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1 Introduction

Understanding the structure of hadrons in terms of their elementary degrees of freedom

is a challenging task far from being fulfilled. Whereas we have acquired considerable

knowledge on the distributions in momentum and coordinate space of quarks and gluons

inside nucleons, very little has been studied about the fundamental constituents of hadrons

of spin higher than 1/2.

In 1988 it was pointed out that in high-energy processes involving spin-1 hadrons one

can define collinear quark structure functions (called b1,2,3,4) that can be measured in ten-

sor polarized targets [1]. The simplest and hence most-studied (nuclear) spin-1 system

is the deuteron. The extraction of the function b1 for the deuteron was performed by

the HERMES collaboration in 2005 [2]. The data collected and the parametrization pro-

posed [3] deviate significantly from the standard theoretical predictions [1, 4–6], both for

the x behavior and the magnitude, although the experimental uncertainties leave room for

improvements. This suggests that, for the deuteron, dynamics beyond quarks and gluons

confined within the individual nucleons is needed to describe it. More measurements of b1
will be performed as part of the 12GeV program at Jefferson Lab (JLab) [7]. Experimen-

tal information on spin-1 hadrons such as (virtual) ρ mesons would allow us to thoroughly

study such different quark contributions and dynamics, as recently explored with model

calculations in [8]; this is currently beyond experimental reach.

Another interesting and even less investigated aspect of hadrons of spin ≥ 1 is the

gluonic structure linked to tensor polarization of the target. More knowledge on gluon

distributions could yield new insights into the internal dynamics of nuclei. A collinear

structure function for gluons in spin-1 targets, called ∆(x), was first defined in [9]. The

authors pointed out that this observable is related to a transfer of two units of helicity to

the nuclear target, and vanishes for any target of spin smaller than 1. They recognized that
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there must exist a tower of gluon operators contributing to the scattering amplitude with

such a double-helicity flip that cannot be linked to single nucleons; rather, they are exclusive

to hadrons and nuclei of spin ≥ 1. In the parton model language, ∆(x) describes linearly

polarized gluons in targets with transverse tensor polarization. Aspects of this function (its

first moment and a positivity bound) have recently been studied on the lattice in [10], and

also experimental interest has been shown. An example of the latter is a letter of intent

about the extraction of ∆(x) that has been presented at JLab with the aim of investigating

the region of small x using nitrogen targets [11]. On the other hand, the extraction of gluon

functions remains challenging. In this respect, the construction of the Electron-Ion Collider

(EIC) [12] is very promising: it could unravel the gluon content of hadrons by measuring

a wide variety of gluon observables in a region where they are not overwhelmed by quark

observables (as is the case at present facilities).

So far we have discussed quantities that only depend on the partonic momentum

collinear to the direction of motion of the parent hadron. Going beyond the collinear

case, one can define transverse momentum dependent (TMD) parton distribution functions

(PDFs) (or simply called TMDs). These TMDs appear in the parametrization of a TMD

correlator, which is a bilocal matrix element containing nonlocal field strength operators

and Wilson lines (also called gauge links). The latter are necessary to guarantee color gauge

invariance by bridging the nonlocality, and give rise to a process dependence of the TMDs.

In the simplest case, the gauge link structure is just built from future- and past-pointing

staple-like gauge links. The TMDs occurring in the description of spin-1 hadrons have been

systematically defined for both quarks [13] and gluons [14]. In this paper we continue the

study started in [14] on the properties of and the relations between the gluon TMDs for

spin-1 hadrons. More specifically, we will derive positivity bounds, i.e. model-independent

inequalities, that help relating and estimating the magnitude of the gluon TMDs about

which very little, or almost nothing, is currently known. An analogous analysis for spin-

1/2 hadrons was performed in [15], and the quark case has already been considered for

both spin-1/2 and spin-1 hadrons [16, 17]. Bounds on collinear gluon functions for spin-1

hadrons were recently presented in [18], and we will include them here for completeness.

It was recently shown in [14, 19] that for the so-called dipole-type gauge link structure,

the number of independent gluon TMDs greatly reduces in the small-x limit. Hence, the

description of gluon TMDs simplifies significantly in the kinematic region where they are

expected to be most important. The dipole-type TMD correlator has one future- and

one past-pointing gauge link and can, in the limit of small x, be related to a correlator

containing a single Wilson loop. The latter correlator can be parametrized in terms of

TMDs for which we will also derive bounds.

