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ABSTRACT: By following closely Weinberg’s soft theorem, which captures the 1/w pole
contribution to the amplitude for soft graviton emissions (w < A) on top of an arbitrary
background hard process, we calculate the expectation value of the graviton’s angular
momentum operator for arbitrary collisions dressed with soft radiation. We find that the
result becomes independent of the cutoff A on the graviton’s frequency, effectively localizing
at w = 0. In this way, our result captures the contribution to the angular momentum that
comes from the zero-frequency modes. Like the soft theorem, our formula has an exact
dependence on the kinematics of the hard particles and is only a function of their momenta.
As an example, we discuss in some detail the case of the 2 — 2 scattering of spinless particles
in General Relativity and A/ = 8 supergravity.
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1 Introduction

The application of scattering-amplitude methods to the calculation of observables in clas-
sical gravity has led, in recent years, to the development of several new ideas and tech-
niques. Owing to relativistic invariance, amplitudes have found a natural application to
the problem of evaluating the Post-Minkowskian (PM) expansion of such observables. In
this approach, which is well suited to the analysis of collision events at large impact pa-
rameter, gravitational interactions are taken to be weak while velocities are not assumed
to be much smaller than the speed of light. Importing methods previously applied to
integrand construction and to integral evaluation in the context of quantum amplitudes
has proved pivotal in achieving progress in the PM analysis of the gravitational two-body
dynamics [1-12]. Recent results for collisions of spinless objects include the calculation of
the 3PM and 4PM conservative deflection angle [13-17], the full 3PM deflection angle [18—
22], 3PM emitted energy and momentum [20, 23-25] and 3PM angular momentum [26].
Several results obtained in this context have also been directly linked to the inspiral phase
of merger events, via analytic continuation [27-29].

A prominent tool that has been helpful to extract classical information from the elastic
2 — 2 amplitude is the eikonal exponentiation [15, 19, 20, 30—-38], whose inception actually
dates back to the late eighties [39-44]. Important endeavours have been also devoted to
generalizing the eikonal framework to allow for the presence of additional outgoing graviton
states [45-48], which are actually unavoidable in any physical process.

However, as is well know from the literature on classical soft theorems [49-52] (see [53]
for a modern perspective on the connection between soft theorems and asymptotic charges),
when focusing on the w — 0 limit in the spectrum of emitted radiation, general results
become available and considerably simplify the analysis of the problem. Chief among



them is Weinberg’s soft graviton theorem [54, 55|, which relates the amplitude with a
soft graviton emission to the one involving only hard states, up to a universal factor
Fr =gy phpt /(pp - k) that only depends on the momenta of the hard states p# and on
the graviton’s momentum k* = w(1, l?:) This formula is valid for any incoming and outgo-
ing hard momenta, regardless of their specific properties, in particular their spin and mass
— it even holds when some of the hard states are gravitons themselves. As such, the zero-
frequency limit provides the ideal arena where one can hope to take a peek beyond the stan-
dard PM expansion, and investigate phenomena that take place even when its underpinning
assumptions break down. Discussing the eikonal operator in the presence of soft graviton
emissions and analysing the zero-frequency limit of the emitted energy spectrum, highlight-
ing in particular its smoothness in the massless limit, is the main objective of the paper [56].

In this note, while leveraging on the framework proposed in [56], we instead focus
on the contributions of soft gravitons to two quantities that have received a fair share
of attention: the expression of the waveform in position space, in particular the value of
the asymptotic shear in the far past, and the angular momentum [18, 57]. As we shall
discuss, both quantities are sensitive to static field effects, and therefore to the inclusion of
contributions due to “gravitons with exactly zero frequency.” In mathematical terms, this
translates to the need of specifying an appropriate prescription on how to approach the
w = 0 singularity in F'*”. In the case of the waveform, it is indeed well known that F*”
itself is proportional, after Fourier transform with respect to w, to the memory effect and
to the asymptotic action of a BMS supertranslation [58]. This step relies on the fact that
“the Fourier transform of a pole in frequency space is a step function in time.” [53] In turn,
it is precisely the supertranslation ambiguity that determines the value of the shear at early
times and ultimately whether the leading contribution to the flux of angular momentum
is of order O(G?) or O(G?), an issue recently discussed in [57].

Without the ambition of settling this delicate issue, in the following we shall follow a
practical approach, mainly adopting Feynman’s prescription, which already plays a role in
Weinberg’s works [55, 59] (we elaborate on this point in section 2, for related discussions
see [26, 49, 51, 60, 61]). As suggested by the soft eikonal operator [56], we also extend the
soft theorem by applying it to the full S-matrix rather than to the connected T-matrix
elements. Employing this simple albeit nonstandard recipe, we will for instance obtain
a precise connection between F* and the waveform (2.25) that selects its value at early
retarded times.

In a similar fashion, after deriving a general formula linking the five-point amplitude
to the angular momentum (also recently appeared in [26]), applying it to F*” with the
Feynman prescription will lead us to an explicit covariant expression for the angular mo-
mentum /mass dipole tensor J? due to zero-frequency gravitons (3.30). Like the soft
theorem, the validity of this formula is independent of the specific hard scattering process
under consideration and only relies on the form of the Weinberg factor. When applied to
2 — 2 collisions and supplemented with the expression for the 1PM deflection angle, our
formula reproduces exactly the O(G?) results of [18, 26]. We will provide below a detailed
comparison with [11, 62, 63], eventually finding complete agreement only with [26] to this
order. Our expression, once supplemented with the value for the 2PM deflection angle, also



reproduces the part of the O(G?) results of [26] that is due to zero-frequency gravitons.
However we emphasize once more that, just like Weinberg’s theorem, the formula we pro-
vide holds independently of the specific background process, and in particular generalizes
to any order in the PM expansion. In the same spirit, it holds for scattering and merger
scenarios alike and also applies if the hard states carry spin [64].

Although the main target of current investigations remains general relativity, super-
gravity theories have also attracted interest [38, 65-73]. In particular ' = 8 supergravity
has proved a useful theoretical laboratory for developing new tools and tackling conceptual
challenges in a simpler setup [19, 20, 32, 34, 36, 38]. For this reason, along the way, we
provide the expression for Lorentz generators in terms of field oscillators in a form that
is well-suited to amplitude applications not only for spin-2 (graviton) but also for spin-1
(vector) and spin-0 (scalar) fields (see also [26, 74, 75]). Discussing these additional types
of fields provides the ingredients that are needed to include massless Kaluza-Klein scalars
and vectors and the dilaton that eventually combine with the graviton to produce the full
N = 8 result (3.35).

A caveat is in order: because of the non-linear nature of gravitational interactions
there are effects such as the non-linear memory [76-78] that are not directly captured by
the Weinberg formula (see e.g. the discussion in [18]). We leave the explicit analysis of this
point from an amplitude perspective to future investigations, while remarking that instead
such difficulties are absent for linear theories.

We start by quickly reviewing the method of dressed states and the soft eikonal opera-
tor [56] in section 2, considering the derivation of the memory effect as a warm-up exercise
for the introduction of the —i0 prescription. In section 3 we discuss the expectation of
the angular momentum operator in the state dressed by soft gravitons, obtaining our main
formula eq. (3.30), which we then specialize to the case of 2 — 2 scattering in order to
discuss its explicit features.

We work with the mostly-plus metric 7, = diag(—1,+,+,...,+) and with the con-
vention Ay, Bg = AqBg — ApB, without symmetry factors.

2 The eikonal operator in the ZFL

Our framework is the eikonal operator for soft radiation introduced in [56], where the
methods of Block-Nordsieck [79, 80] and the closely related approach by Weinberg [54, 55]
are adapted to the discussion of the classical scattering problem (see also [81-83]). The

emission of these soft quanta exponentiates in momentum space, so we write the S-matrix

(1\T4 ) M)

dressed with soft-radiation Ss..’ in terms of that of the hard process S (
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where j runs over the physical polarisations, whose polarisation “tensors” are 5? Y(k), and

we work with the conventions

—

[a; (), al(K")] = 6(k, k)5 (2.2)



and
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where k¥ = ]k:\ = w. For instance, in a classical 2 — 2 scattering process, one can derive
the S(M) to be inserted in (2.1) by taking the Fourier transform of the elastic eikonal e?2%

from the impact parameter, b, to momentum space
M) (5, Q) ~ /dD—2be—ibQ€2i60(a,b) , (2.4)

which can be evaluated as usual by a saddle-point approximation.

