sensory-motor perceptions [28-30].
Consider a graph G that consists of a sequence of behavior
nodes that form a task. Behaviors 3, in turn, are composed
as either simple or compounded actions; where actions are
represented by nodes . Actions are connected by transi-
tions 7; as such, behaviors too are connected by transitions.
A node transition from a node N; to another node N; is
denoted as: 75, = {5, € N} (we can extend this notation
to longer chains). The manipulation graph is thus the set of
nodes and transitions G : {N, T}. We also wish to cement
the idea that original behaviors that the task was boot-
strapped with are referred to as milestones B = (By, ..., B;)
and denote a fixed fundamental set of behaviors.

Recovery policies, more concretely adaptive policies,
will generate new actions ;; as transitions from a current
node to the new node (see Section 5.2). The node insertion
creates a branch. Such new nodes will always have their
successor be the next milestone (e.g. see the rec_mv, _anomy
node in Fig. 2). Furthermore, our system allows recoveries-
over-recoveries when anomalies F occur during an active
recovery behavior. As such, new adaptive nodes N are
generated (see the rec_rec_mv,_anomy, node in Fig. 2). In
this way, a set of nodes in a task, those within milestone
behaviors and those in branches N' = {N; UN;; UJ...
UM j.q} can incrementally grow over time as new
capabilities are introduced.

Nodes do more than just generate motion. They consist
of parallel modules that encapsulate a wide range of func-
tions (skill generation, introspection, visual goal setting,
language processing, navigation, etc). For this work, we
restrict node modules to: skill generation S, visualization V,
and introspection M. In a given task, skill modules S,, =
{S1, ..., Sp} perform the necessary motor skills to achieve a
task (Section D). Visualization modules V,, = {V1, ..., Vy}
process goals for specific motor skills (Section 3). Intro-
spection models? M, = {My, ..., My}, similar to process
monitoring in the literature, aid a robot to understand the
types of skills or anomalies that are experienced within a

2We abuse the term and refer to introspection as the physical
understanding of what the robot is doing and how. As such, the aim
is beyond pure process monitoring; though in this work, we do not
discuss the “how” component.

task (Section 4). We generate and maintain skill, visual, and
anomaly libraries on a per-task basis.?

The introspection module triggers anomaly flags when
the system experiences sensory-motor signatures that
deviate from the nominal signals expected in the currently
running node (anomalies may not necessary entail true
failures). Once an anomaly is triggered, an anomaly label
Fy is produced. Classifying anomalies is harder than
classifying nominal skills because the variability under
which anomalies occur is much larger (see Section 4).
Similarly, acquiring anomalous data is more challenging.
Discovering anomalies in a task is not a straight forward
process and deciding on how to discriminate between
them is hard. The policy under which anomalies are re-
generated can be controversial: should they be induced or
only expected to occur accidentally (Section 2.2 comments
further on these issues).

After classification recovery actions R (re-enactment
policies Rg or adaptive policies R4) are used. Re-
enactments resolve one-off (accidental) anomalies. Adap-
tations resolve persistent anomalies. Re-enactments re-
attempt a selected same or previous optimal skill. The
policy transitions from the current node A; to the designated
goal node N, such that Rg : Tn;.n, (see Section 5.1).
Adaptations, on the other hand, request user intervention
to overcome the persistent fault F, and are inserted into
the graph such that: R4 : Sy, |Fx — N;j(Sm, Mm, Vm).
Adaptations are incrementally introduced to the system as
persistent anomalies appear (see Section 5.2).

2.1 Experimental Setup

A co-bot-based Kitting experiment was selected to test
the recovery policies. We present the experimental testbed
and manipulated objects, as well as, the details regarding
external disturbances and data collection procedure.

2.1.1 Kitting Experiment

The collaborative kitting experiment consists of a robot and
a human co-worker that closely collaborate to place a set
of goods in a packaging box. The human co-worker places
objects in the robot’s “collection bin” (located at the front
of the robot) in a one-at-a-time fashion (see Fig. 4a). The
objects may accumulate in a queue in front of the robot. As
soon as the first object is on the table, the robot identifies
the object and begins the placing process in the packaging
box located to the right of the robot. Thus, the robot picks an

3We do not explicitly study the re-use of skills or introspection models
across tasks—this too is critical in the re-usability and scalability of
these systems

@ Springer
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Fig. 2 Manipulation tasks are composed via directed graphs. Nodes
contain three parallel running modules: motion, visualization, and intro-
spection. Motion modules use pose goals provided by the visualization

object (Fig. 4b) and transports it towards the box (Fig. 4c),
after which, the robot appropriately places it in the box
(Fig. 4d).

The kitting task is originally bootstrapped with 4 behav-
iors B and 5 actions A/ as shown in Fig. 3.

All behaviors except pick consist of single actions or
nodes. The compound pick behavior consists of two nodes:
“pre-pick to pick” and “pick to pre-pick”. The task requires
that we train 5 actions and as such 5 skills, visualization
goals, and introspection models. However, in the rest of

Fig.3 Task graph for kitting
experiment composed of 4
behaviors and 5 actions. Pick is
a behavior composed of two
actions. The task is thus
constructed with 5 skills, goals,
and introspection models.
Modules are not shown ~
explicitly in the node actions for

clarity

Pre-pick to pick

Pick-to-Pre-pick--"
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01 MOVE-TO-PICK

module to generate desirable skills. Introspection modules use node-
specific models to monitor for anomalies. If identified, classification
ensues. A global critic then enacts a recovery policy

the paper, we will describe the task only in terms of the 4
high-level behaviors for simplicity. We will refer to them
with the following codes for brevity: (i) MV2PK, (ii) PK,
(iii)) MV2PL, and (iv) PL.

2.1.2 External Disturbances
In this section we motivate the types of external disturbances

possible in collaborative environments like a warehouse
job as described above. Despite the interaction, we think

O Behaviors

03 MOVE-TO-PLACE | O Actions

02 PICK 04 PLACE
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that collaborative tasks (kitting here), can still result in
low-cognitive demands for a human partner. The low-
cognitive load might lead to monotony which in turn could
lead to boredom and attention-loss. In such cases, a human
co-worker may be more likely to accidentally collide with
the robot or alter the environment in unexpected ways.
A user may accidentally collide or unintentionally move
a packaging object in ways the robot cannot model or
anticipate as it tries to grip the objects. Object shifting
(objects to be grasped or even the packaging box) may lead
to tool-collisions, failed grasps, or even misgrasps. It is
also possible that picked objects may slip from the robot’s
tool if the grasp is not optimal; or if upon motion, iner-
tial forces acting on the object cause dynamics that break
the grasp. Chains of anomalies are yet another possibility:
human collisions that lead to object slips that move objects
in such a way that lead to air grasps. As part of the
discovered anomalies from Section 2.2, we introduce the
basic anomaly types and their acronym in the interest of
brevity: human collisions (HC), tool collisions (TC), object
slips (OS), and no-object (NO). Section 4, will introduce
the introspection methodology used to model robot skills
including a description of our Anomaly Identification
algorithms in Section 4.2) and Anomaly Classification
algorithms in Section 4.3. Later, in Section 5 we intro-
duce our recovery critic policies including Re-enactments
(Section 5.1) and Adaptations (Section 5.2).

2.1.3 The Robot

A Baxter humanoid robot’s right arm is used to pick
commonplace objects set before him. The equipment used
with the robot is: a 6 DoF Robotiq FT sensor, the standard
Baxter electric pinching fingers, and Baxter’s left hand
camera. Each finger is further equipped with a multimodal
tactile sensor composed of: (i) a four by seven taxel matrix
that yield absolute pressure values, (ii) a dynamic sensor
which provides a single capacitive reading in millivolts
(mV) useful to detect tactile events, and (iii) an IMU and
gyroscope [31]. Baxter’s left hand camera is placed flexibly
in a region that can capture objects in the collection bin
with a resolution of 1280x800 at 1 fps (we are optimizing
pose accuracy and lower computational complexity in the
system) as seen in Fig. 4a. The use of the left hand camera
facilitated calibration and object tracking accuracy. ROS
Indigo on Linux 14.04 and a number of workstations are
used to control all aspects of the experimentation. Code is
available in our supplementary page [26].

2.1.4 Objects

A set of 6 common household objects consisting of box-
liked shapes and bottles were used in our work as shown

in Fig. 4a. The objects ranged in weight from 0.0308kg to
1.055kg and in volume from 3.2 x 10™%m3 to 1 x 107 % m3.
The object’s surfaces also varied slightly: some heavier
objects had sleeker surfaces that incited object slips—we
believe not an unreasonable determination as warehouses
contain a wide variety of objects—whilst other objects had
rougher surfaces. Across trials, object locations and order
was varied to promote generalization.

Alvar tags, with 0.06m sides, were placed around the
circumference of the objects for robust visual recognition
(ALVAR can handle change in lighting conditions, optical
flow-based tracking, and good performance for multi-tag
scenarios) regardless of orientation (Fig. 4).

2.2 Cataloging Experiments

In this section, we describe the data collection process
for the skill S and introspection M modules. Detailed
presentations can be found in Appendix D & Section 4
respectively.

2.2.1 Motion Skill Training

In this work, DMPs were selected to encode motion skills.*
One-shot kinesthetic demonstrations were used to encode
the five actions needed to bootstrap the kitting task.

2.2.2 Deducing Anomalies

As for the process of discovering what anomalies might
exist in a given task, we hold that undeniably, robot
researchers hold a bias towards which anomalies will exist
and be discovered in a given task. To this end, we aim to
discover the task anomalies by emulating a collaborative
kitting task, including the human collaborator tedium and
monotony that lead to unintentional changes or disturbances
in the environment or the robot respectively.’

We tasked 5 robot researchers to act as the collaborative
co-workers in the task under the monotonous conditions
already mentioned (Section 2.1.2). Each user was trained
to place the set of six household objects, one-at-a-time,
in the collection area From this exercise we extract two
pieces of information: (a) anomaly classification labels (as
judged by a human expert) that emerge from the task
(see Section 2.1.2) and (b) the recording of all sensory-
motor data. With respect to anomaly classification, we
build anomaly models (Section 4) by recording +2secs of

4Qut of expediency as the code was readily available. Using HMMs to
generate motion would result in a more efficient architecture

SWe did not expressly measure this, but hope to integrate it in future
work.
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Fig.4 Kitting experiment snapshots. Objects that need to be packaged
are placed by a human collaborator before the robot in a collection
bin. The shared workspace affords possibilities for accidental contact
and unexpected alteration of the environment. The robot is tasked to
pick-and-place each of the objects in a packaging box to its right.
The visualization module uses the ALVAR tags to provide a consistent

multi-modal data around the time an anomaly is flagged.®
Note that in this work, we attempt to classify anomalies
broadly. Consider a human collision; regardless of user
the latter could occur at a high or low position; on the
right or left side; its temporal occurrence or duration may
differ significantly; as well as its intensity. Yet all of them
fall under the same label. Our approach to classification
is much broader than similar works [16] and renders the
classification task more challenging.

2.2.3 Training and Inducing of Anomalies

Beyond the original data collection performed in
Section 2.2.2, a second data collection round is conducted
to improve training (parameter and hand-designed feature
tuning). This round is performed iteratively seeking to
maximize optimal performance while protecting against
overfitting. The final number of training and testing tri-
als used for anomaly identification and classification are
described in Exp. 1 and Exp. 2 respectively.

2.2.4 Learning Recoveries

Upon the occurrence of accidental anomalies, re-enactments
are learned from human users. Exp. 3 is used to learn prob-
ability models from human users given specific anomalies
(Section 5.1.1). Similarly, for persistent anomalies, adapta-
tions are incrementally trained through kinesthetic teaching.
In Exp. 4, 5, and 6 a variety of adaptive skills are learned to
address specific and emerging anomalies (Section 5.2).

3 Motor Skills and Learning from
Demonstration

In this work, we use DMP to encode skills. DMPs encode
dynamical systems through a set of nonlinear differential

6An online Redis database is used as rosbags can only be processed
offline.
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global pose with respect to the base of the robot. The introspection sys-
tem continually monitors for anomalies and their types. If an anomaly
is classified, the recovery critic selects from amongst two policies to
restore the task flow and reach the next milestone in the task helping
the robot achieve longer-term autonomy

equations with a point attractor system defined by a
nonlinear forcing function that depends on a canonical
system for temporal scaling. As DMPs are a well known
framework, we do not present its details here, but do provide
an overview in Appendix D for convenience.

The forcing term is set via kinesthetic teaching, where
x(t), x(t), ¥(¢) with duration T are extracted as in [23].
The target forcing term is computed by rearranging (14)
and integrating with the canonical system and substituting
appropriate values to convert from time-mode to phase-
mode.

Next, the goal is set to g = x(7T") and 7 is selected such
that a DMP reaches 95% convergence at t = T before using
standard linear regression to compute the weights w;. Such
procedure yields a baseline controller that can be improved
by reinforcement learning [32] though this is not done in
this work.

Motor skills are trained as individual skills (more robust
methodologies [5, 23, 33] were not used here) for each
phase of the task. Cartesian position and XYZ Euler
representations are used to encode the attractor dynamics.

With respect to introspection models, we leverage
sensory-motor signatures to learn the structure of sensory
responses to motion data [22, 34]. Our observations consist
of a 6 DoF end-effector twist and wrench respectively, a 7
DoF pose (using quaternions as orientation), and 56 tactile
values (each finger has 4-by-7 taxels). All observations were
hand-processed into features as detailed in Appendix E. All
object poses are acquired using AR codes through the ROS
ALVAR framework.’

We demonstrate five simple skills: move-to-pick , pre-
pick-to-pick, pick-to-pre-pick, move-to-box, and place. We
ensure that skills are executed in such a way that no occlu-
sion occurs. Skills are executed at least 7 times to obtain
sensor information of nominal skills to train introspection
model (Section 4). Once DMP and introspection models
are trained, they are stored in their corresponding libraries.
Then, a behavior graph is constructed where nodes contain

Thttp://wiki.ros.org/ar_track_alvar.
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appropriate ID types that are handled by the system to enact
necessary models during task execution. As for transitions,
nominal nodes currently transition to only one other node,
so no explicit transition classification is enacted. For anoma-
lies however, transitions to different nodes will depend on
the anomaly classification (Section 4.3) and the selected
recovery policy (Section 5).

