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Abstract. Motivated by Gauss’s first proof of the Fundamental Theorem of Algebra, we
study the topology of harmonic algebraic curves. By the maximum principle, a harmonic
curve has no bounded components; its topology is determined by the combinatorial data
of a noncrossing matching. Similarly, every complex polynomial gives rise to a related
combinatorial object that we call a basketball, consisting of a pair of noncrossing match-
ings satisfying one additional constraint. We prove that every noncrossing matching arises
from some harmonic curve, and deduce from this that every basketball arises from some
polynomial.

Introduction

The first proof of the Fundamental Theorem of Algebra was published in 1746 by
d’Alembert [2]. In an attempt to correct the lack of rigor in d’Alembert’s approach,
as well as in subsequent attempts, Gauss offered a new proof in 1799 in his doctoral
thesis [5]. Gauss’s argument, while characteristically elegant, was itself not entirely
satisfactory. Both d’Alembert’s and Gauss’s proofs were subsequently made completely
rigorous (for the whole story, see, e.g., pp. 195–200 of [13]).

Gauss approached the problem by examining the real algebraic curves

R = {z: Re f (z) = 0}, I = {z: Im f (z) = 0},
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Fig. 1. (a) The curves R (thick) and I (thin) arising from f (z) = z5 + 6z3 + 3z2 + 5z − 2, with a circle S
superimposed. (b) The associated combinatorial basketball.

in R2, where f (z) is a complex polynomial of degree n. (See Fig. 1 for an example.)
Note that the set of roots of f is precisely R ∩ I . For a suitably large disk D, each of the
curves R and I meets the boundary circle S = ∂D in exactly 2n points, and it can easily
be shown that the points of R ∩ S alternate with those of I ∩ S around S. Gauss argued
that R ∩ D (resp. I ∩ D) must consist of n components and that each component of R
must cross some component of I inside D; therefore, #(R ∩ I ) ≥ n.

We are interested in the topology of the curves R and I , both singly and together.
Much of the research on the topology of real plane algebraic curves (the topic of Hilbert’s
16th problem) has focused on classifying the possible configurations of ovals (bounded
connected components); see, e.g., [15]. However, the curves R and I are harmonic, and
so the maximum principle [1, Theorem 21, p. 166] implies that they have no ovals at all.
The topological information that can be extracted from the pair R, I is of a different sort
entirely.

Suppose that R and I are both nonsingular. (In particular, it is necessary that f (z)
have no repeated roots; as we will see, this condition is in a certain sense sufficient.)
Labeling the 2n points of R ∩ S cyclically and pairing off those points that lie in the
same component of R yields a noncrossing matching of order n. (Noncrossing partitions
are an important subject in modern combinatorics; for an overview, see the excellent
survey by Simion [10].) Repeating the construction for I instead of R yields a second
noncrossing matching that is interlaced with the first. The matching obtained from R
must cross the matching obtained from I exactly n times, corresponding to the n roots
of the polynomial f . Two arbitrary interlaced noncrossing matchings of order n must
have at least n crossings between them (Lemma 2.6), and may have more; if the number
of such crossings is exactly n, we call this pair of noncrossing matchings a basketball of
order n. For example, Fig. 1(b) is the basketball

({{0, 10}, {2, 8}, {4, 6}, {12, 18}, {14, 16}},
{{1, 19}, {3, 5}, {7, 9}, {11, 13}, {15, 17}}).

It is natural to ask whether every basketball arises from a polynomial in this way. Our
main result, the Inverse Basketball Theorem (Theorem 3.1), answers this question in the
affirmative. The proof is constructive, and draws on elementary tools from combinatorics,
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topology, and complex analysis. The Inverse Basketball Theorem is very close in spirit
to the Viro patchworking theorem [8], [14], and in fact can be viewed as a simplified
version of Viro patchworking in the context of harmonic algebraic curves.

There is a natural bijection between basketballs of order n and noncrossing partitions
with n blocks of size 4. It follows from a result of Edelman [4] that the basketballs
are enumerated by the quasi-Catalan numbers (1/(3n + 1))

(4n
n

)
. These numbers also

count plane quaternary trees and dissections of a polygon into pentagons; there are
natural bijections between basketballs and each of these combinatorial sets. The quasi-
Catalan numbers also enumerate certain plane trees (see [9]), although there is no obvious
bijection involved.

A more subtle combinatorial-topological invariant of the polynomial f arises from
the curves

Cθ ( f ) = {z: Im(e−iθ f (z)) = 0},
regarded as a family parameterized by θ ∈ R/πZ. Note that I = C0( f ) and R =
Cπ/2( f ). We will see that Cθ ( f ) is singular for only finitely many values of θ . Therefore,
we can study the family of noncrossing matchings, equipped with a cyclic order, obtained
by letting θ vary; we call this family the necklace of matchings associated to f . Notice
that the necklace depends only on the polynomial f itself, and not on a choice of angle.

The paper is structured as follows. In Section 1 we give a modern exposition of
Gauss’s proof of the Fundamental Theorem of Algebra, and explain how Gauss’s ideas
may be used to associate basketballs with complex polynomials. Section 2 is devoted to
the combinatorics of basketballs. Section 3 contains the proof of the Inverse Basketball
Theorem. We conclude in Section 4 with some brief remarks on necklaces of matchings;
there appears to be much more to say here from both the combinatorial and geometric
points of view. Full-color figures may be found in the electronic version of this article
at www.springerlink.com.

1. Gauss’s Proof of the Fundamental Theorem of Algebra

We begin by describing Gauss’s approach to the Fundamental Theorem of Algebra [5];
for the technical details, see [6]. Let f (z) be a monic polynomial of degree n, and
consider the two curves

R = {z: Re f (z) = 0},
I = {z: Im f (z) = 0}.

In polar coordinates z = reiθ , the curves R and I are given by the equations

Re f (z) = rn cos nθ + (lower terms) = 0,

Im f (z) = rn sin nθ + (lower terms) = 0.