The outline of this work is as follows: in section 2 we briefly recall the parametrization

of the gluon-gluon TMD correlator for spin-1 hadrons in terms of gluon TMDs. In section 3

we present a set of inequalities for those TMDs, as well as for their collinear counterparts.

For completeness, we will also discuss the spin-1/2 case. Subsequently, in section 4 we

derive bounds for the gluon TMDs that apply to the small-x kinematic region, both for

spin-1 and spin-1/2 hadrons. Finally, we discuss our conclusions in section 5.
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2 The gluon-gluon correlation function

Recently in [14] the gluon-gluon TMD (or light-front) correlator was systematically

parametrized in terms of TMDs considering unpolarized, vector, as well as tensor po-

larized targets. The latter type of polarization is needed for the description of hadrons of

spin ≥ 1. In this section we briefly summarize the results of this parametrization.

We use a decomposition for the gluon momentum k in terms of the hadron momentum

P and the lightlike four-vector n, such that

kµ = xPµ + kµT + (k·P − xM2)nµ, (2.1)

satisfying P ·n = 1 and P 2 = M2, where M is the mass of the hadron. The gluon-gluon

TMD correlator for spin-1 hadrons is defined as:

Γ[U,U ′]µν;ρσ(x,kT , P, n;S, T ) ≡ (2.2)

≡

∫

dξ·P d2ξT

(2π)3
eik·ξ 〈P ;S, T |Trc

(

Fµν(0)U[0,ξ]F
ρσ(ξ)U ′

[ξ,0]

)

|P ;S, T 〉

∣

∣

∣

∣

ξ·n=0

,

where the process-dependent Wilson lines U[0,ξ] and U ′
[ξ,0] are needed to ensure color gauge

invariance. We will consider specific gauge link structures built from the future- and past-

pointing Wilson lines U
[+]
[0,ξ] and U

[−]
[0,ξ] respectively, defined as

U
[±]
[0,ξ] ≡ Un

[0,0T ;±∞,0T ] U
T
[±∞,0T ;±∞,ξT ] U

n
[±∞,ξT ;ξ·P,ξT ], (2.3)

where the pieces denoted by Un are links along the direction of n, and the transverse piece

UT is located at (plus or minus) light cone infinity. Counting powers of the inverse hard

scale relevant in the process, leads to the definition of the leading-power (usually referred

to as leading twist or twist-2) correlator,

Γij(x,kT ;S, T ) ≡ Γ[U,U ′]ni;nj(x,kT , P, n;S, T ), (2.4)

where the superscripts n on the right-hand side denote Lorentz contractions with the vector

n.

The correlator in eq. (2.4) has been averaged over the target spin states and is defined as

Γij(x,kT ;S, T ) ≡ Tr
(

ρ(S, T )Gij(x,kT )
)

, (2.5)

where the information on the spin states of the parent hadron is encoded in the 3 × 3

density matrix ρ(S, T ) and the combined information on the hadron and gluon spins is

contained in Gij(x,kT ). The density matrix is parametrized in terms of a spacelike spin

vector S and a symmetric traceless spin tensor T (for a spin-1/2 hadron only S is needed).

Ensuring the relations P ·S = 0 and PµT
µν = 0, they can be parametrized in terms of P

and n as follows [13, 20, 21]:

Sµ = SL
Pµ

M
+ Sµ

T −MSL nµ, (2.6)
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Tµν =
1

2

[

2

3
SLL gµνT +

4

3
SLL

PµP ν

M2
+

S
{µ
LTP

ν}

M
+ Sµν

TT

−
4

3
SLLP

{µnν} −MS
{µ
LTn

ν} +
4

3
M2SLL nµnν

]

, (2.7)

where we have used the metric tensor in transverse space defined as gµνT ≡ gµν − P {µnν}