3.1 Goal Setting

For task execution, the Visualization module is responsible
for selecting appropriate goals for enacted skills. Currently,
goals are pre-specified according to the nature of the skill.
The pre-pick node uses the pose obtained from the Alvar
code placed on objects (we queue multiple poses from
right-to-left order). The pick node uses the actively tracked
object’s pose as a goal. The move-to-box node uses the
centroid Cartesian location of the box from the top-view. For
the place skill, we pre-assign object locations to different
portions of the packaging box according to the total number
of objects (we assume the box is sufficient to pack all
objects in one dimension). In the future work, we aim to
intelligently assign goals by exploiting affordances in the
task.

Additionally, we highlight that though the skill set used
in this work is simple, the space of possible anomalies
is significant and is this work’s main focus. To this
end, in our experimentation, we test strenuous anomalous
conditions that could emerge in unstructured environments.
(Section 6).

4 Robot Introspection

Robot introspection is a precursor to policy recovery. In this
work, we use previous developments with a non-parametric
Bayesian Markov Jump Linear Systems (MJLS) system for
anomaly identification [17] and classification [25] albeit
with an improved variational inference algorithm. This

Multimodal Signals

Alignment
Scaling

Resampling
' Model-Selection '
: Hand-Engineered-:

: Features :

Introspection

Anomaly

Identification

section will first provide an overview for the Bayesian
non-parametric model and then present more specifics for
anomaly identification and classification. Figure 5 summa-
rizes the introspection system flow.

4.1 Bayesian Non-parametric Hidden Markov
Modeling

Robot introspection uses Bayesian non-parametric Markov
Jump Linear Systems (MJLS) and memoized variational
inference with scalable adaptation as the modeling mecha-
nism. A non-parametric Bayesian HMM, namely the sticky
Hierarchical Dirichlet Process (sHDP) HMM can be used to
learn a VAR process (sSHDP-VAR-HMM). Such an approach
enables us to both learn the model complexity (number of
latent states) directly from the data and model mode-specific
observations through linear dynamics without independence
assumptions [35].

Recent advances in variational inference allow to process
large datasets incrementally and optimize the creation and
removal of states yielding highly optimized models that
are simpler, more compact, more interpretable, and better
aligned to ground truth state segmentations [36].

In this section we provide basic overviews of HMMs,
the sSHDP-VAR-HMM, and the variational inference mech-
anism for completeness. For further details, please consult
the appropriate references.

4.1.1 Hidden Markov Models

HMMs are a doubly stochastic and generative process
used to make inference on temporal data. The underlying
stochastic process contains a finite and fixed number of
latent states or modes z; which generate observations X =
{)ct}iv= | through mode-specific emission distributions b(z;).
These modes are not directly observable and represent
sub-skills in a given task node. Transition distributions,
encoded in transition matrix 7 j;, control the probability of
transitioning across modes over time. Given the initial mode

1 |
! Recqyery :

.

Y
Threshold

Anomaly

Classification

N

Transition to
successor node

Fig. 5 The robot introspection module flow diagram. A continuous anomaly detector flags and classifies anomalies when the sensory-motor
signals deviate from the expectation (Section 4). After introspection, control is directed to the recovery critic (Section 5)
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distribution 7y and a set of observations, the Baum-Welch
algorithm is used to infer model parameters I1 = (7, b).
HMMs assume a fixed number of latent states as well
as mode-specific conditionally independent observations.
Such assumptions limit the expressive power of HMMs
as they are unable to derive natural groupings and model
complex dynamical phenomena.

4.1.2 The sHDP-VAR-HMM

Bayesian non-parametric priors extend HMM models to
learn latent complexity from data [25, 35-37]. As such,
we leverage the non-parametric priors to learn a better
complexity for the latent modes and their transition
distribution. To allow for a flexible number of latent states,
the stochastic Dirichlet processes (DP) G is used. DPs enjoy
an unbounded number of 6; support points that help with
modeling whatever complexity the data churns out.

Instead of using a traditional transition distribution over
the latent states z,|z,—1 ~m,,_,, a set of transient probability
measures G ; can be used. Equation 1 defines a DP with an
infinite number of independent probability measures 6 to
model transition (G j; with probability mass 7 jy.

o0
Gj= Zn,-kagk = DP(a, Go) )]
k=1

The DP uses a base distribution G to control the
distribution of the probability measures and is chosen to
allow for computational efficiency via conjugate analysis.
The probability mass is set via the Griffiths-Engen-
McCloskey GEM (y) distribution (otherwise known as
the stick-breaking process), which is controlled by the «
parameter.

The next step requires us to ensure that each of the
indexed transition probability measures G jk share the same
support points as the process is sampled. As the DP is a
stochastic process, sampled subsets will result in entirely
different support points. To avoid this, a hierarchical DP
construction is necessary where the base measure yields a
fixed global set of support points for the parent distribution.
The base measure would then be defined as Go =
> k=1 Brde,, where Bly ~ GEM(y).

The HDP-HMM, in this form, does not yet differentiate
self-transitions from moves between distinct latent states
and allows for fast switching dynamics between them and
causing significant posterior uncertainty. For this reason,
a “sticky” self-transition bias parameter is introduced that
favors self-transitions as described in [35].

For the observational model of the sHDP-HMM we
use a VAR process that is useful to model complex
phenomena. Instead of independent observations, each
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mode is characterized by conditionally linear dynamics of
the past r mode-dependent observations as seen in Eq. 2.

X = Arxi1 +e(z = k) (2)

Where, we consider the first-order (»r = 1) auto-regressive
Gaussian likelihoods with additive white noise e and
observation x;. Note that each state k is composed of a time-
invariant regression matrix coefficients A and a covariance
matrix X.

A and X, are both uncertain and need to be learned.
The parameters § = {A, X} are approximated for each
state by defining a conjugate prior distribution on them.
Particularly, a Matrix Normal Inverse Wishart (MNIW) is
used as a conjugate prior distribution when both A and X are
uncertain. If only the covariance is uncertain, the conjugate
prior is defined as d—dimensional Inverse Wishart (IW)
distribution with covariance parameter A, a symmetric
positive definite scale matrix and v the degrees of freedom
as in Eq. 3.

X ~IW(Q, A) 3)

The full definition of this joint prior is found in [36] and
defined as NZW(k, #, v, A). For the IW, the first moment
of the distribution is:

vA
v—d—1
where, v, is the degrees of freedom. The expectation of the
covariance, for N exemplars of data X for a given skill and
a sequence with length 7;,, is defined as:

E[Z] = 4)

N Ty

E[Z]l=sry > (=D -5 (5)

n=1 t=1

Then, to determine the matrix A of regression coeffi-
cients, we use the matrix-normal inverse wishart (MNIW)
distribution, which places a conditionally matrix-normal
prior on A (for a given latent state) such that:

AT~ MN(A; M, X, K) (6)

The matrix normal is computed once X is available,
where the covariance X represents the covariance across the
rows, while K represents the covariance across the columns.

By using the model over a set of multi-modal exemplar
data A, the sHDP-AR-HMM can discover and model
shared behaviors in the anomaly data across exemplars, even
from a few examples. This model does assume however
that all exemplars share the same (latent) modes and that
modes switch amongst themselves in the same way). It is
also possible to use a beta-process prior [35] to avoid this
limitation, but this has not yet been implemented for online
performance. Pseudo-code for the generation of skill models
using the sHDP-VAR-HMM is outlined in Algorithm 1.
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Algorithm 1: sHDP-VAR-HMM models for classifica-
tion.

Input:

N,: Number of sequences for class ¢ € C;

{Xn}fl\]; | Dataset with N, sequences, each of length T¢;
N;: Number of the maximum iteration for learning;
N,: Number of runs for the whole learning;

random _state: The random number generator;
k_splits: Number of folds;

a, b, d, e: Hyper-prior for concentration parameters;
v, A, V, M, sp: Hyper-prior for the MNIW
distribution;

k: The self-transition bias;

K : The truncation active states.

Result: HDP-HMM models for each class

{Xn }train ) {Xn }test =

KFold,split({Xn},Q/‘, k_splits, random _state)

for k in k_splits do

fori in N, do

for n in N; do

if not converged then
Oy, loss =HDPHMM{X,, };r4in, a, b,
d,e,v, AV, M,sp,k, K)
else
| HDP-HMM with ®; and loss

end
end
{loss}fv’ <~ loss
if i == N, then
| ©, <« with the minimum loss value

end
Nre
it pUAX)i1Or) .
Liest mean = ==—x ———— Niost s i € Niest
k_splits “
{Liest-meanty < Lyest mean

if k == k_splits then
| return ©, with the maximum L;cs;_mean

end

4.1.3 Memoized Variational Inference with Scalable
Adaptation

Prior to the work in [36], inference algorithms for HMMs
and HDP-HMMs had not efficiently learned from large
datasets nor have they effectively explored data segmenta-
tions with varying number of states. Inference algorithms
can be trapped at local optima near their initialization
points. Stochastic optimization methods, which are unable
to update the number of modes after execution, are partic-
ularly vulnerable to data segmentation and exploration and
local optima [38, 39]. These methods may yield states that

become irrelevant and should be removed. Recently, algo-
rithms that add and remove states via split and merge moves
have been designed for non-parametric priors like HDP and
BP algorithms [37, 40]. However, these Monte Carlo pro-
posals suffer from scalability as they must use the entire
dataset and also require that all sequences fit in memory.

Hughe’s et al. memoized variational inference algorithm
with scalable adaptation uses birth proposals to create new
states and merge and delete moves to remove poor pre-
dicting states; however, adaptations are validated through
a global variational bound [36]. The algorithm caches suf-
ficient statistics and parallelizes local inference steps to
efficiently process sequence subsets at each time step to
allow for rapid adaptation of the state space cardinality. The
inference algorithm outputs all around better models—more
compact and interpretable—to infer the sHDP-HMM'’s pos-
terior distribution leading to better classification results. We
use it in our models for the first time in this work. For further
details, see [36] and [41] for the open-source code.

4.2 Anomaly Identification

Anomaly identification continuously monitors robot behav-
ior to identify unexpected behaviors during skill execution
and also during recovery phases. Recovery phases are chal-
lenging as they usually begin in anomalous states and are
more likely to trigger false-positives [20]. Different met-
rics for anomaly identification have been suggested in the
literature [15, 18, 20, 25]. Most of these techniques use
the maximum cumulative log-likelihood value of the obser-
vations given a model. In [17], it was shown that such
metrics performance is limited during recovery stages as the
standard deviations for the early steps are very narrow.

In [17], we presented a metric based on the natural
logarithm of the HMM filtered belief state (from hereon
referred to as the “forward gradient” measure) VL. Given
an HMM model IT and an incoming time series xi.;, the
natural logarithm of the filtered belief state (see 17.4.1 [42])
associated with the forward model for latent state i can be
represented according to Eq. 7.

N N
L; =log Z a;(t) = log Z exp(log &; (1)). ™
1= 1=
The forward term can be computed iteratively from
the previous time-step result. We later established that the
forward gradient L-curve depends on the latest emission
probability of the HMM model, which in-turn depends on
the latest observation. The key point is the stable and large
positive-valued gradients are generated when observations
are generated by the true latent state, hence giving us a way
to perform skill identification.
From this fact, derived an anomaly detection heuristic.
We compute the max, min, and gradient range value
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between these and ultimately set the per-mode threshold to:

VLrange

VL™(Y) < VLpin — 5

®)
The metric was shown to yield accurate, robust (precision
and recall), and fast anomaly identification, even in recovery
stages. Fig. 6 illustrates the identification performance of
the forward gradient approach. We describe parameters
values, models, and training and testing details in Section 6,
whilst anomaly Identification results are found in Exp. 1.

4.3 Anomaly Classification

The anomaly classification service is triggered once an
anomaly is identified.

We classify anomalies caused by external disturbances
generated either by intrusive human behavior or resulting

Fig.6 The log-likelihood
gradient VL for 5 motor skills s

from poor modeling or anticipatory ability on the robot’s
end. As introduced in Section 2.1.2, five anomaly classes
emerged in the cataloging experiments of the kitting task:
(accidental) human-collisions (HC) in a shared-workplace;
wall-collisions (WC) with the packaging box; tool collisions
(TC) when moving to pick or place; object slips (OS) caused
by inertia or external disturbances; and the unexpected
movement of objects that led to missed grasps and described
as “No Object” (NO).

Just as with anomaly identification, the sHDP-VAR-
HMM was used. Given M trained models for M robot
skills, 3-fold cross validation is used along with the standard
forward-backward algorithm to compute the expected
cumulative likelihood of a sequence of observations
(within the sliding window) as: E[log P(X; | I1,,)] for
each trained model m € M. Given a test trial x,
the cumulative log-likelihood is computed given the

Successful Trial

in a task 13,. Top plot shows a
nominal task whose VL is
steadily positive. Bottom plot
shows one anomaly per skill
execution. Anomalies occurred
shortly after the red vertical
lines seen in each skill. When an
anomaly occurs, the gradient
becomes distinctively negative
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observations conditioned on all available trained skill model
parameters log P (xpy,:m, | H)%’ at a rate of 200Hz. The
process is repeated when a new skill is started. Given the
phase in the manipulation graph m., we can index the
correct log-likelihood I(T1,, = m.) and see if its probability
density of the test trial given the correct model is greater
than the rest for the last observation point:

lOg P(xm|:m, | Hcorrect) > lOg P(Xm|:m, | Hm)a (9)
Vm(m e M Am # m.).

Further information regarding, parameters values, mod-
els, and training and testing are presented in Section 6.
Anomaly classification results are detailed in Exp. 2.

5 Anomaly Recovery

After classification, the recovery critic implements recovery
through re-enacting or adaptive policies as shown in Fig. 2.
Re-enacting policies re-execute a skill (possibly the current
skill or a previous skill) as designated by the policy
(Section 5.1). Adaptive policies resolve persistent errors by
training adaptive skills that leverage human understanding
into the complex set of world-object-robot relations (see
Section 5.2). The recovery critic runs, not only during all
normal phases of the task, but also significantly, during
recoveries of anomalous events. To illustrate, refer to Fig. 2,
where it is seen that for node move_z, a persistent anomaly
anomaly_k led to the creation of an adaptive skill found
in node rec_mv,_anomy. Then, during the execution of
this adaptive skill, a new persistent anomaly anomaly_m

entered the system. Our framework identifies it and assigns
a new adaptation encoded in node rec_rec_muv,_anomy that
enables the system to reach the next milestone.