Let Sr denote the circle {z: |z| = r}, and Dr the disk {z: |z| ≤ r}. By taking r sufficiently
large, we can ensure that

• Re f (z) has 2n zeros on Sr , arbitrarily close (in angle) to the zeros of cos nθ ; and
• Im f (z) has 2n zeros on Sr , arbitrarily close to the zeros of sin nθ .
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That is, R∩ Sr and I ∩ Sr each contain exactly 2n points, and these 4n points alternate
around the circle. (See Fig. 1 for an example.) Suppose that R and I are both smooth
curves. Then the intersection R ∩ Dr must contain n disjoint arcs R1, . . . , Rn , each of
which joins two distinct points of R ∩ Sr . Since these arcs do not cross, each arc Ri

must have an even number of points of R ∩ Sr on either side of it, by the Jordan Curve
Theorem.

Likewise, I ∩ Dr contains n disjoint arcs I1, . . . , In , each of which joins two distinct
points of I ∩ Sr . Since there is exactly one point of I ∩ Sr lying between each point of
R ∩ Sr , each arc Ri must have an odd number of points of I ∩ Sr on either side of it. It
follows that some arc Ij joins a point on one side of Ri with a point on the other, and
therefore must intersect Ri . These n intersection points, one for each Ri , are the roots
of our polynomial f . (This step requires only the Intermediate Value Theorem, rather
than the Jordan Curve Theorem, because Re f (z) changes sign along the arc Ij .) This
establishes:

Proposition 1.1. Let f (z) be a monic polynomial such that the curves R and I are
nonsingular. Then f (z) has n roots.

Gersten and Stallings [6] complete the proof of the Fundamental Theorem of Algebra
by proving that if f (z)has no roots, then f (z) can be perturbed to obtain a new polynomial
that still has no roots but for which R and I are nonsingular. We give a different approach.

Observe that the curve I has 2n asymptotes, with slopes at angles kπ/n for k =
0, . . . , 2n − 1. Similarly, R has asymptotes with slopes at angles (k + 1

2 )π/n. More
generally, consider the family of real plane curves

Cθ ( f ) = {z: Im(e−iθ f (z)) = 0} (1.1)

parameterized by the circle R/πZ (see Fig. 2). We often abuse notation by identifying
θ ∈ R/πZ with its coset representative in the interval [0, π). Note that Cθ ( f ) has 2n
asymptotes, with slopes at angles (kπ + θ)/n for k = 0, . . . , 2n − 1. We regard arg(z)
as an element in R/2πZ.

Lemma 1.2. The curve Cθ ( f ) is singular if and only if there exists z ∈ Cθ ( f ) such
that f ′(z) = 0.

Proof. If f (z) = u(x, y)+ iv(x, y) with u, v real, then Cθ ( f ) is the curve defined by
v(x, y) cos θ − u(x, y) sin θ = 0. It follows that (x0, y0) ∈ Cθ ( f ) is a singular point if

Fig. 2. The curves Cθ ( f ), where f (z) is the quintic of Fig. 1 and θ = 0, π/12, π/6, π/2, respectively.
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and only if (∂v/∂x) cos θ − (∂u/∂x) sin θ and (∂v/∂y) cos θ − (∂u/∂y) sin θ vanish at
(x0, y0). By the Cauchy-Riemann equations, it follows that the partial derivatives of u
and v with respect to x and y all vanish at (x0, y0), and therefore z0 = x0 + iy0 is a zero
of f ′(z).

Corollary 1.3. If f (z) has no repeated roots, then the curves Cθ ( f ) are singular for
at most n − 1 values of θ . If f (z) has a repeated root, then the curves Cθ ( f ) are all
singular.

Proof. If f ′(z) = 0 and f (z) �= 0, then z lies on Cθ ( f ) for exactly one value of
θ ∈ R/πZ, namely θ ≡ arg( f (z)) (mod π). On the other hand, if f ′(z) = 0 and
f (z) = 0, then z is a singular point on all Cθ ( f ).

We can now prove:

Theorem 1.4 (Fundamental Theorem of Algebra). Every polynomial f (z) of degree n
has exactly n roots.

Proof. We may suppose that f (z) is monic. If f (z) has a repeated root, then it certainly
has a root; by induction on the degree, f (z) has exactly n roots.

Assume, then, that f (z) has no repeated roots. Choose any two different angles
α, β ∈ R/πZ such that Cα( f ) and Cβ( f ) are nonsingular; this is possible by Corollary
1.3. Applying the argument which proved Proposition 1.1 to the curves Cα( f ) and Cβ( f ),
the theorem follows.

The idea at the heart of Gauss’s proof is that when r is sufficiently large, the 2n
points of Cα( f )∩ Sr are paired via components of Cα( f ). This associates to f a purely
combinatorial object: a matching, or partition into n subsets of size 2, of the set Cα( f )∩Sr .
In a similar way, we can construct a matching on the set Cβ( f ) ∩ Sr , and the existence
of n distinct roots follows from the combinatorial topology of these two matchings. In
the remainder of this article, we study which (pairs of) such matchings can arise from
polynomials. We begin by formalizing our study of the matchings which arise from the
curves Cθ ( f ).

Suppose that Cθ ( f ) is nonsingular. By the maximum principle for harmonic functions,
the curve Cθ ( f ) cannot have any bounded connected components. It follows that every
connected component of Cθ ( f ) is diffeomorphic to R. By Bézout’s theorem, Cθ ( f )
cannot meet the quadratic curve Sr in more than 2n points. For r sufficiently large, each
connected component of Cθ ( f ) must meet Sr in at least two points, so we deduce that
Cθ ( f ) has at most n connected components.

Recall, however, that the curve Cθ ( f ) has 2n asymptotes, with slopes at angles (kπ+
θ)/n for k = 0, . . . , 2n − 1. Each connected component approaches at most two of
these asymptotes, and it follows that Cθ ( f ) has precisely n connected components, each
diffeomorphic to R, and each approaching two of these asymptotes. Moreover, if r is
sufficiently large then each point of Cθ ( f )∩Sr lies on a different one of these asymptotes,
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so that which pairs of points Cθ ( f )∩ Sr are joined by arcs in Cθ ( f )∩ Dr is determined
entirely by which pairs of asymptotes lie on the same connected component of Cθ ( f ).

