
AAECC (2012) 23:29–58
DOI 10.1007/s00200-012-0167-7

ORIGINAL PAPER

Distributed computation of coverage in sensor networks
by homological methods

P. Dłotko · R. Ghrist · M. Juda · M. Mrozek

Received: 25 January 2011 / Revised: 25 August 2011 / Accepted: 27 August 2011 /
Published online: 1 April 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Recent work on algebraic-topological methods for verifying coverage in
planar sensor networks relied exclusively on centralized computation: a limiting con-
straint for large networks. This paper presents a distributed algorithm for homology
computation over a sensor network, for purposes of verifying coverage. The techniques
involve reduction and coreduction of simplicial complexes, and are of independent
interest. Verification of the ensuing algorithms is proved, and simulations detail the
improved network efficiency and performance.

Keywords Homology · Sensor network · Coverage · Distributed computation

Mathematics Subject Classification 55-04 · 55N99 · 52B99

P. Dłotko ·M. Juda ·M. Mrozek
Institute of Computer Science, Jagiellonian University, Kraków, Poland
e-mail: Pawel.Dlotko@uj.edu.pl

M. Juda
e-mail: Mateusz.Juda@ii.uj.edu.pl

R. Ghrist
Departments of Mathematics and Electrical & Systems Engineering, University of Pennsylvania,
Philadelphia, PA, USA
e-mail: ghrist@math.upenn.edu

M. Mrozek (B)
Division of Computational Mathematics, WSB-NLU, Nowy Sa̧cz, Poland
e-mail: Marian.Mrozek@ii.uj.edu.pl

123

30 P. Dłotko et al.

1 Introduction

Sensors—devices which return data tied to a location—are ubiquitous [12]. Although
many sensors commonly used are stand-alone or global devices, there is an increasing
push to network multiple local sensors, thanks to progress in miniaturization and wire-
less communications. The problem of collating distributed pieces of sensor data over
a communications network is a substantial engineering challenge for which mathe-
matical tools of a wide variety are relevant.

One simple-to-state problem of direct relevance is that of coverage, or how well a
region is monitored by sensors. For concreteness, fix a domain D ⊂ R

2 and consider
a finite collection N of sensors in D. The nodes have two functions: they (1) sense
a neighborhood of their locale in R

2; and (2) they communicate with other nearby
sensors. Both of these actions are assumed to be local in the sense that individual
nodes cannot extract sensing data from or communicate data over all of D. The prob-
lem of coverage, or more precisely, blanket coverage, is the question of whether there
are holes in the sensor network—are there any regions in D which are not sensed?
Other important coverage problems include barrier coverage, in which one wants to
determine whether the region covered by a sensor network separates D or surrounds a
critical region, and sweeping coverage, the time-dependent coverage problem familiar
to users of robotic vacuum sweepers.

Coverage problems in sensor networks have received extensive attention with a
literature whose tools derive from computational geometry [19,20,29,30], graph-
theory [13], dynamical systems [7], and stochastic geometry [17]. Optimal cover-
age forms a distinct class of art gallery problems, with heavy representation in the
computer science and complexity literature. Recently, several authors have turned
to methods which are coordinate-free, inspired by problems involving non-localized
ad hoc networks. In this class of coverage problems—where coordinates of sensor
nodes cannot be assumed—available tools are less geometric. Among the techniques
used in non-localized problems, algebraic topology has been recently seen to be
both applicable and powerful [1,9,10,23,27,28]. Specifically, the tool used is sim-
plicial homology, an algebraic-topological construct that determines global features
(e.g., holes) in a simplicial complex (e.g., generated by nodes and communication
links) utilizing local connectivity data (e.g., communications protocols). Homology
theory is outlined in Appendix A; homological coverage criteria are reviewed in
Sect. 3.

The problem this paper solves is as follows: in all the initial work on homological
criteria for sensor coverage [9], the computations were centralized. All sensor nodes
were required to upload connectivity data to a central server for the crucial homol-
ogy computation. Although there are no fundamental obstructions to a decentralized
computation of homology [24], specific methods for doing so are nontrivial.

Our contributions are as follows:

1. We provide a provably correct algorithm for distributed computation of homo-
logical coverage criteria.

2. The algorithm can recover specific generators, for use in building minimal or
power-reducing covers.

123

Distributed computation of coverage in sensor networks 31

3. Most crucially, the algorithm computes homology in an arbitrary coefficient sys-
tem. This allows for computations over finite fields, which avoids the roundoff
errors present in R-coefficients.

4. Simulations seem to indicate that for a unit-disc graph network of points in the
plane, all complexes are completely reducible, indicating that homology compu-
tation is of linear algorithmic complexity.

The last point leads us to the following:

Conjecture 1 For a Vietoris-Rips complex of points N in the plane R
2, the S-complex

K f remaining after applying Algorithm 8 is always boundaryless.

If this conjecture is true, there is no need for any additional computations to ascertain
the homology. This would be beneficial as regards theoretical complexity bounds, since
the reduction algorithm in a non-distributed setting and bounded amount of neighbors
has complexity O(N), where N is the number of simplices (see [21]). However, even
if in some situations the conjecture fails, in practice the size of the remaining complex
is very small: one node would easily compute the homology of the remaining complex.

Our work compares most closely to the recent approach of Jadbabaie and
Tahbaz-Salehi [27]. They also derive a distributed algorithm for homology computa-
tion with the goal of satisfying the homological coverage criterion, determining the
existence/location of holes, and generating optimal coverage. Their methods involve
passing to homology with R coefficients and setting up the problem as a dynamical
system—in essence, they use simplicial Laplacians and their connection to homol-
ogy via Hodge theory [11] to solve a heat equation over the network. This can be
done in a distributed manner, using message-passing and gossip algorithms [16]. The
paper [27] is very creative in that they also apply compressive-sensing perspectives
to the problem of provably and quickly determining optimal generators for homology
classes.

The reduction/coreduction scheme of this paper has several advantages.

1. It greatly reduces the communication complexity demanded by a dynamical sys-
tems approach as in [27]: waiting for a large network to asymptotically converge
to a solution is nontrivial in time and in energy drain from communication.

2. It is applicable to arbitrary coefficient systems. The Hodge-theoretic approach
of [27] cannot avoid the use of R coefficients and the ensuing roundoff errors,
which can accumulate to obscure answers in settings where homology genera-
tors are not well-separated. Our approach works well with finite field coefficients
(e.g., mod-2 arithmetic) or integer coefficients, avoiding roundoff altogether.

Moreover, the methods developed in this paper may be adapted to speed up general-
purpose homology computations in the context of parallel architecture, in particular
in multi-core processors and GPU’s (work in progress). Finally, more flexible local
coefficient systems (as in [14]) may be adaptable; if so, the techniques of this paper
may be extended to give a distributed computation of the cohomology of simplicial
sheaves, a problem whose relevance to networks is emerging [15,25,26].

We understand that an independent method for distributed homology computation
is being investigated by Carlsson, de Silva, and Morozov, using the technique of zigzag
persistence, as initiated in [4] and [5].

123

32 P. Dłotko et al.

2 Sensor and network assumptions

For our applications of distributed homology computation to coverage problems, we
operate under the following assumptions.

1. Sensors are modeled as a collection of nodes N ⊂ R
2.

2. Each sensor is assumed to have a unique identification which it broadcasts; certain
neighbors detect the transmission and establish a communication link.

3. Communication links are symmetric, stable, and generate a well-defined com-
munications graph G on N .

4. Sensor coverage regions are correlated to communications: the convex hull of
any subset of sensors S ⊂ N which pairwise communicate is contained in the
union of coverage regions of S.

5. One fixes a cycle C ⊂ G whose image in R
2 is a simple closed curve bounding a

simply connected domain D ⊂ R
2.

Under these assumptions, one wants to know whether D is contained in the cov-
erage region of the network. These assumptions are chosen to be weak enough to be
applicable in realistic systems; however, some important considerations—e.g., time-
variability, node failure, false echoes, communications errors—are not modeled.

3 Homological coverage

This paper builds on a homological criterion for coverage in sensor networks described
and explored in [9,10]. This section reviews that criterion. The reader for whom homol-
ogy is foreign will want to make a brief excursion to Appendix A.

3.1 Simplicial complexes for networks

This paper uses as its basic data structure simplicial complexes based on a set of nodes
(sensors) N . A finite family X of nonempty finite subsets of N is an (abstract) simpli-
cial complex if for every σ ∈ X and τ ⊂ σ we have τ ∈ X . The elements σ ∈ X are
simplices whose dimension equals the cardinality minus one: dim σ = |σ | − 1. The
0-simplices of X are vertices and the 1-simplices are edges, as in graph theory. A face
of a simplex σ in a simplicial complex X is a simplex τ ⊂ σ with dim τ = dim σ −1.
For τ a face of σ one says that σ is a coface of τ . Every simplicial complex has a
natural geometric realization—also denoted X—as a topological space obtained by
gluing disjoint copies of the standard k-simplex, Δk , along faces, as in Fig. 1.