The quantity f;(k) in (2.1) is determined by the Weinberg soft factor for the emission
of a soft graviton on top of the background hard process. However, this is not a standard
application of Weinberg’s theorem, which only holds for connected amplitudes [59], while
here we are dressing the full S-matrix, including the identity term. Moreover, for our
discussion, it will be important to retain the —i0 prescription that is dictated by the
Feynman propagator to which the soft particle is attached, so that

v v K PR
Fi(k) = e () B (k) , - FM™(k) = 3 ——=s (2.5)
— P -k — 10
Note that we work with conventions according to which the vector k* is always future
directed, k° > 0, while all momenta p,, are regarded as outgoing so that

DPn = nn(Ena En) 5 B, > 07 (26)

where 7, takes the value +1 for outgoing and —1 for incoming states. In Weinberg’s
approach the Feynman prescription is included in the general form of the soft factor (sec-
tion II.1 and IL.2 of [55], section 13.1 of [59]), but this only plays a direct role in the
contributions of virtual soft particles to infrared divergences (section I1.3 and V of [55],
section 13.2 of [59]), while being irrelevant for the calculation of real soft particle and en-
ergy emission rates (section II.4 and V of [55], section 13.3 of [59]). In order to study the
gravitational field, including static effects that are relevant to the calculation of angular
momentum, we shall see below that the —i0 is also important in our setup to resolve the
singularity lying at the w = 0 end of the spectrum of real gravitons.

The choice of —i0 prescription in (2.5) can be further supported by considering the
stress-energy tensor TH¥(z) for an idealized scattering process localized at the origin of
space-time [84—86],

+o0
TH (x Z O(nnx uﬁu%/ 6P (z — uy7)dr (2.7)

where

0
n

Ph=mnttly, U un,=-1,  up >0. (2.8)

TH (z) is conserved 9, T"(x) = 0 thanks to

an =Y (2.9)



and going to Fourier space on gets precisely

,7.“1, /deT;w( ) flk-x: .iF,LW(k) (2.10)

ik
with the —i0 prescription as in (2.5).

A crucial point for us is that F*” retains an exact dependence on the momenta of
the background hard process, no matter whether deflections are large or small, and is
insensitive to the detailed structure of the hard states themselves. In the following, we
will apply the eikonal operator to discuss the contribution of low-energy gravitons to two
observables: the waveforms and the angular momentum. The general strategy, given any
quantum observable O, is to take its expectation value according to

(0) = (0]51,.05,..10) , (2.11)

where S5, is the eikonal operator in b-space [56]. Physically, this represents the average
value of O in the final state of the scattering event, obtained by applying S to the state
with no gravitons.

We conclude this section by mentioning that the soft eikonal operator is easily modi-
fied to accommodate for the presence of other massless fields (scalars and vectors), which
intervene for instance in A/ = 8 supergravity where the massive particles are described by
Kaluza-Klein (KK) modes. More precisely, we consider 10D massless scalars that acquire
masses m and mg via KK compactification in two orthogonal directions (see [87]; here we
work with the sin¢ =1 case of [34]' see also [19]). Then we have

) Ph Epg\") Pn 9n
vee( : )y =Y — I 2.12
for vectors and scalars respectlvely, where e, and g, denote suitable couplings. Specifically,

for the dilaton, g, = —km2/v/D — 2, for KK vectors e, = v/2xm; and for KK scalars
gn = /ﬂm?. The exponentiation of soft quanta then works as in (2.1), replacing Zigs,r. by

215]\/ t= h/z f] — fiag) + (fdazl—fd*ad)+

T (f;-’al’j = fi"av;) + (f] sj fjs*as,j)} : (2.13)
2.1 Memory effect

As a warm up, let us start by checking how our formulas reproduce the well-known con-
nection between the Weinberg soft theorem and the memory effect [53, 58]. The classical
field is obtained by inserting in the expectation value (2.11) the Fock field operator

Hyu@) = [ [aw®) € +aly () e ™) (Hu@) =hu(@),  (214)
where for definiteness we work with the field in De Donder gauge,!
S o1 2
[alw(k)a pg(/{:’)] = 6(]45, k‘,) 5 [nupﬁuo + NuoMNvp — 7D D) NuvTpo | - (215)

We follow the standard amplitude nomenclature and call De Donder gauge the gravity analogue of
Feynman gauge in electromagnetism. In this approach, the components of H,,,, are regarded as independent.
This should not be confused with the classical terminology according to which De Donder gauge amounts
to imposing 28, A" = n®?9*hs on the metric fluctuation.



This yields,

hl“’(x) = /’;<0‘S:9rr [aMV(k;) eik:c + aLu(k) e—ikx} Ssr’0> . (216)
Using
nz LY (1.\ PO 0% “Pﬁpz
(k) =T (k)PP (k),  F*™(k) =) 0 (2.17)

where TIf7 is the usual transverse-traceless projector over physical degrees of freedom
(see (3.22)), together with

3 fiR)al (k) = £ (k)al,, (k) (2.18)
J
and similarly for a;, this leads to
hae) = [ [F ) €5 + 11, (0] (2.19)

Now we consider the asymptotic limit for the gravitational field, where x# = (20, %) =
(u+ 7, r&) and the detector’s distance is taken to infinity, r — oo, for fixed retarded time
uw and angles Z. In this limit, a standard stationary-phase argument (see e.g. [53]) yields

hyw(w+7,72) ~

/0°° do [fuy(w,wi) e i fo (W, wi) ei“’“} , (2.20)

dyr 2T

where we have focused on the D = 4 case. Note that in this step the angular integral over

the momenta k localizes along the observation direction #. Recalling Juw (k) = —f,(=k)
then leads to ) oo g
w N .
o ~ dimr LOO o Juw(w,w@) e, (2:21)

where the two terms recombined to reconstruct a single integral over positive and negative
frequencies [12]. Letting p, = n,(Ey, ky) with E,, > 0, we are thus left with integrals of

the type
+00 Ju e iwu +00 o eWnnu
[T e s )
—oo 12T —npw — 10 —oo 2mw — 10
with the 0 the Heaviside step function. In this way, we have
K A ooy, 0(nnu)
R~ —TI8Y (1) e (2.23)
dmr P7 ;En—kn-i
Adjusting the overall normalisation by comparing
G = Nuw + 2Wy = N + 260y (2.24)
we find the waveform
2G Pp? 0
Wi = v~ 2 ) 3 AP O] (2.25)
r n En - kn X
or more explicitly
2G phon phpn
WH ~ —TIM7(%) |0(u —rr 4+ 0(—u —r |, 2.26
ST @) |0 P a2



For u < 0 only the second term in the square brackets survives and determines the value of
the asymptotic shear in the far past. In fact, expanding this expression in the PM regime,
where the out states are equal to the in states up to O(G) deflections, one finds

2G

P O
W~ ()Y Lol 4 06?2, (2.27)
r —~ By —kp - &

i.e. the waveform has a u-independent O(G) contribution. Clearly this term arises by the
PM expansion of the soft factor acting on the identity in (2.1), hence the need of considering
a soft dressing of the full S-matrix in our approach. As a result, eq. (2.27) agrees in
particular with [18], where the term (2.27) is eventually instrumental in the derivation of
an O(G?) flux of angular momentum. Eq. (2.27) is the static gravitational field generated
by a set of free particles that do not undergo any deflection to leading order in O(G).

Let us also mention that modifying the —¢0 prescription according to

K DhDp
v — —nfn 2.98
zn: Pn -k — 1ni0 (2:28)

instead of the Feynman prescription adopted in eq. (2.17), one instead obtains

2 n
WH ~ ﬁe T (2) Z Ep"pf;{” . (2.29)

The difference between (2.25) and (2.29) is precisely the (u-independent) ambiguity under
BMS supertranslations, which was recently discussed in detail in [57] in connection with
the definition of the angular momentum. According to the terminology introduced in that
reference, eq. (2.29) is the waveform in the canonical Bondi frame, while eq. (2.25) is the
waveform in the intrinsic one (i.e. the one employed in [18, 88, 89]).

Both (2.25) and (2.29) reproduce the leading result of [49-52] by considering the

supertranslation-invariant combination

W (> 0) — Wi (u < 0) = 22 e (s) Y Palul (2.30)
r n En—ky- &
This is the term indicated as A,, in [52], and can be itself regarded as the action of a
supertranslation [58].
We conclude this section by quoting the results for the corresponding waveforms asso-
ciated to vector and scalar radiation, which are relevant in particular for the A/ = 8 setup.
The field operators can be conveniently taken as

A(z) = /k [a(2) € 4 af () 7] (2.31)
() = /k [a(2) € 4 al () e~ (2.32)

where
lau(k), al (k)] = 8k, kY nuw s [alk),al (k)] = 6(k, k'), (2.33)



choosing Feynman gauge for the vector. Taking expectation values as in (2.11), and eval-
uating the asymptotic limit as r — oo for fixed u, Z, leads to

gn nnu
) 2.34
E,—ky, & 47””ZE — k- & (2:34)

v

1 R en P, 0(nnu)
(Au(@)) ~ —TI(3) D —=—m—, (@
n
where IT* is the transverse projector (see (3.23)).

3 Angular momentum

While the angular momentum flux can be directly evaluated starting from the asymptotic
waveform, [90-94] (see e.g. [95] for a textbook presentation), in this approach care must be
exerted concerning the inclusion of the so-called static or Coulombic mode and to ambigu-
ities related to a redefinition of the “angular momentum” aspect [93, 96-98]. In the follow-
ing, we follow an approach more closely related to scattering-amplitude calculations [6, 12,
26]. In particular, continuing the approach of [56], we simply insert in (2.11) the angular
momentum generator and derive the resulting expressions for scalars, gravitons and vectors.