If C is any real plane curve, write C(r) = C ∩ Dr . Suppose that C(r) is nonsingular
and has m connected components, each with precisely two points lying on the circle
Sr . Label these points counterclockwise from 0 to 2m − 1, starting from the positive
real axis. We make the following exception to the labeling rule: if C = C0( f ) for some
polynomial f and r is sufficiently large that C(r)meets the component of C asymptotic
to the positive real axis, then we begin labeling from the point of C(r) furthest along
this asymptote.

Then C(r) induces a matching M(C, r) on the set {0, . . . , 2m − 1}, where a, b are
matched if and only if the points labeled a and b lie on the same connected component
of C(r). If C = Cθ ( f ) is nonsingular and r is sufficiently large, then we have observed
that the matching M(Cθ ( f ), r) on {0, . . . , 2n− 1} does not depend on r ; we denote this
matching by M( f, θ). Our object is to study the matchings M( f, θ), as well as the pairs
of matchings (M( f, α),M( f, β)).

Remark 1.5. Recall that f is assumed to be monic, so that if C = Cθ ( f ) and θ ∈
[0, π), then for r sufficiently large the point of C ∩ Sr which is labeled k lies on the
asymptote at angle (kπ + θ)/n.

Remark 1.6. If C = Cθ ( f ) is nonsingular, we say a few words for future reference
about when M(C, r) is defined, i.e., when each connected component of C(r) has pre-
cisely two points lying on the circle Sr . Each connected component of C is diffeomorphic
to R; since a connected component of C(r) is a bounded connected subset of C , it is
either a single point, or diffeomorphic to the interval [0, 1]. Certainly each connected
component which passes through the interior of the disk Dr must intersect the bound-
ary at least twice. It follows that M(C, r) is well defined as long as C has no point of
tangency (either external or internal) to the circle Sr .

Remark 1.7. When f (z) = z2 + bz + c is quadratic, the pair of matchings (M( f, 0),
M( f, π/2)) is determined by the quadrant of the complex plane containing the discrim-
inant b2 − 4c. An analogous description must exist for polynomials of higher degree.
Indeed, regarding a monic polynomial of degree n as a vector in R2n by taking the real
and imaginary parts of its coefficients, the subset of R2n for which at least one of the
curves R and I is singular is an algebraic set. Its complement, the set of polynomials
for which M( f, 0) and M( f, π/2) are both defined, is therefore a real semialgebraic
set. However, every connected component of a real semialgebraic set is again semialge-
braic [3, Theorem 2.4.5]; since the set of polynomials which yield a particular pair of
matchings is a union of such connected components, that set is itself semialgebraic.

2. Combinatorics of Basketballs

Throughout, if a ≤ b are integers, we write [a, b] for the set {a, a + 1, . . . , b − 1, b}.
(It should be clear from context whether this notation refers to an interval in Z or in R.)
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Fig. 3. (a) The noncrossing partition whose nonsingleton blocks are {1, 2, 10, 11}, {3, 5}, and {6, 8, 9}.
(b) A noncrossing matching.

Definition 2.1. Let a ≤ b be integers. A partition of [a, b] is a collection of pairwise
disjoint sets (called blocks) whose union is [a, b]. The number of blocks is the order of
the partition. Two blocks are said to cross if there are integers i < j < k < 
 such that
i, k belong to one block and j, 
 belong to the other block. If no two blocks cross, then
the partition is said to be noncrossing. A matching is a partition in which every block
has cardinality 2.

A noncrossing partition can be represented by placing the numbers a, a + 1, . . . , b
around a circle and connecting numbers in the same block, as in Fig. 3.

Example 2.2. If the curve Cθ ( f ) is nonsingular, then the matching M( f, θ) is non-
crossing by the Jordan Curve Theorem.

The theory of noncrossing partitions comprises a substantial chapter in modern com-
binatorics; see [10] for a comprehensive survey. In the present study, we are concerned
most with noncrossing matchings on the sets

En = {0, 2, 4, . . . , 4n − 2} and On = {1, 3, . . . , 4n − 1},
where n is a positive integer.

It is well known (and elementary to verify) that the number of matchings on En (resp.
On) is (2n − 1)(2n − 3) · · · (3)(1) = (2n)!/2nn!, and that the number of noncrossing
matchings is the Catalan number (1/(n + 1))

(2n
n

)
.

Lemma 2.3. Let M be a matching on [0, 2n − 1]. If M is noncrossing, then exactly
one member of each pair {i, j} is even.

Proof. Suppose that i < j and i ≡ j (mod 2). Then the sets

X = [i + 1, j − 1], Y = [0, i − 1] ∪ [ j + 1, 2n − 1]

both have odd cardinality, so some x ∈ X is paired with some y ∈ Y . Then {x, y} crosses
{i, j}, contradicting the condition that M is noncrossing.

Equivalently, if M is a noncrossing matching on En or on On , then every pair in M
consists of two numbers that are noncongruent modulo 4.
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Definition 2.4. A bimatching of order n is a pair B = (Be, Bo), where Be is a matching
on En and Bo is a matching on On . A pair in Be (resp. Bo) is called an even (resp. odd)
pair of B. Let Me,Mo denote the matchings induced on [0, 2n − 1] by Be, Bo via the
maps [0, 2n − 1]→ En,On sending i �→ 2n, 2n + 1 respectively. We say that B is the
bimatching corresponding to the ordered pair of matchings (Me,Mo), and vice versa.

