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1 Introduction

Ever since the discovery of the AdS/CFT correspondence [1–3], it is hoped that we could
learn deep lessons about quantum gravity from it. However, it turns out that the main
difficulty is describing a bulk observer and its experience in a reasonable way in the AdS/CFT
framework. This question is important as the observer is modeling an experimentalist whose
experience is of direct experimental relevance to quantum gravity. However, the description of
the observer cannot be so complicated as otherwise it will significantly backreact on the bulk
geometry due to the gravitational effect, and meanwhile it cannot be so simple as otherwise,
the observer cannot do much to be of practical relevance (see [4–11] for some attempts to
address this question). Besides this subtlety of properly defining the observer with a decent
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level of complexity, a more basic issue in a gravitational theory is how to define a bulk
observer diffeomorphism invariantly. These complications are not anything new, and they
also appear in gauge theories, for example quantum electrodynamics.1 The usual lore is that
the experimentally relevant data are the scattering amplitudes that can be extracted in the
asymptotic regime, where the gauge interaction is weak, by putting a detector there. Hence,
in quantum gravity, we expect the same, i.e., we should think of the observer as being located
at the asymptotic boundary and extracting the relevant data from the bulk to reconstruct
the bulk physics using these data. In this paper we will study an explicit model of such an
observer constructed using the AdS/CFT correspondence.

More specifically, we consider a gravitational theory in an asymptotically AdSd+1 space-
time, which has a dual CFTd description that resides on the asymptotic boundary of the
AdSd+1. We model the observer by a (d + 1)-dimensional bath that is glued to the asymp-
totic boundary of the AdSd+1 (see [12–18] for early and recent studies on some aspects of
relevant models). This bath can be either gravitational or non-gravitational. When it is
non-gravitational, we model it by a (d + 1)-dimensional CFT living on a half Minkowski
space whose boundary is glued with the asymptotic boundary of the AdSd+1 (see figure 1).
This gluing can be more easily described using the dual CFTd where we put the CFTd on
the boundary of the bath CFTd+1 and couple them by a double-trace deformation

Stot = SCFTd
+ SCFTd+1 + h

∫
ddxO1(t, x⃗)O2(t, x⃗) , (1.1)

where O1(t, x⃗) is a CFTd single-trace scalar primary operator and O2(t, x⃗) is a CFTd+1
single-trace scalar primary operator extrapolated to the boundary with a coupling constant
h. We will take the double-trace deformation to be marginal (i.e., the sum of the conformal
weights of O1(t, x⃗) and O2(t, x⃗) satisfies ∆1 +∆2 = d). When the bath is gravitational (see
figure 2), we will take its geometry to be another AdSd+1 which also has a dual description as
another CFTd which we will call CFT2

d. Then the gluing of this AdSd+1 bath to the original
AdSd+1 can also be described in the CFT language by a double-trace deformation

Stot = SCFTd
+ SCFT2

d
+
∫

ddxO1(t, x⃗)O2(t, x⃗) , (1.2)

where again O1(t, x⃗) is a single-trace scalar primary operator of the CFTd and now O2(t, x⃗) is a
single-trace scalar primary operator of the CFT2

d and we take this deformation to be marginal.
We will see that in the dual AdSd+1 description, the double-trace deformation is modifying

the boundary condition of the free massive scalar field that duals to O1(t, x⃗) [19]. We will
show that this modified boundary condition induces several interesting quantum effects in
the AdSd+1 bulk. The first effect is that the bulk Hilbert space constructed from the AdSd+1
scalar field (the Fock space) is twice as large as the case in the standard AdS/CFT. This
is easily understood if we notice that the bulk AdSd+1 is coupled to a bath, and hence the
particles from the bath are free to enter the AdSd+1 which, together with the original particles
in the AdSd+1 double (or square) the Hilbert space. This can be seen if we perform canonical
quantization with the modified boundary condition for the AdSd+1 scalar field. The second

1Though some properties of gauge theories are encoded in extended gauge invariant operators like Wil-
son lines.
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AdSd+1 Minkd+1

Figure 1. We couple the gravitational AdSd+1 universe (the blue shaded region) with a nongravita-
tional bath (the green shaded region) by gluing them along the asymptotic boundary the AdSd+1 (the
red vertical line). The nongravitational bath is modeled by a (d+1)-dimensional CFT living on a half
Minkowski space which shares the same boundary as the asymptotic boundary of the AdSd+1. We
use the Poincaré coordinates in the AdSd+1. The coupling is achieved in the dual CFT description by
eq. (1.1).

AdSd+1 AdSd+1

Figure 2. We couple the gravitational AdSd+1 universe (the blue shaded region) with a gravitational
bath (the yellow shaded region) by gluing them along the asymptotic boundary the AdSd+1 (the red
vertical line). The gravitational bath is modeled by another AdSd+1 which shares the same asymptotic
boundary with the original AdSd+1. We take the Poincaré coordinates in both of the AdSd+1. The
coupling is achieved in the dual CFT description by eq. (1.2).

effect is that the modified boundary condition of the bulk scalar field disables us to define a
diffeomorphism invariant path integral measure for the scalar field. Hence, there could be
a diffeomorphism anomaly that should be compensated if we want to consistently couple
the scalar field to gravity. We will show that there is a natural mechanism to compensate
this diffeomorphism anomaly. This mechanism turns out to be a Stückelberg mechanism
to generate a mass for the graviton, and this suggests that the diffeomorphism invariance
is spontaneously broken due to the bath coupling. This is a rather remarkable result as
it shows that the gravitational theory is modified due to the existence of the observer or
because the gravitational universe is being observed. To uncover all these effects, we start
with clarifications of several subtleties in the AdS/CFT correspondence.

Moreover, in the gravitational bath case the original AdSd+1 can be thought of a subregion
of a gravitational universe (which is the union of the original AdSd+1 and the bath AdSd+1).2

2This perspective was adopted at a classical level in [20–22] by considering leaky boundary conditions
instead of the standard reflective ones.
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Therefore, the analysis presented here is potentially helpful in understanding subregion
physics in a gravitational universe.3

This paper is organized as follows. In section 2 we review some basics of the AdS/CFT
correspondence such as the calculation of the boundary CFT correlator using the AdS bulk
and we clarify some subtleties that are relevant to the quantum aspects of the bulk scalar
field — the canonical quantization and the path integral quantization. In section 3 we review
and refine the double-trace deformation in AdS/CFT [19, 33, 34] by providing a path integral
derivation of the proposal in [19] and check the consistency with the results in section 2. In
section 4 we use the techniques we developed in section 2 and section 3 to analyze the two
aforementioned models of coupling AdSd+1 to a bath and we show the first quantum effect —
the Hilbert space doubling. In section 5 we discuss the second quantum effect — the issue of
diffeomorphism invariance broken and restoration. In section 6 we discuss how the model we
are considering in this paper could be potentially useful to the study of subregion physics in
a gravitational universe. In section 7 we conclude the paper with a summary. In appendix A
we discuss a potential loophole in our consideration in section 5 and its resolution.

2 Quantization schemes and propagating modes in AdS/CFT

In this section, we review the computation of the generating functional for correlators of
the dual single-trace scalar primary operator in the CFTd from the massive scalar field
in the AdSd+1. Then we analyze the bulk propagating modes of the scalar field carefully
distinguishing the on-shell and off-shell modes. For simplicity we consider a free minimally
coupled massive scalar field ϕ(x) and our treatment will be in the framework of [34].

We take the geometry of AdSd+1 to be in the Poincaré patch of the Lorentzian signature:

ds2 = gµνdxµdxν = z2 +∑d
i=1 ηabdxadxb

z2 , (2.1)

and the action for the scalar field ϕ(x) is

S0 = 1
2

∫ √
−gdzdtdd−1x⃗ϕ(x)

(
□− m2

)
ϕ(x) , (2.2)

where □ = 1√
−g

∂µ(gµν√−g∂ν).4 The asymptotic boundary of AdSd+1, where the dual CFTd

lives, is at z → 0 and we will take it to be at z = ϵ and send ϵ → 0 at the end of our
calculation. We emphasize on the calculational details and when we are able to perform
the alternative quantization.

According to the AdS/CFT correspondence [1–3], the scalar field ϕ(x) = ϕ(z, t, x⃗) duals
to a single-trace scalar primary operator O(t, x⃗) in the CFTd and imposing a boundary
condition J(t, x⃗) for the scalar field ϕ(x) is equivalent to turning on a source for O(t, x⃗) (see
later discussions for details). Moreover, this duality states that

Z[J ]CFT ≡ ⟨ei
∫

dtdd−1x⃗J(t,x⃗)O(t,x⃗)⟩CFT = Z[J ]AdSd+1 , (2.3)
3See [23–32] for early and recent attempts in setting up and understanding this difficult question.
4For simplicity of the analysis, we don’t consider self-interactions of the scalar field in this paper. Self-

interactions can be treated perturbatively once we have had a good understanding of the free limit.
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where Z[J ]CFT is the generating functional for correlators of the operator O(t, x⃗) on the CFTd

side and Z[J ]AdSd+1 is the partition function of the full gravitational theory (string theory)
in AdSd+1 with the specified boundary condition J(t, x⃗) for the scalar field ϕ(x). For our
purpose (in the low energy regime and with a weak gravitational coupling), Z[J ]AdSd+1 can be
approximated by the partition function of the scalar field ϕ(x) in the fixed AdSd+1 background

Z[J ]AdSd+1 =
∫

D[ϕ; J ]e−iSJ [ϕ] , (2.4)

where we restrict ourselves to consider scalar field configurations satisfying the boundary
condition J(t, x⃗) and SJ [ϕ] is given by S0 (in eq. (2.2)) plus appropriate boundary terms.
The boundary terms will be J(t, x⃗) dependent. Since we are considering a free field ϕ(x)
the calculation reduces to the computation of the on-shell action Son-shell[ϕ] with boundary
condition J(t, x⃗)

Z[J ]CFT ≡ ⟨ei
∫

dtdd−1x⃗J(t,x⃗)O(t,x⃗)⟩CFT = Z[J ]AdSd+1 ∼ e−iSon-shell
J [ϕJ ] , (2.5)

where ϕJ(x) satisfies the boundary condition J(t, x⃗) (to be specified later) and the equation
of motion

(□− m2)ϕJ(x) = 0 . (2.6)

2.1 The meaning of quantization

Before we discuss different quantization schemes in AdS/CFT in this section, let’s articulate
the meaning of quantization. In the standard treatment of a quantum system, quantization
means constructing the Hilbert space of the system or specifying the rule to calculate all
the transition amplitudes.

The former is usually done for a free theory using the canonical quantization for which in
our case we have to solve the equation (2.2) with vanishing J(t, x⃗), find all the solutions that
satisfy the boundary condition J(t, x⃗) = 0, and we will call these solutions as on-shell modes,
then assign creation and annihilation operators for each of the modes and their complex
conjugates. Schematically, let’s denote these modes in the Fourier space by δϕn(z, ω

n,⃗k
, k⃗)

and the field operator ϕ̂(z, t, x⃗) is given by

ϕ̂(z, t, x⃗) (2.7)

=
∫

dk⃗

(2π)d−1

∑
n

1√
2ω

n,⃗k

(
δϕ(z, ω

n,⃗k
, k⃗)â

nk⃗
e

iω
n,k⃗

t−ik⃗·x⃗ + δϕ∗(z, ω
n,⃗k

, k⃗)â†
nk⃗

e
−iω

n,k⃗
t+ik⃗·x⃗

)
.

Then imposing the canonical quantization condition

[ϕ̂(z, t, x⃗), gtt∂tϕ̂(z′, t, x⃗′)] = i√
−g

δ(z − z′)δd−1(x⃗ − x⃗′) , (2.8)

we will get the standard commutation relations for the creation and annihilation operators

[â
n,⃗k

, â
n′,k⃗′ ] = 0 , [â

n,⃗k
, â†

n′,k⃗′ ] = δnn′δd−1(k⃗ − k⃗′) , (2.9)

– 5 –



J
H
E
P
0
9
(
2
0
2
4
)
0
1
2

given that the on-shell modes are orthonormal in the so-called Klein-Gordon measure

(δϕ, δϕ)KG = i

∫
Σ

dzdd−1x
√
−ggtt(δϕ∗∂tδϕ − δϕ∂tδϕ∗)(z, t, x⃗) . (2.10)

In the end, the Hilbert space is constructed as the Fock space of these annihilation and
creation operators.