(curly brackets denote symmetrization of the indices), with nonvanishing elements

g11T = g22T = −1. Choosing a Cartesian basis of 3 × 3 matrices consisting of the identity

matrix I, the three-dimensional representation of Pauli matrices Σi (see [20] for the

explicit form), and the five bilinear combinations Σij ≡ 1
2(Σ

iΣj + ΣjΣi) − 2
3Iδ

ij , and

making use of eqs. (2.6) and (2.7), the density matrix takes the form:

ρ(S, T ) =
1

3

(

I +
3

2
SiΣi + 3T ijΣij

)

=









1
3 + SL

2 + SLL

3
Sx
T−iS

y
T

2
√
2

+
Sx
LT−iS

y
LT

2
√
2

Sxx
TT−iS

xy
TT

2
Sx
T+iS

y
T

2
√
2

+
Sx
LT+iS

y
LT

2
√
2

1
3 − 2SLL

3
Sx
T−iS

y
T

2
√
2

−
Sx
LT−iS

y
LT

2
√
2

Sxx
TT+iS

xy
TT

2
Sx
T+iS

y
T

2
√
2

−
Sx
LT+iS

y
LT

2
√
2

1
3 − SL

2 + SLL

3









. (2.8)

In the rest of this paper the dependence of the correlators on S and T will be implicit.

The correlator in eq. (2.4) has been parametrized in terms of TMDs employing symmet-

ric traceless tensors ki1...inT built from the partonic transverse momentum kT (see appendix C

of [14] for the relevant definitions up to rank n = 4). The use of those tensor structures

ensures that the TMDs occurring in the parametrization are of definite rank. This has the

advantage that there is a one-to-one correspondence between the functions in momentum

space (kT -space) and in coordinate space (bT -space, where bT is Fourier conjugate to kT ),

which is an important feature when considering TMD evolution equations [14, 22, 23].

Separating the various possible hadronic polarization states, the correlator in eq. (2.4) can

be parametrized in terms of leading-twist gluon TMDs of definite rank as follows: [14]

Γij(x,kT ) = Γij
U (x,kT ) + Γij

L (x,kT ) + Γij
T (x,kT )

+ Γij
LL(x,kT ) + Γij

LT (x,kT ) + Γij
TT (x,kT ), (2.9)

where:1

Γij
U (x,kT ) =

x

2

[

− gijT f1(x,k
2
T ) +

kijT
M2

h⊥1 (x,k
2
T )

]

, (2.10)

Γij
L (x,kT ) =

x

2

[

iǫijT SL g1(x,k
2
T ) +

ǫ
{i
T αk

j}α
T SL

2M2
h⊥1L(x,k

2
T )

]

, (2.11)

Γij
T (x,kT ) =

x

2

[

−
gijT ǫST kT

T

M
f⊥
1T (x,k

2
T ) +

iǫijT kT ·ST

M
g1T (x,k

2
T )

−
ǫ
kT {i
T S

j}
T + ǫ

ST {i
T k

j}
T

4M
h1(x,k

2
T )−

ǫ
{i
T αk

j}αST
T

2M3
h⊥1T (x,k

2
T )

]

, (2.12)

1We define the transverse four-vector a
µ
T

to have light cone components (0, 0,aT ), where aT is a two-

dimensional vector on the transverse plane. This implies e.g. that a2

T = −a
2

T .
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Γij
LL(x,kT ) =

x

2

[

− gijT SLL f1LL(x,k
2
T ) +

kijT SLL

M2
h⊥1LL(x,k

2
T )

]

, (2.13)

Γij
LT (x,kT ) =

x

2

[

−
gijT kT ·SLT

M
f1LT (x,k

2
T ) +

iǫijT ǫ
SLT kT
T

M
g1LT (x,k

2
T )

+
S
{i
LTk

j}
T

M
h1LT (x,k

2
T ) +

kijαT SLT α

M3
h⊥1LT (x,k

2
T )

]

, (2.14)

Γij
TT (x,kT ) =

x

2

[

−
gijT kαβT STT αβ

M2
f1TT (x,k

2
T ) +

iǫijT ǫ
β
T γk

γα
T STT αβ

M2
g1TT (x,k

2
T )

+Sij
TT h1TT (x,k

2
T ) +

S
{i
TT α

k
j}α
T

M2
h⊥1TT (x,k

2
T )

+
kijαβT STT αβ

M4
h⊥⊥
1TT (x,k

2
T )

]

. (2.15)

We have defined the transverse antisymmetric tensor as ǫµνT ≡ ǫPnµν , with nonzero compo-

nents ǫ12T = −ǫ21T = 1. Throughout the paper, the dependence of the TMDs on the gauge

link structure is implicit.