Example 2.5. Choose α, β ∈ [0, π) such that Cα( f ) and Cβ( f ) are nonsingular, and
suppose thatα < β. Then we obtain a bimatching B( f, α, β)on [0, 4n−1] corresponding
to the pair of matchings (M( f, α),M( f, β)),

This bimatching can be obtained geometrically as follows. For r sufficiently large,
label the points of (Cα( f )∪Cβ( f ))∩ Sr counterclockwise from 0 to 4n− 1, beginning
with the point of Cα( f ) lying on the asymptote at angle α/n. Again for r sufficiently
large, each point of Cα( f )∩ Sr will be labeled with an element of En , and each point of
Cβ( f ) ∩ Sr will be labeled with an element of On . The bimatching is then induced by
the arcs of Cα( f ) ∩ Dr and Cβ( f ) ∩ Dr , respectively. See, e.g., Fig. 1.

Lemma 2.6. Let B = (Be, Bo) be a bimatching of order n. Suppose that both Be and
Bo are noncrossing. Then each pair of Be (resp. Bo) crosses an odd number of pairs of
Bo (resp. Be).

Proof. Let i, j be an odd pair of B with i < j . Let

X = {i + 1, i + 3, . . . , j − 1}, Y = {0, 2, . . . , i − 1, j + 1, . . . , 4n − 2}.
Then a pair k, 
 ∈ Be crosses i, j if and only if exactly one of k, 
 belongs to X . By
Lemma 2.3, we have i �≡ j (mod 4), which implies that #X and #Y are both odd.
Therefore there are an odd number of such pairs k, 
. By the same argument, each pair
in Be crosses an odd number of pairs in Bo.

In particular, each pair of B crosses at least one pair of the opposite parity. We are
interested primarily in the case when no extra crossings occur.

Definition 2.7. A basketball of order n (or simply an n-basketball) is a bimatching
B = (Be, Bo) of order n in which the matchings Be, Bo are both noncrossing, and each
pair e ∈ Be crosses exactly one pair o ∈ Bo. The pair of pairs e, o is called a quartet.
The set of all n-basketballs is denoted Bn . (See Fig. 4.)

The bimatching B( f, α, β) of Example 2.5 is a basketball of order n. Indeed, every
crossing between an even pair (i.e., an arc of Cα( f )) and an odd pair (i.e., an arc of
Cβ( f )) corresponds to a root of f , and there are exactly n roots.

Theorem 2.8. The number of basketballs of order n is (1/(3n + 1))
(4n

n

)
.

Proof. By a special case of Lemma 4.1 of [4], the given quantity enumerates the set
Qn of noncrossing partitions of [0, 4n − 1] into n blocks of size 4. We will exhibit a
bijection ϕ: Bn → Qn .
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Fig. 4. (a) A basketball of order 5. (b) A bimatching that is not a basketball (the pair {5, 19} crosses three
even pairs).

Let B ∈ Bn . Define a partition ϕ(B) of [0, 4n−1] into n blocks of size 4 by replacing
each quartet {i, j}, {k, 
} with the block {i, j, k, 
}. It is elementary to deduce from the
definition of a basketball that ϕ(B) is noncrossing, hence belongs toQn . It is also evident
that the function ϕ is injective.

Now let Q ∈ Qn and let K = {a < b < c < d} be a block of Q. Since Q is
noncrossing, each of the sets

[a + 1, b − 1], [b + 1, c − 1], [c + 1, d − 1], [d + 1, 4n − 1] ∪ [0, a − 1] (2.1)

must be a union of blocks, hence must have cardinality divisible by 4. In particular,
a ≡ c �≡ b ≡ d (mod 2). It follows that replacing K with the two pairs {a, c}, {b, d},
and doing the same for every other block of Q, yields an n-basketball B such that
ϕ(B) = K . Therefore ϕ is surjective.

The numbers (1/(3n + 1))
(4n

n

)
form sequence A002293 in the On-Line Encyclopedia

of Integer Sequences [11]. Other combinatorial objects enumerated in the same way
include

• quaternary trees with n internal nodes;
• dissections of a (3n + 2)-gon into n pentagons; and
• rooted plane maps (see [9]).

Definition 2.9. Let B be a basketball. An ear of B is a quartet {i, j}, {k, 
} such that
the numbers i, j, k, 
 are consecutive (in some order) modulo 4n.

For instance, the basketball shown in Fig. 5 has two ears: {4, 6}, {5, 7} and {15, 17},
{16, 18}. The following proposition reformulates in the language of basketballs the fact
that any tree with at least two vertices has at least two leaves.

Proposition 2.10. Every basketball B of order n ≥ 2 has at least two ears.

Proof. We proceed by induction on n. The base case n = 2 is amenable to proof by
inspection, as there are only four basketballs of order 2.
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(a) (b)

Fig. 5. The bijection ϕ of Theorem 2.8, mapping (a) basketballs of order n to (b) noncrossing matchings of
[0, 4n − 1] with all blocks of size 4. (Here n = 5.)

Suppose now that n > 2. Let B be a basketball and let T = {i, j}, {k, 
} be a quartet
with i < j < k < 
. If T is an ear, then B − T is a basketball on the ground set
[
+1, 4n−1]∪ [0, i−1]. By induction, B−T contains at least two ears E, F . Without
loss of generality, we have 
+ 1 �∈ E . Then E is an ear of B.

Now suppose that T is not an ear. Then at least two of the four sets of (2.1) are
nonempty. By a similar argument, each of those two sets contains an ear that is also an
ear of B.

We point out several combinatorial problems related to bimatchings and basketballs.

(1) The set of n-basketballs is invariant under the operation of rotation: replacing
each quartet {i, j}, {k, 
} with {i − 2, j − 2}, {k − 2, 
 − 2}, with all indices
taken modulo 4n. Let r(n) be the number of n-basketballs up to rotation, so
that (r(1), r(2), . . .) = (1, 2, 6, 22, 103, 614, 3872, . . .). These numbers occur
as sequence A103941 in [11], enumerating unrooted loopless plane maps with
n edges [9, Theorem 4.4]. There does not seem to be an obvious relationship
between plane maps and basketballs.