3.1 Scalar

To simplify matters, let us start by focusing on the case of the massless scalar field. In this
case, one can obtain the relevant operator by inserting the Fock expansion (2.32) in the
charge associated to Lorentz generators derived from the standard Noether method [74, 99].
This leads to the following expression

L da(k) da' (k) _ . da(k)
of = _5/12 laT(k)k[a okd Mo gpa a<k)] - /kaT( Mo gt &y

<~
Note that we include a factor of % in the notation 0, while we work with the convention

Ao Bg) = Ao B — Ag B, without symmetry factors.

In eq. (3.1), although the measure is on shell, the ladder operators a(k) are regarded
as functions with argument k*. If we instead worked with the ladder operators a(E) that
are functions of k only, as perhaps more customary in textbook discussions [74, 99], we
would have a(|k|, k) = a(k) with k0 = |k| and letting I, J = 1,2,. —1 label the spatial
components,

da(k) k' da(k) da(k)

= 3.2
okl K0 oKD oK (3:2)
In this way, eq. (3.1) would translate to
<~ g
735 = —i [ at Bk =2 a(F) i [k i) 2 k) (3.3)
7J = —1 Ea []akJ]a/ s OI_ 1 Oa/ 8k1a s .

where in the last expression kg = —k" = —|/2 |. Note the absence of explicit antisymmetri-
sation with respect to 0 in this latter way of writing Jg§.
We then insert (3.1) in (2.11) and define the average

s = (Jap) - (3-4)



Like in the previous section, we shall follow the Feynman prescription to approach the
w = 0 singularity:

" ' of aof*
B=g [ (Fhegen hegiat).  I=Y ot 69
Substituting, and making the upper cutoff A explicit, we get

[o 6] 0 e, B] 0
sc\aff k G(Aik) . k‘pne(A*k‘)
(7% Zg"gm/ ( (Pn - k:+zO)(pm-k—i0)2 (Pn - k +10)%(pm - k —i0) ) (3.6)

It is now convenient to change variable according to k = ¢ in the first term and &k = —/¢
in the second term, as well as relabel m ¢+ n in the second term. Introducing sgn(¢°) =
O(£%) — 0(—£), this can be then written more compactly as

. A4 sgn(00)2ms(02)e"pi (A — |0
(%) Zgngm/ 48§() (.) p (_'\QI), (37)
(pn-f—l—l())(pm-ﬁ ZO)

where we restricted to D = 4.

We need to calculate the following integral,

K — /d4£sgn(€0)2776(€2)9(/\ — |€0))er
2 (pp -+ i0)(pm - £ —i0)?

= Apj, + Bppy, (3.8)

where we have used the fact that K* transforms as a Lorentz vector in spite of the cutoff.
Indeed, as we shall see shortly, the cutoff dependence drops out thanks to the scale invari-
ance of the integrand and the symmetric cutoff imposed by the 6 function (see also [56] for
a more detailed discussion). As a matter of fact, only the contribution proportional to p#
enters the calculation, owing to antisymmetrisation with p¥ in (3.7), so we don’t need the
coefficient B. In turn, A can be obtained from

A — MinPn - K+ (Do P)pm - K

(pn : pm)2 - m%mgn (39)

The remaining scalar integrals are almost identical to the ones discussed e.g. in the
appendix B of [100]. After using the delta function in the measure, one is left with an
integral over the graviton’s direction k and over w = :t|E| The angular integration can be
performed using [55, 100]

dQa(k A A
f _ - 2( ) - _ — s nm’ (3‘10)
where we recall that p, = n,(E,, En), with 7, = +1 if n is outgoing and 7, = —1 if n is
incoming, and we introduced the shorthand notation
Po‘Pm o ArCCOShOum

Onm = —Mn'Tim > = 5 .
My M, Ot — 1

(3.11)



Moreover, the integral over w can be evaluated using?

A w dw im
= = 0 — 1) 3.12
/-A o+ 0) (o —i0) 2 ) (312
A w dw
oV 1
/4\ (—=Nmw — i0)? v (3.13)

Note that in this step the cutoff dependence drops out, indicating that the integration
effectively localizes at w = 0. As a result

dim 24 A
pn K =— gm’ pm'K:M(ﬁn—ﬁm)- (3.14)
m2, My My
Substituting into (3.9),
A — 2
A= —gig Trm B (e — ) &2 (3.15)
mnmm(anm - 1)
and thus (3.8) and (3.7) combine to yield
1 InGm OnmBpm — 1
soy _ L _ (2] 3.16

where we have taken into account the fact that only the part of A that is antisymmetric in
n and m survives in the sum. Eq. (3.16) is the equation for the angular momentum carried
away by “radiated” massless scalars with exactly zero-frequency, in particular it can be
specialized to dilaton emissions by taking g, = —rm2/v/2.

3.2 Graviton

Let us now turn to the case of the graviton field. We can write the angular momentum
operator in De Donder gauge as follows

<~
, vpoq O v 5o
Jag = =i | aj, (k) (P“ L 2’7“”%%) Apo (k) (3:.17)
where 1
PO = o ("™ + 7™ = nnP7) (3.18)

is the tensor structure appearing in the gauge-fixed De Donder action. Defining

Top = (Jag) , (3.19)
we thus find
)
— * vp Y v P
20ne can directly evaluate the integrals :\A (—nnwﬂf\d)‘(ifnmw—u) and ffA % for fixed A > X\ >

0, and then send A — 0™ to obtain the desired results.

~10 -



where f* involves transverse-traceless projectors given by sums over physical polarisations,
ie.

KPhD),
ny _ TIHY PO FHY — ___inin 3.21
f po’ ) En: pn . k _ ZO ) ( )
with
[IHP7 = Z el el’” = % (HM’HW + TP — —2_ 5 H“”H”") : (3.22)
and
A = g 4 NHEY 4+ NVEF N =0, Ak=—1. (3.23)

At this stage, we would like to get rid of the dependence on the reference vector A*,
but this is not straightforward due to the derivative with respect to k in (3.20) and to the
specific tensor structure contracting the two factors, which involves some free indices. Let us
therefore discuss the orbital and the spin angular momentum separately: Jng = Lag+Sas,

o frv
_ * _ x  op
Log =i [ Fihngpar s San =i [261 8% (3:24)

Relying only on the antisymmetric structure of the operator and on the exact transversality
property k, F'* =0, we find

oFM F’* OF'
. o * - * /T *

where F' = 1,,F?, and
. _ M ’LL *
zsaﬁ_/(zF[ Fly + 2k Fo) A FF' 42X Frk

F“) (3.26)

1 a™ Bl

Therefore, the A dependence drops out in the sum and we obtain the remarkably simple
expression (which also very recently appeared in [26])

—i[FV
k

Similarly, the two terms of (3.27) are not separately gauge invariant. Under F),, — F,, +

<~

vo 1 v lo} a 14
(W” “p ) bl T 21 0% | E

(3.27)

Euky + &k, where now k€, = 0 in order not to spoil the transverse property k*F,, = 0,
the trace parts are automatically invariant, F/ — F' + 2¢ -k = F/, while

g
v * a v *
/ Ko 6k5 B / (ka[a e E 2 Figko — ok .Fm) (3.28)
and
* 3 * 13 * *
/;z 2F 1, Fy — /k (2Fy0Fpy + 26 - Fiokg) + 2kiol” - Fy) (3.29)

so that the gauge-dependent terms only cancel out in the sum. In view of these facts, while
one can interpret the two quantities in (3.24) as orbital and spin angular momentum, the
same interpretation does not hold for the two terms in (3.27).
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Let us emphasize again that, although we focus here on the soft limit, eq. (3.27) only
relies on the transversality of F/*¥, and thus easily extends to the case where F'*" is replaced
by the more general b-space version of the 2 — 3 amplitude [11, 12, 20, 48, 62|, a.k.a. the
stress-energy pseudotensor 7" like in [26]. Indeed, since an exactly transverse 7" can
always be achieved [101], the steps leading from (3.24) to (3.27) follow through.

The integrals that are needed to evaluate eq. (3.27) (for the soft case of interest here)
are the same as for the scalar case. In particular, the new spin piece only gives an integral
of the type py, - K in (3.14). We thus obtain our main result

G

I\ o Anm — 1
22 KU?““ B 2> e = 200m Anm | (1 — 1) PP (3.30)
n,m nm

T =

The symbols oy, and A, are defined in (3.11). We stress that the formula (3.30) is
Lorentz covariant and valid for arbitrary kinematics p,, of the background hard process,
i.e. it hold regardless whether or not the outgoing momenta can be regarded as small de-
flections of the incoming ones. In fact, just like Weinberg’s theorem, it holds independently
of the number and of the specific details of the hard particles taking part in the background
hard process: one need only assign their momenta. However, of course, it only captures the
contribution to the angular momentum due to zero-frequency gravitons. We will explore
its properties more in detail in section 3.4, discussing also its “small G ” expansion valid in
the PM regime.