Implemented recoveries, whether re-enacting or adap-
tive, are strictly coupled to the specific anomalies that
caused them. Recoveries themselves are globally unique and
thus emerge contextually in the task (not so with anomalies).
That is, the same anomaly may occur at different points in
a task, e.g. a tool collision may happen as we try to pick an
object; as we move to the packaging box; or as we place the
object in the box. However, the recoveries associated with
these anomalies are unique. An overview of the recovery
framework is summarized in Fig. 7.

5.1 Re-enacting Policies

Re-Enacting policies resolve accidental one-off anomalies.
All anomalies are considered accidental by default and only
when they cannot be resolved through re-enactment are they
considered persistent. The premise is that accidental events
are resolved through the re-enactment of re-parameterized
skills. The key question is to identify which skill needs be
re-enacted. A few works have used a policy where either the
entire task is repeated from the beginning or fixed points in
the task are selected a priori [19, 20, 43]. In this work, we
learn more efficient skill selection mechanisms.

Given a current milestone A/;, for each new accidental
anomaly Fy, a new re-enactment (transition) R g is inserted
into the graph as follows:

Re : Tay N1 Fy N (10)

Assign
. > > Graph N Anomaly_'l_'ype +
Classifer Frequency, Dependency Update Transition
Node
2x
Reverting Policy
Train New Skill
Cartesian Pose —
Gripper Pose —>» DMP

Visualization —>»

Goal Transform Store

Fig. 7 After classification, the recovery critic triggers a re-enacting
or an adaptive policy according to the nature of the anomaly: persis-
tent or accidental. Re-enacting policies model human decision making

. Graph 3 Anomaly Type + Next
A
> Lbrary I date Skl > Milestone

Adaptive Policy

Recovery Critic

probabilistically (Section 5.1). Adaptive policies train a new skill and
transform the goal to reach a next phase in the task
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where * is the target node and it is selected according to
the policy introduced in Section 5.1.1. To illustrate, consider
an OS anomaly during node 3 when the robot is moving
towards the box. Instead of returning home, the robot can
re-enact a re-parameterized version of the pick skill.

Provided built-in safety procedures, once the temporary
accidental contact concludes, the robot could re-enact the
current skill. Notice that nodes contain skills that are
inherently reactive. The starting and goal poses of a skill can
be set without altering the skill’s properties. A re-enactment
of the current skill with a re-parameterized starting pose
would be enough to complete that task phase and reach the
next milestone.

In effect, re-enactment goal nodes are chosen in relation
to the nature of the anomaly type.

5.1.1 The Re-enactment Policy

Re-enactment goal nodes are assigned through multinomial
distributions that model human-user goal node selections
given a current node and a specific anomaly. Five human
users studying a robotics master’s degree were trained to
understand the graph topology of the task, possible transi-
tions, skill execution, goal parameterization, anomaly types,
and legal node selections/transitions for re-enactment. Each
user examined 5 trials of induced anomalies on a per-node,
per-anomaly basis, yielding independent multinomial dis-
tributions to determine re-enactment policies. For instance,
if at node 2, three anomaly types occur, then there will
be three multinomial distributions modeling the policy. For
each multinomial, let N = (Nq, ..., Ng) be a random vector
where N; is the number of times a node j is selected as a
re-enactment target node. Then N has the following pmf:

K
Mu(N|n.6) = (v, "w,) [] 6, (11)
j=1

where, 6; is the probability that node N; is selected.
Given the node sequence of Fig. 3, the results are shown
in Table 1. The multinomial provides an indirect way to
represent human intuition about the complex set of relations
that exist between the robot (and its limbs), the relevant
objects of the task at hand, and the interactions that the
robot and the objects have with the world. Additionally,
the multinomial also encode a person’s internal belief about
the utility of a choice, his/her own learning ability (within
a trial and across trials), and the person’s risk propensity
or aversion in decision making.8 For instance, OSs that

8Utility theory seeks to model complex decision-making processes
using notions of expected value, expected utility, risk and learning
models, and more [44]
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Table 1 Human user selections of re-enactment target nodes given a
current node execution and a specific anomaly

Anomaly Source Node Target Node Count
HC MV2PK MV2PK 25
PK PK 25
MV2PL MV2PL 25
PL PL 25
TC PK MV2PK 25
MV2PL MV2PL 5
(O] PK PK 20
PK MV2PK 5
MV2PL PK 25
NO PK PK 24
PK MV2PK 1

occurred during the picking skill (node 2), were assigned
two different types of re-enactment target nodes: to re-
execute the same pick skill with 80% probability and
to execute the previous move-to-pick (node 1) with 20%
probability. The choice of returning to node 1 represents
a more conservative belief or risk averse selection on the
user’s part.

5.1.2 Re-Enactment Target Nodes

Goals for re-enacted target nodes are set by the visualization
module. The starting pose is simply the current pose at the
time of anomaly, while the goal pose is set as originally
described in Section 3.1.

5.1.3 Training Re-Enactments

Re-enactment policies designed in this section were trained
during the cataloging experiments of Section 2.2. Success
rates for re-enactment policies given accidental anomalies
are reported in Exp. 3-6 under a variety of different condi-
tions.

5.2 Adaptive Policies

Adaptive policies are used to resolve persistent anomalies.
Persistent anomalies are classified as such when a re-
enactment policy fails to resolve a given anomaly twice
consecutively. This phenomena indicates that re-enactment
is unable to solve the condition and that the task requires
explicit adjustments to finish the task successfully. In this
work, we rely on human intuition and expertise to provide
the necessary adaptation skill to solve the persistent task
anomaly.
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5.2.1 Kinesthetic Teaching

Our system is designed to pause automatically when two
consecutive re-enactment policies occur for the same node-
anomaly pair in the graph. The system then awaits for the
user to initiate kinesthetic teaching (through the push of a
system button) and encode the adaptive skill. The system
also, at this time, records all relevant sensory-motor data
necessary (until the end of kinesthetic teaching) to train a
new introspection model for the current nominal (adaptive)
skill.

5.2.2 Graph Integration

Given a current milestone N;, for each new persistent
anomaly Fy, a new adaptive recovery node R4 : Njj
is inserted into the graph as a new branch in-between
milestones. The target node N/; is inherited from the parent
resulting in the need an additional transition to the successor
milestone in accordance to Eq. 12:

Ra : SN | Fx = Nij (12)
TN Ny

Figure 2 illustrates the concept, consider how in node
move_z, persistent anomaly anomaly_k is resolved using
adaptive skill rec_mv,_anomj as a new branch between
milestones move_z and place.

For cases in which an anomaly F,, occurs during an
adaptive node (recovery-over-recovery) N, a new adaptive
node is created in a new branching layer, whose target is still
the successor milestone:

Ra: S/\/}j|]:xx - -/\/ijk (13)
Ty..

ijsNijksNj

Adaptive nodes always transition to the ensuing mile-
stone, no matter the branching level. In this work, we
have assumed that a single adaptive skill is sufficient to
restore the nominal functioning of the task. It is plausible to
sequence skills to achieve more complex manipulations.

5.2.3 Setting Adaptive Node Goals

Skill goals are set by the Visualization module of a node
(Section 3.1). However, for adaptations, when human users
introduce additional manipulation, they are also introducing
a transformation on the goal pose of the parent skill with
respect to the base frame. Adaptive skills then compute the
transformation of the last time step in kinesthetic teaching
with respect to the goal of the parent node. During online
testing, the Visualization module computes the real-time
goal of the parent node, whilst the adaptive skill transforms
that goal to achieve task generalization during adaptation.

5.2.4 Inheriting Re-Enactment Policies

Whenever we push a new adaptive node into the graph,
that adaptive node is set to inherit the same re-enactment
policies available to its predecessor. This is important so as
to avoid the need to re-train re-enactments in new adaptation
nodes.

5.2.5 Training

Cataloging experiments were used to capture sufficient
data to create robust nominal skill introspection models for
adaptive anomalies. These models are then used by our
Anomaly identification routine in Section 4.2, to identify
anomalies that may occur during such adaptations. Anomaly
Identification performance is presented in Exp. 1, whilst
the success rates for adaptive policies presented in this
section are reported in Exp. 4-6 under a variety of different
conditions that elucidate system performance.

6 Experiments and Results

Seven experiments are setup to test the efficacy and ver-
satility of our recovery policies under different situations.
Nonetheless, as recovery is inextricably married to the per-
formance of the anomaly identification and classification
systems, it is imperative that a comprehensive evaluation on
these subsystems is also carried out. Our previous works
have analyzed the accuracy, robustness, and reactivity of
anomaly identification and anomaly classification in their
own context. This work expands their scope with a more
extensive number of classes and situations induced by
the more unstructured collaborative environment. Exp. 1-2,
present accuracy and robustness results for Anomaly Iden-
tification and Anomaly Classification respectively. Exp. 3-6
examine the recovery policy efficacy and versatility. Exp. 3
measures the robustness of re-enacting recovery policies.
Exp. 4 tests the robustness of adaptation policies. Exp. 5
analyzes the robustness of the co-existing policies. Exp. 6
tests the system’s ability to introspect and recover from
anomalies that occur during an ongoing recovery action.
Finally, Exp. 7 analyzes the reactivity of our system. Exper-
imental descriptions are presented first, followed by the
results and their analysis.

6.1 Kitting Setup

As stated in Section 2.1, the Baxter robot is set-up to
perform a kitting experiment in conjunction with a human
co-worker. The human places objects in the collection bin
and the robot packs them. The shared space makes is
susceptible to human accidental and persistent anomalies.
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Three computers are used to run the experiment: Bax-
ter’s internal computer, which runs Gentoo Linux 2.2 and
an Intel(R) Core 17-3770 CPU @3.40GHz, 4GB-RAM, x64-
based processor. The internal computer is used to run a
ROS joint trajectory server as well as the camera on the
left arm. The other two computers run Linux 14.04 with
ROS Indigo. One computer has an Intel(R) Core i5-3470
CPU@3.20GHZ, 6GB-RAM, x64-based processor and runs
alvar recognition, the moveit service, and time-series pre-
processing for all sensory-motor data. The second work-
station, runs an Intel Xeon i7-6820HQ CPU@2.70GHz
(3.60GHz Turbo), 8MB-RMA, x64-based processor and
is in charge of running online anomaly identification and
anomaly classification which is implemented with BNPY
[41] under a ROS-wrapper.

Our graph implementation uses a hybrid approach. Base
nodes for the kitting experiment are currently implemented
through ROS-SMACH. The non-adaptive nodes however
are designed through an internal procedural representation
detailed in Appendix A [26]. Diagrammatic representa-
tions and code are accessible through our supplementary
materials page [26].

Additional experimental details like human testing are
presented in Appendix E, while signal pre-processing
details are presented in Appendix E.

6.2 sHDP-AR-HMM Parameters & Hyperparameters

Given that both anomaly identification and classification
are based on the same model, we use a base-model to
introduce parameter settings that are broadly shared across
the methodologies. Whenever particular differences exist
from the base-model, they are explained within specific
experiments. Parameter settings are presented through
Appendix D.

6.3 Classification Modalities

As part of Exp. 3-6, we present success rate metrics as a
function of two distinct classification system modalities:

i. perfect anomaly classification (independent system)
ii. imperfect classification (combined system)

The perfect anomaly classification modality only
attempts recoveries when true positives classifications are
produced. This modality treats the entire system as three
(anomaly identification (AD), anomaly classification (AC),
and the recovery (REC)) independent sub-systems. By
separating the sub-systems we can study their effectiveness
independently from the other systems. The imperfect
classification modality considers recovery success rates
in the presence of misclassifications. This treats the
system two (AD and AC/REC) dependent subsystems. The
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separation allows us to study some interesting phenomena
that emerged from the REC system and is detailed in each
of the experiments.

6.4 Experiments

A description of all experiments is presented before pre-
senting the results. Note that our supplemental video [26]
depicts many of the cases described herein.

6.4.1 Experiment 1. Anomaly Identification

In Exp. 1, we evaluate the performance of the anomaly
identification system across the entire set of experiments.

Since the anomaly identification system is the first to be
triggered, it is critical that identification is done accurately;
otherwise the system will suffer from upstream errors. In
this section we present the system’s identification accuracy,
precision, and recall metrics.

The anomaly identification system used the sHDP-
VAR-HMM technique (Section 4.1) to create class models
for the nominal (non-adaptive) skills of Section 2.1 and
the adaptive skills (that resolve persistent anomalies) of
Exp. 4a,b,c, and 6a,b. Once the nominal models are trained,
the forward gradient measure (Section 4.2) is used for
anomaly identification. Upon the collection of training
(offline) data from the induction experiments (Section 2.2),
a scoring heuristic was implemented over 5-fold cross-
validation that allowed us to select from a variety of
hand-engineered multi-modal signal features and parameter
values. Different combination of features were tested for
specific sets of parameter values (see Appendix D and
[26]). Scoring in the form of accuracy, precision, and recall
metrics are computed for each combination as show in
Fig. 8.

The highest scoring model was selected and resulted in
the following combination:

Feat.