(2) More generally, the dihedral group D4n (of order 8n) acts on the set of n-
basketballs via its standard action on the plane. We refer to the nonsquare el-
ements of the cyclic subgroup C4n as half-rotations, since these transformations
interchange En and On . It would be of interest to count the number of orbits
of n-basketballs under the action of D4n , and under the action of its various
subgroups. In each case, by the Cauchy–Frobenius–Burnside Lemma of Polyá
theory (see Section 7.24 of [12]) this problem reduces to counting the number of
n-basketballs fixed by each element of D4n . Goldbach and Tijdeman [7] answer
the analogous question for the actions of C2n and D2n on the set of noncrossing
matchings.

(3) It would be interesting to enumerate the bimatchings of order n by total number
of crossings.

3. The Inverse Basketball Theorem

In light of Gauss’s proof of the Fundamental Theorem of Algebra, it is natural to ask
whether every basketball of order n arises as B( f, 0, π/2) for some suitably chosen
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polynomial f (z) of degree n. The main result of this section is that something more
general is true.

Theorem 3.1. Fix any α, β ∈ [0, π) with α < β. Then every basketball has the form
B( f, α, β) for some monic polynomial f .

Before plunging into the details, we describe the argument informally. Proposi-
tion 2.10 suggests an inductive approach. Given an n-basketball B for which we want
to construct a realizing polynomial, we would like to remove an ear from B, inductively
construct a realizing polynomial f (z) for the resulting (n − 1)-basketball B ′, and then
insert the missing ear by replacing f (z) with f (z)(z − R) for some suitable R. If we
choose R to be much greater in absolute value than any of the roots of f , then the com-
ponents of B ′ will be perturbed only slightly, and will retain their combinatorial structure
near the origin, where arg(z − R) ≈ π is close to 0 (mod π). (No confusion should
arise between the root R and the curve R = {z: Re f (z) = 0}, which does not appear in
this section.)

Example 3.2. Let f (z) = z3 + i z2 + z − 2, a cubic whose associated basketball is
shown in Fig. 6(a). Every root of f (z) has complex magnitude < 2. If we choose a new
root that is much larger in magnitude, say R = 8+8i , then the basketball of f (z)(z− R)
is given combinatorially by “inserting an ear at R,” as shown.

The following theorem explains how M( f (z)(z − R), θ) is obtained from M( f, θ),
and is the crucial result from which Theorem 3.1 will follow. We first introduce some
useful notation. If M is a matching on [0, 2n − 1], define a matching M̂ on [0, 2n + 1]
by

M̂ = {{0, 2n + 1}} ∪ {{i + 1, j + 1}: {i, j} ∈ M}.
Also, for any positive real R, let gR(z) = (z − R) f (z).

Theorem 3.3. Let f (z) be a monic polynomial, and let θ ∈ (0, π) such that Cθ ( f ) is
nonsingular. Then, for R sufficiently large, we have

M(gR, θ) = M̂( f, θ).

(a) (b)

Fig. 6. (a) The basketball of f (z), where f (z) is the cubic of Example 3.2. (b) The basketball of f (z)(z− R).
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Before we can prove Theorem 3.3, we must develop several subsidiary results. The
first of these is the following, which is implicit in the statement of Theorem 3.3.

Proposition 3.4. Under the assumptions of Theorem 3.3, the curves Cθ (gR) are non-
singular for R sufficiently large.

To establish this fact, we first need the following technical result. The idea is that
as R → ∞, one root of g′R(z) increases without bound, while the other n − 1 roots
approach the roots of f ′(z).

Lemma 3.5. Let α1, . . . , αn−1 denote the roots of f ′(z). For R ∈ R sufficiently large,
there is an orderingβ1(R), . . . , βn(R)of the roots of g′R(z)with the following properties:1

(1) if i ≤ n − 1, then βi → αi as R→∞;
(2) |βn| → ∞ and arg(βn)→ 0 as R→∞;
(3) if i ≤ n − 1, then arg(gR(βi ))→ arg( f (αi ))+ π as R→∞;
(4) arg(gR(βn))→ π as R→∞.

Proof. Note that g′R(z) = f (z)+ (z − R) f ′(z). Put t = 1/R, so that

g′R(z)/R = (t z − 1) f ′(z)+ t f (z).

Note that limt→0 g′R(z)/R = − f ′(z). The existence of an ordering of the roots with
property (1) now follows from the argument principle [1, Theorem 18, p. 152]. Assertion
(3) is evident: we have seen thatβi (R) is bounded, and therefore that arg(βi (R)−R)→ π

as R→∞.
For properties (2) and (4), observe from the coefficients of zn and zn−1 in g′R that the

sum of the roots of g′R(z) is

n

n + 1
(R − an−1),

where an−1 is the coefficient of zn−1 in f (z). Since the sum β1+ · · · + βn−1 is bounded,
so is

βn(R)− n

n + 1
R = −

(
n

n + 1
an−1 + β1 + · · · + βn−1

)
.

That is, βn(R) is within a bounded distance of (n/(n + 1))R, and so we have

arg(βn)→ 0, arg(βn − R)→ π, and |βn| → ∞,
whence

arg(gR(βn)) = arg((βn − R) f (βn))→ π.

Proof of Proposition 3.4. For R sufficiently large, gR(z) has no repeated roots. By
Lemma 3.5, we see that arg(gR(βi (R))) becomes arbitrarily close to arg( f (αi ))+π for

1 For simplicity of notation, we often abbreviate βi (R) by βi .
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i < n, and to π for i = n. Using the hypotheses that Cθ ( f ) is nonsingular and θ �= 0,
it follows that arg(gR(βi (R))) is not congruent to θ (mod π) for any i , and so Cθ (gR)

is nonsingular for R sufficiently large.

The next step in proving Theorem 3.3 is to show that for sufficiently large R, the
topological behavior of the curve Cθ (gR) inside a suitable disk Dr is the same as that
of the curve Cθ ( f ); that is, the passage from f (z) to gR(z) preserves the combinatorial
type of the matching M( f, θ).

Proposition 3.6. Let f (z) be a monic polynomial of degree n, let θ ∈ (0, π) be such
that Cθ ( f ) is nonsingular, and choose r so that Cθ ( f ) is not tangent to the circle Sr .
(Hence M(Cθ ( f ), r) is well defined by Remark 1.6.) Then for R sufficiently large, we
have

M(Cθ (gR), r) = M(Cθ ( f ), r).