The later is asking for a calculational scheme for correlators of the theory which is
usually done using the path integral formalism. The correlators are easily generated once
we know the generating functional eq. (2.5). In our case, we have to compute the path
integral of a free scalar field in the AdSd+1 with a specified boundary condition J(t, x⃗). Since
we are considering a free scalar field, the J(t, x⃗)-dependent part of this calculation reduces
to the computation of the on-shell action Son-shell

J [ϕJ ] with the boundary condition J(t, x⃗).
Nevertheless, the full partition function contains a one-loop correction which though doesn’t
contribute to the generating functional as it is J(t, x⃗)-independent. Since we will study
quantum effects later, we keep track of everything. We have

Z[J ]AdSd+1 =
∫

D[ϕ; J ]e−iSJ [ϕ]

=
∫

D[δϕ]e−i 12

∫ √
−gdd+1xδϕ(□−m2)δϕe−iSon-shell

J [ϕJ ]

= det−
1
2 (□− m2)e−iSon-shell

J [ϕJ ] ,

(2.11)

where the δϕ describes the fluctuations above the background on-shell solution and δϕ

satisfies a boundary condition with vanishing J(t, x⃗) (the precise boundary condition will
be discussed later). The determinant is a symbolic representation of the path integral over
the fluctuations. This path integral can be performed as follows. Firstly, we solve for the
eigenmodes (δϕλ(z, ω

λ,n,⃗k
, k⃗)e−iω

λ,n,k⃗
t−ik⃗·x⃗) associated with all the nonzero eigenvalues λ (in

fact we need λ > 0, see the next subsections) of the operator □ − m2

(□− m2)δϕλ(z, ω
λ,n,⃗k

, k⃗)e−iω
λ,n,k⃗

t+ik⃗·x⃗ = λδϕλ(z, ω
λ,n,⃗k

, k⃗)e−iω
λ,n,k⃗

t+ik⃗·x⃗
. (2.12)

These modes are orthonormal for both n and λ∫ √
−gdd+1xδϕ∗

λ(z, ω
λ,n,⃗k

, k⃗)δϕλ′(z, ω
λ′,n′,k⃗′)e

−i(ω
λ′,n′,k⃗′−ω

λ,n,k⃗
)t+i(k⃗′−k⃗)·x⃗

= δλλ′δnn′δd−1(k⃗ − k⃗′). (2.13)

As we will discuss in detail in the next section, the normalizability of these modes is important
for determining the proper boundary conditions or the fall-off behaviors for them when z → 0.
Then we use these modes to expand a generic function δϕ(z, t, x⃗) with the appropriate
boundary condition as

δϕ(z, t, x⃗) =
∫

dk⃗

(2π)d−1 a0,n,⃗k
δϕλ(z, ω

n,⃗k
, k⃗)e−iω

λ,n,k⃗
t+ik⃗·x⃗

+
∫

dk⃗

(2π)d−1

∑
λ,n

a
λ,n,⃗k

δϕλ(z, ω
λ,n,⃗k

, k⃗)e−iω
λ,n,k⃗

t+ik⃗·x⃗
, (2.14)
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where a
λ,n,⃗k

are complex numbers that ensure the reality of δϕ(z, t, x⃗). Now we can compute∫
Dδϕe−i 12

∫ √
−gdd+1xδϕ(□−m2)δϕ =

∫
Π

λ,n,⃗k
da

λ,n,⃗k
e
−i 12

∑
λ,n,k⃗

|a
λ,n,k⃗

|2λ

= Π
λ,n,⃗k

( 1√
iλ

)
= det−

1
2 (□− m2) ,

(2.15)

where for the simplicity of notation we have discretized the k⃗ by putting the x⃗ in a box.
The important step is the second step for which we transform the functional integration
measure Dδϕ to the integral of the coefficients Π

λ,n,⃗k
da

λ,nk⃗
. This step in general requires

a Jacobian which is an overall constant (or an ambiguity in the definition of a functional
integration measure) and is fixed by∫

Dδϕe−
∫ √

−gdd+1xδϕ2 = 1 . (2.16)

Here we notice a subtlety that the on-shell modes part a0,n,⃗k
don’t contribute to the integrand

in eq. (2.15) but they do contribute to the functional integral eq. (2.16) in the definition of
the path integral measure when the boundary source is zero. This subtlety is important for
our later study in section 5 and we will ponder it till section 5.

2.2 Standard quantization in AdS/CFT

In this subsection, we review the standard quantization scheme for a massive free scalar field
in AdSd+1. Such a scalar field is dual to a single-trace scalar primary operator O(t, x⃗) in the
boundary CFTd. We review the computation of generating functional for this single-trace
operator using the AdSd+1 description eq. (2.5) and the behavior of the on-shell and off-shell
modes near z → 0 which are relevant respectively to the construction of the Hilbert space
and the quantum correction to the bulk partition function.

2.2.1 Partition function

The equation of motion eq. (2.6) comes from setting the variation of the action eq. (2.2)
to zero. However, there are additional boundary terms in the variation (suppose that the
equation of motion has been satisfied)

δS0 = −1
2

∫
z=ϵ

ddx⃗z−d+1
(
δϕ∂zϕ − ϕ∂zδϕ

)
. (2.17)

Adding a specific boundary term Sbdy to the action S0 and setting δS0 + δSbdy = 0 specify
the boundary condition for the scalar field ϕ(x). For the standard quantization we will choose

Sbdy = −ϵ−∆+π
d
2
Γ
[
∆+ + 1− d

2

]
Γ[∆+]

∫
dtdd−1x⃗ϕ(ϵ, t, x⃗)J(t, x⃗) , (2.18)

which gives the boundary condition J(t, x⃗):

z−∆−(z∂z −∆+)ϕ(x)|z=ϵ→0 = −2π
d
2
Γ
[
∆+ + 1− d

2

]
Γ[∆+]

J(t, x⃗) , (2.19)
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for a fixed J(t, x⃗) and a generic fluctuation mode should satisfy

z−∆−(z∂z −∆+)δϕ(x) = 0 , as z → 0 , (2.20)

where we have defined ∆± = d
2 ±

√
d2

4 + m2.
A solution of the equation of motion ϕJ (x) which is regular in interior of the AdSd+1 [2]

and satisfies the boundary condition eq. (2.19) is

ϕJ(x) =
∫

dt′dd−1x⃗′ J(t′, x⃗′)z∆+

(−(t − t′)2 + z2 + |x⃗ − x⃗′|2)∆+
, (2.21)

which is uniquely specified.5 To check that eq. (2.21) satisfies the boundary condition
eq. (2.19) it is important to know that

lim
z→0

z2∆−d

(z2 − (t − t′)2 + |x⃗ − x⃗′|2)∆
= π

d
2
Γ
[
∆− d

2

]
Γ[∆] δ(t − t′)δ(d−1)(x⃗ − x⃗′) , for ∆ >

d

2 .

(2.22)
Now we can evaluate the on-shell action

Son-shell
J [ϕJ ] = S0[ϕJ ] + Sbdy[ϕJ ]

= −π
d
2
Γ
[
∆+ + 1− d

2

]
Γ[∆+]

∫
dtdd−1x⃗dt′dd−1x⃗′ J(t′, x⃗′)J(t, x⃗)

(−(t − t′)2 + |x⃗ − x⃗′|2)∆+
,

(2.23)

and then we get the expected generating functional from eq. (2.5)

Z[J ]CFT = e
iπ

d
2

Γ[∆++1− d
2 ]

Γ[∆+]

∫
dtdd−1x⃗dt′dd−1x⃗′ J(t′,x⃗′)J(t,x⃗)

(−(t−t′)2+|x⃗−x⃗′|2)∆+ , (2.24)

which is indeed the CFT generating functional for a conformal primary operator of conformal
weight ∆+.

2.2.2 On-shell and off-shell modes

We learned in the previous discussion that the on-shell modes are relevant to the canonical
quantization and the off-shell modes are relevant to the calculation of the quantum corrections
to the partition function. Moreover, they are normalizable under two different measures
eq. (2.10) and eq. (2.13). Here we will give a detailed study of their properties near the
asymptotic boundary z → 0. We study the on-shell modes first and then the off-shell modes.

To understand the on-shell modes we consider a solution of the scalar field equation
of motion

(□− m2)δϕ(x) = 0 . (2.25)

In the Lorentzian signature, a general solution of eq. (2.25) is given by6

δϕ(x)±
ω,⃗k

= e−iωt+ik⃗·x⃗z
d
2 J

±
√

d2
4 +m2

(
z

√
ω2 − k⃗2

)
, (2.26)

5This explains the statement in section 2.1 that the boundary condition J(t, x⃗) fixed the on-shell profile
and hence the on-shell modes don’t contribute to the path integral.

6Here we remember that there is a subtlety as emphasized in [35] that the solutions displayed in eq. (2.26)

are those for
√

d2
4 + m2 nonintegral. We will ignore this subtlety as we only care about the asymptotic

behavior as z → 0.
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where ω2 − k⃗2 ≥ 0 and we used the Bessel’s functions of the first kind J±α for α =
√

d2

4 + m2.
We therefore have the asymptotic behavior

δϕ(x)±
ω,⃗k

∼ z∆± , as z → 0 . (2.27)

As we discussed in section 2.1, the on-shell modes should be normalizable (finite) in
the Klein-Gordon measure. The finiteness of the Klein-Gordon measure requires a finite
asymptotic behavior

(δϕ±, δϕ±)KG = i

∫
Σ

dzdd−1x
√
−ggtt(δϕ∗±∂tδϕ± − δϕ±∂tδϕ∗±)(z, x⃗)

∼
∫

dzz−d+1z2∆± , near z = 0 , (2.28)

where we have used eq. (2.27). We can see that this finiteness condition requires that
∆± > d−2

2 and is trivially satisfied for ∆+. The standard quantization is the scheme that
projects out δϕ−. Hence in this quantization scheme the on-shell modes satisfy the following
fall-off behavior

δϕon-shell(x) ∼ z∆+ , as z → 0 . (2.29)

Now let’s study the off-shell modes. An off-shell mode satisfies the equation

(□− m2)δϕ(x) = λδϕ(x) , (2.30)

and the normalizability condition

||δϕ||2 =
∫ √

−gdd+1x|δϕ(x)|2 = 1 . (2.31)

Another condition is that we should have

SJ [ϕJ + δϕ] = S0[ϕJ + δϕ] + Sbdy[ϕJ + δϕ]

= 1
2

∫ √
−gdd+1xδϕ(□− m2)δϕ + Son-shell

J [ϕJ ] ,
(2.32)

which ensures that eq. (2.11) is consistent. This requires that eq. (2.20) is satisfied and

Sbdy[δϕ] = −ϵ−∆+π
d
2
Γ
[
∆+ + 1− d

2

]
Γ[∆+]

∫
dtdd−1x⃗δϕ(ϵ, t, x⃗)J(t, x⃗) → 0 , (2.33)

as ϵ → 0. Similar to the on-shell case, a general solution of eq. (2.30) satisfies

δϕ(x)± ∼ z∆±(λ) , as z → 0 , (2.34)

where ∆±(λ) = d
2 ±

1
2
√

d2 + 4m2 + 4λ. Then the normalizability condition eq. (2.31) requires
that ∆−(λ) is projected out for which eq. (2.20) is automatically satisfied and eq. (2.33) sets
λ > 0. Hence, in the standard quantization the off-shell modes are constrained to satisfy

δϕoff-shell(z) ∼ z∆+(λ) , as z → 0 , (2.35)

and λ > 0.
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With the knowledge of the on-shell modes, we can construct the Hilbert space by doing
the canonical quantization eq. (2.8). The field operator ϕ̂(x) is given by

ϕ̂(x) =
∫

dk⃗

(2π)d−1

∫
ω2−k⃗2≥0

dω√
2ω

(
δϕ(x)+

ω,⃗k
â†

ω,⃗k
+ δϕ(x)+∗

ω,⃗k
â

ω,⃗k

)
, (2.36)

where â†
ω,⃗k

and â
ω,⃗k

are the creation and annihilation operators. They satisfy the standard
commutation relations

[â
ω,⃗k

, â†
ω,k⃗′ ] = δ(ω − ω′)δd−1(k⃗ − k⃗′) . (2.37)

With the knowledge of the off-shell modes, we can understand the quantum correction
to the partition function eq. (2.24). A general field configuration can be expanded as

ϕ(x) = ϕJ(x) +
∑
λ>0

∫
ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dωa

λ,ω,⃗k
δϕλ(z, ω, k⃗)e−iωt−ik⃗·x⃗ , (2.38)

where we note that we don’t have on-shell fluctuation modes as the on-shell profile has been
fixed by ϕJ(x). The action evaluated on this configuration is

S[ϕ] = S0[ϕ] + Sbdy[ϕ]

= −π
d
2
Γ
[
∆+ + 1− d

2

]
Γ[∆+]

∫
dtdd−1x⃗dt′dd−1x⃗′ J(t′, x⃗′)J(t, x⃗)

(−(t − t′)2 + |x⃗ − x⃗′|2)∆+

+ 1
2
∑
λ>0

∫
ω2−k⃗2≥0

dd−1k⃗

(2π) dωλ|a
λ,ω,⃗k

|2 .

(2.39)

The first term gives us the result eq. (2.24) and the second term describes the quantum
fluctuations. The quantum correction to the partition function is obtained by the Gaussian
integral over the coefficients a

λ,ω,⃗k
as in eq. (2.11) and eq. (2.15).

2.3 Alternative quantization in AdS/CFT

2.3.1 Review of the Klebanov-Witten proposal

Before we carry out a general analysis for the alternative quantization, let’s review the
Klebanov-Witten proposal for the partition function [36]. Klebanov and Witten suggested
that when the mass square of the AdSd+1 scalar satisfies the condition that ∆− > d−2

2 (which
is the unitarity bound of primary operators in CFTd [37, 38]) we can perform the so-called
alternative quantization such that the dual single-trace scalar primary operator in CFTd has
conformal weight ∆−. They also suggested that the generating functional in this case is a
Legendre transform of that in the standard quantization. Namely, we have

Z[J ′]CFT (2.40)

=
∫

DJe
iπ

d
2

Γ[∆++1− d
2 ]

Γ[∆+]

∫
dtdd−1x⃗dt′dd−1x⃗′ J(t′,x⃗′)J(t,x⃗)

(−(t−t′)2+|x⃗−x⃗′|2)∆+
+π

d
2

Γ[∆++1− d
2 ]

Γ[∆+]

∫
dtdd−1x⃗J(t,x⃗)J ′(t,x⃗)

,
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which can be easily shown, by going to Fourier space, to be

Z[J ′]CFT = e

−i
(2∆−−d)Γ[∆−]

π
d
2 Γ[∆−− d

2 ]
∫

dtdd−1x⃗dt′dd−1x⃗′ J′(t,x⃗)J′(t′,x⃗′)
(−(t−t′)2+|x⃗−x⃗′|2)∆−

, (2.41)

as a legitimate CFTd generating functional for correlators of a scalar primary operator of
conformal weight ∆−.