#3 #4 #5 #7 #8 #9 Avg
Comb
1 0.959 0.836 0.748 0.506 1.000 0.889 0.823
2 0.329 0.343 0.315 0.012 0.000 0.000 0.167
3 0.986 0.022 0.162 0.012 0.000 0.000 0.197
4 0.000 0.000 0.712 0.639 0.692 0.000 0.341
5 0.973 0.970 0.748 0.807 0.231 0.000 0.622
6 0.952 0.993 0.243 0.398 0.846 0.444 0.646
7 0.986 0.993 0.757 0.217 0.923 1.000 0.813
8 0.993 1.000 0.802 0.867 0.231 1.000 0.816
9 0.959 0.948 0.757 0.904 0.846 1.000 0.902
10 0.966 0.985 0.757 0.855 0.923 1.000 0.914
11 0.973 0.888 0.775 0.855 1.000 1.000 0.915
12 0.973 0.993 0.820 0.720 1.000 1.000 0.918
13 0.979 1.000 0.775 0.855 0.923 1.000 0.922
14 0.986 1.000 0.793 0.759 1.000 1.000 0.923 |
15 0.965 0.763 0.750 0.975 0.923 0.556 0.822

Fig. 8 Anomaly identification accuracy for a distribution of features
across nodes. Low, medium, and high probabilities are show in red,
blue, and yellow respectively
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e End-effector force F, torque 7, linear velocity v, and
angular velocity  such that: [F, 7, v, w] € R3.

e [Zporm of the above signals;
[F] 1), vl lel] € R

® The maximum standard deviation o computed for each
of the 28 taxels in a tactile sensor for the left and right
fingers; namely, max, [0y, 0,-] € RL.

namely:

To build anomaly identification models for both non-
adaptive and adaptive skills, a fixed number of 7 trials was
used. Non-adaptive skills consisted of the move-to-pick,
pick, move-to-box, and place skills and adaptive skills are
those captured in Exp. 4a,b,c and 6a,b respectively.

Macro accuracy, precision, and recall metrics are
extracted by testing whether we can identify anomalies
(HCs, TCs, OSs, NOs, or WCs) given some domain (nodes
or sub-experiments).

6.4.2 Experiment 2. Anomaly Classification

After anomaly identification, it is important to understand
the performance and robustness of the anomaly classifier.
The anomaly classification also uses the sHDP-VAR-
HMM with memoized variational inference (Section 4.1)
along with the same features and training style used in
anomaly identification. The model is trained to classify
anomalies caused by human collisions (HCs), tool collisions
(TCs), object slips (OSs), no objects (NOs), and wall
collisions (WCs) introduced in Exp. 4. For training, we
used the following number of trials for the aforementioned
classes: HC-18, TC-17, OS-18, NO-15, and WC-17.
We have not yet implemented an unsupervised learning
method that automatically generate new anomaly labels
based on previously unseen data (determined through a
confidence metric), but we have contemplated this work
(see Section 7). Anomaly classification is only triggered if
anomaly identification experiences a true-positive. Once the
classification procedure is called no true-negatives or false-
negatives exist in the system. Only true or false positives.
For this reason, classification will be measured in terms of
accuracy across nodes or confusion matrices for Exp. 3-6.

6.4.3 Experiment 3. Testing Re-enactment

Experiment 3 analyzes the accuracy and robustness of the
anomaly identification, anomaly classification and recovery
critic for accidental anomalies. We study the recovery
critic’s ability to re-enact reliably at different phases of
the task. To this end, accidental anomalies were induced at
specific graph phases as listed below:

MV2PK: HC
PK: HC, TC, OS, NO
MV2PL: HC, OS

PL: HC

For the re-enactment recovery system, 60 recoveries were
attempted (10 trials per object for 6 objects and induced by
5 trained users) on a per-node basis (4 total) under our two
classification modalities: (i) perfect classification and (ii)
imperfect classification.

6.4.4 Experiment 4. Testing Adaptation

Experiment 4 analyzes the robustness of the anomaly
identification, classification, and adaptive recovery policy
in the face of persistent anomalies. We analyze adaptation
robustness by testing three scenarios with an increasing
number of persistent anomalies (and thus adaptations). The
three sub-experiments test robustness under the following
conditions:

4a: one adaptation at a single phase (two examples).
4b: a 2nd adaptation introduced at a new phase.
4c: a 3rd adaptation introduced at a new phase.

For this experiment we run a total of 20 trials per
persistent anomaly (4 objects with 5 trial runs per anomaly).
A new anomaly class—Wall Collision—was discovered in
these experiments and labeled (WC). We analyze whether
adaptive policies work robustly independent of the number
of adaptations that occur previously in the system and also
whether or not the policies generalize across objects. Object
locations and order are varied and randomized across trials.
Sub-experimental details are given in three distinct sections
below.

Experiment 4a: Adaptation at Distinct Single Nodes In
Experiment 4a, we analyze the robustness of the framework
to properly identify, classify, and recover from persistent
anomalies in single instances using adaptive recoveries.
As described in Section 5.2, when the same anomaly
occurs twice consecutively in the same node, the anomaly
is considered persistent and an adaptive skill is learned
from a user demonstration to recover and transition to the
succeeding milestone in the task.

For this experiment, we tested two distinct persistent
anomalies at independent phases of the task (node location
is indicated by @# followed by anomaly type):

4a.1 : @2TC (pick).
4a.2 : @3WC (move-to-box).

Tool collisions (TC): occurred when two objects were
placed by a human operator too close to each other. In such
conditions, when the pick skill in node 2 is executed, one of
the robot’s fingers collides with the neighboring object and
prevents a proper pick as illustrated in Fig. 9. Re-enactments
do not resolve the situation so help from a user is elicited to
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Fig.9 Persistent Pick Anomaly.
On the left: the proximity of an
adjacent object consistently
precludes the proper gripping of
a target object leading to a
persistent tool collision. On the
right: the execution of the
learned adaptive skill which
rotates the wrist and clears the
fingers for the pick skill

overcome the persistent condition. The taught adaptive skill
rotates the robot wrist about the approach axis and clears the
fingers from the obstruction.

Wall Collisions (WC): in this (second) example, no tool
collision occurs at node 2, however a persistent collision
occurs at node 3 as the robot moves the picked object
to the packaging box. The wall collision is a variant of
a tool collision. Tool collisions were narrowly defined as
collisions that occur on vertical downward motions. In this
case, the collision occurs with a lateral motion and the
contact can be either tool-wall (of the packaging box) or
object-wall. The reason for such anomaly is that the original
move-to-box skill was trained on an object of a given height
and later a taller object was picked, the latter did not clear
the wall with the original skill.® Re-enactment does not
resolve the anomaly; so an adaptive skill the clears the wall
is taught as shown in Fig. 10.

Experiment 4b: Incremental Growth for Two Adaptations
In Experiment 4b, we analyze system robustness when
two adaptive skills are learned incrementally for different
phases of the task. It is important to ensure that the perfor-
mance of the system is not compromised as more adapta-
tions are introduced into the task graph. In this experiment,
we integrate the adaptive recoveries learned in Exp. 3a
and induce both persistent anomalies in the same experi-
ment in an incremental fashion at different phases of the
task:

4b: @2TC,@3WC.

In this way, the robot first responds by rotating its wrist to
clear the persistent obstruction during the pick; and later
upon collision with the wall, the robot responds by lifting
its arm and clearing the box wall before placing the good in
the package.

Experiment 4c: Incremental Growth for Three Adaptations
Finally in Experiment 4c, we analyze system robustness

9In. Section 7 we discuss possibilities for motion adaptation based on
shape properties.
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when we integrate the third adaptation. The next persistent
anomaly occurs in node 4 as the robot places an object in
the packaging box. The last anomaly results when, upon
executing the placing skill, an object already in the box
obstructs the placement of our currently held object. So the
final sequence of anomalies at varying phase locations is:

4c:  @2TC, @3WC, @4TC.

The Visualization module is in charge of allotting unique
placement goals for all objects in a box, such that they
all have a unique space within the package. However, it is
possible that upon placement of an object, the latter falls
and shifts to a different location in the box causing a tool
collision. The adaptive skill teaches a simple displacement
motion whose goal is parameterized by the visualization
module to a clear location as shown in Fig. 11.

6.4.5 Experiment 5. Testing Re-enactment and Adaptation

Experiment 5, analyzes the robustness of the system when
re-enactment and adaptations are both integrated and present
in the system. It is important to verify that re-enactment poli-
cies are not detrimental to adaptive policies and vice-versa.
For this experiment, we integrate the accidental and persis-
tent anomalies of experiments 3 & 4, and similarly use the
re-enactments and adaptations already learned. Anomaly
identification and classification metrics are presented as
before under both classification modalities. The sequence of
anomalies and recovery policies present in the system are
delineated in Table 2, where we refer to re-enactments as
“RE” and adaptations as “AD”.

For this experiment, 2 objects were selected at random
and 10 test trials were conducted for each object. A total of
20 trials were run for each modality.

6.4.6 Experiment 6. Recovering from Anomalies that
happen during Recovery

The final experiment analyzes the robustness of the system
in identifying and recovering from anomalies (accidental
and persistent) that occur during an ongoing recovery skill.
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Fig. 10 Persistent Wall
Collision. From left to right:
Trained adaptive skill
overcomes a wall collision via a
clearing mechanism that lifts the
object above the edge of the wall

It is imperative that the system performs reliably even
during recovery actions. In this experiment, we test two
situations:

i. a persistent anomaly induced during an adaptation.
ii. an accidental anomaly induced during an adaptation.

These two conditions will be referred to as “Adaptation
over Adaptation” (AOA) and “Re-enactment over Adapta-
tion” (ROA) respectively. Experiments are run under our
two aforelisted classification modalities. Each experiment is
executed for one object chosen at random and repeated 10
times. Details are shown in Table 3.

For (i) we use the same persistent anomaly and
adaptation of Exp. 4a.1. Namely, during pick, one finger
collides with the placement of an adjacent object. The
original adaptation rotates the robot wrist about the
approach axis by w /2 rad (see Fig. 9b). In this experiment,
we consider the placement of an additional object at the
position where the already adapted grip fingers would
descend. This in turn, would cause a new persistent tool
collision. In this scenario, a new adaptation is needed. The
human demonstrator decides to teach a sliding approach,
whose direction of motion is parallel to the tangent of the
table plane, until the fingers are centered on the object,
at which point a pick behavior ensues. The adaptation is

Fig. 11 In the last phase, the
robot attempts to place an object
in the box but finds an existing
object at the target location. A
re-enactment does not solve the
anomaly, so an adaptation is
taught and a new goal provided
by the visualization module

illustrated in Fig. 12 and can also be seen in the video
Supplement 1. For (ii) we combine the wall collision
adaptation of Exp. 4a.2 with the phenomena experienced
in Exp. 5 where an HC during move-to-place causes a
subsequent OS that the system recognizes and one that is
resolved via a pick re-enactment. In this case, we induce
a human collision that results in a subsequent slip whilst
the system is resolving a wall collision through a lifting
adaptation.

6.4.7 Experiment 7. Anomaly Identification
and Classification Re-activity

Exp. 7 analyzes the sensitivity of the anomaly identification
to signals of different magnitudes and the sensitivity of the
anomaly classifier to varying durations of the time window
used to capture multi-modal signal observations before and
after the anomaly identification flag has been issued. We
wish to learn the limits in the reactivity of our algorithms.
That is, how small can a signal be to flag anomalies or
how quickly can we classify anomalies without sacrificing
accuracy.

It is important to test the sensitivity of the anomaly
identification system to signals of different magnitudes
according to the setup we originally presented in Exp. 1.
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Table 2 Sequence of induced accidental and persistent anomalies into
the system along with triggered re-enactment (RE) and adaptive (AD)
policies during the Kitting experiment

Node Anomaly Type Recovery Type
2 TC RE
3 HC RE
3 wC AD
4 TC AD

Any identification system could be made arbitrarily accurate
by overfitting. Here, we will measure the true positive rate
of the identifier as well as the detection delay caused by
changes in the anomaly signals. We follow the setup of
[16] closely but with some variations. We first found the
anomalous signal that had the largest amplitude in each
of the phases of the task across all anomalies. This signal
would then be inserted into a nominal signal (across all
features), at a random time, with an amplitude ranging from
0-150% and then test for anomaly identification accuracy
and detection time delays.

6.5 Results

In this section, we present detailed results and analysis for
all experiments. In this section, we often times compare per-
formance across nodes or specific settings. While compar-
ing across experiments may be challenging since each node
or setting has different complexity, we think that since
the tasks were carefully designed to iteratively increase its
complexity, we can glean meaningful insights across them.

6.5.1 Experiment 1. Anomaly Identification Results

Here we present a summary of the anomaly identification
results for Exp. 3-6. Figure 13 charts the summary across
nodes 1-4 and adaptive nodes that are generated when anoma-
lies occur during recoveries as seen in Exp. 6. In Exp. 6,
we analyzed two scenarios: Adaptations over Adaptations
(AOA) and Re-enactments over Adaptations (ROA) which

Table 3 Conditions under which anomalies are induced during an
adaptation

Events Situation
@2TC-ADI1, @2TC-AD2 AOA
@3WC-ADI, @HC—OS-RE ROA

Node location for anomaly occurrence denoted with @; followed
by anomaly type, and recovery policy indicated after (-). Also, (—)
indicates a subsequently caused anomaly. For AOA: AD1 and AD2
describe 1st and 2nd adaptations. For ROA: RE refers to re-enactment
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are discussed in detail there. All results and their analysis
can be found in our Supplement 3.

Our anomaly identification accuracy for all experimental
(766) trials was of 93.09% (see Supplement 3 for
details). The precision was 94.09% and the recall 97.98%.
These results show very strong accuracy and performance
which is critical to avoid the aforementioned downstream
errors.

In terms of performance across nodes, the experiments
revealed very similar performance throughout the task with
an average accuracy of 93.34%. This implies that anomaly
identification performance did not improve or decline as
the manipulation graph traversed the nodes—rendering the
identification consistent and reliable.

The system also showed perfect accuracy and robustness
for occasions in which persistent anomalies occurred during
recoveries (AOA-Exp. 6). For times where accidental
anomalies occurred during recoveries (ROA) the accuracy
and precision was strong at 90% with no false-negatives.

We also compare our identification performance with a
number of baselines consisting of probabilistic, traditional
machine learning methods and deep networks. Baseline
performance is compared across skills and over the whole
task. For the probabilistic methods, we test HMM models
with Gaussian ‘G’ and Autoregressive ‘AR’) observation
models along with two inference algorithms (Expectation-
Maximization ‘EM’, Variational Bayes ‘VB’). For machine
learning, we use an Isolation Forest (iForest) algorithm and
a Local Outlier Factor (LOF) algorithm. For deep networks
we used a multi-layer perceptron with a variational auto-
encoder (MLP-VAE) [45] and an Long short-term Memory
(LSTM) network with a VAE [46, 47]. Parameter and hyper
parameter settings can be found in Appendix E.