Moreover, as R→∞, the point labeled i on Cθ (gR)∩ Sr approaches the point labeled i
on Cθ ( f ) ∩ Sr . In particular, if r is sufficiently large, then for R sufficiently large we
have

M(Cθ (gR), r) = M( f, θ).

In order to prove Proposition 3.6, we will need the following (presumably standard)
facts from metric topology.

Lemma 3.7. Let (X, d) be a compact, locally connected metric space. For x ∈ X and
ε > 0, write B(x, ε) for the open ball of radius ε centered at x . For any subset K of X
and any ε > 0, define

Nε(K ) =
⋃
x∈K

B(x, ε).

For β > 0 and t ∈ (0, β), let ht : X → R be a family of continuous functions converging
pointwise (hence uniformly) to some continuous f : X → R as t → 0. Define

Z = {x ∈ X : f (x) = 0},
Yt = {x ∈ X : ht (x) = 0}.

Then:

(1) For all ε > 0, if t is sufficiently close to 0 then Yt ⊂ Nε(Z).
(2) Suppose furthermore that X ⊂ R2, that U ⊂ X is an open set on which the

functions f, ht are harmonic, and that f is nowhere locally identically zero on
U . Then, for all ε > 0, there exists t0 = t0(ε) > 0 such that Z ∩U ⊂ Nε(Yt ∩U )
for all t < t0.

Proof. Suppose that (1) fails: that is, there exist ε > 0 and sequences tn → 0, yn ∈ Ytn
such that for all n we have B(yn, ε)∩ Z = ∅. Since X is compact, the sequence {yn} has
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a limit point; therefore, replacing yn and tn by suitable subsequences, we may assume
without loss of generality that the sequence yn converges to a point y.

Note that y �∈ Z . Indeed, B(y, ε/2) ⊂ B(yn, ε) for n sufficiently large, so in fact
B(y, ε/2) ∩ Z = ∅. Choose a connected neighborhood U ⊂ B(y, ε/2) of y; by the
Intermediate Value Theorem, f is either strictly positive or strictly negative on U . Since
f is continuous and X is compact, we find a neighborhood V ⊂ U of y and a constant
δ > 0 such that

| f (x)| > δ > 0 for all x ∈ V . (3.1)

Now, choose n sufficiently large so that yn ∈ V and (by uniform convergence) so that
|gtn (x) − f (x)| < δ/2 for all x ∈ X . Then f (yn) > δ by (3.1). On the other hand,
gtn (yn) = 0, so | f (yn)| = |gtn (yn)− f (yn)| < δ/2. This is a contradiction.

To prove (2), fix ε > 0 and cover Z ∩ U with finitely many open balls B1, . . . , Bn

of radius ε/2. (To do so, first cover Z by finitely many such balls, and then discard the
ones that do not meet Z ∩U .)

For each i = 1, . . . , n, the ball Bi contains a point zi of Z ∩ U . By the maximum
principle [1, Theorem 21, p. 166] applied in a neighborhood of zi contained in Bi ∩U ,
we can find points pi , qi in Bi ∩U such that f (pi ) < f (zi ) = 0 < f (qi ). Choose δ > 0
such that δ < | f (pi )|, | f (qi )| for all i .

By uniform convergence, we can choose t0 = t0(ε) > 0 so that

|ht (x)− f (x)| < δ

2
for all t ∈ (0, t0), x ∈ X.

In particular,

ht (pi ) < − δ
2
< 0 <

δ

2
< ht (qi )

for all i = 1, . . . , n and t ∈ (0, t0). Since the function ht is continuous, it has a root
wi ∈ Bi ∩U for every i (for example, along any path joining pi and qi ).

Now, for any z ∈ Z ∩ U , we can find i ∈ {1, . . . , n} such that z ∈ Bi . Since also
wi ∈ Bi , we have |z − wi | < ε as desired.

Remark 3.8. Under the hypotheses of part (2) of Lemma 3.7, the conclusions of
parts (1) and (2) together imply that the Hausdorff distance between Z and Yt , namely
max (inf(ε > 0: Z ⊂ Nε(Y )), inf(ε > 0: Y ⊂ Nε(Z))), tends to zero as t → 0. Of
course, part (2) of Lemma 3.7 holds for any family of functions {ht }, f that satisfy
the maximum principle, even if they are not harmonic.

Proof of Proposition 3.6. By Lemma 3.5, the curves Cθ (gR) are nonsingular for R
sufficiently large, say R > 1/β. Let t = 1/R, and write

Ht (z) = gR(z)/R = (t z − 1) f (z).

(Note that Ht (z) is well defined for t = 0.) Then {Cθ (Ht )}t∈[0,β) is a family of nonsingular
real algebraic curves for t ∈ [0, β), and Cθ (Ht ) = Cθ (gR). Let m be the number of
connected components of Cθ ( f ). For 0 ≤ j ≤ 2m − 1, let Pj denote the point of
Cθ ( f )(r) that is labeled j . Let ht (x, y) be the real polynomial Im(e−iθ Ht (x + iy)).
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We will eventually apply Lemma 3.7 to the family {ht } on the domain X = Dr .
Accordingly, we define

Yt = Cθ (Ht ) ∩ Dr = Cθ (gR) ∩ Dr ,

Z = Cθ ( f ) ∩ Dr .

Claim. For t sufficiently small, Yt has exactly 2m points on the circle Sr .

To see this, consider the holomorphic function λt (z) = ht (r cos z, r sin z). The real
zeros (mod 2π ) of λt (z) correspond exactly to the zeros of ht (x, y) on the circle Sr . For
δ sufficiently small and α ∈ R a nonroot of λ0, the set

T = {z: Re(z) ∈ [α, α + 2π ], Im(z) ∈ [−δ, δ]}
contains exactly one representative (mod 2π ) of each of the 2m real roots of λ0(z), and
no other roots of λ0(z). Observe that the hypothesis that Cθ ( f ) is not tangent to the circle
Sr is precisely equivalent to the statement that the real zeros of λ0(z) are all simple zeros.