Simplicial complexes are natural to networks. Any communications network on
nodes N has the structure of a simplicial complex with all simplices of dimension
zero or one. In several applied contexts, higher dimensional simplicial complexes are
natural data structures. Examples include the following. Assume a set of nodes N in
Euclidean R

n :

1. The size ε Čech complex is the simplicial complex Cε on N whose k-simplices
are generated by k + 1 nodes about which the diameter ε balls have a mutually
nonempty intersection.

123

Distributed computation of coverage in sensor networks 33

Fig. 1 The geometric
realization of a simplicial
complex

2. The size ε Vietoris-Rips complex is the simplicial complex Rε on N whose k-
simplices are generated by k + 1 nodes about which the diameter ε balls have
pairwise nonempty intersections. Namely, simplices are tuples of nodes with
pairwise distance less than or equal to ε.

3. Given a network of edges based on N , the flag complex of the network is the
simplicial complex F whose k simplices are generated by pairwise-connected
(k + 1)-tuples of nodes in the network.

Thus, the Vietoris-Rips complex Rε is the flag complex of the size ε unit disc graph.
This simple model of connectivity for a sensor or communications network is widely
used [13,20,30] and widely disparaged [3,8,18]. Our results hold in the context of
more general flag complexes associated to network communication graphs, whether
they are unit disc graphs or not.

In this paper, we restrict attention to simplicial complexes. There is a broader notion
of a cell complex having as building blocks not merely simplices, but cubes or other
polyhedral cells. These can sometimes be useful in modeling the geometry underlying
a sensor network. The methods described in this paper extend to these as well but are
not detailed explicitly.

3.2 The homological coverage criterion

Recall our standing assumption linking coverage to communication: any triple of nodes
in pairwise communication has its convex hull in R

2 contained in the coverage region,
as in Fig. 2. We emphasize that this neither assumes localization nor an unrealistic
assumption about round balls, symmetry, or the like: this is a very flexible model. As
stated, it is explicitly simplicial, and motivates the use of the flag complex F of the
communications graph G to model the topology of the sensed region.

The second important assumption is that a cycle C in the network is chosen whose
image in R

2 is a simple closed curve bounding a polygonal domain D. This cycle
acts as a fence for the coverage problem. (Criteria for guaranteeing that a cycle in a
non-localized network has simple image in the plane are simple to derive [6,9]—it
suffices to have no ‘shortcuts’ between cycle nodes.) The following theorem gives a
criterion for coverage based on (relative) homology of the flag complex F of the com-

123

34 P. Dłotko et al.

Fig. 2 Coverage regions are
assumed to be correlated to
communication distances: the
convex hull of a triple of
communicating nodes is
assumed covered

munications network modulo the fence cycle C. It is a slight modification of Theorem
3.3 of [9].

Theorem 1 (Homological coverage criterion [9]) Given a planar sensor network with
G, C, and D as above, then all of D is completely covered by the sensors if, equivalently:

1. [C] = 0 ∈ H1(F).
2. There exists [ζ] ∈ H2(F , C) with ∂ζ = C.

In practice, the second form of the criterion is more useful, since, if an explicit rel-
ative cycle ζ ∈ Z2(F , C) is computed, then it provides a guarantee of coverage even
when the nodes not implicated in ζ are removed (or ‘powered down’ for conservation
reasons), cf. [9].

4 S-complexes and reduction algorithms

Our algorithm for a distributed homology computation that suffices to check the
criterion of Theorem 1 necessitates a modification of the relevant chain complexes.
Our approach is explicitly simplicial and uses reductions and coreductions to simplify
a simplicial complex. Recalling (Appendix A) that in homology theory, a simpli-
cial complex (a fundamentally topological object) is replaced with a chain complex
(a fundamentally algebraic device), we simplify the simplicial and chain complexes
simultaneously.

4.1 S-complexes

We review the concept of an S-complex introduced in [21] as a reformulation of a chain
complex, convenient for algorithmic purposes. Let K = (Kq)q∈Z be a finite graded
set, whose grading is called dimension, denoted dim. Let R[K] be the graded free
module over the unitary ring R of chains, generated by the graded set K, with inner
product 〈·, ·〉 induced by K. We refer to the generators of R[K] as elementary chains.

123

Distributed computation of coverage in sensor networks 35

Let κ : K×K→ R be a map for which κ(σ, τ) �= 0 only if dim σ = dim τ + 1. This
induces a morphism ∂κ : R[K] → R[K] via

∂κ(σ) :=
∑

τ∈K
κ(σ, τ)τ σ ∈ K.

This is well-defined and of degree−1. We say that (K, κ) is an S-complex if (R[K], ∂κ)
is a chain complex. The homology of an S-complex (K, κ), denoted H(K), is defined
as the homology of the chain complex (R[K], ∂κ). In the sequel we will drop the
superscript κ in ∂κ whenever κ is clear from the context. We also refer to R[K] as a
chain complex if ∂κ is clear from the context.

Every simplicial complex gives rise to an S-complex. Indeed, every simplicial com-
plex K has a natural gradation (Kq)q∈Z, where Kq consists of simplices of dimension
q. Assume an ordering of the vertices of K is given and every simplex σ in Kq is
coded as [v0, v1, . . . , vq], where v0, v1, . . . , vq are listed according to the prescribed
ordering. By putting

κ(σ, τ) :=
⎧
⎨

⎩

(−1)i if σ = [v0, v1, . . . , vi−1, vi , vi+1, . . . , vq]
and τ = [v0, v1, . . . , vi−1, vi+1, . . . , vq]

0 otherwise.

we obtain an S-complex (K, κ).
We say that (K, κ) is boundaryless if ∂κ = 0. Note that if (K, κ) is boundaryless,

then there is no computation involved in determining homology, as H(K) = R[K]. A
boundaryless complex is highly desirable from the point of view of algorithms, as no
further computation is necessary. Our strategy is to incrementally and asynchronously
modify S-complexes so as to achieve a boundaryless complex.

Given an elementary chain σ ∈ K of an S-complex, we define its boundary and
coboundary sets as:

bdK(σ) := { τ ∈ K | κ(σ, τ) �= 0 },
cbdK(σ) := { σ ∈ K | κ(σ, τ) �= 0 }.

We say that K′ ⊂ K is closed in K if bdK K′ ⊂ K′. Note that if K′ is closed in
K, then ∂κ(R[K′]) ⊂ R[K′]; therefore, there is a well defined restriction ∂κ |R[K′] :
R[K′] → R[K′], which gives rise to a chain subcomplex (R[K′], ∂κ |R[K′]) of the
chain complex (R[K], ∂κ).

We say that K′ ⊂ K is open in K if the complement K \ K′ is closed. Note that if
K′ is open in K, then there is a well defined quotient complex (R[K]/R[K \ K′], ∂ ′)
with the boundary map ∂ ′ taken as the respective quotient map of ∂κ .

A subset K′ ⊂ K is an S-subcomplex of the S-complex K if (K′, κ ′), with κ ′ :=
κ|K′×K′ , the restriction of κ to K′ × K′, is itself an S-complex, i.e. if (R[K′], ∂κ ′) is
a chain complex.

One can easily verify that if K′ is closed in K, then ∂κ
′

coincides with ∂κ |R[K′]. In
consequence, K′ is an S-subcomplex of K and the homology of K′ coincides with the
homology of the chain subcomplex

(
R[K′], ∂κ |R[K′]

)
.

123

36 P. Dłotko et al.

A lengthier but easy argument shows that if K′ is open in K, then ∂κ
′

is conjugate
to the boundary map ∂ ′ in the quotient complex (R[K]/R[K \ K′], ∂ ′). Thus, also in
this case K′ is an S-subcomplex of K and the homology of K′ is isomorphic to the
homology of the quotient complex (R[K]/R[K \K′], ∂ ′).

Therefore, we have the following theorem (see also [21, Theorem 3.2]).

Theorem 2 If K′ is closed or open in K, then K′ is an S-subcomplex of K. Moreover,
if K′ is closed in K, then H(K′) coincides with the homology of the chain subcomplex
(R[K′], ∂κ |R[K′]) and if K′ is open in K, then H(K′) is isomorphic to the homology
of the quotient complex (R[K]/R[K \K′], ∂ ′).

However, the concept of an S-subcomplex is broader than the concepts of closed
and open subsets, because, as the following example shows, there are S-subcomplexes
which are neither open nor closed.