3.3 Vector and N =8

Let us now briefly complement the scalar and graviton results discussed above with the
analogous formulas for the massless vector, for which the soft factor takes the form

e (k) = e, (k) A (k). > ""‘f”f’; - (3.31)

Adopting Feynman gauge, the relevant operator is in this case

g
0
vec _ _ t juZ iz
Jaﬁ - Z/]-C‘au(k) (n k[aak_m 5[(15 A ) v(k), (332)

and translates into the classical average

A d
vec . % 14 a
vee = —Z/EFN (nu Ko 57087 +5[a‘5m) (3.33)

Like for the graviton, (3.33) results after a non-trivial cancellation of A\-dependent contri-
butions between the orbital and spin angular momentum terms in (3.32). Similarly, the
two terms in (3.33) are not separately gauge invariant. The integrals are the same as for
the scalar and the graviton, and we obtain

1 €nem

OrnmADpm — 1 o
(jvec)aﬂ [—Unm Y 1 + Apm, (7771 Im )pL pﬂ (3.34)

167 = My, am — 1
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Figure 1. Coordinate choices in the two reference frames discussed in the text: the centre-of-mass
frame (left panel) and the frame where particle 1 is initially at rest (right panel).

We are now in a position to discuss the total contribution to the angular momentum
in N = 8 supergravity from zero-frequency massless modes. Using the couplings described
below (2.12), we can combine dilaton and KK scalar contributions, which we can read
off (3.16), and KK vector contributions dictated by (3.34) with the graviton one (3.30),

obtaining the following simple result for the case of N’ = 8 supergravity:
o Oy, — 1 B
jﬁfis =3 Z [Ugmm = 26nmAnm | (M — Nm) L?pﬂ ’ (3.35)

n,m nm
where G, = 0nm — 1 if 1 and m corresponds to states compactified along the same
direction, so that m,, = m,,, while it equals G,,, = opnm otherwise.

3.4 2 — 2 collisions

Let us now specialize (3.30) to the case of a 2 — 2 collision of spinless® point particles with
masses mi and mg, considering first the centre-of-mass frame (see figure 1), where

C] C]
pﬁL = (_E170707 _p)a pZ = <E1707 _Qcosisa_kp_ QSin S> ;

2 2 (3.36)
H o @s . @s
ph = (—E2,0,0,+p), phs = (FE20,+Q cos ?,—p+Qsm7 ,
with Q = 2psin% and so Qcos% = psin O and p — Qsin% = pcos O,. To perform

the calculation, let us recall the definition of the symbols 0, and A,,, in terms of hard
momenta in eq. (3.11). It is convenient to note that o,,;, = oy, and

Q? Q? Q?
= = = =0 — =14 == =14+ —=. (3.37
12 =03 =0, 013=0u=0-g5 T, ol + ol 023 + 2m3 (3.37)
Clearly J*¥ = J%* = 0, while we find
C) I\ o Dpm — 1
JY* = GpQ cos 7 > bum Ka?m — 2) % — 200mDnm | (3.38)
n,m nm

3 Actually, eq. (3.30) has been checked to capture the full O(G?) angular momentum loss also for the
more complicated case of hard particles with spin and generic spin alignments [64].
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where we introduced coefficients &, , = &n,» and the only non-zero ones are
§14 =83 =+1, §13 =84 =—1. (3.39)

In the limit Q? < m?, i.e. the standard PM regime, this result precisely agrees with [18,
26] and is in fact proportional to Im 2§ (evaluated in the same regime),

TY% ~ 4P i [—meIm 28] + O(GY), (3.40)

e—0

where Im 26 is the imaginary part of the eikonal, whose divergent part reads

GQ? | 8 — 502 (202 — 3)o arccosh &

Im 20 =~ = 2me | 3(0? — 1) (02 —1)3/2

(3.41)

Note that, consistently with unitarity, the function within squared brackets in this equation
is strictly positive for o > 1 so that J¥# in (3.40) corresponds to the system losing angular
momentum. Moreover, since no energy-momentum is radiated to O(G?), this angular
momentum loss implies that the impact parameter becomes shorter, Ab = —7Y%/p to this
order. In our approach, such an O(G?) term emerges because we let the soft dressing (2.1)
act on the full S-matrix, so that expectations like (2.11) can include interference terms
between the T-matrix and the identity matrix.

The coefficient 4p/@Q in (3.40) is precisely the one that ensures the agreement between
two different formulas for the radiation-reaction correction to the deflection angle to 3PM
order. One comes from an analyticity argument linking real and imaginary parts the 3PM
eikonal 262 [19, 20]

Re 2051 = lim [—7e Im 26] (3.42)
so that -
1 ORe 24 2 .
Oy = ) T2 = ob lim [—meIm 24o] | (3.43)

where we used the fact that the eikonal scales like b~2 to this order. The other one
comes from the Bini-Damour linear response equation [18, 88, 89], which to leading order

reduces to | 88 0
ORR ~ = ZEIPM gyz X gyz 3.44
3PM 2p  Ob 2p2b J (3.44)
So that (3.44) agrees with (3.43) thanks to (3.40).

2 9s
2

102, 103]. However, of course, eq. (3.38) is still well defined and provides the smooth limit

In the opposite limit m? < Q2 = ssin the naive PM expansion breaks down [56,

Os
JY* ~ 2Gs sin O log C?S £ (3.45)
sin 5
which, when further expanded for small ©; yields
yz 4
JY* ~ Gs Oy log YR (3.46)
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Comparing with the results of [56] in the ultra-high-energy limit, and multiplying by the
same factors which appear in (3.40), we also get, to leading order in G,

g lg% [—meIm 28] ~ G's Oy [1 + log @43] . (3.47)
We see that the log-enhanced term in this equation is precisely the same as in (3.46).
However, there is an additional non-log-enhanced term in (3.47), which does not have a
corresponding term in (3.46). We did not find similar relations between the two quantities
in general, for intermediate values of the velocity.

We turn now to the mass dipole, J;7, using the kinematics (3.36) in the CM frame.
While J* clearly vanishes, we get

(C) 1\ onmApm — 1
TJY = GQ cos 78 T;;lcmm [(Jim — 2> % — 20nm D, (3.48)
where the only non-zero coefficients ¢, ,, = ¢, are
ags =k, a4 =—Fk1, co3 = ko, o4 =—FEs. (3.49)
In the standard PM regime Q? < m;, one finds
Tty Tz (3.50)

b(Ey — By)  20p

This result agrees with eq. (11) of [26], taking into account that the two frames are related
by a rotation by 7/2 about the y-axis and by the inversion y — —y. On the other hand,
the system’s mass-dipole obeys the balance law A(b; Ey — by Es) = —J4y, where by o are the
impact parameters of each body with respect to the origin, so that b = by + bs. Comparing
with A(by + b2)p = —J,. and substituting (3.50), leads to Aby p = Abyp = —J,./2. That
is, each of the two bodies is responsible for “half” of the total angular momentum loss,
regardless of their mass.
For the tz component one gets instead

. I\ onmApm — 1

nm
where the only non-zero coefficients d,, ,, = dp, , are

© ©
d1,3 = —Ep+ E1Qsin 78 , d174 = —F1Qsin 78
(3.52)

G} )
d2’4 = +Ep — EQQ sin ?S , d2’3 = —|—E2Q sin 78
and thus, to leading PM order for Q? < m?,

Jie 6y Ty
b(Ey— Ey) 4 bp

(3.53)

In particular, J;. ~ O(G®). Like ref. [26], we do not find contributions to the mass
dipole along the incoming direction to order O(G) and our approach only captures the
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very last term displayed in eq. (160) of [63], while we do not obtain the remaining terms
of egs. (159), (160) of this reference. Such terms seem to come about due to the fact
that the asymptotic behaviour of the particle trajectories is not the same as that of free
particles, which is due to the long-range of the gravitational force in D = 4. Comparison
with [49-51] indicates that such effects are captured by the logw-corrected sub-leading soft
theorem, which is compatible with us not finding them here: our approach is only based on
Weinberg’s leading soft theorem. Still, at least part of the mismatch could be related to a
subtle difference between the standard centre-of-mass frame for the hard particles (which
we adopted here) and the centre-of-energy frame for particles+field [63, 104].
Going to the frame where particle 1 is initially at rest (see figure 1) amounts to per-
forming the following Lorentz transformation:
Er/m1 00 —p/my
0 10 O
= AF pH AP, = . 3.54
p P v 0 01 0 (3.54)
—p/m1 00 El/ml
In particular, J'%* = J%*,
m I =E JY+pJY, mJY =pIY+EJY¥, mp =pE.  (3.55)

Indeed, in this frame, J'¥* as calculated from (3.30) is given by

GpE S 1\ onmApm — 1
faf — 222 = mm | (g2 2 ) MR D 9 A 3.56
J - Q cos 5 7;15 [<0nm 2) P OnmBnm | , ( )
where now the only non-zero ™™ = £ are
€23 =41, 4 =-1. (3.57)
Then we find, to leading order in the PM expansion,
jyz j/yz
p =2 P (3.58)

This relation agrees with [26], and the above formulas are indeed consistent with the
transformation law (3.55), in particular with the overall sign in (3.50).