Integrating the TMD correlator in eq. (2.4) over transverse momentum, we obtain the

collinear correlator

Γij(x) ≡

∫

dξ·P

2π
eik·ξ 〈P ;S, T |Trc

(

Fni(0)U[0,ξ]F
nj(ξ)U ′

[ξ,0]

)

|P ;S, T 〉

∣

∣

∣

∣

ξ·n=ξT=0

. (2.16)

The parametrization of this correlator in terms of collinear PDFs is given by

Γij(x) =
x

2

[

− gijT f1(x) + iǫijT SL g1(x)− gijT SLL f1LL(x) + Sij
TT h1TT (x)

]

, (2.17)

where f1(x) ≡
∫

d2kT f1(x,k
2
T ), and similarly for the other functions. The collinear func-

tions are universal as the gauge links are now unique straight lines along the direction of

n. We note that h1TT (x) appears in the structure function ∆(x) defined in [9] (the latter

is called ∆2G(x) in [24]).

3 Positivity bounds on gluon distributions

As is well known, one can impose positivity constraints on the hadronic tensor and find a

probabilistic interpretation for some of the distribution functions [25]. Positivity bounds

on gluon TMDs were studied in [15] for spin-1/2 hadrons and, by applying the same

strategy, we extend here this analysis to spin-1 hadrons. The starting point is the idea

that the correlator Γ can be seen as a 2 × 2 matrix in the two gluon polarizations, given

by Γij = ρs′sG
ij
ss′ (see eq. (2.5)), where s, s′ label the hadronic polarization states. The

quantity G can be regarded as a 6 × 6 matrix in gluon ⊗ hadron spin space. As we will

show explicitly, G turns out to be positive semidefinite, a property which allows for setting

constraints on the gluon distributions. First, we will derive bounds for the TMD case, and

subsequently we will consider the transverse momentum integrated case. For completeness,
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we will also include the bounds that apply to spin-1/2 hadrons, completing the study of [15]

where T-odd functions were not included.

3.1 Bounds on transverse momentum dependent functions

In this subsection we derive bounds for the gluons TMDs that appear in the parametrization

given in eq. (2.9). We choose the same basis for the matrix G as in [15], namely we use

circular gluon polarizations, given by |±〉 = ∓ 1√
2
(|x〉 ± i |y〉). At leading twist, this matrix

is given by

G =
x

2

(

A B

B† C

)

, (3.1)

where

A =











f1+
f1LL

2 −g1
e−iφk√
2M

(

f̃−g̃+h1LT

)

e−2iφk2

M2

(

f1TT+ig1TT−h⊥1TT

)

eiφk√
2M

(

f̃∗−g̃∗+h1LT

)

f1−f1LL − e−iφk√
2M

(

f̃∗+g̃∗+h1LT

)

e2iφk2

M2

(

f1TT−ig1TT−h⊥1TT

)

− eiφk√
2M

(

f̃+g̃+h1LT

)

f1+
f1LL

2 +g1











,

B =









− e−2iφk2

4M2

(

2h⊥1 +h⊥1LL−2ih⊥1L
)

e−3iφk3

2
√
2M3

(

h⊥1LT+ih⊥1T
)

− e−4iφk4

2M4 h⊥⊥
1TT

− e−iφk√
2M

(2h1LT−ih1) − e−2iφk2

2M2

(

h⊥1 −h⊥1LL
)

− e−3iφk3

2
√
2M3

(

h⊥1LT−ih⊥1T
)

−2h1TT
e−iφk√
2M

(2h1LT+ih1) − e−2iφk2

4M2

(

2h⊥1 +h⊥1LL+2ih⊥1L
)









,

C =











f1+
f1LL

2 +g1
e−iφk√
2M

(

f̃+g̃+h1LT

)

e−2iφk2

M2

(

f1TT−ig1TT−h⊥1TT

)

eiφk√
2M

(

f̃∗+g̃∗+h1LT

)

f1−f1LL − e−iφk√
2M

(

f̃∗−g̃∗+h1LT

)

e2iφk2

M2

(

f1TT+ig1TT−h⊥1TT

)

