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system (Dell). The lacking parameter can be provided by substituting elliptic instead

of the ordinary Gamma functions in the coefficients of the series. These new functions

(ELS-functions) are conjectured to be functions governed by compactified DIM networks

which can simultaneously play the three roles: solutions to non-stationary Dell equations,

Dell conformal blocks with the degenerate field (surface operator) insertion, and the corre-
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description by double-periodic network models with DIM symmetry. We also demonstrate

that the ELS-functions provide symmetric polynomials, which are an elliptic generalization

of Macdonald ones, and compute the generation function of the elliptic genera of the affine

Laumon spaces. In the particular U(1) case, we find an explicit plethystic formula for the

6d partition function, which is a non-trivial elliptic generalization of the (q, t) Nekrasov-

Okounkov formula from 5d.
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1 Introduction

Nekrasov’s extension [2, 3] of Seiberg-Witten theory [4, 5] describes instanton sums (LMNS

integrals [6, 7]) in the Ω-background deformed supersymmetric Yang-Mills theories. Like

Seiberg-Witten theory itself [8, 9], this extension can be encoded in terms of the the-

ory of integrable systems: in particular, in the Nekrasov-Shatashvili limit [10], when one

of the two Ω-deformation ε-parameters vanishes, an AGT related conformal block with

a degenerate field (surface operator) insertion [11, 12] satisfies the Baxter equation [15–

17], i.e. the stationary Schrödinger equation for the quantized integrable systems in sepa-

rated variables. The full-fledged Ω-deformation is supposed to be related to non-stationary

Schrödinger equation [12–14]. An adequate language to describe the entire set of problems,

including the AGT relations [18–20] and extended Virasoro symmetries [21], is that of net-

work models [22, 23], which is basically a representation theory of the Ding-Iohara-Miki

(DIM) algebras [24, 25], a far-going unification of the Virasoro and W algebras. In this

SYM/integrability dictionary, the most rich and interesting is the still mysterious double-

elliptic (Dell) system [26–28]. At the level of integrable systems of the Calogero-Ruijsenaars

type, it possesses double periodicity (ellipticity) in both momenta and coordinates [26, 27].

In Seiberg-Witten theory, it corresponds to the 6d SYM system with adjoint matter hy-

permultiplet [28, 29] (adjoint is known to gives rise to the elliptic Calogero-Ruijsenaars

systems [9, 30, 31], while the other torus comes from the compactification from 6d to 4d).
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Figure 1. Network model description of conformal blocks and Nekrasov functions [22, 23]. Dell

deformation corresponds to compactification in both horizontal and vertical directions, the two

elliptic parameters are associated with the two twists [32, 33].

In the language of network systems, one needs to compactify the network in both the

vertical and horizontal directions [32–34], see figure 1.

In all these approaches, a full Dell theory is still a challenge despite a considerable

progress during the last years. Recently, in [1] we suggested to add the fourth approach to

these studies: the Shiraishi functor [35], which is a very explicit construction in the spirit

of Noumi-Shiraishi generalization of hypergeometric series. This approach is equivalent

to studying hypergeometric functions just at the level of series, without a reference to

their free-field and representation theory interpretations, and thus it is less involved and

much simpler in many respects. In this paper, we further elaborate along these lines, and

consider an elliptic deformation of the original Shiraishi series (a particular example of the

general construction in [35]) partly inspired by [36], which provides an extra parameter

needed for description of the Dell system. Remarkably, this deformation (and in fact many

others, see the section 10) preserves the most important features of Shiraishi series, which

makes further development of this generalized hypergeometric theory both enjoyable and

potentially important for various physical applications. Note that, potentially, there could

be still a problem with getting symmetric polynomials after deformation [35], however, it

turns out that exactly the elliptic deformation of the Shiraishi series preserves symmetric

polynomials.