This calculation can be nicely interpreted in the following way. We first perform the
standard quantization with a fixed source (i.e. boundary condtion) J(t, x⃗) while turning on
an on-shell fluctuation mode δϕ(z, x⃗) which satisfies

δϕ(x) ∼ z∆+J ′(t, x⃗) , as z → 0 , (2.42)

with the boundary condition eq. (2.20) automatically satisfied. Then we evaluate the
resulting on-shell action (or perform the path integral with the prescribed boundary condition
eq. (2.19)) we get

Z[J, J ′]CFT = e−Son-shell[ϕJ +δϕ]

= e
iπ

d
2

Γ[∆++1− d
2 ]

Γ[∆+]

∫
dtdd−1x⃗dt′dd−1x⃗′ J(t′,x⃗′)J(t,x⃗)

(−(t−t′)2+|x⃗−x⃗′|2)∆+
+iπ

d
2

Γ[∆++1− d
2 ]

Γ[∆+]

∫
dtdd−1x⃗J(t,x⃗)J ′(t,x⃗)

,

(2.43)

where we ignored the quantum correction which is not relevant to the CFT generating
functional. Finally, we integrate over the boundary source J(x⃗) and get eq. (2.41).

In summary, at the level of the partition function, the alternative quantization can be
obtained from the standard quantization by turning on a profile of an on-shell mode eq. (2.42)
as a new piece of the background on top of ϕJ and additionally doing the path integral
also over the boundary source J(x⃗) (see [39] for a similar decomposition of the bulk field).
This directly raises the question that what the fall-off behaviors of the on-shell and off-shell
modes are in the alternative quantization scheme.

In the rest of this section, we will see that the formalism we used for the discussion
of the standard quantization can be easily modified and applied for the analysis in the
alternative quantization.

2.3.2 Partition function

In this subsection we will show that the formalism we used in section 2.2.1 also works in the
computation of the partition function (i.e. the generating functional for CFT correlators)
for the alternative quantization precisely when ∆− > d−2

2 .
Similar as before, we have to solve the equation of motion with a boundary condition J ′(x⃗)

(□− m2)ϕJ ′(x⃗) = 0 , (2.44)

and the boundary condition is specified by setting the variation of the whole action δS0+δSbdy
to zero. However, now in the alternative quantization scheme we will use the following
boundary term

Sbdy = −ϵ−∆−π
d
2
Γ
[
∆− + 1− d

2

]
Γ[∆−]

∫
dtdd−1x⃗ϕ(ϵ, t, x⃗)J ′(t, x⃗) , (2.45)
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which gives the boundary condition J ′(t, x⃗) from δS0 + δSbdy = 0:

z−∆+(z∂z −∆−)ϕ(x)|z=ϵ→0 = −2π
d
2
Γ
[
∆− + 1− d

2

]
Γ[∆−]

J ′(t, x⃗) , (2.46)

for a fixed J ′(t, x⃗) and a generic fluctuation should satisfy

z−∆+(z∂z −∆−)δϕ(x) = 0 , as z → 0 , (2.47)

where again we have defined ∆± = d
2 ±

√
d2

4 + m2.
A solution of the equation of motion ϕJ ′(x) which is regular in interior of the AdSd+1 [2]

and satisfies the boundary condition eq. (2.46) is

ϕJ ′(x) =
∫

dt′dd−1x⃗′ J ′(t′, x⃗′)z∆−

(z2 − (t − t′)2 + |x⃗ − x⃗′|2)∆−
. (2.48)

To check that eq. (2.48) satisfies the boundary condition eq. (2.19) it is important to know that

lim
z→0

z2∆−d

(z2 − (t − t′)2 + |x⃗ − x⃗′|2)∆
= π

d
2
Γ
[
∆− d

2

]
Γ[∆] δ(t − t′)δ(d−1)(x⃗ − x⃗′) , for ∆ >

d

2 ,

(2.49)
which imposes the constraint7

∆− >
d − 2
2 . (2.50)

Now we can evaluate the on-shell action

Son-shell[ϕJ ] = S0[ϕJ ] + Sbdy[ϕJ ] = −π
d
2
Γ
[
∆− + 1− d

2

]
Γ[∆−]

∫
ddx⃗ddx⃗′ J

′(x⃗′)J ′(x⃗)
|x⃗ − x⃗′|2∆−

, (2.51)

and then we get the expected CFTd generating functional

Z[J ′]CFT = e
−iπ

d
2

Γ[∆−+1− d
2 ]

Γ[∆−]

∫
dtdd−1x⃗dt′dd−1x⃗′ J′(t′,x⃗′)J′(t,x⃗)

(−(t−t′)2+|x⃗−x⃗′|2)∆− , (2.52)

which is that for correlators of a conformal primary operator of conformal weight ∆−.
7The expansion of eq. (2.48) for small z behaves as

ϕJ′(z, t, x⃗) =
(

AJ′(t, x⃗)z∆− + O(z∆−+2)
)

+
(

BJ′(t, x⃗)z∆+ + z∆++2
)

,

where AJ′ and BJ′ are solely determined by J ′(t, x⃗). To make sure that the boundary condition eq. (2.46) is
satisfied we have to make sure that the O(z∆−+2) terms in the first bracket give zero contribution to the left
hand side of eq. (2.46). Hence we need

z∆−+2−∆+ = z−d+2+2∆− → 0 , as z → 0 .

This requires that ∆− > d−2
2 which is exactly the same as the constraint eq. (2.50).
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2.3.3 On-shell and off-shell modes

In analogy to section 2.2.2, we will study the properties of the on-shell and off-shell modes
near the asymptotic boundary z → 0.

The on-shell modes satisfy the equation of motion

(□− m2)δϕ(x) = 0 , (2.53)

for which a general solution is given by

δϕ(z, ω, k⃗)± = e−iωt+ik⃗·x⃗z
d
2 J

±
√

d2
4 +m2

(
z
√

ω2 − k2
)

, (2.54)

where ω2 − k⃗2 ≥ 0 and the fluctuation δϕ± has the asymptotic behavior

δϕ±(z, ω, k⃗) ∼ z∆± , as z → 0 . (2.55)

Moreover the Klein-Gordon norm

(δϕ±, δϕ±)KG = i

∫
Σ

dzdd−1x
√
−ggtt(δϕ±∗∂tδϕ± − δϕ±∂tδϕ±∗)(z, x⃗)

∼
∫

dzz−d+1z2∆± , near z = 0 ,
(2.56)

is finite for both ∆± if ∆− > d−2
2 . As opposed to the standard quantization, the alternative

quantization projects out the ∆+ modes. Hence the on-shell modes satisfy

δϕon-shell(x) ∼ z∆− , as z → 0 . (2.57)

Let’s now study the off-shell modes. Similar to the standard quantization case, eq. (2.47)
should be satisfied for the stability of the on-shell configuration. This projects out the δϕ−

modes and requires that λ > 0. Moreover the normalizability of the measure eq. (2.31)
and the vanishing of

Sbdy[δϕ] = −ϵ−∆+π
d
2
Γ
[
∆+ + 1− d

2

]
Γ[∆+]

∫
ddx⃗δϕ(ϵ, x⃗)J ′(x⃗) , (2.58)

as ϵ → 0 are trivially satisfied for δϕ+ modes. Hence in the alternative quantization the
off-shell modes are constrained to satisfy

δϕoff-shell(x) → z∆+(λ) , as z → 0 , (2.59)

and λ > 0.
With the knowledge of the on-shell modes, we can construct the Hilbert space by doing

the canonical quantization eq. (2.8). The field operator ϕ̂(x) is given by

ϕ̂(x) =
∫

dk⃗

(2π)d−1

∫
ω2−k⃗2≥0

dω√
2ω

(
δϕ(x)−

ω,⃗k
b̂†

ω,⃗k
+ δϕ(x)−∗

ω,⃗k
b̂

ω,⃗k

)
, (2.60)

where b̂†
ω,⃗k

and b̂
ω,⃗k

are the creation and annihilation operators. They satisfy the standard
commutation relations

[b̂
ω,⃗k

, b̂†
ω,k⃗′ ] = δ(ω − ω′)δd−1(k⃗ − k⃗′) . (2.61)
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With the knowledge of the off-shell modes, we can understand the quantum correction
to the partition function eq. (2.52). A general field configuration can be expanded as

ϕ(x) = ϕJ ′(x) +
∑
λ>0

∫
ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dωb

λ,ω,⃗k
δϕλ(z, ω, k⃗)e−iωt+ik⃗·x⃗ , (2.62)

and the action evaluated on this configuration is

S[ϕ] = S0[ϕ] + Sbdy[ϕ]

= −π
d
2
Γ
[
∆− + 1− d

2

]
Γ[∆−]

∫
dtdd−1x⃗dt′dd−1x⃗′ J ′(t′, x⃗′)J ′(t, x⃗)

(−(t − t′)2 + |x⃗ − x⃗′|2)∆−

+ 1
2
∑
λ>0

∫
ω2−k⃗2≥0

dd−1k⃗

(2π) dωλ|b
λ,ω,⃗k

|2 .

(2.63)

The first term gives us the result eq. (2.52) and the second term describes the quantum
fluctuations. The quantum correction to the partition function is obtained by the Gaussian
integral over the coefficients b

λ,ω,⃗k
as in eq. (2.11) and eq. (2.15).

3 Consistency with the double-trace deformation

We have performed a careful analysis of the bulk modes in the standard AdS/CFT correspon-
dence in the previous section. In this section, we will review the description of double-trace
deformation in the standard AdS/CFT correspondence and check the consistency with our
previous analysis. For the sake of convenience, we will use the Euclidean signature from now
on. Since we will always think of analytic continuation to the Lorentzian signature, we will
ignore the subtleties of the Euclidean AdS/CFT such as the bulk irregularity of the ∆− modes.

3.1 Double-trace deformation in AdS/CFT

As it is proposed by Witten [19] that the double-trace deformation :
∫

ddx⃗O2(x⃗): (where for
the sake of simplicity we will ignore the normal ordering hereafter) on the CFT side duals to
the modification of the boundary condition for the scalar field ϕ(z, x⃗) (which is dual to the CFT
single-trace operator O(x⃗)) in the AdS bulk. More precisely, if the deformation is given by

W [O] = h

2

∫
ddxO2(x⃗) , (3.1)

where the single-trace operator O(x⃗) has conformal weight ∆ = ∆± depending on our
quantization scheme and h is the coupling constant. Then the dual scalar field in AdSd+1
has the near boundary behavior

ϕ(z, x⃗) ∼
(

γ∆
δW [α]

δα
zd−∆ +O(zd−∆+2)

)
+
(
α(x⃗)z∆ +O(z∆+2)

)
=
(
hγ∆α(x⃗)zd−∆ +O(zd−∆+2)

)
+
(
α(x⃗)z∆ +O(z∆+2)

)
,

(3.2)

for a generic configuration with the boundary condition J(t, x⃗) = 0 where γ∆ is an order
one constant. We want to get the precise value of γ∆ so we need a precise description of
the double-trace deformation eq. (3.1) in the dual AdS bulk.
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The precise description can be obtained using the path integral formulation. The double-
trace deformation can be formulated using the path integral language [34]. Let’s consider
the CFT generating functional under the double-trace deformation eq. (3.1):

Z[J ]CFT = ⟨e
∫

ddx⃗(h
2O

2(x⃗)+J(x⃗)O(x⃗))⟩CFT

= ⟨
∫

D[λ(x⃗)]e
∫

ddx⃗

(
−λ2(x⃗)

2h
+(J(x⃗)+λ(x⃗))O(x⃗)

)
⟩CFT

=
∫

D[λ(x⃗)]e−
∫

ddx⃗
(λ−J)2(x⃗)

2h ⟨e
∫

ddx⃗λ(x⃗)O(x⃗)⟩CFT

=
∫

D[λ(x⃗)]e−
∫

ddx⃗
(λ−J)2(x⃗)

2h Z[λ]AdSd+1

=
∫

D[λ(x⃗)]e−
∫

ddx⃗
(λ−J)2(x⃗)

2h

∫
D[ϕ;λ]e−Sλ[ϕ]

=
∫

D[λ(x⃗)]e−
∫

ddx⃗
(λ−J)2(x⃗)

2h

×
∫

D[ϕ]e−Sλ[ϕ]Πx⃗δ

ϵ−d+∆(z∂z −∆)ϕ(x) + 2π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆] λ(x⃗)


=
∫

D[λ(x⃗)]e−
∫

ddx⃗
(λ−J)2(x⃗)

2h

×
∫

D[ϕ]D[β(x⃗)]e−Sλ[ϕ]e
i
∫

ddx⃗β(x⃗)
(

ϵ−d+∆(z∂z−∆)ϕ(x)+2π
d
2

Γ[∆+1− d
2 ]

Γ[∆] λ(x⃗)
)

,

(3.3)

where the path integral measure D[ϕ;λ] is constrained by the boundary condition eq. (2.19)
now with a source λ(x⃗), the path integral measure D[ϕ] is not constrained by any boundary
condition and Sλ[ϕ] is given by

Sλ[ϕ] = S0[ϕ]− ϵ−∆π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆]

∫
ddx⃗ϕ(ϵ, x⃗)λ(x⃗) . (3.4)

We can integrate out λ(x⃗) and get

Z[J ]CFT =
∫

D[ϕ]D[β(x⃗)]e−S[ϕ,β] , (3.5)

and the resulting exact effective action is given by

S[ϕ, β] = S0[ϕ]−
∫

ddx⃗ϵ−∆π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆] ϕ(x⃗)J(x⃗)

+ h

2

∫
ddx⃗

π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆]

2 (
4β(x⃗)2 − ϵ−2∆ϕ(x⃗)2

)

− i

∫
ddxβ(x⃗)

ϵ−d+∆(z∂z −∆)ϕ(x) + 2π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆] J(x⃗)

+2h

π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆]

2

ϵ−∆ϕ(x⃗)

 .