− eiφk√
2M

(

f̃−g̃+h1LT

)

f1+
f1LL

2 −g1











,

where for convenience we have suppressed the argument (x,k2
T ) of the functions and defined

f̃ ≡ f1LT + if⊥
1T and g̃ ≡ g1T + ig1LT . Furthermore, we have expressed kT in terms of

its polar coordinates k and φ. From symmetry considerations it follows that block C is

the parity transformed of A and the off-diagonal blocks are Hermitian conjugates (see

appendix A of [14] for more details on the parity, Hermiticity, time-reversal, and charge-

conjugation properties of the gluon correlator).

To make more apparent the properties of the matrix G, we write its elements in the

following form:

Gij
ss′(x,kT ) ≡

∫

dξ·P d2ξT

(2π)3
eik·ξ 〈P ; s|Trc

(

Fni(0)Fnj(ξ)
)

|P ; s′〉

∣

∣

∣

∣

ξ·n=0

=
∑

m

Trc
(

〈Pm|Fni(0) |P ; s〉∗ 〈Pm|Fnj(0) |P ; s′〉
)

× δ(Pm·n− (1− x)) δ(2)(PmT + kT ), (3.2)

where we inserted a complete set a momentum eigenstates {|Pm〉}. We infer from eq. (3.2)

that, in any basis, the diagonal elements are given by absolute squares. In particular, it

follows that the eigenvalues of G in eq. (3.1) must be ≥ 0, or, equivalently, that G is positive

– 6 –
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semidefinite. This can be used to set constraints on the TMDs. Given the limited amount

of information we have on the gluon functions, we will refrain from diagonalizing the full

6 × 6 matrix and rather restrict ourselves to finding the eigenvalues of its 2 × 2 principal

minors. Due to the symmetry properties of G, some minors yield the same bounds; we

obtain the following nine inequalities:

k2
T

2M2
|h⊥1 −h⊥1LL|≤f1−f1LL, (3.3)

k4
T

16M4

[

4(h⊥1L)
2+(2h⊥1 +h⊥1LL)

2
]

≤

(

f1+
f1LL
2

+g1

)(

f1+
f1LL
2

−g1

)

, (3.4)

k2
T

2M2

(

h21+4h21LT
)

≤(f1−f1LL)

(

f1+
f1LL
2

+g1

)

, (3.5)

k6
T

8M6

[

(h⊥1T )
2+(h⊥1LT )

2
]

≤(f1−f1LL)

(

f1+
f1LL
2

−g1

)

, (3.6)

k2
T

2M2

[

(f⊥
1T+g1LT )

2+(f1LT+g1T+h1LT )
2
]

≤(f1−f1LL)

(

f1+
f1LL
2

+g1

)

, (3.7)

k2
T

2M2

[

(f⊥
1T−g1LT )

2+(f1LT−g1T+h1LT )
2
]

≤(f1−f1LL)

(

f1+
f1LL
2

−g1

)

, (3.8)

|h1TT |≤
1

2

(

f1+
f1LL
2

+g1

)

, (3.9)

k4
T

2M4
|h⊥⊥

1TT |≤f1+
f1LL
2

−g1, (3.10)

k4
T

M4

[

g21TT+(f1TT−h⊥1TT )
2
]

≤

(

f1+
f1LL
2

+g1

)(

f1+
f1LL
2

−g1

)

. (3.11)

These inequalities are relevant for the study of tensor polarized gluon TMDs at e.g. the EIC

possibility at JLab (JLEIC) [26–28] or COMPASS [29] using tensor polarized deuterons.

The proposed fixed-target experiment at LHC (AFTER@LHC) [30] would also allow to

investigate the gluon TMDs [31], in principle including ones related to tensor polarization.