In what follows, we study various properties of this elliptic lift of the Shiraishi functions

(ELS-functions). In section 2, we define the ELS-functions and study their limit to the

functions of the dual Ruijsenaars system (when one of the elliptic parameters goes to zero;

in terms of the gauge theory, this corresponds to the perturbative limit). In section 3,

we discuss the property of the ELS-functions to give rise to symmetric functions after

a proper specialization. In section 4, we discuss a space-time picture behind the ELS-

functions and various dualities among its parameters. In section 5, we discuss another

representation of the ELS-functions very close to the Noumi-Shiraishi one [37], its relation

with the ordinary Shiraishi functions at a peculiar value of parameter and with the doubly

compactified DIM networks. In section 6, we demonstrate that the answer for the resolved

conifold for such a network calculated earlier from the refined topological vertex (DIM

intertwining operator) [38] or, equivalently, as a trace of the product of two intertwining
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operators [34] coincides with the ELS-function in the simplest U(1) case. In section 7, we

find an explicit plethystic formula for this simplest ELS-function, which is a non-trivial

elliptic generalization of the (q, t) Nekrasov-Okounkov formula from 5d. This formula

hints that the ELS-functions provide generating functions of elliptic genera of the Hilbert

scheme. In the next section 8, we demonstrate that, indeed, the ELS-function computes

the generation function of the elliptic genera of the affine Laumon spaces, which extends

the claim of [39] that the ordinary Shiraishi function is a generating function of the Euler

characteristics of the affine Laumon spaces. These considerations lead us in section 9 to

our main conjecture: that the ELS-function satisfies non-stationary equations with (yet not

completely understood) quantum Dell Hamiltonians. In the Nekrasov-Shatashvili limit, it

is an eigenfunction of the Dell Hamiltonians, while, in the full Ω-background, it solves a

non-stationary Dell equation. Section 10 contains some concluding remarks.

2 ELS-function

The Shiraishi function Pn(xi; p|yi; s|q, t) is originally defined [39] to be a formal power

series

Pn(xi; p|yi; s|q, t) :=
∑
~λ

n∏
i,j=1

N
(j−i|n)

λ(i),λ(j)
(tyj/yi|q, s)

N
(j−i|n)

λ(i),λ(j)
(yj/yi|q, s)

n∏
β=1

∏
α≥1

(
pxα+β

txα+β−1

)λ(β)α

, (2.1)

where ~λ := (λ(1), · · · , λ(n)) is an n-tuple of partitions (Young diagrams) and λ
(β)
α denotes

the length of the α-th row of the Young diagram λ(β). We also identify xα+n = xα. The

Nekrasov factor with the mod n selection rule

N
(k|n)
λ,µ (u|q, s) :=

∏
j≥i≥1

j−i≡k (mod n)

(uq−µi+λj+1s−i+j ; q)λj−λj+1

·
∏

β≥α≥1
β−α≡−k−1 (mod n)

(uqλα−µβsα−β−1; q)µβ−µβ+1
, (2.2)

with the q-Pochhammer symbols

(u; q)∞ :=

∞∏
i=0

(1− qiu), (u; q)n :=
(u; q)∞

(qnu; q)∞
(2.3)

is featured as the coefficients of the Shiraishi function.

We can consider an elliptic lift of Pn(xi; p|yi; s|q, t) by replacing the infinite q-

Pochhammer symbol (2.3) with the elliptic gamma function

Γ(u; q, w) :=
(qw/u; q, w)∞

(u; q, w)∞
, (2.4)

where

(u; q, w)∞ :=
∞∏

i,j=0

(1− qiwju) = exp

(
−
∞∑
n=1

1

n

un

(1− wn)(1− qn)

)
. (2.5)
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Note that the elliptic gamma function Γ(u; q, w) is symmetric in q and w and satisfies the

following basic q-difference equation:

Γ(qu; q, w) = θw(u)Γ(u; q, w), (2.6)

where our convention for the theta function1 is

θw(z) := (z;w)∞(wz−1;w)∞. (2.7)

Since

lim
w→0

Γ(u; q, w) = (u; q)−1
∞ , (2.8)

the function

Θ(u; q, w)n =
Γ(qnu; q, w)

Γ(u; q, w)
(2.9)

has the property

lim
w→0

Θ(u; q, w)n = (u; q)n. (2.10)

We also have

Θ(u; q, w)n =



n−1∏
k=0

θw(qku), n ≥ 0,

n−1∏
k=0

θw(q−k−1u)−1, n < 0.