(3.6)
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Moreover, we can integrate out β(x⃗) and finally get

Z[J ]CFT =
∫

D[ϕ]e−Sh[ϕ] , (3.7)

where the exact effective action is given by

Sh[ϕ] = S0[ϕ]−
∫

ddx⃗ϵ−∆π
d
2
Γ
[
∆+1− d

2

]
Γ[∆] ϕ(x⃗)J(x⃗)

− h

2

∫
ddx⃗

π
d
2
Γ
[
∆+1− d

2

]
Γ[∆]

2

ϵ−2∆ϕ(x⃗)2

+ 1
2h

∫
ddx⃗

2π
d
2
Γ
[
∆+1− d

2

]
Γ[∆]

−2(
ϵ−d+∆(z∂z −∆)ϕ(x)+2π

d
2
Γ
[
∆+1− d

2

]
Γ[∆] J(x⃗)

+2h

π
d
2
Γ
[
∆+1− d

2

]
Γ[∆]

2

ϵ−∆ϕ(x⃗)
)2

,

(3.8)
which reproduces our previous results

S = S0[ϕ]−
∫

ddx⃗ϵ−∆π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆] ϕ(x⃗)J(x⃗) ,

ϵ−d+∆(z∂z −∆)ϕ(ϵ, x⃗) = −2π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆] J(x⃗) ,

(3.9)

when h → 0.
Now we want to derive the boundary condition for a generic field configuration when

J(t, x⃗) = 0. This is ensured by the following requirement

δSh[ϕ] = −
∫ √

gdd+1xδϕ(□− m2)ϕ , (3.10)

which equivalently says that the boundary contribution of the variation is zero. A generic
configuration of ϕ(x) has both on-shell and off-shell piece and as is known from our previous
study that the off-shell piece decays faster than the on-shell piece as z → 0 so we only have
to ensure the on-shell piece satisfies the above condition. A generic on-shell profile satisfies

ϕ(x) ∼ (α(x⃗)zd−∆ +O(z∆−d+2)) + (βx⃗)(z∆ +O(z∆+2)) , as z → 0 , (3.11)

and as long as we are in the window that we are able to perform the alternative quantization
i.e. d+2

2 > ∆ > d−2
2 we don’t have to care about the subleading term so we can just use

ϕ(x) ∼ α(x⃗)zd−∆ + β(x⃗)z∆ , as z → 0 . (3.12)

Now we can compute the boundary contribution of the variation δSh[ϕ] for J(t, x⃗) = 0:

δSh[ϕ]bdy (3.13)

=
∫

ddx⃗

1
h

2π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆]

−2

(d − 2∆)2αδα + (d − 2∆)αδαϵd−2∆ + (d − 2∆)βδα

 .

– 16 –



J
H
E
P
0
9
(
2
0
2
4
)
0
1
2

Since either ϵd−2∆ or ϵ2∆−d is divergent (as ∆ = d
2 ± 1

2
√

d2 + 4m2), we need holographic
renormalization [40] to remove the divergent one. Let’s discussion the two situations separately.

• ∆ > d
2 : In this case, the counterterm we should add is

Scounter[ϕ] = −d − 2∆
2

∫
ddx⃗

1
ϵd

ϕ2(ϵ, x⃗) . (3.14)

Hence we have

δSh[ϕ]bdy + δScounter[ϕ]

=
∫

ddx⃗

1
h

2π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆]

−2

(d − 2∆)2αδα − 2(d − 2∆)αδβ

 = 0 ,

(3.15)

which implies that

α = 8h

d − 2∆

π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆]

2

β . (3.16)

• ∆ < d
2 : In this case, we just have to add a zero counterterm. Hence we have

δSh[ϕ]bdy + δScounter[ϕ]

=
∫

ddx⃗

1
h

2π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆]

−2

(d − 2∆)2αδα + (d − 2∆)βδα

 = 0 ,

(3.17)

which implies that

α = − 4h

d − 2∆

π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆]

2

β . (3.18)

Now let’s understand what’s going on with the Hilbert space when we have the double-
trace deformation for which we go back to Lorentzian signature. Depending on the quantization
scheme that we start with we either have the boundary behavior eq. (3.16) or eq. (3.18).
Without loss of generality, let’s consider eq. (3.16). In this case, a general bulk on-shell
mode is given by

δϕ(x)
ω,⃗k

= e−iωt+ik⃗·x⃗z
d
2

×

 8h

d − 2∆

π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆]

2

J
−
√

d2
4 +m2

(
z
√

ω2 − k2
)
+ J√

d2
4 +m2

(
z
√

ω2 − k2
) ,

(3.19)

and these modes are orthonormal in the Klein-Gordon norm due to the orthonormality of
the δϕ±(x)ω,x⃗ in eq. (2.26). The field operator ϕ̂(x) is given by

ϕ̂(x) =
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1
dω√
2ω

(
δϕ(x)

ω,⃗k
a†

ω,⃗k
+ δϕ(x)

ω,⃗k
a

ω,⃗k

)
, (3.20)
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where the creation and annihilation operators satisfy the standard commutation relations
if we impose the canonical quantization condition eq. (2.8). Hence we see that the Hilbert
space dimension is not changed but the asymptotic behavior of each eigenmode is deformed
by the double-trace deformation eq. (3.1).

3.2 Interpolation between the two quantization schemes through the
double-trace deformation

We can see from eq. (3.2) that in the strong coupling limit h → ∞ we go from the quantization
corresponding to ∆ to that corresponding to d − ∆. In other words, the double-trace
deformation eq. (3.1) drives the standard quantization to the alternative quantization and
vice versa. This can be seen more precisely from the path integral point of view. Now we
can take the strong coupling limit h → ∞ for eq. (3.8). To have a legitimate large h limit
the relevant term has to be of order O(1) when we take ϵ → 0 before we take the large
h limit. In other words we have

ϵ−d+∆(z∂z −∆)ϕ(x) + 2π
d
2
Γ
[
∆+ 1− d

2

]
Γ[∆] J(x⃗) ≲ 1 , as z → 0 , (3.21)

which means that8

ϕ(z, x⃗) ≲ zd−∆ . (3.22)

Then the h-dependent terms in Sh[ϕ] goes to zero as h → ∞. Hence we finally get∫
D[ϕ]e−S0[ϕ]+ 1

2

∫
ddx⃗ϵ−dϕ(ϵ,x⃗)(z∂z−∆)ϕ(ϵ,x⃗)−Scounter[ϕ] . (3.23)

Now we can see that if we start with the alternative quantization i.e. ∆ = ∆− then the
on-shell modes of the resulting path integral eq. (3.23) in the Lorentzian signature satisfy
δϕ(z, x⃗) ∼ zd−∆− = z∆+ . The off-shell modes are those fluctuations (on top of an on-shell
configuration) which satisfy eq. (3.22) and has a finite action (here ϕ = ϕos + δϕ where
ϕos is an on-shell configuration)

S[ϕ] = S0[ϕ]−
1
2

∫
ddx⃗ϵ−dϕ(ϵ, x⃗)(z∂z −∆−)ϕ(ϵ, x⃗) (3.24)

This is automatically satisfied if δϕ(z, x⃗) decays faster than z∆+ which is consistent with
eq. (2.35). Hence, we can see that if we start with the alternative quantization then we end up
with the bulk modes as in the case of the standard quantization section 2.2.2 if we take h → ∞.

On the other hand, if we start with the standard quantization i.e. ∆ = ∆+ then from
eq. (3.22) the modes at least satisfy

δϕ(z, x⃗) ∼ zd−∆+ = z∆− . (3.25)

8Here we have used the CFT unitarity bound that ∆ > d−2
2 such that the z∆(1 + O(z2)) series contributes

zero as z = ϵ → 0.
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Hence the on-shell modes satifies δϕ(z, x⃗) ∼ z∆− . For the off-shell modes (on top of an
on-shell configuration) the finiteness of the action (here ϕ = ϕos + δϕ where ϕos is an on-shell
configuration)

S[ϕ] = S0[ϕ] +
1
2

∫
ddx⃗ϵ−dϕ(ϵ, x⃗)(z∂z −∆+)ϕ(ϵ, x⃗)− d −∆+

2

∫
ddx⃗

1
ϵd

ϕ2(ϵ, x⃗) , (3.26)

requires that δϕ(z, x⃗) to decay faster than or equal to z∆+ which is consistent with eq. (2.59).
Therefore, we conclude that if we start with the standard quantization then we end up with
the bulk modes as in the case of the alternative quantization section 2.3.3 if we take h → ∞.

In summary, we see that our result of the bulk modes in section 2.2.2 and section 2.3.3
are consistent with the fact that the double-trace deformation is interpolating between the
standard quantization and alternative quantization in AdS/CFT.

4 Coupling AdS/CFT to a bath

Having reviewed and carefully analyzed the physics of the standard AdS/CFT correspondence,
we will study the main subject of this paper that we couple the AdS/CFT to a bath at
the asymptotic boundary of the bulk AdS. The main techniques we will use are almost
the same as before. We assume that we are in the window where we are able to perform
the alternative quantization.

As we briefly mentioned in the introduction that the coupling protocol is most easily
described in the CFT description. Let’s consider the CFTd which duals to the gravitational
theory in the bulk AdSd+1 and let’s call it CFT1. We want to couple this CFTd to a bath
which is modelled by another conformal field theory which we call CFT2. We will consider
two cases for the CFT2.

4.1 Non-gravitational bath

In the first case, CFT2 is of dimension (d + 1) and it lives on a half Minkowski space whose
boundary is of the same geometry as the manifold that supports CFT1 (see figure 1). These
two CFT’s are coupled to each other as following

Stot = SCFT1
d
+ g

∫
ddx⃗ : O1O2 : +SCFT2

d+1
, (4.1)

where O1 is a single-trace operator from CFT1
d, O2 is the boundary extrapolation of a single-

trace operator of CFT2
d+1 and the deformation is marginal. Hence we have ∆1 +∆2 = d. We

consider the case that ∆1 > d
2 (i.e. standard quantization in the bulk AdSd+1). From the

dual AdS perspective, this is equivalent to gluing the asymptotic boundary of the AdSd+1
to a (d + 1)-dimensional bath (i.e., the CFT2) and the gluing condition is determined by
the double-trace deformation. Following [19] now we have

W [O1,O2] = g

∫
ddx⃗O1O2 , (4.2)

and the scalar field in AdSd+1 that duals to O1 has the near boundary behavior

ϕ(z, x⃗) ∼
(

a∆
δW [α,O2]

δα
zd−∆1 +O(zd−∆1+2)

)
+ (α(x⃗)z∆1 +O(z∆1+2))

∼ (ga∆O2(x⃗)zd−∆1 +O(zd−∆1+2)) + (α(x⃗)z∆1 +O(z∆1+2)) ,

(4.3)
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where O2(x⃗) and α(x⃗) are independent. To derive the proper action for ϕ(x) let’s consider
the source free partition function

ZCFT1+CFT2 = ⟨e−
∫

ddx⃗O1(x⃗)O2(x⃗)⟩CFT1+CFT2

= ⟨Z[O2]AdSd+1⟩CFT2

= ⟨
∫

D[ϕ;O2]e−SO2 [ϕ]⟩CFT2 .

(4.4)

For simplicity we assume that the CFT2 just gives a dynamics for Oext
2 whose boundary

extrapolation is O2 and we write it as S[Oext
2 ]. Thus we have

ZCFT1+CFT2 =
∫

D[Oext
2 ]D[ϕ;O2]e−SO2 [ϕ]−S[Oext

2 ] . (4.5)

Now let’s determine the appropriate boundary conditions and boundary terms by considering
the variation of S0[ϕ] + S[Oext

2 ] around an on-shell configuration (ϕos,O2,os)

δS0[ϕ] + δS[Oext
2 ] = −1

2

∫
z=ϵ

ddx⃗z−d+1
(
δϕ∂zϕos − ϕos∂zδϕ

)
+ δS[Oext

2,os] . (4.6)

Since the off-shell modes are subleading, we only have to focus on the on-shell piece for
δϕ. Hence we have

δS0[ϕ] + δS[Oext
2 ] = −1

2ga∆(2∆1 − d)
∫

ddx⃗(δO2α − δαO2) + δS[Oext
2,os] . (4.7)

To proceed we need information about S[Oext
2 ]. It is a sector of the bath CFTd+1 and without

loss of generality we assume that we have

S[Oext
2 ] = 1

2

(∫
dd+1xOext

2 ∂µ∂µOext
2 − V [Oext

2 ]
)

, (4.8)

where the potential is added to ensure Oext
2 has the conformal dimension ∆2 = d −∆1 when

extrapolated to the boundary and we assume that the direction normal to the boundary
is ⊥.9 Hence we have

δS0[ϕ]+δS[Oext
2 ] =−1

2ga∆(2∆1−d)
∫

ddx⃗(δO2α−δαO2)+δS[Oext
2,os]

=−1
2ga∆(2∆1−d)

∫
ddx⃗(δO2α−δαO2)+

1
2

∫
ddx⃗(O2,os∂⊥δOext

2

−δO2∂⊥Oext
2,os) ,

(4.9)

where we ignored the contribution from the potential which is not a boundary term and
this boundary variation is vanishing if

ga∆ = 1
(2∆1 − d) α = −∂⊥Oext

2,os . (4.10)

Hence we don’t need additional boundary terms on the action. Moreover, the off-shell modes
of Oext

2 are taken to satisfy either the Dirichlet or the Neumann boundary condition.
9One can think of Oext

2 as a generalized free field.
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Now let’s understand the Hilbert space in the AdSd+1 by doing canonical quantization
eq. (2.8) with the boundary condition eq. (4.3). From this question we switch back to
the Lorentzian signature. Eq. (4.3) tells us that we should treat δϕ+(x)

ω,⃗k
and δϕ−(x)

ω,⃗k

from eq. (2.26) independently and both of them qualify as on-shell modes so we have the
field operator ϕ̂(x)

ϕ̂(x) (4.11)

=
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1
dω√
2ω

(
δϕ+(x)

ω,⃗k
â†

ω,⃗k
+δϕ−(x)

ω,⃗k
b̂†

ω,⃗k
+δϕ+∗(x)

ω,⃗k
â

ω,⃗k
+δϕ−∗(x)

ω,⃗k
b̂

ω,⃗k

)
,

in which we have two copies of creation and annihilation operators. This tells us that the
Hilbert space now is twice as large are before which is not surprising as we have coupled the
AdSd+1 to a bath so the particles from the bath are free to enter the AdSd+1 [41].