Finally, we also include the bounds that apply to spin-1/2 hadrons. This case has

been discussed already in [15], however using a different notation and leaving the T-odd

TMDs aside. The parametrization of the correlator for a spin-1/2 hadron is given by the

sum of the terms (2.10)–(2.12). The density matrix is now parametrized in terms of the

spin vector only and is a 2 × 2 matrix in hadron spin space. Using the decomposition in

eq. (2.5), G is a 4 × 4 matrix in gluon ⊗ hadron spin space and its explicit form (that

does contain the T-odd functions) is given in [15]. From that matrix we can extract the

following bounds from its 2× 2 principal minors:

|g1| ≤ f1, (3.12)

k4
T

4M4

[

(h⊥1L)
2 + (h⊥1 )

2
]

≤ (f1 + g1)(f1 − g1), (3.13)

|kT |

M
|h1| ≤ f1 + g1, (3.14)
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|kT |
3

2M3
|h⊥1T | ≤ f1 − g1, (3.15)

k2
T

M2

[

(f⊥
1T )

2 + g21T

]

≤ (f1 + g1)(f1 − g1). (3.16)

Upon omitting tensor polarization (and discarding all functions related to it) in

bounds (3.3)–(3.11), which is mathematically equivalent to considering the spin-1/2 case,

one obtains a set of bounds that is less strict (but consistent with) the bounds (3.12)–(3.16).

In general, these less strict bounds can be sharpened upon considering the eigenvalues of

higher-dimensional principal minors.

Note that in eq. (3.2) we did not consider the process-dependent gauge link structure

explicitly. In fact, the inequalities (3.3)–(3.11) and (3.12)–(3.16) do not hold generally

true for any correlator — the matrix G is positive semidefinite only for field combinations,

including gauge links, that ‘factorize’ into the form O†(0)O(ξ). The simplest gauge link

structures for which this holds are [+,+], [−,−], [+,−], and [−,+] (the plus and minus refer

to the future- and past-pointing Wilson lines defined in eq. (2.3), and for the second entry

Hermitian conjugation is implied). For the same links, one also has the constraint f1 ≥ 0 (in

the spin-1/2 case this follows already from bound (3.12)). The [−,−] gauge link appears in

processes with color flow annihilated within the initial state, such as the (gluonic) Drell-Yan

process or Higgs production through gluon fusion (gg → h) [32, 33]. The structure [+,+],

on the other hand, is related to color flow into the final state, which is the case for e.g. quark-

antiquark pair production in semi-inclusive deep-inelastic scattering [34]. When color flow

involves both initial and final states, the gauge links [+,−] and [−,+] appear, which is for

instance the case in processes with qg → qg and q̄g → q̄g contributions respectively [35].

3.2 Bounds on transverse momentum integrated functions

We now turn to the transverse momentum integrated case, i.e. we will establish relations

between the collinear PDFs appearing in eq. (2.17). Although this case was recently covered

already in [18], we include it here for completeness. The 3 × 3 blocks of the matrix G in

eq. (3.1) are now given by:

A =







f1 +
f1LL

2 − g1 0 0

0 f1 − f1LL 0

0 0 f1 +
f1LL

2 + g1






, B =







0 0 0

0 0 0

−2h1TT 0 0






,

C =







f1 +
f1LL

2 + g1 0 0

0 f1 − f1LL 0

0 0 f1 +
f1LL

2 − g1






,

where we have suppressed the argument (x) of the functions. From integration of eq. (3.2)

over transverse momentum, it follows that again G is positive semidefinite. In contrast to

the TMD case, we can easily diagonalize the full matrix and we obtain the following three
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bounds:

|g1| ≤ f1 +
f1LL
2

, (3.17)

f1LL ≤ f1, (3.18)

|h1TT | ≤
1

2

(

f1 +
f1LL
2

+ g1

)

, (3.19)

where, including also f1 ≥ 0, these inequalities hold for any process as PDFs are universal.

In the spin-1/2 case, one simply has the bound |g1| ≤ f1.

Through the gluon structure function ∆(x) of [9], the PDF h1TT (x) is related to

the double-helicity flip scattering amplitude in processes involving hadrons of spin ≥ 1.

At the parton level, h1TT (x) represents the distribution of linearly polarized gluons in a

transversely tensor polarized target sometimes referred to as ‘gluon transversity’, a name

we do not want to use as it may misleadingly suggest transverse polarization of the gluon.