The results are seen in Table 4. The table shows how an
HMM complexity of 10, which more closely resembles that
of the sHDP prior, nearly achieves as good a result as our
algorithm. Autoregressive observations help over Gaussian
ones in every case. As for inference, Variational Bayes
does better for sHDP-Gaussian observations, but slightly
worse (0.921 v.s. 0.923) with an sHDP-AR observations.
For more insights into the general performance of the
inference algorithm, please refer to Fig. 17 in Exp. 2.
Our algorithm achieves better performance compared to
traditional machine learning algorithms as well as state-of-
the-art deep networks like that of [46].

6.5.2 Experiment 2: Anomaly Classification Results

Anomaly classification accuracy across nodes (including
the AOA and ROA nodes introduced in Exp. 1) is presented
in Fig. 14. Note that we only consider trials in which the
anomaly identification is correct such that the classification
accuracy can be measured independently.
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Fig. 12 Three objects in near proximity. Two smaller boxes towards
the robot and a wider box away from the robot. Robot pics object
delineated in red. A persistent anomaly occurs in Fig. 12a when a

The same combination of features used for Anomaly
Identification resulted in a sub-optimal performance but
were maintained to prioritize the identification. Further
tests could have been conducted to find the most optimal
global combination for the system. The accuracy across
the same distribution of features introduced in Exp. 1 is
shown in Fig. 15. A confusion matrix was also computed
for classification for all experiments and shown as a figure
in Fig. 16. Furthermore, we used the Fl-score metric to
compare the performance variational inference algorithms
across allocation and observation models. The models used
for this comparison are listed bellow:

® Variational Inference Models: Memoized Variational
Inference with Scalable Adaptation (MemoVB) and
Variational Coordinate Ascent (VB).

e Allocation Models: HMM and sHDP-HMM

Fig. 13 Summary of accuracy,
precision, and recall metrics for
anomaly identification across all
experiments on a per-node basis,
including recovery over
recovery runs in Exp. 6, and a

100.00%
total summary of performance

l

98.00% I
96.00%
94.00%
92.00%

1 2

90.00%

88.00%

finger collides with an adjacent box. An adaptation (Exp. 4a.l) is
enacted but a new persistent anomaly (Fig. 12b) occurs with the wider
box. Figure 12¢ & d show a newly taught adaptation

e Observation Models: Gaussian (Gauss) and the Vector-
Autoregressive (VAR)

As for the variational inference algorithms, we compare
the algorithm used in this paper; namely, memorized vari-
ational inference with scalable adaptation with variational
coordinate ascent under different allocation and observation
models. Stochastic variational inference was contemplated
but not used as the algorithm did not converge after 1000
iterations. Gibbs sampling was also not used as it was
not available as part of online BNPY [41]. The compar-
isons are also conducted as a function of the number of
total training trials. The same number of total training trials
was used as mentioned at the beginning of this experi-
ment. Figure 17 shows the comparative performance of the
inference methods.

ANOMALY IDENTIFICATION PERFORMANCE
ACROSS NODES FOR ALL EXPERIMENTS (Exp 1)

W Accuracy M Precision Recall

1'1

NODES

AOA ROA

Total
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Table 4 Baseline comparisons for anomaly identification for each skill and overall task

Methods k #3 #4 #5 #7 #8 #9 Av

HMM-G-EM 3 0.96 0.89 0.75 0.78 1.00 0.78 0.86
HMM-G-VB 0.97 1.00 0.77 0.89 0.77 0.78 0.86
HMM-AR-EM 0.99 1.00 0.86 0.63 0.85 0.78 0.85
HMM-AR-VB 0.97 1.00 0.81 0.76 0.92 0.89 0.89
HMM-G-EM 5 0.99 1.00 0.78 0.65 0.92 1.00 0.89
HMM-G-VB 0.97 1.00 0.76 0.70 0.77 0.89 0.85
HMM-AR-EM 0.97 0.99 0.87 0.64 1.00 0.89 0.89
HMM-AR-VB 0.97 0.99 0.78 0.87 0.85 0.89 0.89
HMM-G-EM 10 0.97 1.00 0.78 0.80 0.92 0.89 0.89
HMM-G-VB 0.97 0.99 0.77 0.69 0.92 0.89 0.87
HMM-AR-EM 0.97 0.99 0.87 0.63 0.92 1.00 0.90
HMM-AR-VB 0.97 1.00 0.77 0.74 1.00 1.00 0.91
iForest 0.75 0.64 0.69 0.57 0.56 0.63 0.64
LOF 0.77 0.56 0.54 0.56 0.63 0.63 0.61
MLP-VAE 0.76 0.80 0.86 0.81 0.85 0.65 0.79
LSTM-VAE 0.83 0.87 0.77 0.88 0.72 0.97 0.84
HDP-G-VB 10 0.97 1.00 0.75 0.66 0.92 1.00 0.88
HDP-G-moVB 0.97 0.95 0.76 0.42 1.00 1.00 0.85
HDP-AR-VB 0.97 1.00 0.77 0.82 1.00 1.00 0.92
HDP-AR-moVB 0.99 1.00 0.79 0.76 1.00 1.00 0.92

Red indicates ours

Best results appear in bold

Our anomaly classification accuracy for the totality of all
experimental (719 trials) data was of 96.15% (Supplement
3). Interestingly, the accuracy of our anomaly classifier was
overall more accurate than our anomaly identification rou-
tine. Extensive experimentation has been carried out. Gen-
eral trends are reported here, whilst specific experimental
details are presented within each experimental section.

Fig. 14 Anomaly classification
accuracy for all experiments
across nodes 1-4 as well as

adaptive nodes AOA and ROA 100%
created for anomalies under 100%
executing recoveries J

99%
98%
97%
96.27%
96%
95%

94%

93%
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For the non-adaptive nodes, node 1 had perfect classifi-
cation accuracy. Nodes 2-4 ranged from 94.20% to 96.27%.
This indicates very similar performance over task-time and
that the classifier was robust in detecting a varying range
of challenges (see each experiment for specific details). The
performance during ongoing recovery actions was of 100%.
Although the number of trials for this section was 19, the

ANOMALY CLASSIFICATION ACCURACY ACROSS
NODES FOR ALL EXPERIMENTS (Exp 2)

100% 100%

\ l

96.15%

95.35%

94.20%

3 4 AOA ROA Total
NODES
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#thc #no #os #tc #wce #Avg.

1 0.000 0.538 0.537 0.444 0.211 0.247
2 0.895 0.609 0.915 0.588 1.000 0.765
3 0.778 0.933 0.679 0.625 0.722 0.721
4 0.889 0.714 0.759 0.706 0.947 0.766
5 0.292 0.824 0.712 0.368 0.167 0.357
6
7
8
9

0.481 1.000 0.880 0.412 0.818 0.642
0.783 1.000 0.815 0.611 0.944 0.714
0.739 0.765 0.688 0.722 0.333 0.573
0.556 0.786 0.657 0.700 1.000 0.654

10 0.684 0.429 0.745 0.722 0.708 0.553
11 0.500 0.778 0.800 0.176 0.895 0.588
12 0.167 0.933 0.587 0.765 0.636 0.548
13 0.833 1.000 0.846 0.941 0.947 0.815
14 0.611 0.786 0.729 0.941 1.000 0.756 |
15 0.670 1.000 1.000 1.000 1.000 0.859

Fig. 15 Anomaly classification accuracy for a distribution of features.
Low, medium, and high probabilities are show in red, blue, and yellow
respectively

data suggests strong classification performance even as the
robot is adapting to anomalies.

In terms of the confusion matrix in Fig. 16, accuracy
ranged from 88.7% to 98.4% for NO and HC respectively.
The 2nd poorest classification was that of WC. WC were
more challenging as the collision sometimes occurred
against the gripper but in other occasions against the held
object. OS came next with 93.1%, OS classification was
challenged primarily by the tactile sensor noise experienced
and explained later in Exp. 3.

With regards to variational inference performance,
Fig. 17 shows how the sHDP-VAR-HMM with Memoized
Variational Inference with Scalable Adaptation generally
outperformed the rest of the combinations except for a
couple of instances. In fact, in around 88.3% of the fraction
of training trials our algorithm outperformed all others.
The exceptions occurred roughly for the fraction 0.3-0.33
of the total training trials, where the sHDP-HMM-Gauss-
MemoVB initially outperformed our algorithm 0.787 to
0.731. Similarly, for the fraction 0.87-0.90 of the total
training trials, the sHDP-HMM-Gauss-VB outperformed
our algorithm by 0.9%. Note that results will vary slightly
across experimental runs as trial data is selected randomly
and the probabilistic framework is unable to fix the random
seed value across runs.

HC TC 0S NO WC
HC 98.4% 0.8% 0.8% 0.0% 0.0%
TC 0.0% 99.5% 0.5% 0.0% 0.0%
[ 6.3% 0.7% 93.1% 0.0% 0.0%
NO 0.0% 0.0% 11.3% 88.7% 0.0%
WC 3.1% 4.6% 0.0% 0.0% 92.3%

Fig. 16 Confusion matrix computed in Exp. 2 for all occurring
anomaly classes in the Kitting experiment across all experiments

6.5.3 Experiment 3: Re-enactment Results

The results for anomaly identification and anomaly
classification for Exp. 3 are shown in Fig. 18a & b. A
confusion matrix for classification accuracy is shown in
Fig. 19.

The result of the re-enactment policy for modality (i) is
shown in Table 5 and for modality (ii) in Table 6.

For anomaly identification, a total of 574 trials were
used for testing (103, 265, 144, and 62 for nodes 1 to 4).
An average accuracy of 91.16%; a maximum of 93.94%
and a minimum of 87.14% in nodes 1 and 4 respectively.
For precision we had an average of 93.42%; a maximum
of 94.90% and a minimum of 91.04% in nodes 1 and 4
respectively. For recall we had an average of 97.37% with
a maximum of 98.94% and minimum of 95.31% in nodes 1
and 4 respectively. The reason node 4 may experience lower
robustness might be due to the fact that more variations
exist over time (e.g. poses may vary in ways that modify the
previously experienced dynamics during training).

For anomaly classification, a total of 516 trials were
used for testing (93, 242, 122, and 59 for nodes 1 to
4)with an average accuracy of 96.87%. Nodes 1 and 2
were classified perfectly, followed by 4, and struggled the
most with node 3 at an accuracy of 90.77%. The confusion
matrix for anomaly classes shows perfect or near perfect
classification for TC and HC respectively and struggled
more with OS and NO as shown in Fig. 19. OS detection
suffered primarily form noise in our tactile sensor. We
believe a large portion of the noise came from false contacts
in the electronics in the tactile sensor. Whilst we attempted
to rigidly fix the sensor’s electronics, there was still wiggle
during anomalous events. With regards to NOs, we were
surprised with the lower classification rate. We believe
that the tactile sensor’s noise was also the culprit. We
wanted to use the infra-red sensor on the robot’s wrist
as an additional observation source, however, the force-
torque sensor set-up blocked the IR signal and prevented
its use.

With regards to re-enactment recovery, we present suc-
cess rates for both classification modalities. Under perfect
classification, we re-enacted and completed the task suc-
cessfully on average 98.75% across all nodes (see Table 5).
Some failures occurred in MV2PL as an OS occurred. After
the OS, the object reached a location outside the field of
view of the camera and prevented the system from com-
puting the object pose.!® Under imperfect classification,

10We should note that there were 11 other trials where system failures
occurred (these were not marked as recovery failures). There were two
main causes for the system failures: (a) challenging pick poses resulted
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Fig. 17 Fl-score metric performance comparison for variational inference algorithms across allocation and observation models

we expected a lower performance, and obtained an aver-
age recovery completion of 92.81% across all nodes (see
Table 6). The highest rates were obtained in node 1 and 4
under HC anomalies with 95%, recovery, TC anomalies in
node 2 with 98.3% recovery, and OS anomalies in node 3 at
95% recovery. The picking skill was the most problematic
to resolve in the presence of HCs and NOs.

With regards to overall system trends we observe: very
competitive anomaly detection at an average of 91.16% and
very high anomaly classification (one of our contributions)
at 96.87% as shown in Fig. 18. For re-enactment under
independent systems we see that re-enactments can resolve
almost all accidental anomalies at 98.75%.

One last but very interesting development was evident
when we computed the performance of the entire system
under the two classification modalities as seen in Fig. 20.
Note, interestingly, that for one out of the four nodes—
node 3—the overall success rate of the combined system
was higher than that of the independent system. This implies
that system completed the task successfully more times
under imperfect classification than with perfect classifica-
tion. The specific reason for this phenomena is that soon
after a misclassification takes place; the introspection sys-
tem detects that the robot is still in an anomalous state and
triggers a new anomaly flag and issues a new round of clas-
sification. This time the correct policy is issued and resolves
the anomalous situation. One example is when an OS was
misclassified as an HC. The HC triggers a re-enactment, but
the robot is not grasping the object. At a later time step,

in tactile sensor cables constraining the gripper and (b) an electricity
overload in the system that rendered parts of the robot to a halt.

@ Springer

the introspection system flags another anomaly and classi-
fies it as an NO. This time a pick re-enactment is issued and
enables the robot to successfully complete the task.

6.5.4 Experiment 4: Adaptation Results

In Experiments 4a,b,c, for anomaly identification, a total
of 124 trials were used for testing.'!! For anomaly
identification, we had an average accuracy of 97.04%,
an average precision of 97.02% and an average recall
of 99.42% across the three sub-experiments. Very strong
performance was achieved all around and charted in
Fig. 21a.

For anomaly classification, a total of 121 trials were
used for testing'?> with an average accuracy of 94.09%.
Experiment 4a.2 had the worst performance at 85.0%,
followed by Experiment 4b at 94.59%, and perfect
classification in Experiment 4c.

A confusion matrix was computed for classification
accuracy and shown in Fig. 22. TC and WC are the core
classes, whilst HC appears as a result of misclassification.

Across all sub-experiments we were able to identify TCs
in Exp. 4a and 4c with 100% accuracy. Wall collisions
were less accurate at 89.80%. Wall collisions were harder
to classify given that those collisions occurred under two
different scenarios: at times the gripper collided with the
box and at other times the held object made the collision.
Hence, the multi-modal signals contained variations that
degraded the classification performance.