With the structure of the Hilbert space clear, we want to further understand the partition
function eq. (4.5) with the quantum correction included. The difference between this and the
previous cases is that the boundary source O2 is also dynamical so the on-shell part of the
field configuration is not fixed and it will be fluctuating. A generic bulk field configuration
in AdSd+1 can be expanded as

ϕ(z, t, x⃗) =
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dω

1
2∆1 − d

O2,os,ω,⃗k
δϕ−(x)

ω,⃗k

+
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dωa0,ω,⃗k

δϕ+(x)
ω,⃗k

+
∑
λ>0

∫
ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dωa

λ,ω,⃗k
δϕλ(z, ω, k⃗)e−iωt−ik⃗·x⃗ .

(4.12)

We can evaluate the action on the configuration as

S0[ϕ] =
1
2
∑
λ>0

∫
ω2−k⃗2≥0

dd−1k⃗

(2π) dωλ|a
λ,ω,⃗k

|2 , (4.13)

where we notice that the zero modes decouple. Then the path integral can be evaluated as
the integral over the coefficients a

λ,ω,⃗k
. Nevertheless, we also have to do the path integral

over O2 for which again the zero modes Oext
2,os will decouple from the kinetic term.

4.2 Gravitational bath

In the second case, CFT2 is of dimension d and it has a holographic dual (see figure 2). The
two CFT’s are again coupled to each other by a double-trace deformation

Stot = SCFT1
d
+ g

∫
ddx⃗ : O1O2 : +SCFT2

d
, (4.14)

where O1 is a single-trace operator from CFT1 and O2 is a single-trace operator from CFT2.
Hence physically we are coupling two AdSd+1’s by gluing them along their asymptotic
boundaries such that energy can flow between them.10 We will stick with this two-AdSd+1

10See [42] for a study of gravitational thermodynamics of this model.
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description. Now we have two scalar fields with one on each AdSd+1 and they are dual to
O1 and O2 respectively. Their near boundary behaviors are

ϕ1(z, x⃗) ∼
(

a∆1

δW [α, β]
δα

zd−∆1 +O(zd−∆1+2)
)
+ (α(x⃗)z∆1 +O(z∆1+2))

∼
( 1
2∆1 − d

β(x⃗)zd−∆1 +O(zd−∆1+2)
)
+ (α(x⃗)z∆1 +O(z∆1+2)) ,

ϕ2(z, x⃗) ∼
(

a∆2

δW [α, β]
δβ

zd−∆2 +O(zd−∆2+2)
)
+ (β(x⃗)z∆2 +O(z∆2+2))

∼
( 1
2∆2 − d

α(x⃗)zd−∆2 +O(zd−∆2+2)
)
+ (β(x⃗)z∆2 +O(z∆2+2)) ,

(4.15)

where we have used the first formula in eq. (4.10) and we remember that ∆1 +∆2 = d. We
may have to add appropriate boundary terms to the action ensuring that this is a legitimate
boundary condition. Let’s firstly study the variation without any boundary counterterm
around an on-shell configuration

δS0[ϕ1] + δS0[ϕ2] = −1
2

∫
z=ϵ

ddx⃗z−d+1
(
δϕ1∂zϕ1,os − ϕ1,os∂zδϕ1

)
− 1

2

∫
z=ϵ

ddx⃗z−d+1
(
δϕ2∂zϕ2,os − ϕ2,os∂zδϕ2

)
= −1

2

∫
ddx⃗(δβα − δαβ)− 1

2

∫
ddx⃗(δαβ − δβα)

= 0 .

(4.16)

Hence we don’t need any boundary term added.
Now we go back to the Lorentzian signature. The construction of the Hilbert space in

each AdSd+1 is almost the same as in the nongravitational bath case. The field operators
ϕ̂1(x) and ϕ̂2(x) can be expanded in terms of two sets of creation and annihilation operators as

ϕ̂1(x) =
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1
dω√
2ω

×
(

δϕ+(x)
ω,⃗k

â†
ω,⃗k

+
δϕ−(x)

ω,⃗k

2∆1 − d
b̂†

ω,⃗k
+ δϕ+∗(x)

ω,⃗k
â

ω,⃗k
+

δϕ−∗(x)
ω,⃗k

2∆1 − d
b̂

ω,⃗k

)
,

ϕ̂2(x) =
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1
dω√
2ω

×
(

δϕ+(x)
ω,⃗k

2∆2 − d
â†

ω,⃗k
+ δϕ−(x)

ω,⃗k
b̂†

ω,⃗k
+

δϕ+∗(x)
ω,⃗k

2∆2 − d
â

ω,⃗k
+ δϕ−∗(x)

ω,⃗k
b̂

ω,⃗k

)
.

(4.17)

We notice that we have

[ϕ̂1(z, t, x⃗), gtt∂tϕ̂1(z′, t, x⃗′)] =
1 +

(
1

2∆1−d

)2

√
−g

δ(z − z′)δd−1(x⃗ − x⃗′) ,

[ϕ̂2(z, t, x⃗), gtt∂tϕ̂1(z′, t, x⃗′)] = 0 ,

[ϕ̂2(z, t, x⃗), gtt∂tϕ̂2(z′, t, x⃗′)] =
1 +

(
1

2∆2−d

)2

√
−g

δ(z − z′)δd−1(x⃗ − x⃗′) ,

[ϕ̂1(z, t, x⃗), gtt∂tϕ̂2(z′, t, x⃗′)] = 0 ,

(4.18)
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where the second column is due to 2∆1 − d = d − 2∆2 and they ensure the locality (or the
cluster decomposition) between the two AdSd+1 universes.11

The partition function can be similarly studied as before. A generic bulk fields con-
figuration can be expanded as

ϕ1(z, t, x⃗) =
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dω

1
2∆1 − d

b0,ω,⃗k
δϕ−(x)

ω,⃗k

+
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dωa0,ω,⃗k

δϕ+(x)
ω,⃗k

+
∑
λ>0

∫
ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dωa

λ,ω,⃗k
δϕλ(z, ω, k⃗)e−iωt−ik⃗·x⃗ ,

ϕ2(z, t, x⃗) =
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dωb0,ω,⃗k

δϕ−(x)
ω,⃗k

+
∫

ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dω

1
2∆2 − d

a0,ω,⃗k
δϕ+(x)

ω,⃗k

+
∑
λ>0

∫
ω2−k⃗2≥0

dk⃗

(2π)d−1

∫
dωb

λ,ω,⃗k
δϕλ(z, ω, k⃗)e−iωt−ik⃗·x⃗ .

(4.19)

The action evaluated on this configuration is

S0[ϕ1] + S0[ϕ2] = −1
2
∑
λ>0

∫
ω2−k⃗2≥0

dd−1k⃗

(2π) dωλ|a
λ,ω,⃗k

|2 − 1
2
∑
λ>0

∫
ω2−k⃗2≥0

dd−1k⃗

(2π) dωλ|b
λ,ω,⃗k

|2 ,

(4.20)
where the on-shell modes decoupled completely.

5 Path integral and the diffeomorphism invariance

In the previous section we got the action for generic field configurations eq. (4.13) and
eq. (4.20). The partition functions can be obtained by doing the path integral over these
configurations. Nevertheless, a subtlety is that the path integral measure is defined upto
an ambiguous constant and we have to nomralize the path integral measure first to fix this
overall constant which is potentially infinite [44, 45]. Since we are considering a gravitational
theory in the AdSd+1 this measure had better to be diffeomorphism invariant and if not there
will be diffeomorphism anomaly. Generally for a scalar field on a (d + 1)-dimensional curved
spacetime background the diffeomorphism invariant path integral measure is defined by∫

D[ϕ]e−i
∫

dd+1x
√
−gϕ2(x) = 1 . (5.1)

11The locality between ϕ1(z, t, x⃗) and ϕ2(z′, t′, x⃗′) can be seen by computing their commutator. The result
is

⟨[ϕ̂1(z, t, x⃗), ϕ̂2(z′, t′, x⃗′)]⟩ ∝ Im
(

G∆2 (t − t′ − iϵ, x⃗ − x⃗′, z − z′) − G∆1 (t − t′ − iϵ, x⃗ − x⃗′, z − z′)
)

,

where G∆(t, x⃗, z) is the AdSd+1 Green function for the massive scalar field whose dual CFT operator
has conformal dimension ∆. This has been shown to be local with respect to the geodesic distance
cosh−1 (z+z′)2+(x⃗−x⃗′2−(t−t′)2)

zz′ in [43] using the global coordinates of AdS.
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In this section, we will show that in the appearance of the bath the situation is rather
subtle and interesting.

5.1 Gravitational bath

For the sake of simplicity, we consider first the case of the gravitational bath that we have
studied in section 4.2. In section 4.2 we noticed that the scalar fields ϕ1(x) and ϕ2(x)
have rather unusual boundary conditions as comparing to the standard AdS/CFT case
and a direct consequence of these unusual boundary conditions is that in the canonical
quantization of them we need two sets of creation and annihilation operators for both of
them.12 This suggests that none of them is in an irreducible representation of the AdSd+1
isometry group SO(d, 2). Nevertheless, specific linear combinations of them are in irreducible
representations and they are

(2∆1−d)ϕ̂1(x)− ϕ̂2(x)

=
(
2∆1−d− 1

2∆2−d

)∫
ω2−k⃗2≥0

dk⃗

(2π)d−1
dω√
2ω

(
δϕ+(x)

ω,⃗k
â†

ω,⃗k
+δϕ+∗(x)

ω,⃗k
â

ω,⃗k

)
,

ϕ̂1(x)−(2∆2−d)ϕ̂2(x)

=
( 1
2∆1−d

−2∆2+d

)∫
ω2−k⃗2≥0

dk⃗

(2π)d−1
dω√
2ω

(
δϕ−(x)

ω,⃗k
b̂†

ω,⃗k
+δϕ−∗(x)

ω,⃗k
b̂

ω,⃗k

)
.

(5.2)

This fact can be more intuitively understood by folding the two AdSd+1 to a single AdSd+1 in
which we would have two scalar fields ϕ1(x) and ϕ2(x) (and also two gravitons). Moreover, the
stress-energy tensors of the two combinations in eq. (5.2) have reflective boundary conditions on
the asymptotic boundary of the resulting AdSd+1(see figure 3). More precisely, in the resulting
AdSd+1, we are performing the standard quantization in AdS/CFT for (2∆1 −d)ϕ1(x)−ϕ2(x)
and we are performing the alternative quantization for ϕ1(x)− (2∆2 − d)ϕ2(x) (see eq. (2.36)
and eq. (2.60)). Hence the path integral of the scalar fields can be better studied in the
basis ϕ+ = (2∆1 − d)ϕ1(x)− ϕ2(x) and ϕ− = ϕ1(x)− (2∆2 − d)ϕ2(x) instead of ϕ1(x) and
ϕ2(x). For each of ϕ+ = (2∆1 − d)ϕ1(x) − ϕ2(x) and ϕ− = ϕ1(x) − (2∆2 − d)ϕ2(x) we
have a conserved stress-energy tensor T±

µν . In a quantum gravitational theory on this folded
AdSd+1, we should define a diffeomorphism (both large and small diffeomorphisms) invariant
path integral measure with respect to the diffeomorphisms generated by the sum of these
two stress-energy tensors T +

µν + T−
µν .

This measure is given by

∫
Dϕ+Dϕ−e

−i
∫

dd+1x
√
−g 1

(2∆1−d)2+1

(
ϕ+(x)2+ϕ−(x)2

)
= 1 . (5.3)

12Here we emphasize that they share the same two sets (see eq. (4.17)).
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AdSd+1 AdSd+1 AdSd+1

Figure 3. Left:The situation we consider in figure 2 where we have two AdSd+1 universes coupled to
each other by gluing them along their common asymptotic boundary using a double-trace deformation
eq. (1.2). We have one scalar field on each AdSd+1 and they have transparent boundary condition at
the asymptotic boundary due to the double-trace deformation. Right: For the sake of convenience we
folded the two AdSd+1 to a single AdSd+1 where we have two scalar fields and the linearly independent
combinations eq. (5.2) have the reflective boundary condtion. Moreover, in the AdSd+1 resulted from
folding we have two dynamical gravitons.