Recently in [10] the first moment of a bound analogous to (3.19) was studied on the lattice

in a φ meson (ss̄). The bounds (3.17)–(3.19) will be relevant e.g. for the extraction of

∆(x), which has been proposed to occur at JLab using nitrogen targets [11], and which

could also be achieved within the program of the EIC [12].

4 Positivity bounds on gluon TMDs at small x

In this section we will consider bounds on the gluon TMDs in the small-x kinematic region.

The gluon-gluon TMD correlator simplifies greatly in the small-x limit for the so-called

dipole-type gauge link structure [+,−], which has recently been shown in [14, 19]. More

specifically, [14]

lim
x→0

Γ[+,−] ij(x,kT ) =
kiTk

j
T

2πL
Γ
[�]
0 (kT ), (4.1)

where the so-called Wilson loop correlator appearing on the right-hand side is defined as

Γ
[�]
0 (kT ) ≡

∫

d2ξT

(2π)2
e−ikT ·ξT 〈P ;S, T |Trc

(

U [�]
)

|P ;S, T 〉

∣

∣

∣

∣

ξ·n=0

, (4.2)

where U [�] ≡ U
[+]
[0,ξ] U

[−]
[ξ,0] is a rectangular Wilson loop with transverse extent ξT and longi-

tudinal dimension L ≡
∫

dξ·P = 2π δ(0). The parametrization of this correlator in terms

of TMDs is given by [14]

Γ
[�]
0 (kT ) =

πL

M2

[

e(k2
T ) +

ǫST kT
T

M
eT (k

2
T ) + SLL eLL(k

2
T )

+
kT ·SLT

M
eLT (k

2
T ) +

kαβT STT αβ

M2
eTT (k

2
T )

]

. (4.3)

In the small-x limit and for the dipole-type gauge link structure, the gluon TMDs in

eq. (2.9) reduce to the e-type Wilson loop TMDs according to eq. (4.1). The precise limits

are found in table 1 of [14].
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Also the Wilson loop correlator Γ
[�]
0 is a spin-averaged correlator, given by Γ

[�]
0 =

ρs′sG
[�]
0 ss′ (analogous to eq. (2.5)). Inverting this relation, we find that G

[�]
0 is given by

G
[�]
0 =

πL

M2









e+ eLL

2
e−iφk√
2M

(eLT + ieT )
e−2iφk2

M2 eTT

eiφk√
2M

(eLT − ieT ) e− eLL − e−iφk√
2M

(eLT − ieT )
e2iφk2

M2 eTT − eiφk√
2M

(eLT + ieT ) e+ eLL

2









, (4.4)

where we have suppressed the argument (k2
T ) of the functions. In analogy to eq. (3.2), we

can write the elements of G
[�]
0 in the following form:

G
[�]
0 ss′(kT ) ≡

∫

d2ξT

(2π)2
e−ikT ·ξT 〈P ; s|Trc

(

U [�]
)

|P ; s′〉

∣

∣

∣

∣

ξ·n=0

=
∑

m

Trc

(

〈Pm|UT
[∞,∞T ;∞,0T ] U

n
[∞,0T ;−∞,0T ] U

T
[−∞,0T ;−∞,∞T ] |P ; s〉∗

×〈Pm|UT
[∞,∞T ;∞,0T ] U

n
[∞,0T ;−∞,0T ] U

T
[−∞,0T ;−∞,∞T ] |P ; s′〉

)∣

∣

∣

ξ·n=0

× δ(2)(PmT + kT ), (4.5)

where we inserted a complete set a momentum eigenstates {|Pm〉} and we used that

U [�] = Un
[−∞,0T ;∞,0T ] U

T
[∞,0T ;∞,ξT ] U

n
[∞,ξT ;−∞,ξT ] U

T
[−∞,ξT ;∞,0T ]

=
(

UT
[−∞,∞T ;−∞,0T ] U

n
[−∞,0T ;∞,0T ] U

T
[∞,0T ;∞,∞T ]

)

×
(

UT
[−∞,∞T ;−∞,ξT ] U

n
[−∞,ξT ;∞,ξT ] U

T
[∞,ξT ;∞,∞T ]

)†
. (4.6)

From eq. (4.5) it follows that G
[�]
0 is positive semidefinite; in other words, its eigenvalues

must be ≥ 0. To establish bounds for the Wilson loop TMDs, we again restrict ourselves

to two-dimensional principal minors. We obtain the following two inequalities:

k2
T

2M2

(

e2T + e2LT
)

≤ (e− eLL)
(

e+
eLL
2

)

, (4.7)

k2
T

M2
|eTT | ≤ e+

eLL
2

. (4.8)

Applying the small-x limit to the bounds (3.3)–(3.11), one indeed recovers the bounds (4.7)

and (4.8). Besides these two bounds, we also have e ≥ 0 (this follows from eq. (4.6)).