(2.11)

Now we define the elliptic lift of the Shiraishi function (ELS-function)

PE.G.
n (xi; p|yi; s|q, t, w) :=

∑
~λ

n∏
i,j=1

N (j−i)
λ(i),λ(j)

(tyj/yi|q, s, w)

N (j−i)
λ(i),λ(j)

(yj/yi|q, s, w)

n∏
β=1

∏
α≥1

(
pxα+β

txα+β−1

)λ(β)α

,

(2.12)

where

N (k)
λ,µ(u|q, s, w) :=

∏
j≥i≥1

j−i≡k (mod n)

Θ(uq−µi+λj+1s−i+j ; q, w)λj−λj+1

×
∏
j≥i≥1

j−i≡−k−1 (mod n)

Θ(uqλi−µjsi−j−1; q, w)µj−µj+1 . (2.13)

When the selection rule is not imposed in (2.13), by (2.9) we can rewrite it as

Nλ,µ(u|q, s−1, w) =
∏
j≥i≥1

Γ(uq−µi+λjsi−j ; q, w)

Γ(uq−µi+λj+1si−j ; q, w)

∏
i≥j≥1

Γ(uqλj−µi+1si−j+1; q, w)

Γ(uqλj−µisi−j+1; q, w)

=
∞∏

i,j=1

Γ(uqλj−µisi−j ; q, w)

Γ(usi−j ; q, w)
· Γ(usi−j+1; q, w)

Γ(uqλj−µisi−j+1; q, w)
, (2.14)

1Notice an unusual normalization as compared with the standard odd θ-function [40]: the factor

(w;w)∞/
√
z is omitted.
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where we have made a change s → s−1 to facilitate the comparison with six dimensional

gauge theory. We see this is nothing but the elliptic lift of the Nekrasov factor that

appears in six dimensional instanton partition function [41, 42]. The eigenfunctions of the

Dell system are obtained by taking the Nekrasov-Shatashvili limit s → 1 of the Nekrasov

partition function of six dimensional gauge theory with adjoint matter and codimension two

defects [15, 16, 28, 43]. On the other hand, the original Shiraishi function Pn(xi; p|yi; s|q, t)
is recovered by taking w → 0. Note that when we compare the Shiraishi function with the

Nekrasov function, not t but s, which is introduced as a non-stationary parameter in [39],

plays the role of the omega background parameter as it should be [12]. This is also the case

in [13] and [14], where the instanton counting was discussed from the viewpoint of affine

Lie algebras. It is desirable to clarify such a double role of the parameter s.

To compute the limit p→ 0 of the function PE.G.
n (xi; p|yi; s|q, t, w), we use

Θ(u; q, w)n = (−u)nq
1
2
n(n−1)Θ(qu−1; q, w)−1

−n, n ∈ Z≥0, (2.15)

which, for n > 0, can be proved as follows (see (2.11));

Θ(u; q, w)n ·Θ(qu−1; q, w)−n =
n−1∏
k=0

θw(qku)θw(q−ku−1)−1 (2.16)

=

n−1∏
k=0

(qku;w)∞(wq−ku−1;w)∞
(q−ku−1;w)∞(wqku;w)∞

=

n−1∏
k=0

1− qku
1− q−ku−1

= (−u)nq
1
2
n(n−1).

In fact, using the relation (2.15), we can make computations similar to appendix A of [1]

to show that the function

Z(xi|yi|q, t, w) = lim
p→0

PE.G.
n (pn−ixi; p|sn−iyi; s|q, t, w) (2.17)

is the partition function of the S1 lift of the T [U(n)] theory, sometimes called 4D holomor-

phic block [53],2 which is a theory on R2× T 2. The elliptic parameter w is the modulus of

T 2. Then by the change of variables yi = 1/µi, we find (2.17) agrees with

Z(~µ, ~τ |q, t, w) =
∑
{k(a)i }

n−1∏
a=1

(
t
τa
τa+1

)∑a
i=1 k

(a)
i

a∏
i 6=j

Θ
(
t µiµj ; q, w

)
k
(a)
i −k

(a)
j

Θ
(
µi
µj

; q, w
)
k
(a)
i −k

(a)
j

×
a∏
i=1

a+1∏
j=1

Θ
(
qµi
tµj

; q, w
)
k
(a)
i −k

(a+1)
j

Θ
(
qµi
µj

; q, w
)
k
(a)
i −k

(a+1)
j

, (2.18)

which should be compared with eq. (4.21) of [43].