Example 1 Take a simplicial complex K which consists of four vertices A, B,C, D,
four edges AB, AC, BC,C D and one triangle ABC . Consider the following subsets:

K′ := K \ {D},
K′′ := K′ \ {C D,C},
K′′′ := K′′ \ {ABC, AB}.

One easily verifies that K′ is open in K,K′′ is open in K′ and K′′′ is closed in K′′.
Therefore, R[K′] is a quotient complex of R[K], R[K′′] is a quotient complex of R[K′]
and R[K′′′] is a chain subcomplex of R[K′′]. However, R[K′′′] is neither a subcomplex
nor a quotient complex of R[K′] or R[K]. But K′′′ is an S-subcomplex of K′′,K′ and
K.

The following proposition is straightforward.

Proposition 1 Assume K′ is an S-subcomplex of an S-complex K and A ⊂ K′. Then

bdK′(A) = bdK(A) ∩K′,
cbdK′(A) = cbdK(A) ∩K′.

The following is an easy consequence of Theorem 2 and standard homological
algebra (see Appendix A).

Theorem 3 [21, Theorem 3.4] For K′ closed and K′′ the complementary open subset
of K, the short exact sequence

0→ R[K′] ι−→ R[K] π−→ R[K′′] → 0

with inclusion ι and projection π induces the following long exact sequence of homol-
ogy modules:

· · · δ−→ Hq(K′) H(ι)−→ Hq(K) H(π)−→ Hq(K′′) δ−→ Hq−1(K′) · · · (1)

123

Distributed computation of coverage in sensor networks 37

4.2 Reduction, coreduction, and sequences

The parallelized simplification of an S-complex K consists of removing certain pairs
of elements of K while leaving the homology of the complex intact. Given a pair
α = (τ, σ) ∈ K2, we refer to the doubleton {τ, σ } as the support of the pair α
and denote it |α|. We extend the concept and notation of support to collections B =
{β1, β2, . . . , βn } ⊂ K2 of pairs by unions: |B| := ∪n

i=1|βi |.
A pair α = (τ, σ) ∈ K2 is an elementary reduction pair in K if cbdK{τ } = {σ }

and κ(σ, τ) is invertible in R. It is called an elementary coreduction pair in K if
bdK{σ } = {τ } and again κ(σ, τ) is invertible in R. For a fixed S-complex K, an S-
reduction pair is a pair which is either an elementary reduction pair or an elementary
coreduction pair in K. Sample reductions of an S-complex performed by removing
the support of an S-reduction pair are presented in Fig. 3.

Lemma 1 Given α an S-reduction pair in an S-complex K, we have the following
properties

(i) If α is an elementary reduction (resp. coreduction) pair, then |α| is open (resp.
closed) in K.
(ii) The support |α| is an S-subcomplex of K and H(|α|) = 0.
(iii) There is a well defined chain map

R[K \ |α|] � c �→ c − 〈∂c, τ 〉
〈∂σ, τ 〉σ ∈ R[K] (2)

inducing an isomorphism

γα : H(K \ |α|) ∼= H(K). (3)

(iv) If α is an elementary reduction pair, then γα coincides with the isomorphism
induced by the inclusion ια : R[K \ |α|] → R[K].
(v) If α is an elementary coreduction pair, then γα coincides with the inverse of the
isomorphism induced by the projection πα : R[K|] → R[K \ |α|].

Fig. 3 Simplification of a complex (center) performed via elementary coreduction (left) and reduction
(right) pairs

123

38 P. Dłotko et al.

Proof Properties (i) and (ii) are direct (and follow from [21, Theorem 4.1] and Theo-
rem 2). Properties (iii), (iv) and (v) use the long exact sequence of the pair (and follow
from [22, Corollary 2.7], [22, Theorem 2.8], [22, Theorem 2.9] and Theorem 3). ��

Note that a pair α ∈ K2 which is not necessarily an S-reduction pair in K may be an
S-reduction pair in a S-subcomplex of K. We call such an S-reduction pair a potential
S-reduction pair in K. Whenever potential S-reduction pairs exist, the reduction pro-
cess may be self-feeding: removing some S-reduction pairs may give rise to new S-
reduction pairs. On the other hand, if the supports of two S-reduction pairs in a given
S-complex have non-empty intersection, performing one of these reductions elimi-
nates the other reduction as a possibility. For disjoint supports, both reductions may
be performed independently, in parallel. We say that a collection B = {β1, β2, . . . , βn}
of potential S-reduction pairs in K is free in an S-subcomplex L of K if all elements of
B are S-reduction pairs in L and any two distinct elements of B have disjoint supports.
We say that B is free if it is free in some S-subcomplex of K.

Let L be an S-subcomplex of K. We say that an ordered sequence ϕ =
(ϕ1, ϕ2, . . . , ϕn) of potential S-reduction pairs in K is a reduction sequence in L
if for each j = 1, 2, . . . , n the pair ϕ j is an S-reduction pair in L \⋃ j−1

i=1 |ϕi |. Note
that a straightforward recursive argument shows that the definition is meaningful, i.e.,
L \⋃ j−1

i=1 |ϕi | is an S-complex. A reduction sequence is said to be free if the elements
of the sequence form a free collection of S-reduction pairs.

We use S-reduction pairs to selectively simplify an S-complex. A reduction
sequence ϕ in an S-subcomplex L of K yields an isomorphism

Iϕ : H(L \ |ϕ|)→ H(L) : Iϕ := γϕ1 ◦ γϕ2 ◦ · · · ◦ γϕn , (4)

given by the composition of the isomorphisms γϕi of (3). The following result is
crucial in proving correctness of our algorithms:

Theorem 4 Let L be an S-subcomplex of K. Free collections and reduction sequences
have the following properties.

(i) Any total ordering of a free collection B of S-reduction pairs in L forms a reduction
sequence.
(ii) The set L \ |B| is an S-subcomplex of K for any free collection B in L.
(iii) Two free reduction sequences ϕ, ϕ′ which differ by a permutation give rise to the
same isomorphism Iϕ = Iϕ′ .

Proof The proof of property (i) proceeds by induction in m, the size of the free col-
lection B. If m = 1, the conclusion is obvious. For m > 1 the conclusion follows
immediately from Proposition 1 and the induction assumption. Property (ii) follows
immediately from (i) and the definition of the reduction sequence. The proof of prop-
erty (iii) proceeds by induction in n, the common length of the free reduction sequences
ϕ and ϕ′. If n = 1, the conclusion is obvious. If n = 2, then ϕ = (ϕ1, ϕ2) and
ϕ′ = (ϕ2, ϕ1) unless ϕ = ϕ′ when the conclusion is obvious. There are three cases to
be considered: either both ϕ1 and ϕ2 are elementary reduction pairs or they are both
elementary coreduction pairs or one is an elementary reduction pair and the other is

123

Distributed computation of coverage in sensor networks 39

an elementary coreduction pair. In the first case we have the following commutative
diagram of chain maps induced by inclusions

R[K \ |ϕ1|] ←−−−− R[K \ (|ϕ1| ∪ |ϕ2|)]
⏐⏐

⏐⏐

R[K] ←−−−− R[K \ |ϕ2|]
which induces a commutative diagram in homology. By Lemma 1(iv), we obtain
Iϕ = Iϕ′ . An analogous argument based on a diagram with projections and a diagram
with inclusions combined with projections bring us to the same conclusion in the other
two cases. There remains to consider the case n > 2. Since ϕ and ϕ′ differ only by a
permutation, there exists an i ∈ {1, . . . , n} such that ϕ′i = ϕn . Let

ϕ̄ := (ϕ1, ϕ2, . . . , ϕn−1)

ψ̄ := (
ϕ′1, ϕ′2, . . . , ϕ′i−1, ϕ

′
i+1, . . . ϕ

′
n

)

ψ := (
ϕ′1, ϕ′2, . . . , ϕ′i−1, ϕ

′
i+1, . . . ϕ

′
n, ϕ
′
i

)

Obviously, ϕ̄ and ψ̄ are free reduction sequences. By the induction assumption Iϕ̄ =
Iψ̄ , therefore

Iϕ = Iϕ̄ ◦ γϕn = Iψ̄ ◦ γϕ′i = Iψ.

However, by the case n = 2 applied n − i times to ψ we get Iψ = Iϕ′ . This proves
that Iϕ = Iϕ′ . ��

Theorem 4 makes a distributed reduction process possible: the reductions in a free
reduction sequence may be performed independently, so in parallel, independent of
order.

Example 2 Consider the set of nine sensors {A, B,C, D, E, F,G, H, I }whose com-
munication graph consists of eighteen edges (see Fig. 4)

{AB, AE, AG, BC, B E, B F,C D,C E,C F,

DF, DI, E F, EG, E H, F H, F I,G H, H I }.