This can be used to fix the overall factor C(ϵ) of the path integral measure as following

∫
Dϕ+Dϕ−e

−i
∫

dd+1x
√
−g 1

(2∆1−d)2+1

(
ϕ+(x)2+ϕ−(x)2

)
=
∫

C(ϵ)Π
ω,⃗k

da0,ω,⃗k
db0,ω,⃗k

Πλ>0da
λ,ω,⃗k

db
λ,ω,⃗k

×

× e
−
∫

ω2−k⃗2≥0
dd−1k⃗
(2π) dω

((2∆1−d− 1
2∆2−d

)2
(2∆1−d)2+1

(|a0,ω,k⃗
|2+ϵd−2∆1 |b0,ω,k⃗

|2)+
∑

λ>0(|a
λ,ω,k⃗

|2+|b
λ,ω,k⃗

|2)
)

=1 ,

(5.4)

where ϵ is the near asymptotic boundary cutoff z = ϵ → 0 and we have used the fact that the
modes δϕ−(x)

ω,⃗k
cannot be normalized to an ϵ independent constant under

∫
dd+1x

√
−gϕ2(x)

due to its asymptotic behavior δϕ−(x)
ω,⃗k

∼ zd−∆1 (remember we have assumed that ∆1 > d
2 ).

Solving eq. (5.4) we can see that the normalization constant C(ϵ) is a monomial of the cutoff
scale ϵ which can heuristically be thought of as a Pauli-Villars regularization by which we
can think of C(ϵ) as coming from integrating out free heavy fermions. This overall coefficient
C(ϵ) will decouple in generating functionals for connected correlators.

It is straightforward to see that the measure eq. (5.3) is invariant under the diffeo-
morphisms

x → x,

gµν(x) → g′µν(x) =
∂x′ρ

∂xµ

∂x′σ

∂xν
gρσ(x′) ,

ϕ+(x) → ϕ′
+(x) = ϕ+(x′) ,

ϕ−(x) → ϕ′
−(x) = ϕ−(x′) ,

(5.5)

– 25 –



J
H
E
P
0
9
(
2
0
2
4
)
0
1
2

which are indeed the diffeomorphisms generated by T +
µν + T−

µν .13 However, it is interesting to
notice that the measure eq. (5.3) is not invariant under local diffeomorphisms generated by
any other stress-energy tensors. For example it is not invariant under the diffeomorphisms
generated by T 1

µν(x) nor by T 2
µν(x). This can be seen as following that in the folded

AdS we have∫
dd+1x

√
−g

1
(2∆1 − d)2 + 1

(
ϕ+(x)2 + ϕ−(x)2

)
=
∫

dd+1x
√
−g
(
ϕ1(x)2 + ϕ2(x)2

)
, (5.6)

and just transforming ϕ1(x) (to ϕ1(x′)) or ϕ2(x) (to ϕ2(x′)) (with the corresponding trans-
formation of the metric gµν(x) → g′µν(x) = ∂x′ρ

∂xµ
∂x′σ

∂xν gρσ(x′)) will not leave it invariant.14

This suggests that there are diffeomorphism anomalies associated with these broken diffeo-
morphisms and we cannot gauge these diffeomorphisms by coupling them with massless
gravitons unless the anamoly is cancelled!

We notice that there is a more elementary argument for the existence of such an anomaly if
we consider quantum gravity in the original AdSd+1. In this case we are gauging the symmetry
generated by T 1

µν(x). As a result, we should have the global part of this symmetry (the
isometry) as symmetries in this quantum system. This tells us that we should be able to write
down the symmetry generators for these global symmetries. However, the leakiness of T 1

µν at
the asymptotic boundary obstructs us to write down the generators as conserved charges

Q1
ζ =

∫
Σ

ζµT 1
µνdΣν , (5.7)

where Σ is a Cauchy surface and ζµ is the corresponding Killing vector. Hence we must
have something to cancel the boundary flux such that charges eq. (5.7) are conserved. The
only possibility is that T 1

µν is no longer divergence free which means that it is anomalous.
Nevertheless so far we don’t know how to explicitly compute these diffeomorphism anomalies.15

Interestingly, this doesn’t obstruct us to understand the physical implications of these
diffeomorphism anomalies. To do so we notice that in the folded AdSd+1 there would be two
gravitons and they could form different linear combinations so this is a problem of matrix

13Note that the measure eq. (5.3) is also generally covariant under

x → x′,

gµν(x) → g′
µν(x′) = ∂xρ

∂x′µ
∂xσ

∂x′ν gρσ(x(x′)) ,

ϕ+(x) → ϕ′
+(x′) = ϕ+(x(x′)) ,

ϕ−(x) → ϕ′
−(x′) = ϕ−(x(x′)) .

14Here however we notice that eq. (5.6) is invariant under the isometries generated solely by T 1
µν(x) or T 2

µν(x)
as for them we have dd+1x′

√
g(x′) = dd+1x

√
g(x). This is important for the application of the AdS/CFT

correspondence in the later analysis.
15We should notice that standard results of anomalies are that they are constrained by the Wess-Zumino

consistency conditions and the solutions of these consistency conditions only exist in even dimensions [46].
More precisely gravitational anomalies was found to only exist 4n + 2 spacetime dimensions. However, these
results only considered general covariance and transformation properties of the dynamical gauge field and
they didn’t consider the possible existence of background structures. The background structures such as
the background metric are important for us since we are doing perturbative quantum gravity around a
fixed background.
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algebra. Let’s focus on that graviton (i.e. a specific component of a matrix of two gravitons)
which only couples to ϕ1. This is the graviton in the original AdSd+1 universe in the unfolded
picture where we couple the double-trace deformed scalar theory to dynamical gravity and
we treat the graviton perturbatively. In this sector the path integral is given by

Z =
∫

D[ϕ1]gD[hµν ]eiS[ϕ1,h;g] , (5.8)

where hµν is the perturbative graviton modes that is only coupled to T 1
µν(x) and we emphasize

that the path integral measure of ϕ1 depends on the metric gµν(x) which couples to both
ϕ1(x) and ϕ2(x). The full metric on the original AdSd+1 universe is given by

gfull
µν = gµν +

√
16πGN hµν , (5.9)

where we treat hµν perturbatively and for our purpose we can think of gµν as the background
metric.16 The diffeomorphism transform for the theory eq. (5.8) is as following

x → x, gµν(x) → g′µν(x) =
∂x′ρ

∂xµ

∂x′σ

∂xν
gρσ(x′) , ϕ1(x) → ϕ′

1(x) = ϕ1(x′) ,

hµν(x) → h′
µν(x) =

∂x′ρ

∂xµ

∂x′σ

∂xν
hρσ(x′) +∇µϵν(x) +∇νϵµ(x) ,

where x′µ = xµ +
√
16πGN ϵµ(x) ,

(5.10)

which works to the leading order in GN as the gauge transform in the perturbative treatment
of graviton [51, 52]. It transforms the action S1[ϕ1, h; g] as following

S1[ϕ1, h; g] → S1[ϕ′
1, h′; g′] = S1[ϕ1, hϵ; g]

= S1[ϕ1, h; g] + 2
√
16πGN

∫
dd+1x

√
−g∇µϵν(x)T 1

µν(x)

= S1[ϕ1, h; g]− 2
√
16πGN

∫
dd+1x

√
−gϵµ(x)∇νT 1

µν(x) ,

(5.11)

where in the last step we integrated by parts and used the fact that we consider ϵµ(x) as a
small diffeomorphism transform.17 Nevertheless from the above analysis of the path integral
measure, there is a diffeomorphism anomaly

⟨∇µT 1
µν⟩ , (5.12)

which obstructs the diffeomorphism invariance of the theory eq. (5.8) at the quantum level.18

16Interestingly, this is the standard treatment in bimetric theories [47–50].
17To be precise we consider ϵµ ∼ O(z2) as z → 0 which is due to the fact that with our open boundary

condition
√
−gT 1ν

µ ∼ O(z−1) as z → 0 (which is easily obtained using the asymptotic behavior of ϕ1(x) in
eq. (4.15)).

18Here we notice that the diffeomorphism anomaly eq. (5.12) is a function of the background geometry gµν

and graviton fluctuation hµν . However, we don’t need its explicit form for our later study.
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This can be seen as following in the computation of the partition function eq. (5.8)

Z =
∫

D[ϕ1]gD[hµν ]eiS[ϕ1,h;g]

=
∫

D[ϕ′
1]g′D[h′

µν ]eiS[ϕ′
1,h′;g′]

=
∫

D[ϕ′
1]g′D[hµν ]eiS[ϕ1,hϵ;g]

=
∫

D[ϕ1]ge2i
√

16πGN

∫
dd+1x

√
gϵµ∇ν⟨T 1

µν(x)⟩D[hµν ]eiS[ϕ1,hϵ;g]

=
∫

D[ϕ1]ge2i
√

16πGN

∫
dd+1x

√
gϵµ∇ν⟨T 1

µν(x)⟩D[hµν ]eiS[ϕ1,h;g]−2i
√

16πGN

∫
dd+1x

√
−gϵµ(x)∇νT 1

µν(x),

(5.13)

where in the second step we used general covariance and in the fourth step we used the fact
that the path integral measure is anomalous and we denoted the anomaly polynomial by
⟨∇νT 1

µν(x)⟩. Hence we get the usual anomalous conservation law

∇µT 1
µν(x) = ∇µ⟨T 1

µν(x)⟩ , (5.14)

which gives us an operator identity that the divergence of the stress-energy tensor operators
equals to the anomaly polynomial for the diffeomorphism transform.

5.2 Non-gravitational bath

The situation in the non-gravitational bath is similar to the case of gravitational bath. For
simplicity we can take the geometry of the nongravitational bath also to be AdSd+1 i.e. we
turn off gravity in the gravitational bath. This can be done by sending the (dimensionless)
Newton’s constant Gbath

N to zero (remember that we have set lAdS = 1). The analysis of
the scalar fields is the same as the gravitational bath case. Hence the result is again that
the diffeomorphism is anomalous in the gravitational AdSd+1 and the treatment would be
the same as eq. (5.13).

5.3 Restoring the diffeomorphism invariance via the Stückelberg mechanism

Since we are considering a gravitational theory in the original AdSd+1 universe, the diffeo-
morphism anomaly will potentially introduce several pathologies to the theory such as the
breakdown of unitarity by inducing negative norm states. Hence, in a consistent description
of the theory this anomaly should be cancelled. It can be cancelled if we introduce a vector
field Vµ that transforms under the diffeomorphism as follows

Vµ(x) → V ′
µ(x) =

∂x′ν

∂xµ
Vν(x′) + ϵµ(x) , where x′

µ = xµ +
√
16πGN ϵµ(x) , (5.15)

and we couple it to the anomaly polynomial such that the anomaly can be compensated.
This compensation works in the following theory

Zfull =
∫

D[ϕ1]gD[hµν ]D[V ρ]eiS[ϕ1,h;g]−2i
∫

dd+1x
√
−g

√
16πGN Vν(x)⟨∇µT 1

µν(x)⟩ , (5.16)
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where eq. (5.8) can be thought of the gauge-fixed version of eq. (5.16).19 The diffeomorphism
invariance of eq. (5.16) can be seen by either a direct diffeomorphism transformation or by
thinking of V µ(x) as a Lagrange multiplier which trivializes the diffeomorphism anomaly.
Here we notice that for a theory without the diffeomorphism anomaly eq. (5.12) is zero and
eq. (5.16) trivially equals to eq. (5.8) upto a constant factor from the path integral of the
vector field. Hence we can use eq. (5.16) to extract the physical effects of the diffeomorphism
anomaly if it is nonvanishing (more precisely nonvanishing in the matter sector).

In fact we will show that graviton is massive in the fully diffeomorphism invariant theory
eq. (5.16). The graviton obtains the mass from a Stückelberg mechanism. This can be
understood by again studying the partition function eq. (5.16) and we do a diffeomorphism
transform in the matter-graviton sector eq. (5.10) with respect to x′

µ = xµ +
√
16πGN Vµ(x),

Zfull =
∫

D[ϕ′
1]g′D[h′

µν ]D[V ρ]eiS[ϕ′
1,h′;g′]−2i

∫
dd+1x

√
−g

√
16πGN V µ(x)⟨∇νT 1

µν(x)⟩

=
∫

D[ϕ′
1]g′D[hµν ]D[V ρ]eiS[ϕ1,hV ;g]−2i

∫
dd+1x

√
−g

√
16πGN V µ(x)⟨∇νT 1

µν(x)⟩

=
∫

D[ϕ1]gD[hµν ]D[V ρ]eiS[ϕ1,hV ;g]

=
∫

D[ϕ1]gD[hµν ]D[V ρ]eiS[ϕ1,h;g]+2i
∫

dd+1x
√
−g

√
16πGN∇µV ν(x)T 1

µν(x) .

(5.17)

We notice that we have the following gauge symmetry

hµν(x) → hµν(x) +∇µϵν(x)(x) +∇νϵµ(x) , Vµ(x) → Vµ(x)− ϵµ(x) , (5.18)

in the resulting action in eq. (5.17). Now we can integrate out the matter field to get an
effective theory Seff[V, h; g] involving only the vector field V µ(x) and graviton hµν(x) which
should be invariant under the gauge symmetry eq. (5.18). A kinetic term

S1 ∼
∫

dd+1x
√
−g
(
∇µVν(x)∇µV ν(x) +∇µVν(x)∇νV µ(x)

)
, (5.19)

of the vector field will be generated by a matter loop which is described by the time-ordered
two-point function of the matter stress-energy tensor (see figure 4)

⟨T
(
T 1

µν(x)T 1
ρσ(y)

)
⟩ . (5.20)

However, the invariance under eq. (5.18) obligates that the full effective action Seff[V, h]
should be a function of the eq. (5.18) invariant combination

∇(µVν) + hµν ≡ ∇µVν +∇νVµ + hµν . (5.21)

Hence the quadratic action eq. (5.19) should in fact be

S′
1 ∼

∫
dd+1x

√
−g
(
∇(µVν) + hµν

)(
∇(µV ν) + hµν

)
, (5.22)

19To get eq. (5.8) from eq. (5.16), the diffeomorphism gauge is completely fixed by setting V µ(x) = 0. The
fact that the theory is ghost free manifests only at the loop level via a Higgs mechanism (see later discussions).
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µν ρσ

Figure 4. The Feynman diagram which computes the effective action eq. (5.19) from the matter
loop which is a loop intergral of the correlator eq. (5.20).

which indeed is a Stückelberg mass term of the graviton hµν and the exact value of the
mass is given by the matter loop described by the two-point function eq. (5.20). This is
precisely the result of [53]. Moreover, similar to [54] the manifestly diffeomorphism invariant
description eq. (5.16) should be able to be easily uplifted to a full description as its Higgs
phase where the diffeomorphism is spontaneously broken and V µ(x) is the Goldstone vector
boson. More precisely, to extract the exact value of the graviton mass we have to extract
the delta-function piece of the two-point function eq. (5.20). We provide an example of
such calculation in the next subsection.