1120, 21, 38, and 45 for experiments a.1, a.2, b, and c.
1220, 20, 37, and 44 for experiments a.1, a.2, b, and c.
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Fig. 18 Accuracy, precision, and recall metrics for the anomaly identification and accuracy metrics for the anomaly classification system on a

per-node basis for accidental anomalies (left and right respectively)

With respect to adaptive recoveries, Fig. 23 presents
success rates under our two classification modalities. As
expected, the success rates under perfect classification gen-
erally were higher than those with imperfect classification
with an average across sub-experiments of 85.0% and
77.5% respectively. The exception was Experiment 4a.l,
where the imperfect classification modality achieved 95.0%
success rates v.s. 90.0% for modality (i). The failures under
modality (i) were due to manipulation system errors. In one
trial, during the move-to-box node, the object’s collision
with the packaging box moved the latter and the place action
failed. Our system is limited by not actively tracking objects
of interest and rationalizing relationships between them (see
Section 7 for more comments on this).

The results also reveal that one object-set of trials in
Experiment 4c had difficulties (see Appendix E for com-
ments). If each of those two trial-sets were not consid-
ered, the average success rate would be to 90.83% and
82.50% for perfect and imperfect classification modalities
respectively.

With respect to overall system performance, we again
compare the performance between modalities. We achieved
an average success rate of 78.02% and 75.36% for both
modalities respectively. Figure 24 charts the results over
sub-experiments and modalities.

HC TC 0S NO
HC| 99.2% 0.8% 0.0% 0.0%
TC| 0.0% 100.0% 0.0% 0.0%
0S| 4.8% 0.8% 94.4% 0.0%
NO| 0.0% 0.0% 11.3% 88.7%

Fig. 19 An anomaly classification confusion matrix for accidental
anomalies in Exp. 3

As with Exp. 3, we again see the interesting phenomena
that for Experiment 4a.1, modality (ii) achieved higher suc-
cess rates than modality (i). It supports the premise that even
when there are misclassifications in the system, the task
can be completed as the system some time later correctly
detects, classifies, and recovers from existing anomalies.

6.5.5 Experiment 5: Test Re-enactment and Adaptation
Results

Anomaly identification results across nodes can be seen in
Fig. 25a while anomaly classification accuracy can be seen
in Fig. 25b. The anomaly confusion matrix is shown as a
figure in Fig. 26. Corresponding success rates for modalities
(i) and (ii) are summarized in Table 7. Notation in Table 7
has been abbreviated as follows: for a TC that occurs at
node 2 followed by a re-enactment, the notation we use is:
@2TC-RE, hence @ indicates the node phase, followed by
the two digit anomaly, followed by a dash to indicate the
type of recovery. Tables 8 and 3 follow the same notation.
We now summarize the results for Experiment 5. For
anomaly identification a total of 72 trials were tested. We
had an average accuracy and recall of 97.9% and a perfect
precision. For nodes 2 and 3 anomaly identification was

Table 5 Recovery Success Rate w/ Perfect Classif—modality (i)
across nodes & anomaly classes

Node HC TC oS NO Average
1 100% 100%
2 100% 100% 100% 100% 100%
3 100% 90.0% 95.0%
4 100% 100%
Total 98.75%
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Table 6 Recovery Success Rate w/ Imperfect Classif—modality (ii)
across nodes & anomaly classes

Node HC TC OS NO Average
1 95.00% 95.0%
2 85.00% 98.3% 88.3% 80.00% 87.9%
3 91.7% 95.0% 93.3%
4 95.0% 95.0%
Total 92.8%

done perfectly for the three metrics. It was node 4 that was
more challenging with an accuracy and recall of 93.8% and
perfect precision. For anomaly classification, 71 trials were
tested with an average accuracy of 92.8%. As with anomaly
identification, it was also node 4 that was the most chal-
lenging to classify followed by node 3 with an accuracy of
86.7% and 91.7% respectively. Note that by the time the
robot reaches node 4 it has undergone 3 different anomalies
and is undergoing one more and the system has also expe-
rienced two re-enactments and an adaptation. As discussed
earlier, a high degree of variability in the sensory-motor
signals (compared to training) begins to enter the system
as more recoveries take place and change gripping poses,
dynamics and inertia, and the interaction with the objects.
With regards to success rate, under classification modal-
ity (i) the success rate was 90.0% and under modality (ii)
the rate was 80%. Fatalities occurred during the wall colli-
sion where the collision caused an object slip that displaced
the object beyond the camera’s field of view impeding any
further attempts to re-pick. Under imperfect classification,
we experienced a misclassification of HC as OS. The robot
attempted to re-enact a pick. However, the object’s pose was
too high and no IK solutions existed. On another occasion
a WC got misclassified as TC repeatedly, we aborted after
3 attempts. Specific experimental outcomes can be found as

Fig.20 Overall system success
rate as a function of modality.
Modality (i) considers
identification (AD),
classification (AC), and
recovery (REC) as independent
systems. Modality (ii) considers

100.00%
an independent AD system with

a combined AC/REC system. 95.00%
MV2PL shows interesting 90.00%
phenomena: the 2nd modality

performed better than the st as 85.00%
wrong classifications were 80.00%
corrected downstream and

coupled with correct recovery 75.00%
policies 70.00%
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1 2 3 4

comments for this experiment in Supplement 3, under the
“Exp 5 tab in Excel.

The Wall collisions experienced in this experiment,
afforded a new phenomenon. Namely, how the generation of
one anomaly leads to the trigger of a subsequent anomaly.
In Table 2, note that an HC is induced in node 3. This same
HC can trigger an OS in the task. For this reason, we further
studied the system’s ability to recover from a subsequent
OS anomaly. As before, 10 trials were tested for the same
2 objects under both classification modalities with results
shown in Table 8.

Under perfect classification 90.0% success rates were
also achieved. The fatality occurred when the wall collision
displaced the packaging box in a way that precluded
further placing of objects in the box. For imperfect
classification 70.0% success rates were achieved. In this
experiment, during node 3, when an OS occurred, the
system misclassified as a HC and triggered a re-enactment
of the same node. Later the system triggers an NO object
flag; however, because we had not previously trained a re-
enactment at node 3 (only for node 2) the system halted.
Experimental details can be found as comments can also be
found under Supplement 3.

6.5.6 Experiment 6: Recovering from Anomalies
that Happen during Recovery Results

For anomaly identification, a total of 20 trials were used for
testing (10 and 10 for experiments AOA and ROA) and had
an average accuracy of 100% and 90.0% for AOA and ROA
respectively. Precision had the same performance and recall
was perfect.

For anomaly classification, a total of 19 trials were used
for testing (10 and 9 for experiments AOA and ROA) and
had an average accuracy of 100% and 77.78% for AOA and
ROA respectively. A confusion matrix was also computed
and shown as a figure in Fig. 27. TC and WC were the

Overall System Success Rate for Re-
enactments under different Modalities

(Exp 3)

M Independent System m Combined System

Average
NODES
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Fig. 21 Accuracy, precision and recall metrics for the anomaly identification system and accuracy metrics for the classification system on a
per-(sub)experiment basis for persistent anomalies (left and right respectively)

target classes and the resulting HC statistics were due to
miss-classification.

As for success rates, each of the two situations under
both classification modalities are shown in Table 9.
For Adaptations-over-Adaptations, the system success
rates were 80.0% and 90.0% for both Cclassification
modalities respectively. For AOA with perfect and imperfect
classification, a total of three failures occurred (details are
found in Appendix E.

For Re-enactments-over-Adaptations, the system success
rates were 100% and 70.0% for both classification
modalities respectively. The latter was caused by 1 false-
negative in anomaly identification, 1 false-positive in node
3, and the same system limitation previously mentioned for
AOA also occurred once here. If we look at the combined
contribution of both situations for a given modality we have
90.0% for perfect classification and 80.0% for modality 2.

6.5.7 Experiment 7: Anomaly Identification
and Classification Reactivity Results

Figure 28 shows that our anomaly detector is generally
insensitive to changes in the amplitude of the anomalous
signal. Except for skills 4 and 9, skills show a TPR of
above 80% for amplitudes one-fourth of the original size.
Such performance is better than that of [16]. The lower
performance for the other two skills is due to a lower

|  HC TC 0s NO WC

HC| 0% 0% 0% 0% 0%

TC| 0% 100% 0% 0% 0%

os| 0% 0% 0% 0% 0%

NO| 0% 0% 0% 0% 0%
wc| 4.1% 6.1% 0% 0% 89.8%

Fig. 22 An anomaly classification confusion matrix for persistent
anomalies TC and WC in Exp 4

number of anomalies acquired during those phases of the
task. For larger signals, the performance seems largely
consistent. In terms of time delay, we also show a very
consistent performance. Our average delay remains below
0.5 secs until the signal becomes one-fourth of the orig-
inal size. This performance also surpasses that of [16].
With respect to the anomaly classification sensitivity to the
signal time duration window, recall that we use a stan-
dard windows of £ 2 seconds to capture observations
before and after an anomaly has been identified (Section 2.2).
Figure 29 shows a contour map of anomaly classification
accuracy as a function of pre and post anomaly identification
time duration. The figure contains accuracy regions in group-
ings of 5 percentile points, where the lower left corner
indicates the smallest range of time windows, whilst the top
right corner indicates the longest range time windows. The
anomaly classification data in this experiment was setup in
the same way as in Exp. 2. The final anomaly classifica-
tion accuracy is computed as the average of the true-positive
confusion matrix rates. Finally, note that reactivity measure-
ments for anomaly identification were originally presented
in [17] and concluded that we could identify anomalies on
average consuming 1.84% of the duration of skills.
According to Fig. 29, classification accuracy seems to
be the highest (95% and above) in an approximate golden
central radius, with another outer ring in gray holding
the next percentile accuracy grouping (90-95%). For the
smallest window combination, the lower left corner, the
classification accuracy ranges in the (80-85%) grouping.
Recall from Exp. 2 that our overall anomaly classification
accuracy for the standard &+ 2 second window was of
96.15%. The contour patterns seen in our experiment
indicates that in general there tends to be quite similar
performance in most of the studied regions. Only the region
from 0.5-1.0 seconds seems to register a symmetrical drop
in performance across both axis from the 90-95% range to
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Fig. 23 Success rates for
Adaptive recoveries under two
modalities: (i) perfect
classification and (ii) imperfect
classification

100.00%
90.00%
80.00%

70.00%

60.00%

Exp 4a.1

50.00%

the 80-90% range. Such information indicates that the main
structural signatures of anomalies require slightly more than
one second, given our classification algorithm in this kind
of task, to provide accuracies above 90%. Note that the
Supplement 1 video uses the standard time window capture
of & 2 seconds.

6.6 Summary

In this last section we summarize and analyze the per-
formance of the recovery policies. Figure 30 shows the
success rate across experiments along with the final per-
centage as a total sum across all experiments. Compar-
ing across experiments has limitations as each task has

Fig.24 Overall system success
rate as a function of modality for
adaptive recoveries. Modality 1
considers perfect classification
and modality 2 considers
imperfect classification. It is
surprising that some
experiments with imperfect
classification outperformed
those with perfect classification
in success rate. Wrong
classifications were corrected
downstream and coupled with
correct recovery policies

100.0%
90.0%
80.0%
70.0%

60.0%

Exp 4a.1

50.0%
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Success Rate for Adaptive Recoveries

(Exp 4)

M Perfect M Imperfect
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trial-set
ADAPTIVE EXPERIMENTS IN KITTING TASK

a different level of complexity. When we consider clas-
sification modality (i), we can isolate the recovery critic
performance. When considering counts across all experi-
ments, our system was able to successfully recover 96.33%
of the time. This result is not the experiment’s average
and reflects the more heavily weighted results of Exp. 3
where we had 98.75% success rate for re-enactments
across 480 trials (across nodes, objects, and users). If
we consider the average performance, we still obtain a
very strong 92.02%. This result reflects what we have
commented on already: a larger number of recoveries
induces larger variability in observations making introspec-
tion more challenging (we recovered 85% of the time in
Exp. 4). Nonetheless, we still recovered on nine out of ten

Overall System Success Rate for
Adaptations under Different Modalities

(Exp 4)

M Independent System

Ml

Exp 4a.2 Exp 4b

B Combined System

Average w/out
objin 4c

Exp 4c Average
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Fig. 25 Accuracy, precision and recall metrics for the anomaly identification system and accuracy metrics for the classification system on a
per-(sub)experiment basis for merged accidental and persistent anomalies (left and right respectively)

times across users, objects, anomaly types, and nodes in the
graph, hence showing very strong performance overall.
When we consider classification modality (ii), we are
considering the entire system and the effects of not only
the recovery critic, but also those of anomaly identifi-
cation and anomaly classification. These results describe
the effectiveness of a highly integrated introspection and
recovery system (along with a manipulation and visu-
alization aspects of the framework). When consider all
counts across experiment we recovered 88.33% of the time
and we consider the averaged result 82.38% of the time.
Hence, the integration of the complete system, diminishes
the performance of the recovery system, by slightly less
then 10% points. Again, within comments we emphasized
that the loss in performance was mainly experienced in
Exp. 4 and 5 where a large number of anomalies were
induced. This will often not happen in practice. Exp. 4a
might be a more likely event, where 95% recovery was
achieved under imperfect conditions in our work. Exp. 5
contained our worst performance with successful recov-
eries 75% of the time. This may not be a bad result
after all. Recovering more than seven times out of 10 with
unexpected scenarios, in our estimation, is not bad for cur-
rent robotic performance in unstructured environments. Fur-
thermore, in Section 7, we comment in detail specific direc-
tions in which we can significantly improve and expect bet-
ter results. All experimental data is contained in Supplement

| HC TC 0s NO wC

HC|  80.0% 0% 20% 0% 0%

TC 0% 97.1% 3% 0% 0%

os| 10.0% 0% 90.0% 0% 0%

NO 0% 0% 0% 0% 0%
wc 0% 0% 0% 0% 100%

Fig.26 An anomaly classification confusion matrix for accidental and
persistent anomalies HC, TC, OS, and WC in Exp. 5

2, results analysis can be found in Supplements 3 and
4, and code in Supplement 5. We expect the community
to use the current work and results as future baselines and
improve performance further.