After removing the fence consisting of edges {AB, BC, DI, H I,G H, AG}, we
obtain an S-complex composed of two vertices, eleven 1-simplices, eleven 2-simpli-
ces and one 3-simplex. A search for S-reduction pairs reveals elementary coreduction
pairs (F, DF) and (E,C E). These form a free collection and may be removed in
parallel. Continuing, we obtain the following reduction sequence, in which free col-
lections are written in separate lines.

(F, DF) (E,C E)

(F I, DF I) (C F,C DF) (B E, BC E)

123

40 P. Dłotko et al.

A B C D

E
F

G H I

Fig. 4 From top left, to bottom right, following the arrows: a collection of sensors and the associated
S-complex, the S-complex after removing the fence, the fence complex after removing the consecutive free
collections of S-reduction pairs, the final reduced S-complex

(E F,C E F) (B F, BC F) (AE, AB E) (F H, F H I)

(B E F, BC E F) (EG, AEG) (E H, E F H).

In the case of this reduction sequence the resulting S-complex is boundaryless. It con-
sists only of the (open) 2-simplex EFH, which becomes the generator of the second
homology group of the S-complex.

5 Construction of the flag complex

In this section we describe the distributed algorithms for the construction of the flag
complex as a simplicial approximation of the sensor network. Henceforth we assume
a fixed enumerative ordering of the sensor nodes N , as per unique identification
numbers. We denote the total order by �. Moreover, we assume that all algorithms
described in this section are executed separately on every node.

Following the conventions of object oriented programming, we write s.alg() to
indicate that node s is requested to execute alg(). In every algorithm we denote
the node running the algorithm by the word this. We drop the prefix “this” in
this.alg(), assuming that by default the node supposed to execute the called algo-
rithm is the node making the call. We assume that every node stores the set of its
neighbors in variable neighbors.

To store simplex σ of the flag complex F associated with sensor network N we
use a data structure Simplex with the following fields and methods:

– σ.vert—the set of the vertices (nodes) in σ ,
– σ.neighb—the set of the neighbors of σ ,
– σ.faces()—returns the set of the faces of σ ,
– σ.cofaces()—returns the set of the cofaces of σ .

In course of running the reduction algorithm we also need some auxiliary fields. In
particular, when a simplex is removed by the reduction algorithm, instead of deleting

123

Distributed computation of coverage in sensor networks 41

Algorithm 1 newSimplex(V, N)

1. σ := new simplex object.
2. σ.vert := V .
3. σ.neighb := N .
4. σ.locked := σ.deleted := false.
5. return σ.

Algorithm 2 createLocalFlagComplex

1. τ0 := newSimplex({this },neighbors).
2. Simp[0] := {τ0}.
3. i := max{ j ∈ N | Simp[j] �= ∅}.
4. for each τ ∈ Simp[i]

(a) next τ if min(τ.vert) �= this.
(b) for each t ∈ τ.neighb

i. next t if min(τ.vert)� t � max(τ.vert).
ii. V := τ.vert∪{t},

iii. N := τ.neighb∩t.neighbors,
iv. σ := newSimplex(V, N).
v. Simp[i + 1] := Simp[i + 1] ∪ {σ }.

5. if Simp[i + 1] �= ∅, then go to step 3.

it from the data structure we only mark a flag indicating that the simplex is to be
treated as deleted. We use another flag to lock a simplex when a node is negotiating
its removal with its neighbors. Here is the list of all auxiliary fields:

– σ.deleted—a boolean variable marking that σ is deleted,
– σ.locked—a boolean variable marking that σ is locked.

In order to construct a simplex we use Algorithm 1. It returns a simplex with vertex
set V and the neighbors set N .

Algorithm 2 is the algorithm for building the flag complex F of the network as
expressed locally in terms of vertex-neighbor data. The algorithm is executed on each
node. In the sequel, by s.Simp we mean the set of simplices created by node s in
the course of running Algorithm 2. The subset of s.Simp consisting of simplices
of dimension i is denoted by s.Simp[i]. We say that node s controls simplex σ if
simplex σ is created in course of running Algorithm 2 on node s.

Theorem 5 Assume Algorithm 2 has been initiated on each node. Then it terminates
on each node. Moreover, once the algorithm has completed on all nodes, the following
properties hold true.

1. For every node s and every simplex

σ ∈ s.Simp

variables σ.vert and σ.neighb store respectively, as expected, the vertices and
neighbors of simplex σ .

123

42 P. Dłotko et al.

2. Every σ ∈ F is controlled by at least one and at most two nodes. It is controlled
by exactly two nodes if and only if dim σ > 0. Moreover, these two nodes are the
two minimal elements of σ.vert.
3. The only simplices created by Algorithm 2 are simplices in F .

Since every simplex σ is controlled by at least one and most two nodes, in the sequel
we speak about the lower and the upper node controlling σ , assuming that the lower
equals the upper if only one node controls σ . We omit the definitions of σ.faces()
and σ.cofaces(). They may be computed by a node usingSimp stored in the lower
and in the upper node controlling σ .

Proof To see that the algorithm always terminates, first observe that the loop in line (4)
always completes, because S is finite. The only other loop in the algorithm is formed
by the conditional jump from line (5) to line (3). Note that whenever the jump takes
place, the variable i is increased. However, the value of i may not exceed the number
of nodes. Therefore, the jump in line (5) may be performed only a finite number of
times and consequently the algorithm terminates.

The fact that variable σ.vert stores the vertices of σ is an immediate consequence
of Algorithm 1. Letσ ∈ s.Simp be a simplex and let d be its dimension. We will prove
by induction on d that variable σ.neighb contains the neighbors of σ . If d = 0, the
conclusion is obvious from the construction. Thus, assume that the conclusion holds
for all simplices of dimension not exceeding d. The simplex σ is created from a sim-
plex τ and its neighbor t at line (4.b.iii) of Algorithm 2. In particular, we see from the
construction that

σ.neighb = τ.neighb∩{u ∈ V | {u, t} ∈ E}.

However, by the induction assumption

τ.neighb = {u ∈ V | ∀v∈τ.vert{v, u} ∈ E}

and the conclusion follows from elementary set arithmetic. This proves property (1).
Let us now demonstrate property (2). First consider the case when dim σ = 0.

Observe that the only line of the algorithm which contains the construction of a zero
dimensional simplex is line (1) of the algorithm. Moreover, it is straightforward to
check that this line is executed exactly once in each node. Therefore, a zero dimen-
sional simplex τ0 is constructed by node s and only by node s. There remains to
consider the case dim σ > 0. Let

σ.vert = {v0, v1, . . . , vn}.

Observe that the only line of Algorithm 2 which contains a construction of a simplex
of dimension greater than zero is line (4.b.iv). Let τ denote the simplex selected in
line (4) just before the execution of line (4.b.iv). Since line (4.b.iv) is executed, the
test in line (4.a) fails, which implies that

min(τ.vert) = this . (5)

123

Distributed computation of coverage in sensor networks 43

Algorithm 3 canDelete(σ)

1. return this = min(σ.vert) and not σ.deleted and not
σ.locked.

The execution of lines (4.b.ii) and (4.b.iii) implies that the difference

σ.vert \τ.vert

contains exactly one element t and, by the execution of line (4.b.i), we know that either
t � min(τ.vert) or t � max(τ.vert). The first case happens when t = v0, τ =
{ v1, v2, . . . , vn } and the other case when t = vn, τ = { v0, v1, . . . , vn−1 }. Therefore,
by (5), the node running the algorithm is either v0 or v1. It follows that if dim σ > 0,
then σ is represented in the memory of the two minimal elements of σ.vert.

To prove property (3) suppose by contrary, that there exists a simplex σ ∈ F which
has not been created by the algorithm in any node. From line (2) of the algorithm it
follows that dim σ > 0. Let σ be the simplex of minimal dimension with the described
property. It follows that all the faces τ of σ have been created by the algorithm. From
line (4) of the algorithm, it follows that σ must have been created by the algorithm: a
contradiction.

In a similar way one can show that if σ �∈ F then it cannot be created by the
algorithm. Suppose by contrary, that such a σ has been created and σ is of minimal
dimension among such simplices. Therefore, σ has been constructed in line (4.b.iv)
of the algorithm from a simplex τ by adding a vertex t ∈ τ.vert. By the minimality
assumption, τ ∈ F , and since t ∈ τ.vert, we get σ ∈ F , a contradiction. ��

The following Lemma is used in the Algorithm 6.

Lemma 2 For all simplices σ created by nodes s and t each face τ ∈ σ.faces()
is created by node s or t.