However, eq. (3.30) goes beyond the leading PM order. For instance, expanding for
Q ~ p(O1pM + O2pm), the O(G?3) expansion of (3.56) matches the D(o) term in eq. (13)
of [26], which arises in their calculation by interference terms between the J(w) contribution
and NLO deflection terms.

4 Connection with other approaches

Let us now investigate the relation between the above expressions for J*”, in particu-
lar (3.27), and more standard formulas that have been used for instance in [11, 18, 62]. For
the graviton case, we can start from eq. (2.2) of [18] cast in the form

i = [ du § d@) [ Fre(w 2)ay0n0, 5 (0. 2) + 2l (0,200, @), (@)
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where frr(u,) is the position-space waveform normalized according to

Lo
WY~ = %T (4.2)

In the case of the memory waveform, comparing (2.23) with (4.2),

o) =g 3 1;{;) (43)

On the other hand, focusing first on the orbital angular momentum, from (3.20) we have

. 1 * 0 v v 0 *

s =5 [0 £ 0 = PRk g (). (14)
which we can cast in the following form using f;, (k) = —f(—k) and making the measure
explicit,

. 1 [ dk) [tee N .

= — * = - v . 4
ilry >/ 20n)p LOO defuv(w’Wk)k[IakJ]f (w, wk) (4.5)
Performing the inverse Fourier transform, and keeping track of the overall factor in (2.21),
+oo
P (w,wi) = i47r/ du fi(u, &) e™" (4.6)
one gets
LY = [ dz) | du du fop (' 8) 2 0 (—idy) . io(u—u) MY (w,ud) . (4.7)
TTH KV ’ (I 6[%‘]} 2 TT . .

Recognizing the derivative of the delta function, we find

.0 VoA
/dQ /du Fp o (u )x[I@mJ%T(u,x), (4.8)

to see that this is exactly the orbital part of (4.1). A similar manipulation goes through
for the spin angular momentum as well, so that one sees that the I.J component of (3.20)
and (4.1) are in fact the same. Still, subtleties related to the use of the standard for-
mula (4.1) in frames where the centre of mass is not at rest have been pointed out [26, 93,
96, 97]. This could explain the apparent clash between the covariance of J*, the results
obtained in the centre-of-mass frame [18, 63] and those found in the frame where particle
1 is initially at rest [11, 62], as also discussed in [26]. On the other hand the scope of
applicability of (3.27) seems general, due to its manifest covariance [26].

As clearly emphasized in [57], when the canonical BMS gauge is chosen where the
shear goes to zero as u — —oo as in (2.29), namely

1 K PRP7 n
ny uy AN ~ nt'n
h/“/ ~ ; TT » TT(’U,,.’E) = E 9(u) 'Zg(.f(}) Z ﬁ (49)
applying (4.1) ought to yield a vanishing result. This mechanism is indeed also manifest
in the explicit calculation performed in section 3 in w-space, as we now illustrate. In w-

space, going to the canonical Bondi frame corresponds to changing the —i0 prescription
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as in (2.28) i.e. by sending —i0 — —,i0 in each term. Modifying accordingly (3.12)
and (3.13), we see that the first one vanishes identically, while the second one becomes m-
independent and hence vanishes in the sum over n, m by antisymmetry. Thus, consistently
with the analysis in [57], we conclude that the contribution to J* that is captured by the
present discussion can be in fact always set to zero by adjusting the BMS frame via (2.28).

To conclude, let us briefly go back to another subtle issue, namely whether or not the
JH discussed here should be regarded as radiated angular momentum. Our calculation and
the one in [26] seem to indicate that taking the expectation value of the graviton’s angular
momentum operator in the final state (J,,) captures two types of contributions. One is
the angular momentum carried to null infinity by propagating gravitons, whose frequency
may be small but non zero, which starts at O(G3). Another one is a contribution that
is localized at the w = 0 end of the spectrum, starts at O(G?) in the PM expansion and
is the only one captured by our formula (3.30) (which is valid beyond the PM regime).
As such, it may be more appropriate to interpret the latter as a static contribution that
is stored in the gravitational field. Still let us emphasize that, if one’s ultimate goal is
to calculate the loss of mechanical angular momentum of the underlying two-body system
via a balance law, only the sum of the two is relevant. In other words, the variation of
mechanical angular momentum of the two body system is simply equal to —(.J,,,,), which
automatically accounts for both radiative and static losses.

Acknowledgments

We would like to thank Francesco Alessio and Gabriele Veneziano for collaboration on
closely related projects. RR would like to thank THES for hospitality during the final
part of this work and Thibault Damour for enlightening discussions. The research of
RR is partially supported by the U.K. Science and Technology Facilities Council (STFC)
Consolidated Grant ST/T000686/1. RR would like to thank THES for hospitality during
the final part of this work. The research of CH (PDV) is fully (partially) supported by the
Knut and Alice Wallenberg Foundation under grant KAW 2018.0116. Nordita is partially
supported by Nordforsk.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP? supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References
[1] W.D. Goldberger and I.Z. Rothstein, An effective field theory of gravity for extended
objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].

[2] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color
charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].

[3] T. Damour, High-energy gravitational scattering and the general relativistic two-body
problem, Phys. Rev. D 97 (2018) 044038 [arXiv:1710.10599] [InSPIRE].

~ 18 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.73.104029
https://arxiv.org/abs/hep-th/0409156
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0409156
https://doi.org/10.1103/PhysRevD.95.125010
https://arxiv.org/abs/1611.03493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.03493
https://doi.org/10.1103/PhysRevD.97.044038
https://arxiv.org/abs/1710.10599
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.10599

[4] A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic black hole scattering from
charged scalar amplitudes, JHEP 03 (2018) 044 [arXiv:1711.03901] [INSPIRE].

[5] C. Cheung, I.Z. Rothstein and M.P. Solon, From scattering amplitudes to classical
potentials in the post-Minkowskian expansion, Phys. Rev. Lett. 121 (2018) 251101
[arXiv:1808.02489] [INSPIRE].

[6] D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, observables, and classical
scattering, JHEP 02 (2019) 137 [arXiv:1811.10950] [INSPIRE].

[7] A. Cristofoli, N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Post-Minkowskian
Hamiltonians in general relativity, Phys. Rev. D 100 (2019) 084040 [arXiv:1906.01579]
[INSPIRE].

[8] N.E.J. Bjerrum-Bohr, A. Cristofoli and P.H. Damgaard, Post-Minkowskian scattering angle
in Einstein gravity, JHEP 08 (2020) 038 [arXiv:1910.09366] [INSPIRE].

[9] G. Mogull, J. Plefka and J. Steinhoff, Classical black hole scattering from a worldline
quantum field theory, JHEP 02 (2021) 048 [arXiv:2010.02865] [INSPIRE].

[10] M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini, From amplitudes to
gravitational radiation with cubic interactions and tidal effects, Phys. Rev. D 103 (2021)
045015 [arXiv:2012.06548] INSPIRE].

[11] G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, Classical gravitational Bremsstrahlung
from a worldline quantum field theory, Phys. Rev. Lett. 126 (2021) 201103
[arXiv:2101.12688] [INSPIRE].

[12] A. Cristofoli, R. Gonzo, D.A. Kosower and D. O’Connell, Waveforms from amplitudes,
arXiv:2107.10193 [INSPIRE].

[13] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering amplitudes
and the conservative Hamiltonian for binary systems at third post-Minkowskian order, Phys.
Rev. Lett. 122 (2019) 201603 [arXiv:1901.04424] [InSPIRE].

[14] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Black hole binary
dynamics from the double copy and effective theory, JHEP 10 (2019) 206
[arXiv:1908.01493] [INSPIRE].

[15] Z. Bern et al., Scattering amplitudes and conservative binary dynamics at O(G*), Phys.
Rev. Lett. 126 (2021) 171601 [arXiv:2101.07254] [inSPIRE].

[16] Z. Bern et al., Scattering amplitudes, the tail effect, and conservative binary dynamics at
O(G*), Phys. Rev. Lett. 128 (2022) 161103 [arXiv:2112.10750] [NSPIRE].

[17] C. Dlapa, G. Kélin, Z. Liu and R.A. Porto, Conservative dynamics of binary systems at
fourth post-Minkowskian order in the large-eccentricity expansion, Phys. Rev. Lett. 128
(2022) 161104 [arXiv:2112.11296] [INSPIRE].

[18] T. Damour, Radiative contribution to classical gravitational scattering at the third order in
G, Phys. Rev. D 102 (2020) 124008 [arXiv:2010.01641] [INSPIRE].