7 Discussion

Our comprehensive experimental results showed that our
tightly-integrated, graph-based online motion-generation,
introspection, and incremental recovery system worked
accurately and robustly for a wide range of anomalous
situations in an unstructured co-bot scenario where a human
and a robot collaborated to complete kitting tasks. To the
best of the author’s knowledge, this is the first study where
the recovery ability of a robot is examined in the presence of
anomalies in manipulation in unstructured environments. In
our study, we demonstrated that we could not only identify
anomalies reliably (overall accuracy of 93.09%) but also
classify them in an online fashion (overall accuracy of
96.15%). And that given simple task-level recovery policies,
we could also recover consistently and reliably most of the
time. The tight integration achieved in this work enabled
robots to continue functioning, more than 82% across all our
anomaly scenarios, and 95% in more typical scenarios like
Exp. 4a. Even when anomalies occurred during recoveries

Table 7 Success rate for combined Re-Enactments & Adaptations for
2 objects under different classifications

@2TC-RE @3HC-RE @3WC-AD @4TC-AD Success Rate

Modality (i): Perfect Classification
Modality (ii): Imperfect Classification

90.0 (10.0)%
80.0 (10.0)%

Node location for anomaly occurrence denoted with @; followed by
anomaly type. Recovery policy indicated after (-). System errors as a
% of total failures is enclosed in parenthesis
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Table 8 Success rate for combined Re-Enactments & Adaptations in
the presence of a subsequently generated anomaly for 2 objects under
different classification modalities

@2TC-RE @3HC-RE @3WC-AD—OS @4TC-AD  Success Rate

Modality (i): Perfect Classification
Modality (ii): Imperfect Classification

90.0 (10.0)%
70.0%

Generated anomaly denoted with(—). System errors enclosed in
parenthesis as a % of failure contribution

themselves, we recovered with 80% of effectiveness. Hence,
the combination of anomaly identification, with global
classification and simple but contextual task-level policies
reliably showed broad robustness in being able to recover at
all stages of the task, across all anomaly conditions, across
different users and objects thus extending the autonomy
of the system in significant ways. While the system has a
number of weaknesses we will soon address, this system
with simple observation capabilities of the world may serve
robotics systems were sensors are limited but desire more
robustness in unstructured environments.

A couple of unexpected but welcome results are also
discussed. First, the robustness results of the anomaly
classification system and the recovery critic were somewhat
unexpected. The sHDP-VAR-HMM model displayed a
strong ability in generating good models that worked
across different phases of the task and identified anomaly
categories that contain important variations within. The
limits of the model seemed to have shown up in Exp. 5 at
node 3, when the most strenuous conditions were presented.
Even there the classification system had an 86.7% accuracy.
In our hand-engineered features, we attempted to abstract
structure from the data instead of only keeping raw-
observations. Such that, if signal patterns that were
similar occurred at dissimilar temporal positions during
the observation window, they would still possess similar
representations. Structure was abstracted by integrating the
norm of each of the modalities in our feature set.

The second unexpected emergent result occurred when
we presented results for classification modality (ii) and
saw that the combined (AD/AC/REC) system at times
had better performance than under modality (i) where
we had perfect classification (see Exp. 3, node 3, in

|  HC TC 0s NO wC

HC| 0% 0% 0% 0% 0%
TC| 0% 100% 0% 0% 0%
0S| 22.2% 0% 77.8% 0% 0%
NO| 0% 0% 0% 0% 0%
wc| 0% 0% 0% 0% 0%

Fig. 27 An anomaly classification confusion matrix for persistent
anomalies TC and OS in Exp 6
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Table 9 Success rate for anomalies and adaptations that occur during
the original execution of a recovery policy

Situation Perfect Imperfect
AOA 80.0 (20.0)% 90.0 (10.0)%
ROA 100% 70.0%

Total 90.0% 80.0 (10.0)%

One object and two classification modalities are used to report
performance metrics. System errors enclosed in parenthesis as a
percentage of failure contribution

Fig. 20 and Exp. 4a.2). There we learned that many
anomaly misclassifications did not result in unsuccessful
task completions. We learned in fact that the system could
self-heal. Even when a misclassification was originally
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Fig.28 Anomaly detector sensitivity to changes in simulated anomaly
signal amplitudes. After identifying the maximum anomaly signal for
each phase of the task, we randomly inserted it to a nominal signal with
signal ranges from 1 to 150% and study the true-positive rates and the
detection delays variations
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Fig.29 Contour plot of
anomaly classification accuracy
given pre/post anomaly time
window duration. Bottom axis:
captured time before anomaly
flag. Right axis: captured time
after anomaly flag. The plot
presents accuracy regions in
groupings of 5% points. The
broad golden central area shows
that we achieve high accuracy
across large time window
duration variations

Anomaly Classification Accuracy (%)

0.5

W 80.0%-85.0%

present and an inappropriate recovery policy enacted, the
system self-corrected at a later time step by correctly
understanding its anomalous state and later triggering the
correct recovery policy.

We believe this work has broad applicability. It’s graph
based structure with internal modules for motion generation
and introspection, and a supervisory recovery critic, allow

Fig.30 Recovery policy success
rate across experiments along
with final rate across all
experiments for both
classification modalities
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Anomaly Identification Time Window Duration
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the system to leverage any class of motion generation
algorithms including attractor-based, probabilistic, and deep
end-to-end approaches (better introspection techniques can
be leveraged as well). The bottom-line is that even as
motion generation techniques become increasingly robust to
disturbances [48-50]; failure is still a frequent occurrence
when uncertainty in the environment surpasses the modeling

Recovery Policy Success Percentage Summary
across Classification Modalities

W Perfect M Imperfect

96.33%
92.02%

i38%

Average

90.00% 90.00%

Exp5 Exp6
KITTING EXPERIMENTS
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ability of the system. Thus, our framework can enhance
the long-term autonomy and robustness of systems that
use various motion-generation approaches. Furthermore,
we believe this system would may work in manipulation
scenarios with higher precision demands. In [25], we
effectively classified anomalies for snap assemblies with
complex dynamics and tight tolerances. However, as we will
mention later, it is critical to automate the recovery policy
learning portion in this work.

Additionally, the deep system integration presented in the
paper allowed for a comprehensive study of the dynamics
between an introspection system and an accompanying
recovery-critic. We believe this is the first study of its
kind, where an explicit and detailed study of the anomaly-
recovery relationship is presented. We have open-sourced
the code, dataset, and result analysis (see Supplements 5,
2, and 3/4 respectively) to promote and facilitate further
examination of the topic. We hope others can build on
our work and use the current results to further improve
performance. There is still much improvement ahead and
we attempt to discuss some of the main issues next.

7.1 Limitations, Comparisons, and Future Work

An important limitation in our work is the fact that the
kitting experiment was not conducted under real warehouse
conditions. Thus the applicability of the work in real-world
applications is unclear and further testing in real-warehouse
conditions is necessary. The kitting experiment provides a
proof-of-concept and the authors would like to extend their
work to actual scenarios through corporate partners.

With regards to re-enactment policies on a task-planning
level, the multinomial distribution is admittedly simplistic.
It is an indirect process of capturing decision policies.
Furthermore, while we try to reduce re-teaching by having
adaptation nodes inherit re-enactment policies from their
parent node; there are times anomalies will occur for the
first time in later nodes for which no policy exists. This
requires user intervention to train the system as happened in
Exp. 5 for imperfect classification where the system halted
its performance because no re-enactment policy existed
for the NO class in a particular node. We are interested
in looking for automated policy learning solutions that
evolve over time. The tight integration of object-centric
motion planning may be able to improve or supplement
re-enactment performance. This is part of our future work.

With regards to adaption policies, we do not yet model
the spatial relations amongst the actors of interest; namely,
the robot (end-effector), active objects (like objects to be
gripped and the packaging box), and the world (support
surfaces like tables and floor). These relationships provide
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important context for decision making and are recently
attracting more attention [51-54]. Without spatial relation
understanding, the solutions learned in Exp. 6 will not
extend to situations where the spatial relations are different
from those in training. Not all experiments would fail
without spatial relations context however. The HC, OS, and
NO anomalies do not seem to explicitly depend on spatial
context and may likely be resolved as-is in new situations.
In effect, despite the lack of explicit spatial relationship
modeling, our recovery policies often overcame external
disturbances that might have otherwise terminated the task
and endowed the system with longer operational horizons.
By learning context relations, adaptations would do more
than replay a learned behavior, they would in fact restore
the complete and original state of the system before the
anomalous condition. The larger overall challenge remains
in learning how to integrate real-time reasoning and apply
it to a learned skill, how to explicitly consider the spatial
and functional relations between objects, the robot, and
the world. It is possible that by theoretically grouping
anomaly-recovery pairs into groups that do need functional-
spatial reasoning and groups that do not [55, 56]. In [57,
58], for example FOON graphs and object affordances
are introduced and might be particularly useful to resolve
spatial and reasoning problems. Resolving this issue will
be a consideration for future work. Notwithstanding,
the work as-is with its limitations, might be useful in
extending the autonomy of robots with limited sensor and/or
computational capabilities.

With regards to anomaly identification, the work of Park
etal. [15, 16, 18, 46] is the most closely related to our work.

For Park et al., there are a couple of comparison points
to be made. The first point relates to the way anomaly
data is compartmentalized. Their system applied HMMs
to identify anomalies for ensembles of either: a specific
robot skill with a specific object, or a specific robot skill
with a specific person. Such specificity makes it easier
to identify anomalies but it also increases the number of
classes to be trained. Evidently, models that can accurately
discriminate across broader datasets (such as being trained
with a multiplicity of objects or users) is desirable. In our
work, our anomaly identification (and classification) was
trained to identify anomalies across different task nodes,
different objects, and different users (where relevant). Thus,
a broader training domain was considered in our work.
Our anomaly detector achieved better performance than
the LSTM-VAE of [46] and was more insensitive (more
accurate) and faster compared to the HMM-D of [16] as
shown in Exp. 1 and 7.

With regards to anomaly classification our system seems
to outperform the state of the art. The work of Park in [18]
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and the work of Di Lello et al. [12] most closely resemble
our work. In Park et al’s work, their multi-perceptron
classifier classified 12 common anomalies with 90%
accuracy. Furthermore, the paper also includes experiments
where the robot feeds a real person with quadriplegia.
In this work, they conducted anomaly identification and
classification (they also classified the cause of the anomaly)
and had 86% and 90% accuracy, resulting in a combined
88% effectiveness for the system. So with regards to
anomaly classification, we still outperformed the accuracy
marker, nonetheless the number of cases they considered
was larger (12 instead of 5). With regards to the combined
system, our (AD/AC) overall performance was of 94.62%,
about 6% points higher than their, but again for a smaller
number of anomaly cases. In Di Lello et al’s work,
they use a simple non-parametric Bayesian model, namely
the sHDP-HMM with Gaussian observations and Gibb’s
sampling to classify anomalies. In their work, they achieved
an average classification accuracy of 87.5% over four
anomaly classes in an alignment skill with 4 obstructing
objects. Our performance was between 6-8% points higher:
96.15% across nodes (Fig. 14 in Exp. 2) and 94.4% was
the confusion matrix average in Exp. 2 (Fig. 16). Again,
comparisons are difficult. Their experimentation consisted
of single anomaly scenarios that did not change over time.
Our scenarios included a wide range of anomalies, from
one to multiple, occurring at different phases of the task
with different objects and users. So, given that our anomaly
experimentation was considerably more complex.

We would like to note the time and human cost of labelling
anomalies in unstructured environments. The manual pro-
cess was arduous and problematic and may not be reflective
of a true warehouse scenario. Automating the anomaly
label collection process through simulation or a farm of
robots as in [49]) is possible, though the algorithm by
which anomaly induction takes place should be examined
to understand whether it approximates real-life conditions.
Another possibility is the use of synthetically generated
anomaly data. Synthetically generated data is becoming
more common place [59-62], examples include synthetic
voices, images, or depth representations. However, when it
comes to anomaly data, the use of synthetic data seems more
challenging as the structure of anomalous data can have
important variations as discussed in this paper. It would be
interesting to investigate the minimal amount of nominal
data needed from which synthetic data could be generated
with sufficient accuracy to properly introspect anomalies.

One more future line of research in anomaly classifica-
tion is the ability to simultaneously identify multiple anoma-
lies. Often times in our work human collisions resulted in
object slips; however by simply selecting the class with

the highest likelihood, it is not possible to identify multi-
ple anomalies simultaneously. We wish to explore this as a
future line of work.

Finally, to further extend long-term autonomy horizons
this work should be tested not just in isolated single
tasks but in longer-term multi-task scenarios that can
further test the effectiveness of the proposed approaches.
Additionally, it would be interesting to consider more
complex graph topologies in HRI, such as a dual-graph
framework that synchronizes both human and robot activity
and enables mutual introspection and recovery under
explicit collaboration. We plan to extend our work to include
hand-over tasks from humans to the robot instead of placing
objects directly in the collection bin.

8 Conclusion

This work presented a tightly-integrated, graph-based online
motion-generation, introspection, and incremental recovery
system for manipulation tasks in loosely structured co-
bot scenarios. Failures are and will continue to be a
reality in robotics despite increasingly powerful motion-
generation algorithms. Dealing with them explicitly has
been the focus of this work. In this work we presented two
recovery policies that allowed us to robustly recover from
accidental and persistent anomalous conditions. Recovery
ability grows in difficulty as the number of adaptations
increases due to larger sensory-motor signal variations. On
the other hand, the system self-repaired. On occasion, after
an anomaly misclassification and improper recovery policy
enactment, the system would correct its introspection and
emit a successful recovery policy to complete the task.
Ultimately, the system presented in this work significantly
extended the autonomy and resilience of the robot and has
broad applicability to all manipulation domains that suffer
from uncertainties in unstructured environments.

Appendix A: Graph Structure

Nodes

In principle, a node specifies a motion-generation model
and an associated goal. Two type of nodes are specified in
our system: nominal and adaptive nodes.