Proof By Theorem 5 we have s,t ∈ σ.vert. For each face τ of σ , we have
card(σ.vert \τ.vert) = 1, therefore t ∈ τ.vert or s ∈ τ.vert. Since
τ.vert ⊂ σ.vert, we have min(τ.vert) ∈ {s,t} and by Theorem 5 simplex
τ is created by node s or t. ��

6 Reductions

The parallel reduction procedures used in the algorithm will now be presented.

6.1 Fence reduction

We assume that Algorithm 5 is executed on each node. Definitions of the auxiliary
procedures delete and canDelete are presented as Algorithm 3 and Algorithm 4.

123

44 P. Dłotko et al.

Algorithm 4 delete(σ)

1. if σ ∈ Simp and not σ.deleted, then
(a) σ.deleted := σ.locked := true.
(b) for each node u controlling σ

u.delete(σ).

Algorithm 5 removeFence

1. if this /∈ F then exit.
2. τ0 := the unique simplex in Simp[0].
3. delete(τ0).
4. for each s’ ∈ neighbors and for each σ ∈ s’.Simp[1] s.t.

card { τ ∈ σ.faces() | not τ.deleted } = 0
and s’.canDelete(σ)
(a) s’.delete(σ).

5. for each σ ∈ Simp[1] s.t.
card { τ ∈ σ.faces() | not τ.deleted } = 0
and canDelete(σ)
(a) delete(σ).

Lemma 3 Algorithm 5 deletes all simplices in C and no other simplices.

Proof A zero-dimensional simplex τ0 is deleted at line (3) of the algorithm and line
(1) guarantees that only 0-simplices in C can be deleted there. A 1-simplex of C is
deleted at line (4.a) and (5.a) of Algorithm 5. Since at this stage the only deleted
0-simplices belong to C, it is clear that at line (4.a) and (5.a) only 1-simplices from C
can be deleted. From the definition of the fence as a simple cycle it is clear that in the
points (4.a) and (5.a) all the 1-simplices in C are deleted. Since lines (3), (4.a) and (5.a)
are the only lines where the reduction of a simplex takes place, no other simplices can
be removed. ��

Since C is a closed subset of F in the sense of the definition in Sect. 4, it follows
that F \ C, together with the usual boundary map, is an S-complex.

6.2 Distributed S-reductions

From Lemma 1, S-reduction pairs may be removed from an S-complex without chang-
ing the homology groups of the complex. We present now how the reductions may be
performed in a distributed manner. We perform the reduction process in such a way
that simplex σ may be reduced only by the lower node controlling it.

6.2.1 Elementary coreduction

On each node Algorithm 6 is executed to find and delete elementary coreduction pairs.

123

Distributed computation of coverage in sensor networks 45

Algorithm 6 elementaryCoreduction

1. if there exists a simplex σ ∈ Simp s.t.
card { τ ∈ σ.faces() | not τ.deleted } = 1
and canDelete(σ), then proceed, otherwise return false.

2. σ.locked := true.
3. if there exists a simplex τ ∈ σ.faces() s.t. canDelete(τ) then

(a) delete(τ).
(b) delete(σ).
(c) return true.

4. otherwise
(a) s′ := the other node controlling σ .
(b) τ := the unique simplex in σ.faces() s.t. not τ.deleted.
(c) if s’.canDelete(τ) (see Lemma 2) then

i. s’.delete(τ).
ii. delete(σ).

iii. return true.
(d) else σ.locked := false.

5. return false.

Algorithm 7 elementaryReduction

1. if there exists a simplex τ ∈ Simp s.t.
card { σ ∈ τ.cofaces() | not σ.deleted } = 1
and canDelete(τ), then proceed, otherwise return false.

2. τ.locked := true.
3. σ := the unique simplex in τ.cofaces() s.t. not σ.deleted.
4. if canDelete(σ)

(a) delete(τ).
(b) delete(σ).
(c) return true.

5. else if not σ.locked.
(a) s′ := the other node controlling σ .
(b) if s’.canDelete(σ) then

i. s’.delete(σ).
ii. delete(τ).

iii. return true.
(c) else τ.locked := false.

6. return false.

6.2.2 Elementary reduction

On each node Algorithm 7 is executed to find and delete an S-reduction pair.

6.2.3 Parallel reduction algorithm

Algorithm 8 is executed in a loop on every node. The algorithm terminates when no
node in the network is able to find an S-reduction pair. The stop criterion of Algo-
rithm 8 requires global information from the network. In consequence, the criterion
cannot be implemented on the basis of purely local information as in the case of the

123

46 P. Dłotko et al.

Algorithm 8 reductionAlgorithm

1. Run createLocalFlagComplex followed by removeFence.
2. Run the following code as long as there exists a node

in the whole sensor network which returns true from
elementaryCoreduction or elementaryReduction
algorithm.
(a) Run the elementaryCoreduction algorithm as long as

there exists a node that returns true.
(b) Run the elementaryReduction algorithm as long as there

exists a node that returns true.

other algorithms presented in the paper. However, the stop criterion may be easily
implemented via broadcasts.

7 Correctness

In this section we prove that the algorithm presented in the previous section correctly
reduces the flag complex in the sense that the homology of the original flag complex
considered as an S-complex and the homology of the reduced S-complex are the same.

Let A be the set of all S-reduction pairs reduced by Algorithm 8 in all nodes and
let

Ar := {α ∈ A | α is removed as a reduction pair},
Ac := {α ∈ A | α is removed as a coreduction pair}.

For A′ ⊂ A set |A′| :=⋃
α∈A′ |α|, and let

K := F \ C, (6)

Gr := |Ar |, (7)

Gc := |Ac|, (8)

K f := K \ Gr \ Gc. (9)

In other words, K = F \ C is the S-complex resulting from removing the fence cycle
from the flag complex of the sensor network, Gr is the subset of K consisting of gen-
erators removed from K in elementary reductions, Gc is the subset of K consisting
of generators removed from K in elementary coreductions and K f is the S-complex
resulting from K after applying all S-reductions reduced by Algorithm 8 in all nodes.

Theorem 6 Given a network communication graph with simple cycle C, Algorithm 8
terminates in every node. When all copies of the algorithm complete in all nodes, the
S-complex K f satisfies

H(F , C) ∼= H(K f).

123

Distributed computation of coverage in sensor networks 47

Proof Since the number of nodes is finite, also the number of all possible reductions
is finite. It is clear, that in Algorithm 6 and Algorithm 7 either an S-reduction pair is
reduced, or false is returned. Consequently either some S-reduction pair is reduced
in the sensor network, or, according to point (2) of Algorithm 8, the algorithm termi-
nates in the whole sensor network. Therefore the algorithm must terminate. Observe:

H(F , C) ∼= H(F/C) ∼= H(F \ C) = H(K),

where the first isomorphism uses excision and the second uses Theorem 3. We need
to prove that

H(K) ∼= H(K f). (10)

For α = (τ, σ) ∈ A set

A(α) :=
{
{ ᾱ ∈ A | (bdK σ \ τ) ∩ |ᾱ| �= ∅ } if α ∈ Ac,

{ ᾱ ∈ A | (cbdK τ \ σ) ∩ |ᾱ| �= ∅ } if α ∈ Ar .

In the course of running the reduction calls throughout the network a function
λ : A → N is defined recursively as follows. The value λ(α) is 1 for α ∈ A such
that A(α) = ∅. Such pairs are S-reduction pairs in the original complex, form a free
collection and may be reduced immediately. However, if A(α) �= ∅, then the reduction
of α may be performed only after all elements in A(α) have already been reduced.
This, in particular, means that the value of λ is already assigned to all elements of
A(α). Therefore, for any α ∈ A we may set

λ(α) := 1+max {λ(ᾱ) | ᾱ ∈ A(α)}.

Now, define

An := {α ∈ A | λ(α) = n}, Ar
n := Ar ∩An, Ac

n := Ac ∩An,

K0 := K, Kn := Kn−1 \ |An|.

We claim that for each n ∈ N

(i) An is a free collection of S-reduction pairs in Kn−1,
(ii) Kn is an S-complex.