[19] P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, Radiation reaction from soft
theorems, Phys. Lett. B 818 (2021) 136379 [arXiv:2101.05772] [INSPIRE].

[20] P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, The eikonal approach to
gravitational scattering and radiation at O(G3), JHEP 07 (2021) 169 [arXiv:2104.03256]
[INSPIRE].

~19 —


https://doi.org/10.1007/JHEP03(2018)044
https://arxiv.org/abs/1711.03901
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.03901
https://doi.org/10.1103/PhysRevLett.121.251101
https://arxiv.org/abs/1808.02489
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.02489
https://doi.org/10.1007/JHEP02(2019)137
https://arxiv.org/abs/1811.10950
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10950
https://doi.org/10.1103/PhysRevD.100.084040
https://arxiv.org/abs/1906.01579
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.01579
https://doi.org/10.1007/JHEP08(2020)038
https://arxiv.org/abs/1910.09366
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.09366
https://doi.org/10.1007/JHEP02(2021)048
https://arxiv.org/abs/2010.02865
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.02865
https://doi.org/10.1103/PhysRevD.103.045015
https://doi.org/10.1103/PhysRevD.103.045015
https://arxiv.org/abs/2012.06548
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.06548
https://doi.org/10.1103/PhysRevLett.126.201103
https://arxiv.org/abs/2101.12688
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.12688
https://arxiv.org/abs/2107.10193
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.10193
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1103/PhysRevLett.122.201603
https://arxiv.org/abs/1901.04424
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.04424
https://doi.org/10.1007/JHEP10(2019)206
https://arxiv.org/abs/1908.01493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01493
https://doi.org/10.1103/PhysRevLett.126.171601
https://doi.org/10.1103/PhysRevLett.126.171601
https://arxiv.org/abs/2101.07254
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.07254
https://doi.org/10.1103/PhysRevLett.128.161103
https://arxiv.org/abs/2112.10750
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.10750
https://doi.org/10.1103/PhysRevLett.128.161104
https://doi.org/10.1103/PhysRevLett.128.161104
https://arxiv.org/abs/2112.11296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.11296
https://doi.org/10.1103/PhysRevD.102.124008
https://arxiv.org/abs/2010.01641
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.01641
https://doi.org/10.1016/j.physletb.2021.136379
https://arxiv.org/abs/2101.05772
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.05772
https://doi.org/10.1007/JHEP07(2021)169
https://arxiv.org/abs/2104.03256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.03256

[21]

[22]

[23]

N.E.J. Bjerrum-Bohr, P.H. Damgaard, L. Planté and P. Vanhove, The amplitude for
classical gravitational scattering at third post-Minkowskian order, JHEP 08 (2021) 172
[arXiv:2105.05218] [INSPIRE].

A. Brandhuber, G. Chen, G. Travaglini and C. Wen, Classical gravitational scattering from
a gauge-invariant double copy, JHEP 10 (2021) 118 [arXiv:2108.04216] INSPIRE].

E. Herrmann, J. Parra-Martinez, M.S. Ruf and M. Zeng, Gravitational Bremsstrahlung from
reverse unitarity, Phys. Rev. Lett. 126 (2021) 201602 [arXiv:2101.07255] [INSPIRE].

E. Herrmann, J. Parra-Martinez, M.S. Ruf and M. Zeng, Radiative classical gravitational
observables at O(G?3) from scattering amplitudes, JHEP 10 (2021) 148 [arXiv:2104.03957]
[INSPIRE].

M.M. Riva and F. Vernizzi, Radiated momentum in the post-Minkowskian worldline
approach via reverse unitarity, JHEP 11 (2021) 228 [arXiv:2110.10140] [INSPIRE].

A.V. Manohar, A.K. Ridgway and C.-H. Shen, Radiated angular momentum and dissipative
effects in classical scattering, arXiv:2203.04283 [INSPIRE].

G. Kilin and R.A. Porto, From boundary data to bound states, JHEP 01 (2020) 072
[arXiv:1910.03008] [INSPIRE].

G. Kélin and R.A. Porto, From boundary data to bound states. Part II. Scattering angle to
dynamical invariants (with twist), JHEP 02 (2020) 120 [arXiv:1911.09130] [InSPIRE].

G. Cho, G. Kélin and R.A. Porto, From boundary data to bound states. Part III. Radiative
effects, JHEP 04 (2022) 154 [arXiv:2112.03976] [INSPIRE].

N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General
relativity from scattering amplitudes, Phys. Rev. Lett. 121 (2018) 171601
[arXiv:1806.04920] [iNSPIRE].

A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the second post-Minkowskian
eikonal and the dynamics of binary black holes, Phys. Rev. D 100 (2019) 066028
[arXiv:1904.02667] [INSPIRE].

Z. Bern, H. Ita, J. Parra-Martinez and M.S. Ruf, Universality in the classical limit of
massless gravitational scattering, Phys. Rev. Lett. 125 (2020) 031601 [arXiv:2002.02459]
[INSPIRE].

A. Cristofoli, P.H. Damgaard, P. Di Vecchia and C. Heissenberg, Second-order
post-Minkowskian scattering in arbitrary dimensions, JHEP 07 (2020) 122
[arXiv:2003.10274] INSPIRE].

J. Parra-Martinez, M.S. Ruf and M. Zeng, Extremal black hole scattering at O(G?):
graviton dominance, eikonal exponentiation, and differential equations, JHEP 11 (2020) 023
[arXiv:2005.04236] INSPIRE].

M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini, Fikonal phase
matriz, deflection angle and time delay in effective field theories of gravity, Phys. Rev. D
102 (2020) 046014 [arXiv:2006.02375] [INSPIRE].

P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, Universality of ultra-relativistic
gravitational scattering, Phys. Lett. B 811 (2020) 135924 [arXiv:2008.12743] [INSPIRE].

Z. Bern, J. Parra-Martinez, R. Roiban, E. Sawyer and C.-H. Shen, Leading nonlinear tidal
effects and scattering amplitudes, JHEP 05 (2021) 188 [arXiv:2010.08559] [INSPIRE].

—90 —


https://doi.org/10.1007/JHEP08(2021)172
https://arxiv.org/abs/2105.05218
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.05218
https://doi.org/10.1007/JHEP10(2021)118
https://arxiv.org/abs/2108.04216
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.04216
https://doi.org/10.1103/PhysRevLett.126.201602
https://arxiv.org/abs/2101.07255
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.07255
https://doi.org/10.1007/JHEP10(2021)148
https://arxiv.org/abs/2104.03957
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.03957
https://doi.org/10.1007/JHEP11(2021)228
https://arxiv.org/abs/2110.10140
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.10140
https://arxiv.org/abs/2203.04283
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.04283
https://doi.org/10.1007/JHEP01(2020)072
https://arxiv.org/abs/1910.03008
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03008
https://doi.org/10.1007/JHEP02(2020)120
https://arxiv.org/abs/1911.09130
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.09130
https://doi.org/10.1007/JHEP04(2022)154
https://arxiv.org/abs/2112.03976
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.03976
https://doi.org/10.1103/PhysRevLett.121.171601
https://arxiv.org/abs/1806.04920
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.04920
https://doi.org/10.1103/PhysRevD.100.066028
https://arxiv.org/abs/1904.02667
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.02667
https://doi.org/10.1103/PhysRevLett.125.031601
https://arxiv.org/abs/2002.02459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.02459
https://doi.org/10.1007/JHEP07(2020)122
https://arxiv.org/abs/2003.10274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.10274
https://doi.org/10.1007/JHEP11(2020)023
https://arxiv.org/abs/2005.04236
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.04236
https://doi.org/10.1103/PhysRevD.102.046014
https://doi.org/10.1103/PhysRevD.102.046014
https://arxiv.org/abs/2006.02375
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.02375
https://doi.org/10.1016/j.physletb.2020.135924
https://arxiv.org/abs/2008.12743
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.12743
https://doi.org/10.1007/JHEP05(2021)188
https://arxiv.org/abs/2010.08559
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.08559

[38] N.E.J. Bjerrum-Bohr, P.H. Damgaard, L. Planté and P. Vanhove, Classical gravity from
loop amplitudes, Phys. Rev. D 104 (2021) 026009 [arXiv:2104.04510] [nSPIRE].

[39] D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at Planckian energies,
Phys. Lett. B 197 (1987) 81 [nSPIRE].

[40] G.’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987)
61 [INSPIRE].

[41] D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from
Planckian energy superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [INSPIRE].

[42] 1.J. Muzinich and M. Soldate, High-energy unitarity of gravitation and strings, Phys. Rev.
D 37 (1988) 359 [INSPIRE].

[43] B. Sundborg, High-energy asymptotics: the one loop string amplitude and resummation,
Nucl. Phys. B 306 (1988) 545 [INSPIRE].

[44] D. Amati, M. Ciafaloni and G. Veneziano, Higher order gravitational deflection and soft
Bremsstrahlung in Planckian energy superstring collisions, Nucl. Phys. B 347 (1990) 550
[INSPIRE].