2It would be interesting to find its relation with the twisted indices in the spirit of [54].
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3 Symmetric polynomials from ELS-functions

As explained in [35], one can consider a generic construction (2.12)–(2.13) with the θ-

function in (2.11) substituted by an almost arbitrary function ξ(z) restricted only by the

conditions

ξ(1) = 0, ξ(z−1) = αz−1ξ(z), α ∈ C (3.1)

the corresponding generalization of the Shiraishi function being denoted through

Pξ
n(xi; p|yi; s|q, t) instead of PE.G.

n (xi; p|yi; s|q, t, w) in (2.12).

Such a construction is naturally related to symmetric polynomials. That is, for a

Young diagram R with the line lengths R1 ≥ R2 ≥ . . .

Pξ
R(xi; p, s, q, t) :=

n∏
i=1

xRii ·P
ξ
n

(
pn−ixi; p

∣∣∣ yi = qRi(st)n−i; s
∣∣∣ q, q

t

)
(3.2)

is a graded function of variables xi of the weight |R| =
∑

iRi, which is a series in pnk:

Pξ
R(xi; p, s, q, t) =

∑
k≥0

pnk · P
ξ(k)
R (xi; s, q, t)∏n

i=1 x
k
i

=
∑
k≥0

Pξ(k)
R (xi; s, q, t) ·

n∏
i=1

(
p

xi

)k
(3.3)

Here Pξ(k)
R (xi; s, q, t) is a polynomial of variables xi with grade |R|+ nk. This polynomial

is generally not symmetric, and we had to make a special projection in [35] in order to

produce a symmetric polynomial out of this.

This polynomial is, however, always symmetric for ξ(z) = 1 − z, and Pξ(0)
R (xi; s, q, t)

is the n-independent Macdonald polynomial. It turns out that the elliptic deformation

ξ(z) = θw(z) preserves the symmetricity and n-independency, i.e. the ELS-function gives

rise to symmetric polynomials!

For instance, in the simplest non-trivial case of n = 4 and Pξ(0)
R (xi; s, q, t), the sym-

metricity at R = [3, 1] requires that

ζ2(1)2 − ζ2(1)ζ2(qt)− ζ2(1)ζ2(q) + ζ2(t)ζ2(qt) = 0 (3.4)

ζk :=
ξ(qkz)ξ(tz)

ξ(qk−1tz)ξ(qz)
(3.5)

while that at R = [4, 1], (3.4) and also

ζ2(1)ζ3(1)− ζ2(q2t)ζ3(1)− ζ4(1) + ζ4(t) = 0 (3.6)

ζ3(1)− ζ2(1)ζ2(q2t)− ζ3(q) + ζ3(qt) = 0 (3.7)

etc. These identities are, indeed, true for the theta-function, ξ(z) = θw(z). The identities

are four-term and each term is a product of six θ-functions, they look similar to the ones

appearing in description of the elliptic R-matrices in [44, 45]. The first identities (3.4), (3.6)

emerged even earlier in [46, eq. (2.31)] (upon identification a2 = t2q and a2 = t3q accord-

– 6 –
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ingly with further interchanging q ↔ t) within the framework of an elliptic algebra3 of

surface defects in 4d.

Note that the specialization of the “dual” variables yi = qRi(st)n−i looks similar to

“the principal specialization” [47], [58, appendix B.3], though the ELS-function is neither

a symmetric function of these variables, nor a double-symmetric in xi, yi. It would be

interesting to get a gauge theory interpretation for this specialization, maybe in the spirit

of [48].

4 Duality properties

The ELS-function PE.G.
n (xi; p|yi; s|q, t, w) depends on five parameters4 (p, s, q, t, w) other

than the PQ dual spectral parameters (xi, yi). Let us describe the geometric picture behind

these parameters.