We will prove both properties by induction on n. Since A0 = ∅ and K0 = K, both
(i) and (ii) are obvious for n = 0. Thus assume that the properties are satisfied for
all n < k. To prove that property (i) holds for n = k take α = (τ, σ) ∈ Ak . Then,
λ(α) = k. It follows from the definition of λ that A(α) ⊂ A1 ∪ A2 ∪ · · · ∪ Ak−1.
Therefore, we have

bdK σ ⊂ {τ } ∪ |A1 ∪A2 ∪ · · · ∪Ak−1| if (τ, σ) ∈ Ac
k, (11)

cbdK τ ⊂ {σ } ∪ |A1 ∪A2 ∪ · · · ∪Ak−1| if (τ, σ) ∈ Ar
k . (12)

123

48 P. Dłotko et al.

Algorithm 9 checkIfBoundaryless

1. for every σ ∈ Simp
(a) if σ.deleted == false then

i. for every τ ∈ σ.faces()
if τ.deleted == false then return false;

2. return true;

Thus, from Proposition 1 and (11–12) we get

bdKk−1 σ = bdK σ ∩Kk−1 = {τ },
cbdKk−1 τ = cbdK σ ∩Kk−1 = {σ },

which proves that α = (σ, τ) is and S-reduction pair in Kk−1. Thus (i) holds for n = k
and we obtain (ii) for n = k as an immediate consequence of Theorem 4(ii).

Now, let ϕn be any sequence ordering the S-reduction pairs in An . Since by (i)
An is free, it follows from Theorem 4(iii) that we have a well defined isomorphism
Iϕn : H(Kn−1)→ H(Kn) and the composition of all the isomorphism Iϕn gives the
isomorphism required in (10). ��

To check if the S-complex resulting from the reduction process is boundaryless,
one can use Algorithm 9. One easily verifies that if the resulting S-complex is boun-
daryless, then all sensors return a value of true from this algorithm.

In case Conjecture 1 does not hold and the final complex is not boundaryless, we
expect it to be very small so that we can easily transfer it to a single selected sensor via
the communication channels available in the network. For this, we first create a span-
ning tree of the network using standard techniques for a distributed setting as in [2].
This may be achieved in O(V 1.6+ E), where V is a number of sensors, E is a number
of edges in the flag complex. Then, we move the information along the spanning tree
to its root and use the root sensor to compute the generators of the homology of the
remaining complex, for instance using homology algorithm available in [31] or [32].
Finally, we use the spanning tree again to send the homology generators back to the
respective simplices.

8 Verifying coverage

In this section we present an algorithm verifying the assumptions of Theorem 1. For
the sake of simplicity, we assume that Conjecture 1 holds and that after applying Algo-
rithm 8 there is left only one boundaryless 2-simplex ω. Let ω̂ denote the associated
elementary chain which sends ω to one and everything else to zero. The nodes need to
verify whether there exists a homology class [c] ∈ H(F , C) whose boundary is non-
zero. By applying Algorithm 8 the nodes know the homology of H(F , C) but only via
the isomorphic homology of K f , where K f is given by (9). Therefore, it is necessary
to find the isomorphic counterpart of [ω̂] in H(F , C). To achieve this it is sufficient

123

Distributed computation of coverage in sensor networks 49

to apply formula (2) repeatedly in proper order, for every S-reduction pair reduced by
Algorithm 8. The respective algorithm is Algorithm 10. We make the following two
assumptions concerning this algorithm:

– To store the resulting chain an extra field coef is added to the data structure
Simplex and the field is initially set to undefined.

– The nodes remember not only simplices which were reduced but also whether
they were reduced in an elementary reduction or coreduction.

In the sequel we use the natural pairing of the elements of Gr and Gc coming from
S-reduction pairs in the form of a bijection

Gr ∪ Gc � σ �→ σ ∗ ∈ Gr ∪ Gc

which sends an element σ ∈ Gr ∪ Gc to its companion in the respective S-reduction
pair.

Algorithm 10 verifyCoverage

1. for each σ ∈ Simp[2]
(a) if σ ∈ K f set σ.coef := 1;
(b) if σ ∈ Gr set σ.coef := 0;
(c) if σ ∈ Gc and dim σ∗ �= 1 set σ.coef := 0;

2. Let L := { τ ∈ Simp[1] ∩ Gc | dim τ∗ = 2 };
3. while (L �= ∅)

(a) for each τ ∈ L
i. if σ.coef is set for each σ ∈ cbd τ \ τ∗

A. s := 0;
B. for each σ ∈ cbd τ \ τ∗ do

s += σ.coef /κ(σ, τ);
C. τ∗.coef := s;
D. L := L \ τ ;

4. for each τ ∈ Simp[1] such that τ is a fence edge
(a) s := 0;
(b) for each σ ∈ cbd τ do s += σ.coef ∗κ(σ, τ);
(c) if s �= 0 report “coverage verified” and exit;

The following proposition is straightforward.

Proposition 2 If for some σ ∈ Simp[2] the value of σ.coef is not set after com-
pleting loop (1) of Algorithm 10, then σ ∈ Gc and dim σ ∗ = 1.

Lemma 4 Assume that given an n ∈ N Algorithm 10 sets the value σ.coef for every
σ ∈ Simp[2] such that (σ ∗, σ) ∈ Gc and λ(σ ∗, σ) > n. Then σ.coef is set for
every σ ∈ Simp[2] such that (σ ∗, σ) ∈ Gc and λ(σ ∗, σ) = n.

Proof Assume σ0 ∈ Simp[2] is such that

(σ ∗0 , σ0) ∈ Gc and λ(σ ∗0 , σ0) = n.

123

50 P. Dłotko et al.

Then τ0 := σ ∗0 ∈ L . Let σ ∈ cbd τ0 \ σ0. If σ ∈ Gr ∪K f or σ ∈ Gc and dim σ ∗ �= 1,
then by Proposition 2 σ.coef is set already in loop (1). Consider the other case when
σ ∈ Gc and dim σ ∗ = 1. Then bd σ \σ ∗ ⊂ |A(σ ∗, σ)|. Since τ0 ∈ bd σ and τ0 �= σ ∗,
we get (σ ∗0 , σ0) ∈ A(σ ∗, σ). Thereforeλ(σ ∗, σ) > λ(σ ∗0 , σ0) = n and by the assump-
tion σ0.coef is set also in this case. It follows that when τ0 is considered in line (3.a),
the condition in line (3.a.i) is satisfied and consequently σ.coef = τ ∗0 .coef is set
in line (3.a.i.C). ��
Theorem 7 Algorithm 10 terminates in all nodes. Moreover, the assumptions of The-
orem 1 are satisfied if and only if at least one node exits the algorithm with the report
“coverage verified”.

Proof First we will show that the algorithm sets σ.coef for each σ ∈ Simp[2].
By Proposition 2 we need to consider only the case when σ ∈ Gc and dim σ ∗ = 1.
However, this case follows immediately from Lemma 4 by induction with respect to
n := N − λ(σ ∗, σ), where

N := max { λ(α) | α ∈ A }.

Observe that whenever σ.coef is set in line (3.a.i.C), then σ ∗ is removed from
L in line (3.a.i.D). Therefore, the loop in line (3) completes and consequently also
Algorithm 10 completes in every node.

It is now straightforward to verify that after completing loop (3), the fields σ.coef
for σ ∈ Simp[2] store a chain cω ∈ K whose homology is the image of [ω̂] under the
isomorphism established in Theorem 6.

Now, the variable s evaluated in loop (4) stores 〈∂cω, τ 〉 for some 1−simplex τ of
the fence. Therefore, if at least one node reports “coverage verified”, then the assump-
tions of Theorem 1 are satisfied and the coverage is indeed archived. If the assumptions
are not satisfied, then obviously no node can report “coverage verified.” ��

In case, when there is more then one boundaryless 2-simplex left at the end of the
reduction process, the described algorithm may be called for each of the remaining
2-simplices and if at least one of the nodes reports “coverage verified” for at least one
of the remaining 2-simplices, the assumptions of Theorem 1 are satisfied. The adapta-
tion of Algorithm 10 to the case when Conjecture 1 does not hold is only slightly more
complicated. It requires finding the homology generators of H(K f) by some alge-
braic means, for instance by applying the algorithm described in [1] and then starting
Algorithm 10 with the chains representing the homology generators of H(K f) instead
of the elementary chain ω̂. Therefore, the extra assumptions from the beginning of the
section are not restrictive.

9 On complexity

The full complexity analysis of the presented algorithms is not possible; in this paper
we consider neither a concrete communication model nor the synchronization meth-
ods needed to collate algorithm phases. However, even at the level of generality with

123

Distributed computation of coverage in sensor networks 51

which our analysis is performed, some basic remarks toward a more complete analysis
are possible. The details of a full complexity analysis, given length and technicality,
are to be published elsewhere.

We make the following simplifying assumptions:

1. Every sensor can send an integer to its neighbors without error and in one time
unit.

2. A global synchronization method which may be used to synchronize in constant
time the consecutive steps of the algorithms in the sensors is available.

3. The implementation of the algorithm is based on best performing data structures
for finding simplices, queues for reduction candidates etc.

One can show that under these assumptions the algorithm constructing the flag com-
plex (Algorithm 2) and the algorithm reducing it (Algorithm 8) may be implemented
in such a way that the complexity for one sensor (compare network time defined in
Sect. 10) is O(n2 + K (n log K + n2)), where:

1. n is the upper bound for the number of sensors in the neighborhood of a given
sensor.