[45] M. Ciafaloni, D. Colferai, F. Coradeschi and G. Veneziano, Unified limiting form of graviton
radiation at extreme energies, Phys. Rev. D 93 (2016) 044052 [arXiv:1512.00281]
[INSPIRE].

[46] M. Ciafaloni, D. Colferai and G. Veneziano, Infrared features of gravitational scattering and
radiation in the eikonal approach, Phys. Rev. D 99 (2019) 066008 [arXiv:1812.08137]
[INSPIRE].

[47) P.H. Damgaard, L. Plante and P. Vanhove, On an exponential representation of the
gravitational S-matriz, JHEP 11 (2021) 213 [arXiv:2107.12891] [InSPIRE].

[48] A. Cristofoli et al., The uncertainty principle and classical amplitudes, arXiv:2112.07556
[INSPIRE].

[49] A. Laddha and A. Sen, Observational signature of the logarithmic terms in the soft graviton
theorem, Phys. Rev. D 100 (2019) 024009 [arXiv:1806.01872] [INSPIRE].

[50] B. Sahoo and A. Sen, Classical and quantum results on logarithmic terms in the soft
theorem in four dimensions, JHEP 02 (2019) 086 [arXiv:1808.03288] INSPIRE].

[61] A.P. Saha, B. Sahoo and A. Sen, Proof of the classical soft graviton theorem in D = 4,
JHEP 06 (2020) 153 [arXiv:1912.06413] [INSPIRE].

[52] B. Sahoo and A. Sen, Classical soft graviton theorem rewritten, JHEP 01 (2022) 077
[arXiv:2105.08739] [NSPIRE].

[63] A. Strominger, Lectures on the infrared structure of gravity and gauge theory, Princeton
University Press (2018) [arXiv:1703.05448] [INSPIRE].

[54] S. Weinberg, Photons and gravitons in S-matriz theory: derivation of charge conservation
and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].

[65] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].

[56] P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, The eikonal operator at
arbitrary velocities. Part I. The soft-radiation limit, JHEP 07 (2022) 039
[arXiv:2204.02378] INSPIRE].

~ 91 —


https://doi.org/10.1103/PhysRevD.104.026009
https://arxiv.org/abs/2104.04510
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.04510
https://doi.org/10.1016/0370-2693(87)90346-7
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB197%2C81%22
https://doi.org/10.1016/0370-2693(87)90159-6
https://doi.org/10.1016/0370-2693(87)90159-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB198%2C61%22
https://doi.org/10.1142/S0217751X88000710
https://inspirehep.net/search?p=find+J%20%22Int.J.Mod.Phys.%2CA3%2C1615%22
https://doi.org/10.1103/PhysRevD.37.359
https://doi.org/10.1103/PhysRevD.37.359
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD37%2C359%22
https://doi.org/10.1016/0550-3213(88)90014-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB306%2C545%22
https://doi.org/10.1016/0550-3213(90)90375-N
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB347%2C550%22
https://doi.org/10.1103/PhysRevD.93.044052
https://arxiv.org/abs/1512.00281
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.00281
https://doi.org/10.1103/PhysRevD.99.066008
https://arxiv.org/abs/1812.08137
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08137
https://doi.org/10.1007/JHEP11(2021)213
https://arxiv.org/abs/2107.12891
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.12891
https://arxiv.org/abs/2112.07556
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.07556
https://doi.org/10.1103/PhysRevD.100.024009
https://arxiv.org/abs/1806.01872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.01872
https://doi.org/10.1007/JHEP02(2019)086
https://arxiv.org/abs/1808.03288
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.03288
https://doi.org/10.1007/JHEP06(2020)153
https://arxiv.org/abs/1912.06413
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.06413
https://doi.org/10.1007/JHEP01(2022)077
https://arxiv.org/abs/2105.08739
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.08739
https://arxiv.org/abs/1703.05448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05448
https://doi.org/10.1103/PhysRev.135.B1049
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C135%2CB1049%22
https://doi.org/10.1103/PhysRev.140.B516
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C140%2CB516%22
https://doi.org/10.1007/JHEP07(2022)039
https://arxiv.org/abs/2204.02378
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2204.02378

[67] G. Veneziano and G.A. Vilkovisky, Angular momentum loss in gravitational scattering,
radiation reaction, and the Bondi gauge ambiguity, arXiv:2201.11607 [INSPIRE].

[58] A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft
theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

[59] S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University
Press (2005).

[60] Y.F. Bautista and A. Laddha, Soft constraints on KMOC formalism, arXiv:2111.11642
[INSPIRE].

[61] Y.F. Bautista and A. Guevara, From scattering amplitudes to classical physics: universality,
double copy and soft theorems, arXiv:1903.12419 [INSPIRE].

[62] S. Mougiakakos, M.M. Riva and F. Vernizzi, Gravitational Bremsstrahlung in the
post-Minkowskian effective field theory, Phys. Rev. D 104 (2021) 024041
[arXiv:2102.08339] [INSPIRE].

[63] S.E. Gralla and K. Lobo, Self-force effects in post-Minkowskian scattering, Class. Quant.
Grav. 39 (2022) 095001 [arXiv:2110.08681] [INSPIRE].

[64] F. Alessio and P. Di Vecchia, Radiation reaction for spinning black-hole scattering, Phys.
Lett. B 832 (2022) 137258 [arXiv:2203.13272] [INSPIRE].

[65] S.G. Naculich, H. Nastase and H.J. Schnitzer, Two-loop graviton scattering relation and IR
behavior in N = 8 supergravity, Nucl. Phys. B 805 (2008) 40 [arXiv:0805.2347] [INSPIRE].

[66] S.G. Naculich and H.J. Schnitzer, Eikonal methods applied to gravitational scattering
amplitudes, JHEP 05 (2011) 087 [arXiv:1101.1524] INSPIRE].

[67) C.D. White, Factorization properties of soft graviton amplitudes, JHEP 05 (2011) 060
[arXiv:1103.2981] [INSPIRE].

[68] R. Akhoury, R. Saotome and G. Sterman, Collinear and soft divergences in perturbative
quantum gravity, Phys. Rev. D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].

[69] S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity
in the high energy limit, Phys. Rev. D 89 (2014) 025009 [arXiv:1306.6019] [INSPIRE].

[70] P. Di Vecchia, A. Luna, S.G. Naculich, R. Russo, G. Veneziano and C.D. White, A tale of
two exponentiations in N = 8 supergravity, Phys. Lett. B 798 (2019) 134927
[arXiv:1908.05603] [INSPIRE].

[71] P. Di Vecchia, S.G. Naculich, R. Russo, G. Veneziano and C.D. White, A tale of two
exponentiations in N = 8 supergravity at subleading level, JHEP 03 (2020) 173
[arXiv:1911.11716] [INSPIRE].

[72] D. Bonocore, Asymptotic dynamics on the worldline for spinning particles, JHEP 02 (2021)
007 [arXiv:2009.07863] [NSPIRE].

[73] D. Bonocore, A. Kulesza and J. Pirsch, Classical and quantum gravitational scattering with
generalized Wilson lines, JHEP 03 (2022) 147 [arXiv:2112.02009] InSPIRE].

[74] R. Soldati, Field theory 1. Introduction to quantum field theory,
http://www.robertosoldati.com/archivio/news/107/QFT1.pdf.

[75] R. Gonzo and A. Pokraka, Light-ray operators, detectors and gravitational event shapes,
JHEP 05 (2021) 015 [arXiv:2012.01406] [iNSPIRE].

—99 _


https://arxiv.org/abs/2201.11607
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.11607
https://doi.org/10.1007/JHEP01(2016)086
https://arxiv.org/abs/1411.5745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.5745
https://arxiv.org/abs/2111.11642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.11642
https://arxiv.org/abs/1903.12419
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.12419
https://doi.org/10.1103/PhysRevD.104.024041
https://arxiv.org/abs/2102.08339
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.08339
https://doi.org/10.1088/1361-6382/ac5d88
https://doi.org/10.1088/1361-6382/ac5d88
https://arxiv.org/abs/2110.08681
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.08681
https://doi.org/10.1016/j.physletb.2022.137258
https://doi.org/10.1016/j.physletb.2022.137258
https://arxiv.org/abs/2203.13272
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.13272
https://doi.org/10.1016/j.nuclphysb.2008.07.001
https://arxiv.org/abs/0805.2347
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.2347
https://doi.org/10.1007/JHEP05(2011)087
https://arxiv.org/abs/1101.1524
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.1524
https://doi.org/10.1007/JHEP05(2011)060
https://arxiv.org/abs/1103.2981
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.2981
https://doi.org/10.1103/PhysRevD.84.104040
https://arxiv.org/abs/1109.0270
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.0270
https://doi.org/10.1103/PhysRevD.89.025009
https://arxiv.org/abs/1306.6019
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.6019
https://doi.org/10.1016/j.physletb.2019.134927
https://arxiv.org/abs/1908.05603
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.05603
https://doi.org/10.1007/JHEP03(2020)173
https://arxiv.org/abs/1911.11716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11716
https://doi.org/10.1007/JHEP02(2021)007
https://doi.org/10.1007/JHEP02(2021)007
https://arxiv.org/abs/2009.07863
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.07863
https://doi.org/10.1007/JHEP03(2022)147
https://arxiv.org/abs/2112.02009
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.02009
http://www.robertosoldati.com/archivio/news/107/QFT1.pdf
https://doi.org/10.1007/JHEP05(2021)015
https://arxiv.org/abs/2012.01406
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.01406

[76] D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments,
Phys. Rev. Lett. 67 (1991) 1486 nSPIRE].