5.4 An example of graviton mass extraction

In this subsection, we will consider a specific example to demonstrate the algorithm of graviton
mass extraction we proposed in the previous subsection. We will consider a conformally
coupled scalar field in four-dimension anti-de Sitter space.20 This means that m2 = d−1

4d R

where R is the Ricci scalar which takes the value −d(d + 1) and d + 1 = 4. We can check
that ∆− = d

2 − 1
2
√

d2 + 4m2 = d−1
2 > d−2

2 so this is a good example fitting in the formalism
we developed above. From now on we take d = 3.

We will use the embedding space formalism. In this formalism, the Lorentzian AdS4
is a submanifold

−X2
0 − X2

4 + X2
1 + X2

2 + X2
3 = −1 , (5.23)

of an ambient five-dimensional two-time Minkowski spacetime which has the metric

ds2 = −dX2
0 − dX2

4 + dX2
1 + dX2

2 + dX2
3 . (5.24)

The Poincaré patch is given by the following parametrization of eq. (5.23)

X0 = z2 + x2
1 + x2

2 − t2 + 1
2z

,

X1 = x1
z

,

X2 = x2
z

,

X3 = z2 + x2
1 + x2

2 − t2 − 1
2z

,

X4 = t

z
,

(5.25)

20See [55] for a more efficient way to extract the graviton mass for generic situations.

– 30 –



J
H
E
P
0
9
(
2
0
2
4
)
0
1
2

and the Euclidean AdS4 is obtained by

X4 → iX4 , t → it . (5.26)

Moreover, all the fields in AdS4 are uplifted homogeneously to fields in the ambient space
and these ambient space fields reduce to the AdS4 fields when restricted on the submanifold
eq. (5.23). The homegeneity conditions are

XM SMNP Q···(X) = 0 andXL∇LSMNP Q···(X) = nSMNP Q··· , (5.27)

where XM denotes the coordinate in the ambient space, n is called the degree and SMNP Q···
refers to the uplift of a generic AdS4 tensorial field Sµνρσ··· (the rank of the tensor doesn’t
change before and after the uplift). The most relevant property to us is that a divergenceless
AdS tensor is uplifted to a divergenceless tensor in the ambient space. For details we refer
the readers to [53, 56–58] and references therein.

We will follow the formalism in [56] and quote their results. For the sake of simplicity
we go to the Euclidean coordinates. Our purpose is to extract the graviton mass from
the following integral ∫

AdS4
dY ⟨T 1

MN (x)T 1
P Q(y)⟩ . (5.28)

Remember that we can do this because the effective action of the emergent Goldston
vector field is

S1 = −4
216πG

∫
AdSd+1

dXdY ∇M V N (X)⟨T 1
MN (X)T 1

P Q(Y )⟩∇P V Q(Y ), (5.29)

and we are interested in the fintie short distance term generated from it which is of the form

L1 = −m2

2 ∇(M VN)(x)∇(M V N)(x) , (5.30)

where m2 is the graviton mass due to the Stückelberg mechanism. Since we are considering a
conformally coupled scalar field in AdS4 whose stress-energy tensor is traceless, we only have
to consider a divergenceless vector field V µ(x) in AdS4 which is uplifted to a divergenceless
vector V M (X) in the ambient space. Furthermore because ⟨T MN (X)T P Q(Y )⟩ is already
transverse and traceless in MN and PQ, we only need the contributions proportional to
δ

(M
(P δ

N)
Q) from it as other contributions vanish when inserting to eq. (5.29) in the limit y → x.
We will use existing results from [56]. The basic result we will use is eq. (35) from [56] and

as we explained in the previous paragraph we only need the O3 = 2δ
(M
(P δ

N)
Q) term21 which is

4
9∆

′
0(Z)2 + 1

9∆0(Z)∆′′
0(Z). (5.31)

21It may not be straightforward to see that Y N Y M∇M VN (Y ) = 0 so let’s prove it here. Differentiating
by parts we have Y N Y M∇M VN (Y ) = Y M∇M (Y N VN ) − Y N VN where the resulting two terms are both zero
due to Y N VN (Y ) = 0. Moreover, the degree of the vector V M has to be 1 in order for the consistency with
diffeomorphism invariance. This is because the graviton hMN are traceless symmetric and satisfies the first
equation in eq. (5.27) which implies that only O3 in [56] is relevant to the 1-loop correction of graviton
propagator. Hence this should also be the case for the vector field and in particular O5 in [56] shouldn’t
contribute which requires n = 1 for V M .
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Here Z = −X · Y is the invariant distance between the two points xµ and yν in AdS4
with XM and Y M their embedding space coordinates and ∆0(Z) is the propagator given
as eq. (28) in [56]

∆0(Z) = 1
8π2L2

(
a

Z + 1 + b

Z − 1

)
, (5.32)

where a = β − α and b = α + β. Using the embedding space coordinates for the Poincare
patch we can find that

Z = ((x⃗ − y⃗)2 + z2
1 + z2

2)
2z1z2

= r2 + z2
1 + z2

2
2z1z2

. (5.33)

Here we notice that for the conformal scalar field we have ∆+ = d+1
2 = 2 and ∆− = d−1

2 = 1
and as we send xµ close to the asymptotic boundary we have z1 → 0 and

∆0(Z) ∼ 1
4π2L2

[
β(z1 +O(z3

1)) + α(z2
1 +O(z4

1)
]

= 1
4π2L2

[
β(z∆−

1 +O(z∆−+2
1 )) + α(z∆+

1 +O(z∆++2
1 )

]
,

(5.34)

which is consistent with our results of double-trace deformation eq. (3.2), eq. (4.3) and
eq. (4.15).

Now we can compute the following integral∫
AdS4

dY

(4
9∆

′
0(Z)2 + 1

9∆0(Z)∆′′
0(Z)

)
=
∫ ∞

0

dz1
z4

1

∫ ∞

0
4πr2dr

(4
9∆

′
0(Z)2 + 1

9∆0(Z)∆′′
0(Z)

)
,

(5.35)

where we have to split the z1 integral as
∫ z2−ϵ

0 dz1 +
∫∞

z2+ϵ dz1 and expand the result in the
UV-cutoff ϵ. The result is
2π2b2z4

2
3ϵ4 + 2π2abz2

2
9ϵ2 + π2

9

(
3a2 − 3b2 − 6ab + 16ab log

(
z2
ϵ2

))
+ π2ϵa (74b − 3a)

36z2
+ O

(
ϵ2
)

,

(5.36)
multiplied by 1

(8π2L2)2 . This result is of fundamental importance to us. Since we only want to
extract the delta-function piece of the two-point function eq. (5.20), we only need the O(1)
terms. The two power law divergent terms are universal short distance singularities which
can be removed by an appropriate point splitting regularization. The terms proportional to
ab in the O(1) order are removed by appropriate counterterms which cures the logarithmic
divergence. This is because ab = β2 − α2 and it is hence independent of having the double-
trace deformation which tangles the two boundary conditions (see eq. (5.34)). Thus the ab

term persists even when we are doing the standard quantization in AdS/CFT i.e. β = 0.
Hence the relevant term to us is

π2

3(8π2L2)2 (a
2 − b2) , (5.37)

which in terms of α and β is

− 4π2

3(8π2L2)2 αβ. (5.38)
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Now the graviton mass can be extracted as

m2 = 4× 16πG × 2 4π2

3(8π2L2)2 αβ = 8G

3πL4 αβ , (5.39)

where the factor 2 comes from the factor 2 in the definition of O3 and the discrepancy of
the coefficient with the results in [53, 56] is a matter of convention of how we normalize
the vector field.22 The physical relevance of this result is that the graviton mass is zero
when either α or β is zero which reduces to either the standard or alternative quantizations
in the usual AdS/CFT and it is only nonzero when both of α and β are nonzero which is
the case that we have a bath glued.

5.5 The unbroken diffeomorphism invariance with a gravitational bath

We have analyzed the diffeomorphism broken and graviton mass generation in the AdSd+1
bulk when a bath is glued on its asymptotic boundary. This result persists for both cases
when the bath is nongravitational and when it is gravitational. Nevertheless, in the case with
a gravitational bath, we noticed that the diffeomorphism invariance generated by T 1

µν + T 2
µν

is non-anomalous. This is consistent with the fact that the total stress-energy of the folded
AdSd+1 (or the union of the original two AdSd+1’s) is conserved (this has a nice interpretation
using the AdS/CFT see section 5.6 for discussions on this point).

This result suggests that in this resulting universe from folding, apart from a massive
graviton, there is also a massless graviton. This is the hinge of the recent realization that
wedge holography provides a doubly holographic set-up for massless gravity localized on the
Karch-Randall braneworld which can be used to demonstrate that there is no entanglement
island in massless gravity theories [59–61].

5.6 Discussions

In this section, we carefully analyzed the quantum effects encoded in the AdSd+1 scalar field
partition function. In particular, we noticed that we are not able to define a diffeomorphism
invariant path integral measure in the AdSd+1 universe that is glued to a bath by a marginal
double-trace deformation. This suggests the possible existence of a diffeomoprhism anomaly
in the AdSd+1 universe. Although we don’t know how to compute this anomaly explicitly to
confirm its existence, we found that we can extract its physical effect by coupling the theory
with dynamical gravity in a diffeomorphism invariant way by introducing a compensating
vector field to cancel the anomaly. We notice that if the diffeomorphism anomaly doesn’t
exist then this coupling is a trivial operation. However, our calculation shows that in the
cases with double-trace deformation this anomaly should exist and it indicates a spontaneous
breaking of the diffeomorphism anomaly. This is signaled by the graviton mass eq. (5.39)
which is generated from a Stückelberg mechanism. In fact we can show that the graviton will
be massive even if the diffeomorphism anomaly turns out to be zero (see appendix A).

We can see from eq. (5.39) that the graviton is massive in both the double-trace deforma-
tion in standard AdS/CFT where α and β are not independent (see section 3) and the case
with a bath glued where α and β are independent (see section 4). This result is consistent

22We note that even the results in [53] and [56] are different with the coefficients.
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with the lore in AdS/CFT that the bulk graviton mass duals to the anomalous dimension
of the stress-energy tensor of CFT1. In both the standard quantization and alternative
quantization cases this anomalous dimension is zero due to the conservation of the CFT1

stress-energy tensor. Nevertheless, in the cases with a double-trace deformation the CFT1

stress-energy tensor is no longer conserved due to this deformation

∂aT ab
CFT1 ∝ ∂b(double-trace deformation) . (5.40)

Hence its anomalous dimension is not protected to be zero anymore. Interestingly, the equation
eq. (5.40) also suggests that the stress-energy tensor has a vector as its conformal descendant
which through the AdS/CFT correspondence translates to AdSd+1 as the statement that the
graviton is no longer in a short multiplet of the AdSd+1 isometry group SO(d, 2) but in a
long-multiplet containing a vector field (remember we have shown that the AdSd+1 isometry
group is not anomalous in section 5.1.). This is nothing but the holographic interpretation of
the existence of the vector field V µ(x) in our calculation. Fixing the gauge by V µ(x) = 0
is a manifestation of the Higgs mechanism [53]. This further confirms that the AdSd+1
diffeomorphism is spontaneously broken and the graviton becomes massive when there is
a double-trace deformation.

Nevertheless we should notice that there may exist quantum aspects in AdSd+1, which
are expected from the CFT side, that cannot be extracted by our calculation. An example
is for the double-trace deformation in standard AdS/CFT that we studied in section 3. In
this case, in the dual CFT there indeed exists a conserved stress-energy tensor which is
the stress-energy tensor of the undeformed CFT plus a contribution from the double-trace
deformation. It is however not clear to us what is the dual statement in the AdSd+1 which
may be that there is another massless spin-2 modes that overlaps with the massive graviton.
This expectation comes from the following consideration. In the gravitational bath case
section 4.2, as opposed to the nongravitational bath case in section 4.1, we can dualize the
union of AdSd+1 and the gravitaitonal bath to a d-dimensional conformal field theory which
is CFT1+CFT2 and together with the double-trace deformation that couples them together
(remember we’ve taken the double-trace deformation to be marginal). Hence from the CFT
perspective we do have a conserved d-dimensional CFT stress-energy tensor and this should
be dual to a massless spin-2 mode that propagates in both the AdSd+1 and the bath. It is
shown in [57] that this massless mode is a specific linear combination of the gravitons from
the AdSd+1 and the bath. This is consistent with our analysis in section 5.1 and section 5.5
that we can indeed define a diffeomorphism invariant measure for the matter fields in the
folded AdSd+1 for the diffeomorphisms generated by T 1

µν + T 2
µν . Nevertheless the calculation

in section 5.4 still suggests that there is another linear combination of the two graviton
modes which is massive and is orthogonal to the massless one. Hence the graviton in the
original AdSd+1 is a superposition of the massive and the massless modes and hence overlaps
with both of them. Therefore we expect that in the case of the double-trace deformation
in standard AdS/CFT we should have a similar result for the consistency with the CFT
expectation. However, it is possible that the actual situation is subtler than our expectation.
For example the double-trace deformation eq. (3.1) in standard AdS/CFT is not marginal
(remember we have chosen ∆ = d

2 + 1
2
√

d2 + 4m2 such that we can perform the alternative
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quantization d+2
2 > ∆ > d

2 otherwise the modes eq. (3.19) wouldn’t be normalizable in the
Klein-Gordon measure) so the theory with the deformation eq. (3.1) wouldn’t be stable under
the RG flow and the correct low energy behavior should be captured by either the limit
h → 0 or h → ∞ depending on whether the deformation eq. (3.1) is irrelevant or relevant.
Indeed, in this two limits we are in the standard AdS/CFT without any deformation (i.e.
either α or β in eq. (5.39) is zero23) and the graviton is fact massless so we only end up with
a single massless graviton. We leave this question to future work.