2. K is the upper bound for the number of simplices which have the given sensor as
a vertex.

In other words, the complexity depends only on the local size of the network, and
not on the size of the whole network as in the case of centralized computations. This
justifies the utility of the presented algorithms in the context of large-scale sensor
networks of bounded density. The analysis depends on the Conjecture 1, because the
estimate does not include the potential postprocessing of the final S-complex which
is not boundaryless, although we expect this cost to be negligible even if nonzero.

10 Simulations

The parallel reduction algorithms presented in the paper have been implemented in
Java programming language [33]. The code executes the algorithms on each node in
a separate thread, so that simulations may be performed with only a few or even one
processor unit. The real time of the network is also simulated.

In this section we present the experimental results showing the advantages of the
distributed homology computation. In the presented series of experiments, the follow-
ing configuration, referred to as the base test will be used. The base test is a small
network of 23 nodes randomly placed on a 4 × 4 units rectangle with the communi-
cation radius fixed at 2 units. This base test will be copied and shifted and new fence
cycles created. This process is performed to obtain a reasonably uniform distribution
of the nodes on larger networks and to avoid excessive local clustering which results
in high dimensional flag complexes.

We first define a family Ln of networks on a sequence of ‘linear’ domains, Ln =
{ Li }ni=0, where Li is defined recursively as follows:

1. L0 is the base test case with a rectangular fence cycle C around the network; and
2. Li is created from Li−1 by placing a new copy of the base test on the right side

of Li−1 with a new rectangular fence cycle C around the network.

123

52 P. Dłotko et al.

Fig. 5 Network Time and Running Time for the family L53 of networks

Another family Sn = { Si }ni=0 of ‘square’ networks is defined recursively as fol-
lows:

1. S0 is the base test case with a rectangular fence cycle C around the network; and
2. Si is created from Si−1 by placing new copies of the base test: i-copies on the

right, i-copies on the bottom side, and one on the bottom-right. A new rectangular
fence C around the network is created.

Let Cs denote the CPU time used by node s during the simulation and let Rs be
the real time used by node s, i.e., the world time passing from the moment the node
starts the computations until the moment it completes. We define the network time as
maxs∈S Rs and the running time as

∑
s∈S Cs . In other words, the network time is the

time required by the real network to do the computation. In the case of simulations
performed on a single machine with a single CPU, the running time is the CPU usage
for the whole simulation. We define the network efficiency as the ratio

Network Efficiency := Network Time

Running Time
· 100 %

For the families L53 and S10 we ran simulations and measured network time, running
time and network efficiency. Figure 5 presents the network and running time as the
functions of the size of the network for the family L53. The network efficiency for the
same data is presented in Fig. 6. Analogous results for the family S10 are in Fig. 7 and
Fig. 8. The outcome of the experiments clearly indicates the advantage gained through
distributed computation.

Acknowledgments The first, third and fourth author are partially supported by Polish MNiSW, Grant
N201 037 31/3151 and N N201 419639. The first author is partially supported by Polish MNiSW Grant N
N206 625439. The second author is supported by the ONR and by DARPA SToMP # HR0011-07-1-0002.

123

Distributed computation of coverage in sensor networks 53

Fig. 6 Efficiency of the network for the family L53 of networks

Fig. 7 Network Time and Running Time for the family S10 of networks

Fig. 8 Efficiency of the network for the family S10 of networks

123

54 P. Dłotko et al.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix: Primer on homology theory

This abbreviated introduction to homological tools assumes a knowledge of basics
from algebra and topology. From algebra, the notions of rings (algebraic generaliza-
tions of Z) and modules (algebraic generalizations of vector spaces) are assumed,
as are homomorphisms (algebraic generalizations of linear transformations), kernels,
and the like. From topology, only basic notions of simplicial complexes are needed.

Chain complexes

Homology counts objects with cancellation to provide a topological invariant in alge-
braic terms. The simplest version of homology is simplicial homology of a simplicial
complex. Fix a finite simplicial complex X . The building blocks of a rudimentary
homology for X are as follows.

1. Fix a coefficient ring R.
2. Grade the simplices of X by dimension.
3. Define q-chains Cq as the R-module with basis the (oriented) q-simplices of X .
4. Consider the boundary maps—the linear transformations ∂ : Cq → Cq−1 which

send a basis q-simplex to its boundary faces (as an abstract sum of basis (q − 1)-
simplices, each with coefficient ±1 depending on orientation).

The sequence of chains and boundary maps are assembled into a chain complex—a
sequence C of R-modules Cq and homomorphism ∂q : Cq → Cq−1 with ∂q ◦∂q+1 = 0
for all q. A chain complex may be written out as a diagram,

· · · �� Cq
∂q �� Cq−1

∂q−1 �� · · · ∂2 �� C1
∂1 �� C0

∂0 �� 0 . (13)

or as a single object C = (C∗, ∂∗) and to write ∂ for the boundary operator acting on
any chain of unspecified grading. Chain complexes need not be generated by simplices
of a simplicial complex: they are decidedly algebraic devices. The key requirement
for a chain complex is that the boundary of a boundary is null: ∂q ◦ ∂q+1 = 0 for all
q.

Homology

Homology counts equivalence classes of certain chains with regards to the boundary
maps. A cycle of C is a chain with empty boundary, i.e., an element of ker ∂ . Homology
is an equivalence relation on cycles of C. Two cycles in Zq := ker ∂q are homologous
if they differ by an element of Bq := im ∂q+1. The homology of C is the sequence of

123

Distributed computation of coverage in sensor networks 55

quotient modules Hq(C), for q ∈ N, given by:

Hq(C) := Zq/Bq = ker ∂q
/

im ∂q+1. (14)

Elements of Hq(C) are homology classes. We write H(C) to denote the full module
of graded homologies Hq(C). When C is the chain complex generated by a simplicial
complex X , we write H(X) for its homology: it is an invariant of the space X up to
homotopy.

Relative homology

Homology is defined for any chain complex C = (Cq , ∂q). Although taking Cq to be a
module generated by q-dimensional simplices is common, it is by no means exclusive.
Many of the constructs of this paper rely on a modified chain complex giving rise to
reduced homology relative to a subcomplex. Let A ⊂ X be a (necessarily closed)
subcomplex of a simplicial complex X . Then both X and A define simplicial chain
complexes, with the result that Cq(A) ⊂ Cq(X) is a submodule for all q. Thus, one
can take the quotient module Cq(X, A) := Cq(X)/Cq(A), so that a relative chain is
an equivalence class of chains relative to simplices in A. The boundary map ∂q extends
naturally to ∂q : Cq(X, A) → Cq−1(X, A) in a manner that preserves the ∂2 = 0
condition. Therefore, the relative homology Hq(X, A) is well-defined and measures
relative cycles (chains in X whose boundaries lie in A) modulo relative boundaries.

Functoriality

A chain map is a map ϕ : C → C′ between chain complexes that is a homomorphism
on chains respecting the grading and commuting with the boundary maps. This is best
expressed in the form of a commutative diagram:

· · · −−−−→ Cq+1 −−−−→
∂

Cq −−−−→
∂

Cq−1 −−−−→ · · ·
⏐⏐
ϕ

⏐⏐
ϕ
⏐⏐
ϕ

⏐⏐
ϕ
⏐⏐
ϕ

· · · −−−−→ C ′q+1 −−−−→
∂ ′

C ′q −−−−→
∂ ′

C ′q−1 −−−−→ · · ·
(15)

Commutativity means that homomorphisms are path-independent in the diagram; e.g.,
ϕ ◦ ∂ = ∂ ′ ◦ ϕ. Chain maps are the analogues of continuous maps, given their respect
for the boundary operators: neighbors are sent to neighbors.