Nominal Nodes

Nominal nodes are implemented as ROS-SMACH states
whose class definition contains member functions. In
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the specific case of DMPs, these are labeled as
“get_.dmp_model” and “get_pose_goal” for model and goal
retrieval respectively. There is an additional attribute of inte-
ger type in the class definition acting as the ID of the
nominal node.

Adaptive Nodes

Adaptive nodes are not implemented as a specific entity but
rather as two procedures.

The first procedure concerns when and how to create
an adaptive node. Since a new type of adaptation can only
be brought into our system via human demonstration, we
create a new adaptive node after a human demonstration has
curred. The new adaptive node simply contains a unique
integer as its ID and a DMP model trained from that human
demonstration.

The second procedure concerns how to determine the
goal for an adaptive node. If we were to use the last frame
of a human demonstration as the goal, it would result in
an adaptive node having little or no generalization ability
due to the fixed structure. We thus propose that the goal of
an adaption is a linear transformation with respect to the
previous goal of the system. This linear transformation can
be retrieved by computing the transformation matrix from
the previous goal to the last frame of human demonstration.
This information is then saved alongside the model of
the adaptive node. At runtime, we can determine the skill
goal of an adaptive node by applying the saved linear
transformation on the previous goal of the system.

Node Transitions
Transitions Across Nominal Nodes

Since nominal nodes are implemented as SMACH states,
we inherit SMACH’s state transition paradigm as our node
transition paradigm. In the ROS-SMACH state definition,
the member function named “determine_successor” is called
by our system to determine a nominal node’s successor.

Transitions Among Adaptive Nodes

Since an adaptive node are entered only after an anomaly
has occurred, we create a mapping from anomalies
to their corresponding adaptive nodes. A key aspect
of the mapping is a ‘“compound key” composed of
the ID of the node in which the anomaly happened
and the anomaly type. For example, a key could be
“nominal_node_(4)_anomaly_type_(tool_collision)”.
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After an adaptive node terminates its motion, we must
consider the successor node. The system assumes that
adaptive nodes, perform recovery for a nominal node that
previously failed and that must arrive at the next phase or
milestone of the task. In this sense, when the adaptive node
terminates, it signals that a nominal state into the next phase
has been attained. In this case, the originally nominal node
that experienced an anomalous condition should now regain
its control in determining its successor such that the original
task control flow could continue as if no anomaly happened
at all.

Appendix B: Kitting Anomaly Dataset

The dataset captures sensory-motor and video data regard-
ing the Kitting experiment under anomalous scenarios as
outlined in this paper. The dataset consists of 538 rosbags.
85 of those rosbags are paired with RGB video that was
captured by an external camera placed directly in front of
the robot. The size of the 538 rosbags is of 37GB whilst
the size of all videos is of 3.1GB. The dataset is found as
Supplement 2 in the paper as well as in [63].

Data Description

The main content of our dataset is the sensory-motor
recordings of the robot manipulator’s experience while
performing the manipulation task. Specifically for the
Rethink Baxter robot, we use the following data modalities:

e the right endpoint state: contains end-effector pose,
twist, and a wrench defined from the joint torques (not
used).

e the stamped wrench: obtained from a Robotiq FT 180
force-torque sensor installed on the right wrist (see
Fig. 4).

e tactile data: obtained from a custom designed tactile
sensor (see Section 8).

When anomalies are triggered, we also record: (i) the
time-stamp at which the anomaly is flagged as well as the
anomaly classification label.

Recording Methodology

All sensory-motor signals exist as ROS topics in our system
and as such recorded as ROS bags offline. When an anomaly
is identified, we signal this event by sending a timestamped
ROS message to a pre-defined topic that is also recorded
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as a rosbag. Anomaly classification labels are recorded in a
text file in a line-by-line basis.

Mapping from data modalities to ROS topics is as
follows:

e Baxter right endpoint state
/robot/limb/right/endpoint_state

e Robotiq force sensor FT 180
/robotiq_force_torque_wrench

e Robotiq tactile sensor
/TactileSensor4/Accelerometer,
/TactileSensor4/Dynamic,
/TactileSensor4/EulerAngle,
/TactileSensor4/Gyroscope,
/TactileSensor4/Magnetometer,
/TactileSensor4/StaticData

Data Organization

The dataset is composed of folders that use the format:
“experiment_at_[time]”. Each folder represents a test trial in
the kitting experiment. Within a given folder, there will be
a rosbag record.bag” and a text file anomaly_labels.txt”.
Each of these contain the rosbag topics mentioned in
Section B and the recorded labels for the given experiment.

Anomaly Data Extraction

To extract anomaly data, one should first focus on the
topic “/anomaly_detection_signal” whose messages are
effectively timestamps indicating when anomalies were
identified. It’s worth noting that a burst of anomaly
timestamps might have been published to this topic for
one anomaly. Therefore timestamps that are adjacent
in time should be ignored. We recommend ignoring a
timestamp if its distance to its precursor is less than 1
second. After anomaly timestamps are extracted, labels
in the accompanied “anomaly_labels.txt” can be paired
accordingly.

We have tried to clear the dataset of any corrupted trials.
However, if the number of anomaly timestamps does not
equal to the number of labels, that experiment should be
discarded.

Appendix C: Notation Table
Appendix D: Motor Skills

The DMP framework encodes dynamical systems through a
set of nonlinear differential equations whose point attractor
system is defined by a nonlinear forcing function, which in
turn depends on a canonical system for temporal scaling. In
this section, we introduce the main concepts and leave it to

the reader to refer to the original text for details. Formally,
for a one DoF point attractor system, the point attractor
system is defined as [64]:

w=K(g—x)— Dv—K(g—x0)s + Kf(s), (14)
™™ = v.

Equation 14, is an extended PD control signal with spring
and damping constants K and D respectively, position and

velocity x and v, goal g, scaling s, and temporal scaling
factor 7.

Table 10 Summary of graph and DMP notation

Notation Description
Graph
C Graph for a given task
B Behavior in a given task
N Behaviors are represented by nodes in the graph
T Transitions in a graph
St Node transitions from N to N,
N T 1st branch level node
N ik 2nd branch level node
S Skill generation modules
1% Visual goal processing modules
M Introspection modules
F A given anomaly
R A recovery action
Rr A re-enactment recovery type
Ra An adaptive recovery type
DMPs
K Spring constant of PD control
D Damping constant of PD control
X, 8,V Position, position goal, & velocity
s Spatial scaling constant
T Temporal scaling constant
o Arbitrary scaling term
JAO) The forcing term
¥() The basis function
w Weighting of basis functions
HMM
2t Latent state at time ¢
X, The nth training example sequence
Xy Observation at time instant ¢
b(zs) Mode specific emission distribution
[4 Set of dynamic parameters of state k
) Initial mode distribution
ik Transition probability from state k to j
I1 A given HMM model
sHDP-HMM
Gy Base probability measure
G; HMM transition probability measure
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Table 10  (continued)

Notation Description

o,y DP concentration parameters

H Continuous base distribution

Br Weights used to compute G

K The sticky parameter of transition distribution
GEM(y) Distribution to define stick-breaking process

Anomaly Identification

VL Natural log of HMM filtered belief state

VAR

e Additive white noise at time ¢ and mode z;

X White noise covariance matrix for mode z;

A Time-invariant regression matrix at z;

A, v Covariance A & degrees of freedom v in ZW
IW(, A) Inverse wishart

K Covariance across matrix columns

The scaling term is controlled the canonical dynamical
system 7§ = —as, where « can be an arbitrary constant.

The forcing term f(s) is an arbitrary function that,
in our work, is provided by the user demonstration. The
term is defined as a phase-dependent linear combination of
Gaussian basis functions ¥; (s) with variable weights [64].
Spatio-temporal scaling is possible through the (g — x)
term in Eq. 14, which enables the system to adjust to
varying goals. System speed-up is also possible through the
T variable in Eq. 14.

sHDP-AR-HMM Parameters & Hyperparameters

For the observation model, we use a first-order vector
autoregressive with regression matrix coefficients A and
covariance matrix X for specific latent states. Since both
of these dynamic parameters are uncertain, they need to
be learned. The MNIW is an appropriate prior distribution
when both the mean and the covariance are uncertain [36].

We begin by determining the covariance X through the
use of the IW distribution NIW. For this computation, we
must define the first moment of the distribution according
to Eq. 4. Here, we set v, the degrees of freedom to the
number of dimensions plus two: v = d + 2. This setting
ensures the conjugate MNIW prior has a valid mean (see
Sec. 4.5.11in [42]). As for the computation of the expectation
of the covariance in Eq. 5, the scalar sp is set to 1.0
and multiplied by the scatter matrix (also the empirical
covariance). This setting is motivated by the fact that the
covariance is computed from polling all of the data and
it tends to overestimate latent-state-specific covariances. A
value slightly less than or equal to 1 of the constant in the
scatter matrix mitigates the overestimation.

@ Springer

Then, to determine the matrix A of regression coeffi-
cients, the matrix normal of the MNIW uses a mean matrix
M set to the zeros matrix M = 04, of size d x d. We do so
to let the new observation be primarily be determined by the
signal noise.

For the covariance K across the columns an identity
matrix is used such that K = 1.0 % I; with the same
dimension as X.

For the concentration parameter « of the HDP prior,
a Gammal(a, b) distribution with values a = 0.5,b =
5 is used. For the self-transition parameter p a weakly
informative Beta(c, d) prior distribution is used with values
c=1,d =10.

For the sticky HMM transition distribution, another x
(the degree of self-transition bias) is set to 50. The number
of maximum iterations for the Split-Merge Monte Carlo
method is set to 1000. Finally, the truncation (maximum)
number for latent states is empirically set to K = 10 for
both anomaly identification and classification.

Appendix E: Experimentation
Human Subject Training

In Exp. 3-6, five different human subjects, under consent,
took part in the experiment as human collaborators. They
were trained to place consumer goods, one-at-a-time, in
the collection bin of the robot. We ask human subjects
to assume they are multi-tasking and experiencing loss of
attention. The loss of attention can lead (as recorded by
the cataloging experiments in Section 2.2) to a number of
anomalous events including: (i) HCs, (ii) TCs, (iii) OSs, and
(IV) NOs—wall collisions (WC) are introduced in Exp. 4
but these are not caused by humans but from using DMPs
that were trained with a particular geometry and size and
testing with objects that differed from training. HCs may
occur when the robot picks up objects from the collection
bin and the human collaborator places new ones. TCs may
occur when humans inadvertently place objects near each
other such that when the robot attempts to pick an object,
one of its fingers collides with the adjacent object (see
Fig. 9b). OSs may occur after human collisions that rattle
the gripper and cause heavier or smoother objects to fall. NO
anomalies may occur when a human accidentally collides or
removes an object that the robot intended to pick up.

Signal Processing

Observations consists of a a 7 DoF pose (using quaternions
as orientation), a 6 DoF end-effector twist and wrench, and
56 taxel values (each finger has a 4-by-7 grid). Various
pre-processing techniques were tested for a combination
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of these features. We conducted validation to select the
optimal feature set. Details for Anomaly Identification and
Classification are reported in Exp. 1 and 2 respectively.

All signals were scaled, resampled, and aligned.

Signals were scaled to lie in a range of —1 <
yi < 1 by computing the absolute value of the
maximum signals during training. Different signals publish
at different rates rates (wrench: 1000Hz, tactile: 1000Hz,
pose and twist: 100Hz). We resample to acquire a single
time-point to model the observations. Our code relies
primarily on python and ROS. Rospy nodes inherently
use Python’s multi-threading class to handle multiple
publishers and subscribers. The class, however, lacks real-
time performance support and we have only achieved re-
sampling rates of up to 5S0Hz. Alignment takes places by
syncing the timestamps from the varying ROS topics.

Anomaly Identification Baselines

The HMM models an empirical covariance matrix with two
observation models (Gaussian ‘G’ and Autoregressive ‘AR’)
and two inference algorithms (Expectation-Maximization
‘EM’, Variational Bayes ‘VB’). We use 3 different values
for the complexity k of the HMM (3,5,10).

For machine learning, the Isolation Forest uses default
values from sklearn, the maximum number of samples is set
to automatic, and the contamination value set to 0.01. For
LOF, default values are used. Exceptions are novelty set to
true and contamination set to 0.01. The MLP and LSTM
networks both use feature distribution #14, a batch size of
16, learning rate of 0.0005, a leaky relu fixed « = 0.2 and
an outlier fraction of 0.2. For the MLP, we use 18 input
dimensions, 128 hidden units, and for the VAE latent states
we use 16 dimensions. For the LSTM-VAE, we have a 16
time-steps input and 64 hidden states.

Exp. 4c

In Exp. 4c (Section 6.5.4), it was noted that one set of
objects in particular posed challenges to the classification
system. Under perfect classification, an adaptive behavior
rotated the gripped object and cause a collision with
objects leading to an irrecoverable situation. For imperfect
classification, there was a set of trials that led to O
completions. Failure occurred during the adaptation to the
persistent wall collision in node 3 as the system moved
to the box. The culprit was the inability of the system
to adapt its motion when an object with different shape
attributes (height) was used compared to the one used during
user demonstrations. This result points to a weakness in
the system’s ability to generalize adaptations when object
shapes vary drastically from training as no spatial reasoning
is yet embedded in the system.

Exp. 6

In Exp. 6, there were three experiments that failed due to
the following situation: during the 2nd adaptation attempt
to grasp the block, the approach pose was inaccurate.
Normally, our fingers open when a pre-pick motion has
terminated. The approach trajectory had some imprecision
and led to the fingers making contact with the block causing
it to tip (instead of sliding along the block to reach an
optimal pick pose). After the tip, the block was displaced
beyond the field-of-view of the camera. At this point the
system continued to correctly trigger an NO flag, however
on re-enactment the pose of the object was unavailable;
thus holding-up the execution of the re-enactment. This
could be prevented by a better implementation of the
manipulation skills taught to pick the object. In retrospect,
we never envisioned that training the pick in this way would
be problematic. It is unclear whether end-to-end training
would suffer a similar problem from inception. Clearly, the
adaptations could be re-trained or improved to address the
issue under any manipulation scheme. The question remains
as to which approach would be more robust to previously
unseen situations.
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