6 Gravitational subregion and edge modes

The model with a gravitational bath glued on has another interesting application. This is
from the observation that the original AdSd+1 universe can be thought of as a subregion
of a gravitational universe which consists of the union of the original AdSd+1 and the bath
AdSd+1. Moreover, this subregion is by itself gravitational and the nice feature of it is that
the gravity turns off kinematically near its boundary (the asymptotic boundary). Hence this
provides a tractable model of a gravitational subregion without the necessity to address the
issue of the graviton edge modes [23]. As a result, we can study the entanglement entropy
between a gravitational subregion and its complement in this model (see [59] for a holographic
study of this question using the Karch-Randall braneworld).

Nevertheless, we do have an edge mode to deal with in the matter sector. As we split
the AdSd+1 and the bath by integrating out the bath and focus on the AdSd+1, the source
J(x) (see section 2.2.1) becomes the edge mode which we have to integrate over in the
resulting path integral. Hence we have

ZAdSd+1 = det
(
□− m2

)− 1
2
∫

DJZ[J ]CFT

= det
(
□− m2

)− 1
2
∫

DJe
iπ

d
2

Γ[∆++1− d
2 ]

Γ[∆+]

∫
dtdd−1x⃗dt′dd−1x⃗′ J(t′,x⃗′)J(t,x⃗)

(−(t−t′)2+|x⃗−x⃗′|2)∆+ ,

(6.1)

where Z[J ]CFT is given by eq. (2.24) and the det
(
□− m2)− 1

2 is the quantum correction.
We can simplify the expression by noticing that in d-dimensions (i.e. the boundary of the
AdSd+1) we have

∇2 1(
− (t − t′)2 + |x⃗ − x⃗′|2

) d−2
2

= δ(t − t′)δd−1(x⃗ − x⃗′) . (6.2)

23Notice that on the one hand if we did the standard quantization before we turn on the double-trace
deformation we have α = 8hd − 2∆+

(
π

d
2

Γ[∆++1− d
2 ]

Γ[∆+]

)2
β (see eq. (3.16)). In this case the double-trace

deformation is irrelevant so h → 0 is the correct limit for low energy physics and we have to fix a finite
β then we have α = 0. On the other hand, if we start with the alternative quantization then we have
α = − 4h

d−2∆−

(
π

d
2

Γ[∆−+1− d
2 ]

Γ[∆−]

)2
β. In this case the double-trace deformation is relevant so h → ∞ is the correct

limit for low energy physics and we have to fix α to be a finite number then we have β = 0.
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So we get

ZAdSd+1 = det
(
□− m2

)− 1
2
∫

DJe
iπ

d
2

Γ[∆++1− d
2 ]

Γ[∆+]

∫
dtdd−1x⃗dt′dd−1x⃗′ J(t′,x⃗′)J(t,x⃗)

(−(t−t′)2+|x⃗−x⃗′|2)∆+

= det
(
□− m2

)− 1
2 det

(
∇2
) 2∆+

d−2 ,

(6.3)

where the second factor is from the edge mode J(t, x⃗) and it of positive power of the
determinant of the d-dimensional d’Albembert. This positive power is of a wrong sign for
bosonic fields and is exactly the expected property for edge modes [62].

7 Conclusion and future directions

In this paper, we carefully studied the AdS/CFT model of coupling a gravitational universe
to a bath at its asymptotic boundary. The bath is modelling an experimental laboratory
that is trying to extract the physics in the gravitational universe. This model avoids the
complicated question of describing or modelling an observer in a gravitational universe and
hence it is of direct relevance to build the bridge between quantum gravity and experiment.

In this AdS/CFT model the coupling is achieved by a double-trace deformation that in the
CFT description couples the AdS-dual CFT to the bath. We carefully analyzed the quantum
aspects of this model by doing canonical quantization and studying the partition function at
the quantum level. We notice that the bulk Hilbert space is enlarged due to the bath coupling
and the double-trace deformation generically induces a mass for the graviton in the gravitating
universe through a Stückelberg mechanism. In other words, the diffeomorphism symmetry in
the gravitational universe is spontaneously broken if it is coupled to a bath. This suggests
that we may have to think of quantum gravity quite differently from a practical point of view.

Moreover, this work is potentially helpful to get a proper understanding of subregion
physics in a gravitational universe. In the case of the (Yang-Mills) gauge theory, a subregion
can be defined gauge invariantly by introducing edge modes which splits the manifold into
two regions R and R̄ and assigns opposite surface charges to ∂R and ∂R̄ [62]. Nevertheless,
in the case of a gravitational universe with a massless graviton we can’t have negative
mass density and therefore the idea of edge modes wouldn’t work in the same way as in
the case of gauge theory.24 Hence if we constrain ourselves to a subregion the subregion
diffeomorphism invariance will be broken and the question is how to restore it and what
is the consequences of the restoration mechanism. This paper provides a mechanism by
introducing a Stückelberg field which compensates the diffeomorphism anomaly. This naively
renders the subregion graviton to be massive. But as opposed to the situation we considered
in this paper where there is a clear connection between diffeomorphism anomaly and the
openness of the system which manifests using the folding trick, in the general subregion
case we don’t know if we still have the issue of the disability to define a diffeomorphism
invariant path integral measure. If not the stress-energy tensor is locally conserved and
free of anomaly. The issue is then that the stress-energy flux is nonzero on the boundary

24Though in the low dimensional case where the gravitational theory is topological it might be possible
to do this by extending the physical Hilbert space and do a careful projection in the end (see [63–67] for
recent attempts).
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of the subregion R and so the diffeomorphism symmetry ζµ for whom ζµnνTµν |∂R ̸= 0 is
broken. To restore such diffeomorphisms25 it is enough to have a Stückelberg field localized
on the boundary ∂R which compensates the diffeomorphism transform of the action due
to the nonzero flux. It’s not clear at this stage what the implications of this Stückelberg
mechanism are. We leave this question to future work.

Another important question to study in the future is to properly understand the situation
in the double-trace deformation for the standard AdS/CFT. As discussed at the end of
section 5.6, it is interesting to know whether the graviton is massive in this situation. Here we
further notice that we have α ∝ hβ in the double-trace deformation for the standard AdS/CFT
where α and β are asymptotic coefficients of the bulk Green function. This relationship is
easily seen from eq. (3.16) and eq. (3.18). Hence we have from eq. (5.39) that the graviton
mass square is linear in h which suggests an instability for positive h either we started with the
standard or the alternative quantization when h = 0. However, in the case that we coupled
the original AdSd+1 and the bath by a double-trace deformation we have independent α and
β and the graviton mass square is proportional to the square of the double-trace deformation
parameter which signals a stable configuration. This can be seen from eq. (4.17) that the two
sets of modes δϕ(x)±

ω,⃗k
are assigned with independent creation and annihilation operators and

so the Green function would be the sum of their contributions and there is no mixing term
between term. Using the fact that if we fix δϕ+(x)

ω,⃗k
to be independent of g then δϕ−(x)−

ω,⃗k

will be linear in g, we see that the Green function only contains terms scaling with g as g0 and
g2 (i.e. α ∝ g2 and β ∝ g0). Hence the graviton mass square is proportional to g2 (see [57]
for an explicit calculation). Thus there is no instability issue in this case with a bath glued.
This analysis suggests that with the double-trace deformation in the standard AdS/CFT we
should necessarily consider the bulk backreaction to the geometry if h is finitely positive (but
close enough to zero as we know when h → ∞ we have β = 0 and so zero graviton mass
square (see footnote 23)). It would be interesting to exploit these observations further.

More practically, our model can be used to study dynamics of strongly-coupled open
quantum systems using both CFT and holographic techniques. For example, in an real
experimental system disordering, dissipation and spatial inhomogeneity are unavoidable
and may have important experimental and theoretical implications such as the Anderson
localization [68] and dissipative effects in hydrodynamics, heavy ion collisions and quantum
phase transitions. Coupling the system with a bath in a control manner as in our system
provides an explicit model to study these effects. The holographic dual of our system provides
a nice setup to explore these effects in strongly-coupled systems. We can also turn on a
finite temperature in our model by considering the bulk to be a black hole geometry (and
the bath also to be of a finite temperature). It would be interesting to carry out these

25We should emphasized that the motivation to restore this diffeomorphism symmetry is different from the
case studied in the paper. This is motivated by the attempt to define a gravitaional subregion and studying
the associated entanglement entropy. This diffeomorphism is a symmetry for the total universe R ∪ R̄ so
if we integrate out the complementary region R̄ in the path integral the symmetry should persists in the
resulting theory on R. We should notice here that in gravity the situation is very different from the gauge
theory case [62] where we could interpret the surface gauge symmetry on ∂R as assigning charges of opposite
signs to ∂R and ∂R̄ and splitting the Hilbert space of R into different superselection sectors (associated with
different values of the surface charge) as in gravity we cannot have negative surface mass.
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analysis in detail using our holographic model (see [69–72] for early and recent studies of
some of these questions).
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A A potential loophole and its resolution

We should notice that there is a potential loophole in our argument leading to eq. (5.17).
As we discussed, at this point we don’t know how to compute the diffeomorphism anomaly
∇µ⟨T 1

µν(x)⟩. Hence it is reasonable to doubt its very existence. However, in this appendix
we will show that even if the diffeomorphism anomaly ∇µ⟨T 1

µν⟩ turns out to vanish, we can
still extract the graviton mass following the result of eq. (5.17). We first observe that when
∇µ⟨T 1

µν(x)⟩ vanishes eq. (5.17) becomes the standard Stückelberg trick in the discussion
of massive gravity theories [74–76] where we introduce an auxiliary field V µ(x) into the
gravitational path integral and shift the graviton field hµν to

hµν(x) → h′
µν(x) = hµν(x) +∇µVν(x) +∇νVµ(x) , (A.1)

in the action of hµν (and the matter fields coupled to it) with the resulting action invariant
under the gauge symmetry

hµν → hµν(x) +∇µVν(x) +∇νVµ(x) , Vµ(x) → Vµ(x)− ϵν(x) . (A.2)

More precisely, in our case, when ∇µ⟨T 1
µν(x)⟩ = 0, we would have

Zfull =
∫

D[ϕ]gD[hµν ]D[V ρ]eiS[ϕ,h;g]

=
∫

D[ϕ]gD[h′
µν ]D[V ρ]eiS[ϕ,h′;g]

=
∫

D[ϕ]gD[hµν ]D[V ρ]eiS[ϕ,h′;g]

=
∫

D[ϕ]gD[hµν ]D[V ρ]eiS[ϕ,h;g]+2i
√

16πGN

∫
dd+1x

√
−g∇µV ν(x)T 1

µν(x) .

(A.3)

As a result we can extract the graviton mass following the same calculation as in section 5.4.
Here one might think that what we did in eq. (A.3) is a trivial operation as the term∫

dd+1x
√
−g∇µV ν(x)T 1

µν(x) looks to be zero due to the facts that we can integrate by part
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and that the matter stress-energy tensor is locally divergenceless. Firstly this is only true if
the vector field V µ(x) decays near the asymptotic boundary z → 0 as O(z2). Though the
calculation in section 5.4 suggests that this is not always the case as the effective action
for V µ is proportional to∫

dd+1x
√
−g
[
∇µVν(x) +∇νVµ(x)

][
∇µV ν(x) +∇νV µ(x)

]
, (A.4)

which gives the equation of motion

∇2Vν(x) +∇µ∇νV µ(x)
= ∇2Vν(x) + RµνV µ(x)
= ∇2Vν(x)− 3Vν(x)
= 0 ,

(A.5)

where in the second step we used the fact that V µ(x) is divergenceless as we only consider
the conformally coupled matter field. The z-component equation of motion is

(∂2
z + ∂a∂a − 2

z
∂z −

4
z2 )Vz(x) = 0 , (A.6)

which is equivalent to a scalar field with mass square m2 = 4. Hence when there is a source
for Vµ(x) on the boundary the leading asymptotic behavior is

Vz(x) ∼ zd−∆ , as z → 0 , (A.7)

with ∆ = d
2 +

√
d2

4 + m2 = 3
2 +

√
9
4 + 4 = 4. As result we have

V z(x) ∼ zd−∆+2 = z . (A.8)

When there is no boundary source for Vµ(x) the leading asymptotic behavior is

Vz(x) ∼ z∆ = z4 , as z → 0 , (A.9)

and
V z(x) ∼ z∆+2 = z6 . (A.10)

This suggests that
∫

dd+1x
√
−g∇µV ν(x)T 1

µν(x) is not trivially zero if Vµ(x) has a boundary
source. Secondly, it is not always true that the local divergenceless of the matter stress-
energy tensor can be promoted to an exact operator equation. The reason is that when the
corresponding symmetry i.e. diffeomorphism is spontaneously broken there can be contact
terms in the divergence of the two-point function of the matter stress-energy tensor. As we
have seen in section 5.4 the coefficient of this contact term is the graviton mass. As a result,
we can see that what we did in eq. (A.3) is not always a trivial operation.
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