For t sufficiently small, by the argument principle λt (z) also has exactly 2m roots in
T . (Roots on the boundary of T are ruled out by the uniform convergence of λt → λ0.)
Hence λt (z) has at most 2m real roots (mod 2π ). However, again by the argument
principle, for any sufficiently small ε > 0, if t is sufficiently small then the disk of radius
ε around a real root of λ0(z) contains exactly one root of λt (z). Since λt (z) = 0 if and
only if λt (z) = 0, these roots of λt (z)must be real. This establishes the claim; in fact, we
have shown that as R →∞, the point Qj labeled j on Yt approaches the point labeled
j on Z . (See Fig. 7.)

Let C1, . . . ,Cm denote the connected components of Cθ ( f ), and let� > 0 be smaller
than the distance between any two of the components: that is, if zj ∈ Cj and zk ∈ Ck with
j �= k, then |zj − zk | > �. Take R sufficiently large, as above, so that |Pj − Qj | < �/2
for all j .

Let ε = �/3, and further take t = 1/R sufficiently small so as to satisfy both parts
of Lemma 3.7. Note that the connected components of Nε(Z) are precisely Nε(C1), . . . ,
Nε(Cm).

Let U = {z: |z| < r}, and fix points uj ∈ Cj ∩ U for j = 1, . . . ,m. By part (2)
of Lemma 3.7, there exist points v1, . . . , vm ∈ Yt ∩ U such that |uj − vj | < ε. That is,
vj ∈ Nε(Cj ). In particular, the vj are all distinct.

Cθ(f)

Cθ(ht)

Sr

θ/n
P0

P1

Pn

Q0

Q1

Qn

Fig. 7. How the curve Cθ (ht ) approaches the curve Cθ ( f ).
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Let C ′j be the connected component of Yt that contains vj ; then C ′j ⊂ Nε(Z) by part
(1) of Lemma 3.7. Since C ′j is connected, we have C ′j ⊂ Nε(Cj ). In particular, the C ′j
are all different. Since Yt has exactly 2m points on |z| = r , the C ′j exhaust all of the
connected components of Yt . Finally, since |Pi − Qi | < �/2, it must be the case that Pi

lies on Cj if and only if Qi lies on C ′j . It follows that M(Cθ ( f ), r) = M(Cθ (gR), r).

We have now collected all the tools we need to prove Theorem 3.3, and thereby
to characterize the combinatorial relationship between the matchings M(gR, θ) and
M( f, θ).

Proof of Theorem 3.3. For any δ > 0, we may choose r sufficiently large that

• M(Cθ ( f ), r) is well defined and equal to M( f, θ),
• |arg( f (z)/zn)| < δ for |z| ≥ r , and
• if P0, . . . , P2n−1 denote the points of M(Cθ ( f ), r) labeled 0, . . . , 2n − 1, respec-

tively, then |arg(Pk)− (kπ + θ)/n| < δ/(2(n + 1)) for all k.

By Proposition 3.6, we may then choose R sufficiently large that

• M(Cθ (gR), r) = M( f, θ), and
• if Q0, . . . , Q2n−1 denote the points of M(Cθ (gR), r) labeled 0, . . . , 2n−1, respec-

tively, then |arg(Qk)− arg(Pk)| < δ/(2(n + 1)) for all k.

It follows from these properties that arg(gR(z)) differs from n arg(z)+ arg(z− R) by at
most δ if |z| ≥ r and z �= R, and that |arg(Qk)− (kπ + θ)/n| < δ/(n + 1).

Recall that θ is assumed to lie in the interval (0, π). We define the interval Ik(δ) for
0 ≤ k ≤ 2n as follows:

Ik(δ) =




(
kπ + θ + δ

n + 1
,

kπ + θ − δ
n

)
for 0 ≤ k ≤ n − 1,(

nπ + θ + δ
n + 1

, π

)
for k = n,(

(k − 1)π + θ + δ
n

,
(k + 1)π + θ − δ

n + 1

)
for n + 1 ≤ k ≤ 2n.

Observe that it is possible to take δ sufficiently small so that all these intervals are
nonempty and δ < θ , and we assume that we have done so. (See Fig. 8.)

Claim. If ϕ ∈ Ik(δ) and d ≥ r , then z = deiϕ does not lie on Cθ (gR). That is, Cθ (gR)

does not cross the half-line {deiϕ : d ≥ r}.

To verify the claim, we must show that arg(gR(deiϕ)) �≡ θ (mod π). Suppose first
that k ≤ n, so that ϕ < π . Then arg(z − R) ∈ (ϕ, π), and one computes that

n arg(z)+ arg(z − R) ∈ (kπ + θ + δ, (k + 1)π + θ − δ),
and therefore

arg(gR(z)) ∈ (kπ + θ, (k + 1)π + θ)
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Fig. 8. Locating the new root R between I2n and I0.

as desired. Similarly, if k > n, then ϕ > π and arg(z − R) ∈ (π, ϕ), and we obtain the
same conclusion about arg(gR(z)).

Finally, we are in a position to complete the proof of Theorem 3.3. Choose ϕk ∈ Ik(δ)

for each 0 ≤ k ≤ 2n. One checks that

(kπ + θ)/n, ((k + 1)π + θ)/(n + 1) ∈ (ϕk + δ/(n + 1), ϕk+1 − δ/(n + 1))

for 0 ≤ k ≤ 2n − 1. Moreover, θ/(n + 1) < ϕ0 and ((2n + 1)π + θ)/(n + 1) > ϕ2n .
Since |arg(Qk)− (kπ + θ)/n| < δ/(n + 1), we have established:

• arg(Qk) ∈ (ϕk, ϕk+1),
• the unique j such that ( jπ + θ)/(n + 1) ∈ (ϕk, ϕk+1) is j = k + 1, and
• Cθ (gR) does not cross the half-lines {deiϕk : d ≥ r} and {deiϕk+1 : d ≥ r}.
Together, these facts imply that for 0 ≤ k ≤ 2n − 1, the connected component of

Cθ (gR) containing Qk has an asymptote at angle ((k + 1)π + θ)/(n + 1). This proves
that if a, b are matched in M( f, θ) = M(Cθ (gR), r), then a + 1, b + 1 are matched
in M(gR, θ). By elimination, 0 and 2n + 1 must also be matched in M(gR, θ); that is,
M(gR, θ) = M̂( f, θ).