[77] A.G. Wiseman and C.M. Will, Christodoulou’s nonlinear gravitational wave memory:
evaluation in the quadrupole approximation, Phys. Rev. D 44 (1991) R2945 [INSPIRE].

[78] L. Blanchet and T. Damour, Hereditary effects in gravitational radiation, Phys. Rev. D 46
(1992) 4304 [INSPIRE].

[79] F. Bloch and A. Nordsieck, Note on the radiation field of the electron, Phys. Rev. 52 (1937)
54 [INSPIRE].

[80] W. Thirring and B. Touschek, A covariant formulation of the Block-Nordsieck method, Phil.
Mag. Ser. 7 42 (1951) 244.

[81] M. Mirbabayi and M. Porrati, Dressed hard states and black hole soft hair, Phys. Rev. Lett.
117 (2016) 211301 [arXiv:1607.03120] [INSPIRE].

[82] S. Choi and R. Akhoury, BMS supertranslation symmetry implies Faddeev-Kulish
amplitudes, JHEP 02 (2018) 171 [arXiv:1712.04551] [INSPIRE).

[83] N. Arkani-Hamed, M. Pate, A.-M. Raclariu and A. Strominger, Celestial amplitudes from
UV to IR, JHEP 08 (2021) 062 [arXiv:2012.04208] [INSPIRE].

[84] S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of
relativity, John Wiley and Sons (1972).

[85] D. Garfinkle, S. Hollands, A. Ishibashi, A. Tolish and R.M. Wald, The memory effect for
particle scattering in even spacetime dimensions, Class. Quant. Grav. 34 (2017) 145015
[arXiv:1702.00095] [iNSPIRE].

[86] A. Campoleoni, D. Francia and C. Heissenberg, Electromagnetic and color memory in even
dimensions, Phys. Rev. D 100 (2019) 085015 [arXiv:1907.05187] [INSPIRE].

[87] S. Caron-Huot and Z. Zahraee, Integrability of black hole orbits in mazimal supergravity,
JHEP 07 (2019) 179 [arXiv:1810.04694] INSPIRE].

[88] D. Bini and T. Damour, Gravitational radiation reaction along general orbits in the effective
one-body formalism, Phys. Rev. D 86 (2012) 124012 [arXiv:1210.2834] [INSPIRE].

[89] D. Bini, T. Damour and A. Geralico, Radiative contributions to gravitational scattering,
Phys. Rev. D 104 (2021) 084031 [arXiv:2107.08896] [INSPIRE].

[90] P.C. Peters, Gravitational radiation and the motion of two point masses, Phys. Rev. 136
(1964) B1224 [inSPIRE].

[91] B. DeWitt, Bryce DeWitt’s lectures on gravitation, Lect. Notes Phys. 826 (2011) 1
[INSPIRE].

[92] K.S. Thorne, Multipole expansions of gravitational radiation, Rev. Mod. Phys. 52 (1980)
299 [INSPIRE].

[93] B. Bonga and E. Poisson, Coulombic contribution to angular momentum flux in general
relativity, Phys. Rev. D 99 (2019) 064024 [arXiv:1808.01288] [INSPIRE].

[94] L. Blanchet and G. Faye, Fluz-balance equations for linear momentum and center-of-mass
position of self-gravitating post-Newtonian systems, Class. Quant. Grav. 36 (2019) 085003
[arXiv:1811.08966] [INSPIRE].

~ 93 -


https://doi.org/10.1103/PhysRevLett.67.1486
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C67%2C1486%22
https://doi.org/10.1103/PhysRevD.44.R2945
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysRevD.44.R2945%22
https://doi.org/10.1103/PhysRevD.46.4304
https://doi.org/10.1103/PhysRevD.46.4304
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD46%2C4304%22
https://doi.org/10.1103/PhysRev.52.54
https://doi.org/10.1103/PhysRev.52.54
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C52%2C54%22
https://doi.org/10.1080/14786445108561260
https://doi.org/10.1080/14786445108561260
https://doi.org/10.1103/PhysRevLett.117.211301
https://doi.org/10.1103/PhysRevLett.117.211301
https://arxiv.org/abs/1607.03120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.03120
https://doi.org/10.1007/JHEP02(2018)171
https://arxiv.org/abs/1712.04551
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.04551
https://doi.org/10.1007/JHEP08(2021)062
https://arxiv.org/abs/2012.04208
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.04208
https://doi.org/10.1088/1361-6382/aa777b
https://arxiv.org/abs/1702.00095
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.00095
https://doi.org/10.1103/PhysRevD.100.085015
https://arxiv.org/abs/1907.05187
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05187
https://doi.org/10.1007/JHEP07(2019)179
https://arxiv.org/abs/1810.04694
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.04694
https://doi.org/10.1103/PhysRevD.86.124012
https://arxiv.org/abs/1210.2834
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.2834
https://doi.org/10.1103/PhysRevD.104.084031
https://arxiv.org/abs/2107.08896
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.08896
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1103/PhysRev.136.B1224
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C136%2CB1224%22
https://doi.org/10.1007/978-3-540-36911-0
https://inspirehep.net/search?p=find+doi%20%2210.1007%2F978-3-540-36911-0%22
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1103/RevModPhys.52.299
https://inspirehep.net/search?p=find+J%20%22Rev.Mod.Phys.%2C52%2C299%22
https://doi.org/10.1103/PhysRevD.99.064024
https://arxiv.org/abs/1808.01288
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.01288
https://doi.org/10.1088/1361-6382/ab0d4f
https://arxiv.org/abs/1811.08966
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.08966

[95] M. Maggiore, Gravitational waves. Volume 1: theory and experiments, Oxford University
Press (2007).

[96] A. Ashtekar and B. Bonga, On a basic conceptual confusion in gravitational radiation
theory, Class. Quant. Grav. 34 (2017) 20LT01 [arXiv:1707.07729] [INSPIRE].

[97] A. Ashtekar and B. Bonga, On the ambiguity in the notion of transverse traceless modes of
gravitational waves, Gen. Rel. Grav. 49 (2017) 122 [arXiv:1707.09914] [INSPIRE].

[98] G. Compere, R. Oliveri and A. Seraj, The Poincaré and BMS flux-balance laws with
application to binary systems, JHEP 10 (2020) 116 [arXiv:1912.03164] [INSPIRE].

[99] ML.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley
(1995).

. eissenberg, Injrare wergences an € ewkonatL erponentiation, Ys. (AR
100] C. Hei b I d di d the eikonal tiation, Phys. Rev. D 104
(2021) 046016 [arXiv:2105.04594] [INSPIRE].

[101] D. Kosmopoulos, Simplifying D-dimensional physical-state sums in gauge theory and
gravity, Phys. Rev. D 105 (2022) 056025 [arXiv:2009.00141] InSPIRE].

[102] S.J. Kovacs and K.S. Thorne, The generation of gravitational waves. 3. Derivation of
Bremsstrahlung formulas, Astrophys. J. 217 (1977) 252 nSPIRE].

[103] S.J. Kovacs and K.S. Thorne, The generation of gravitational waves. 4. Bremsstrahlung,
Astrophys. J. 224 (1978) 62 [INSPIRE].

[104] S.E. Gralla and K. Lobo, Electromagnetic scoot, Phys. Rev. D 105 (2022) 084053
[arXiv:2112.01729] [NSPIRE].

—94 —


https://doi.org/10.1088/1361-6382/aa88e2
https://arxiv.org/abs/1707.07729
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.07729
https://doi.org/10.1007/s10714-017-2290-z
https://arxiv.org/abs/1707.09914
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.09914
https://doi.org/10.1007/JHEP10(2020)116
https://arxiv.org/abs/1912.03164
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.03164
https://doi.org/10.1103/PhysRevD.104.046016
https://doi.org/10.1103/PhysRevD.104.046016
https://arxiv.org/abs/2105.04594
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.04594
https://doi.org/10.1103/PhysRevD.105.056025
https://arxiv.org/abs/2009.00141
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.00141
https://doi.org/10.1086/155576
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C217%2C252%22
https://doi.org/10.1086/156350
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C224%2C62%22
https://doi.org/10.1103/PhysRevD.105.084053
https://arxiv.org/abs/2112.01729
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.01729

	Introduction
	The eikonal operator in the ZFL
	Memory effect

	Angular momentum
	Scalar
	Graviton
	Vector and mathcal N=8
	2->2 collisions

	Connection with other approaches