Let us finally also comment on the case of a spin-1/2 hadron. The parametrization of

the Wilson loop correlator for spin-1/2 hadrons is given in terms of the two functions e

and eT . Analogous to G
[�]
0 in eq. (4.4), we now obtain

G
[�]
0 =

πL

M2

(

e ie−iφk
M

eT

− ieiφk
M

eT e

)

, (4.9)

from which we can derive the following upper bound for eT :

|kT |

M
|eT | ≤ e. (4.10)
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Note that upon omitting tensor polarization and discarding all functions related to it

(this is, in fact, mathematically equivalent to the reduction to a spin-1/2 description), the

bounds (4.7) and (4.8) reduce to a bound that is consistent with but less strict than (4.10).

Aside from diagonalizing higher-dimensional minors to sharpen the bounds, we can also

obtain (4.10) by applying the small-x limit to the bounds for spin-1/2 hadrons given

in (3.12)–(3.16).

5 Discussion and conclusions

We have studied positivity bounds on gluon-gluon correlators for hadrons including in par-

ticular the polarized spin-1 hadrons, thus looking at the unpolarized, vector polarized, and

tensor polarized cases. The bounds have been derived using the fact that the correlators,

even including gauge links that bridge the nonlocality, can be expressed as momentum

densities. For both the TMD and collinear cases, we have obtained relations between the

distribution functions that appear in the parametrization of the leading-twist gluon-gluon

correlator. The bounds follow from the positive semidefiniteness of the correlation function,

and rely primarily on the operator structure of the correlator and as such they can be con-

sidered as rigorous tests of QCD, provided the functions are compared at the same scales.

For gluons, especially the small-x region is important, which is why we have also

studied the bounds for TMDs in the small-x limit. To this end, we have exploited the main

results of [14], being the fact that for the dipole-type gauge link structure the gluon-gluon

correlator simplifies to a correlator containing a single Wilson loop. The latter correlator

can also be parametrized in terms of TMDs, for which we have found bounds as well.

The actual value of the established bounds reckon on the extraction of the functions

from the cross-sections, which in turn relies on the validity of the leading-power expression

of the cross-section in terms of the distribution functions, i.e. the absence of subleading pow-

ers. Furthermore, since we look at TMDs, one must worry about the process dependence

coming from the fact that functions with different types of gauge links may be needed to

describe a process at measured transverse momenta [36]. Another complication is that the

dependence of the distributions on k2
T may require additional functions involving gluonic

poles [37]. Assumptions on some of the TMDs and using approximations such as taking

the large-Nc limit, may thus be necessary. In addition to these points, one might also

worry about the effects of QCD evolution on the validity of the bounds. In the collinear

case, the Soffer bound involving three quark functions [38] has been shown to be preserved

up to next-to-leading order accuracy [39–41]. However, to our knowledge, there are no

studies yet on the stability of bounds under evolution concerning TMDs. The fact that

the evolution kernel for TMDs is independent of spin [33, 42], might suggest that in the

appropriate kT -regime where TMD factorization is valid, positivity bounds are respected

also in this case. However, the latter could depend on the specific implementation of TMD

evolution. This topic remains open to further investigation.

The results in this paper may be relevant for proposed experiments at JLab and a

future EIC involving tensor polarized targets. In practical situations, however, the bounds

will, rather than serving as a test of QCD, often be more useful as a check in models or
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lattice calculations, or as a way to obtain an order of magnitude estimate of TMDs. The

latter is commonly done by saturating the bounds. These estimates for the functions then

can be used, for instance, as input for an estimate of measurements of particular azimuthal

and spin asymmetries.
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