We can now complete the proof of the Inverse Basketball Theorem.
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Proof of Theorem 3.1. Suppose that α < β. Let fη(z) be the monic polynomial
einη f (e−iηz). Then the curve Cnη+θ ( fη) is the rotation of Cθ ( f ) by η. Taking η such
that nη + β < π , we see that B( f, α, β) = B( fη, 0, β − α); we can therefore assume
without loss of generality that α �= 0.

From the discussion following Proposition 2.10, recall that the set of all basketballs
is closed under the rotation which replaces each quartet {i, j}, {k, 
} with the quartet
{i − 2, j − 2}, {k − 2, 
 − 2} (with subtraction taken modulo 4n). This transformation
can also be realized on the set of basketballs B( f, α, β) arising from monic polynomials.
Indeed, taking η = −π/n, we see that a, b are matched in M( fπ/n, θ) if and only if
a − 1, b − 1 are matched in M( f, θ). Since this is true for both θ = α, β, we see that
B( fπ/n, α, β) is the rotation of B( f, α, β).

Recall also that the set of basketballs is closed under the half-rotation that replaces
each quartet {i, j}, {k, 
} with the quartet {k − 1, 
 − 1}, {i − 1, j − 1}. Choose 0 <
γ < β − α, and take η = −(α + γ )/n. One checks similarly that the basketball
B( fη, β − α − γ, π − γ ) is the half-rotation of B( f, α, β).

We proceed by induction on the degree of f , the case n = 1 being trivial. Let B be
any basketball of order n + 1. This contains an ear by Proposition 2.10, and by rotation
we may assume that the ear contains the pair {4n + 3, 1}. The other pair in this ear is
either {4n + 2, 0} or {0, 2}. If the ear is {4n + 3, 1}, {0, 2} then the half-rotation of B
contains the ear {4n + 3, 1}, {4n + 2, 0}. By the observation in the previous paragraph,
we may assume without loss of generality that the ear is {4n + 3, 1}, {4n + 2, 0}.

Let (Mα,Mβ) be the ordered pair of matchings on [0, 2n + 1] corresponding to B.
By assumption, the pair {0, 2n + 1} is contained in both Mα and Mβ .

For θ = α, β, let M ′θ be the matching on [0, 2n − 1] such that {a, b} ∈ M ′θ if and
only if {a + 1, b + 1} ∈ Mθ . Then the bimatching B ′ corresponding to (M ′α,M ′β) is a
basketball of degree n, and so by the induction hypothesis B ′ = B( f, α, β) for some
monic polynomial f (z). Since α �= 0, by Theorem 3.3 we see that B is the basketball of
(z − R) f (z) for R sufficiently large, and we are done.

4. Necklaces of Matchings

More generally, we are interested in classifying the possibilities for the topology of the
family

C( f ) = {Cθ ( f ): θ ∈ R/πZ},
which is truly an invariant of f itself, not depending on a choice of angle. The family
C( f ) is fibered over the base R/πZ with fiber Cθ ( f ) above θ . In particular, suppose
that f (z) has distinct roots. Let z1, . . . , zn−1 be the roots of f ′, and suppose further that
arg f (z1), . . . , arg f (zn−1) are distinct. Then the family C( f ) has n− 1 fibers with ordi-
nary singularities, and is smooth elsewhere; that is, it is smooth over n−1 open arcsAi ar-
ranged cyclically around the circleR/πZ. The noncrossing matching M( f, θ) is the same
for all θ ∈ Ai ; denote it by Mi . We thus obtain an (n − 1)-tuple M = (M1, . . . ,Mn−1)

of noncrossing matchings, and the data of M determines the topology of C( f ).
Let Mn be the matching {{i −1, j −1}: {i, j} ∈ M1}, taking all indices modulo 2n as

usual. Then the (n− 1)-tuple of matchings (M1, . . . ,Mn−1) has the following property:
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for 0 ≤ t ≤ n − 1, the matching Mt+1 can be obtained from Mt by taking a suitable
pair of pairs {i, j}, {k, 
} and replacing them with {i, 
}, { j, k}. Call an (n − 1)-tuple of
noncrossing matchings possessing this property a necklace of matchings of order n. For
example, from this point of view the basketball of a quadratic polynomial f is determined
by the two possibilities for the necklace (M1), and by whether arg f (z1) (mod π) is
greater or smaller than π/2 (see also Remark 1.7).

It is natural to ask whether every necklace of order n must arise from a polynomial
of degree n. To that end, define a multi-ear to be an integer i for which {i, i + 1} ∈
M1, . . . ,Mt and {i − 1, i} ∈ Mt+1, . . . ,Mn for some t . If every necklace contains a
multi-ear, then Theorem 3.3 can be used to show that every necklace arises from a
polynomial; otherwise, new techniques will be necessary. We note the following result,
obtained via exhaustive computer calculation:

Proposition 4.1. For n ≤ 8, we have:

(1) Every necklace of order n contains a multi-ear.
(2) IfM = (M1, . . . ,Mn−1) is a necklace of order n and Mn is defined as above, then

for all 1 ≤ t < u ≤ n the bimatching corresponding to (Mt ,Mu) is a basketball.
(3) The number of necklaces of order n is 2(2n)n−2.

We remark that (1) implies (2). Indeed, (1) implies that every necklace of order at
most 8 arises from a polynomial, and (2) is automatically satisfied by any necklace
arising from a polynomial. The numbers 2(2n)n−2 appear as sequence A097629 in [11],
enumerating unrooted directed trees on n vertices; we do not know a bijective reason
that this sequence should also count necklaces of matchings.
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