A chain map ϕ induces homomorphisms on homology groups, written H(ϕ) :
H(C) → H(C′), sending [ζ] ∈ Hq(C) to [ϕ(ζ)] ∈ Hq(C′). The reader may check
that this is a well-defined homomorphism. We denote by H(ϕ) the full sequence of
induced homomorphisms on homology. Homology is functorial, meaning that induced
homomorphisms respect composition of chain maps. Specifically,

1. The identity chain map induces the identity isomorphism on homology, id:H(C)→
H(C).

2. Composable chain maps ϕ and ψ satisfy H(ψ ◦ ϕ) = H(ψ) ◦ H(ϕ).

123

56 P. Dłotko et al.

Exact sequences

Homology computations are greatly aided by a theoretical tool called an exact
sequence. Any chain complex C = (Cq , φq) of R-modules and homomorphism is
exact when its homology vanishes: ker φq = im φq+1 for all q. An exact chain com-
plex is the chain analogue of a nullhomologous space. Exact sequences are most often
used to prove isomorphisms between various homologies by means of zeroing out
terms in an exact sequence. For example, if some subsequence of an exact sequence
reads as:

· · · �� 0 �� G
φ �� H �� 0 �� · · ·

then it follows that φ : G → H is an isomorphism. More generally, the kernel and
cokernel of a homomorphism φ : G → H fit into an short exact sequence:

0 �� ker φ �� G
φ �� H �� coker φ �� 0

The most important examples of exact sequences are those relating homologies of
various spaces and subspaces. These almost always derive from the following result
in homological algebra:

Theorem 8 (Snake Lemma) Any short exact sequence of chain complexes

0 �� A i �� B j �� C �� 0

induces the long exact sequence:

�� Hq(A) H(i) �� Hq(B) H(j) �� Hq(C) δ �� Hq−1(A) H(i) �� . (16)

Moreover, the long exact sequence is functorial: a commutative diagram of short exact
sequences and chain maps

0 �� A ��

f
��

B ��

g
��

C ��

h
��

0

0 �� Ã �� B̃ �� C̃ �� 0

induces a commutative diagram of long exact sequences

�� Hq(A) ��

H(f)
��

Hq(B) ��

H(g)
��

Hq(C) δ ��

H(h)
��

Hq−1(A) ��

H(f)
��

�� Hq(Ã) �� Hq(B̃) �� Hq(C̃) δ �� Hq−1(Ã) ��

. (17)

123

Distributed computation of coverage in sensor networks 57

An exact sequence of chain complexes means that there is a short exact sequence
in each grading, and these short exact sequences fit into a commutative diagram
with respect to the boundary operators. The induced connecting homomorphism
δ : Hq(C)→ Hq−1(A) comes from the boundary map in C.

Given A ⊂ X a subcomplex, the following short sequence is exact:

0 �� C(A) i �� C(X) j �� C(X, A) �� 0 ,

where i : A ↪→ X is inclusion and j : (X,∅) ↪→ (X, A) is an inclusion of pairs. This
yields the long exact sequence of the pair (X, A):

�� Hq(A)
H(i) �� Hq(X)

H(j) �� Hq(X, A) δ �� Hq−1(A) �� . (18)

The connecting homomorphism δ takes a relative homology class [α] ∈ Hq(X, A)
to the homology class [∂α] ∈ Hq−1(A).

References

1. Arai, Z., Hayashi, K., Hiraoka, Y.: Mayer-Vietoris sequences and coverage problems in sensor net-
works. Jpn. J. Ind. Appl. Math. 28, 237–250 (2011)

2. Awerbuch, B., Gallager, R.: A new distributed algorithm to find breadth first search trees. IEEE Trans.
Inf. Theory. 33(3), 315–322 (1987)

3. Barrière, L., Fraigniaud, P., Narayanan, L.: Robust position-based routing in wireless ad hoc networks
with unstable transmission ranges. In: Proc. Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications. (2001)

4. Carlsson, G., de Silva, V.: Zigzag persistence. In: Proc. Found. of Computational Mathematics. (2009)
5. Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions. In:

Proc. Symp. on Comput. Geometry. (2009)
6. Chambers, E., de Silva, V., Erickson, J., Ghrist, R.: Rips complexes of planar point sets. Discret.

Comput. Geom. 44(1), 75–90 (2010)
7. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. In: Proc.

IEEE Int. Conf. Robot. Autom., vol. 2, pp. 1327–1332. Washington, DC (2002)
8. Damian, M., Pandit, S., Pemmaraju, S.: Local approximation schemes for topology control. In: Proc.

ACM Symp. on Prin. of Dist. Comput. (PODC), pp. 208–217 (2006)
9. de Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled boundaries via

homology. Int. J. Robot. Res. 25, 1205–1222 (2006)
10. de Silva, V., Ghrist, R.: Homological sensor networks. Notices Am. Math. Soc. 54(1), 10–17 (2007)
11. Eckmann, B.: Harmonische funktionen und randwertaufgaben einem komplex. Comment. Math. Hel-

vetici. 17, 240–245 (1945)
12. Estrin, D., Culler, D., Pister, K., Sukhatme, G.: Connecting the physical world with pervasive net-

works. IEEE Pervasive Comput. 1(1), 59–69 (2002)
13. Fekete, S., Kröller, A., Pfisterer, D., Fischer, S.: Deterministic boundary recongnition and topology

extraction for large sensor networks. In: Algorithmic Aspects of Large and Complex Networks. (2006)
14. Gelfand, S., Manin, Y.: Methods of Homological Algebra, 2nd edn. Springer, Berlin (2003)
15. Ghrist, R., Hiraoka, Y.: Applications of sheaf cohomology and exact sequences to network coding.

Proc. NOLTA: Nonlinear Theory Appl. 266–269 (2011)
16. Kempe, D., Dobra, A., Gehrke, J.: Computing aggregate information using gossip. In: Proc. Founda-

tions of Computer Science, Cambridge, MA (2003)
17. Koskinen, H.: On the coverage of a random sensor network in a bounded domain. In: Proceedings of

16th ITC Specialist Seminar, pp. 11–18. (2004)

123

58 P. Dłotko et al.

18. Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. Wirel.
Netw. 14(5), 715–729 (2008)

19. Li, X.-Y., Wan, P.-J., Frieder, O.: Coverage in wireless ad-hoc sensor networks. IEEE Trans. Com-
put. 52(6), 753–763 (2003)

20. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage problems in wireless
ad-hoc sensor networks. In: IEEE INFOCOM, pp. 1380–1387 (2001)

21. Mrozek, M., Batko, B.: Coreduction homology algorithm. Discret. Comput. Geom. 41, 96–118 (2009)
22. Mrozek, M., Wanner, Th.: Coreduction homology algorithm for inclusions and persistent homol-

ogy. Comput. Math. Appl. 60(10), 2812–2833 (2010). doi:10.1016/j.camwa.2010.09.036
23. Muhammad, A., Egerstedt, M.: Control using higher order Laplacians in network topologies, In Proc. of

the 17th International Symposium on Mathematical Theory of Networks and Systems, pp. 1024–1038.
(2006)

24. Muhammad, A., Jadbabaie, A.: Decentralized computation of homology groups in networks by gossip.
In: Proc. of American Control Conference, pp. 3438–3443 (2007)

25. Robinson, M.: Inverse problems in geometric graphs using internal measurements. arXiv:1008.2933v1
(2010)

26. Robinson, M.: Asynchronous logic circuits and sheaf obstructions. arXiv:1008.2729v1 (2010)
27. Tahbaz Salehi, A., Jadbabaie, A.: Distributed coverage verification in sensor networks without location

information. IEEE Trans. Autom. Control 55(8), 1837–1849 (2010)
28. Tahbaz Salehi, A., Jadbabaie, A.: Distributed coverage verification in sensor networks without location

information. In: IEEE Conference on Decision and Control (2008)
29. Xue, F., Kumar, P.R.: The number of neighbors needed for connectivity of wireless networks. Wirel.

Netw. 10(2), 169–181 (2004)
30. Zhang, H., Hou, J.: Maintaining coverage and Connectivity in large sensor networks. In: Interna-

tional Workshop on Theoretical and Algorithmic Aspects of Sensor, Ad hoc Wireless and Peer-to-Peer
Networks, Florida (2004)

31. The RedHom homology algorithms library: http://redhom.ii.uj.edu.pl
32. Computational Homology Project: http://chomp.rutgers.edu
33. Sensor Network Simulator: http://redhom.ii.uj.edu.pl/sensors/

123

http://dx.doi.org/10.1016/j.camwa.2010.09.036
http://redhom.ii.uj.edu.pl
http://chomp.rutgers.edu
http://redhom.ii.uj.edu.pl/sensors/

	Distributed computation of coverage in sensor networks by homological methods
	Abstract
	1 Introduction
	2 Sensor and network assumptions
	3 Homological coverage
	3.1 Simplicial complexes for networks
	3.2 The homological coverage criterion

	4 S-complexes and reduction algorithms
	4.1 S-complexes
	4.2 Reduction, coreduction, and sequences

	5 Construction of the flag complex
	6 Reductions
	6.1 Fence reduction
	6.2 Distributed S-reductions
	6.2.1 Elementary coreduction
	6.2.2 Elementary reduction
	6.2.3 Parallel reduction algorithm

	7 Correctness
	8 Verifying coverage
	9 On complexity
	10 Simulations
	Acknowledgments
	Appendix: Primer on homology theory
	Chain complexes
	Homology
	Relative homology
	Functoriality
	Exact sequences

	References