It is tempting to identify the five ELS-function parameters with Ω-background of ten

dimensional space-time, for example R4×CY 3, or R4×S1×CY 3 for M theory, where CY3

is a (local) Calabi-Yau three-fold. One can say this is cavalier, since our five parameters are

independent and we do not impose the Calabi-Yau condition. However, it is inspired by the

argument in [49], where the three dimensional mirror symmetry, which is an incarnation

of the spectral duality is formulated as follows: we consider a ten dimensional space-time

Z = L4 ⊕ L5 −→ X, (4.1)

where X is a local curve

X = L1 ⊕ L2 −→ B, (4.2)

which is a sum of two line bundles over the base curve B. In the present case, X is a resolved

conifold and the triplet (t, p, w) (see their association with gauge theory parameters in (6.7)

below) is associated with X. Furthermore, it is natural to identify the parameters (q, s),

which are the original Ω-background of Nekrasov for R4. Then the claim of [49, section5.5]

is that geometrically the three dimensional mirror symmetry is nothing but the exchange of

L1⊕L2 and L4⊕L5. This, in particular, implies p↔ s under the spectral duality, and this

is consistent with the conjecture in [39]: in the limit w → 0 of the ELS-function (see (2.1)),

(p, s) have been regarded as a pair of elliptic parameters exchanged by PQ (or spectral)

duality in [39]. In fact, there are a few different duality properties behind the ELS-functions.

To begin with, one of the remarkable properties in six dimensions is that, in the

instanton partition function of the theory with the adjoint hypermultiplet of mass m,

the omega background parameters (q, s) and the (exponentiated) mass parameter t =

3Actually, this elliptic algebra is looking very similar to the algebra of the conjugate GNS polynomials,

Gns⊥ of [35] at ξ(z) = θw(z). In particular, the generalized Littlewood-Richardson coefficients do not vanish

iff they do not vanish for the corresponding Schur functions, i.e. the ring of the conjugate GNS polynomials

in the elliptic case is consistent with the tensor product of representations of SL(N), like the algebra in [46]

does. We are grateful to the referee of our paper who attracted our attention to the paper [46].
4Notice that we use the letter p, which is an arbitrary parameter and is not obligatory equal to q/t often

used in the papers on the subject.
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e−m appear on an equal footing5 and we can associate plane partitions with a triple of

parameters (q, s, t) [32, 33]. This is one of the trialities.

On the other hand, as we discuss in section 6, when we look at the Seiberg-Witten

curve of the six dimensional theory, a pair of elliptic moduli (p, w) is naturally combined

with the mass parameter t, to reveal Sp(4,Z) modular symmetry [50]. Hence, there are

two trialities: the omega-background triality of (q, s, t) and the elliptic parameter triality

of (p, w, t) (more exactly, it is a triple (p/t, w/t, t/(qs))). Since the mass parameter t is

common to the both trivialities above, we may connect Nekrasov-Shatashvili limit s → 1

on the omega-background side and the “Shiraishi limit” w → 0 on elliptic parameter side

through their relation to the common parameter t. In any case, it is an interesting challenge

to work out the relation of the two limits of the ELS-function.

Note that similar trialities in five and six dimensional superconformal indices and little

string theories have been observed in [51] and [52]. It is an interesting problem to figure

out a relation to the triality of (q, s, t) here, since all of them are expected to be related to

the triality of DIM algebra.

5 Shiraishi function and the compactification of DIM network

We can similarly define an elliptic lift of the Noumi-Shiraishi representation [37] of the

Macdonald function. Let M = (mi,j)1≤i,j≤n be a strictly upper triangular n × n matrix

with non-negative integer components; mi,j ∈ Z≥0 and mi,j = 0 for i ≥ j. We define

CE.G.
n (M ; yi|q, t, w) :=

n∏
k=2

∏
1≤i<j≤k

Θ(q
∑n
a=k+1(mi,a−mj,a) tyj

yi
; q, w)mi,k

Θ(q
∑n
a=k+1(mi,a−mj,a) qyj

yi
; q, w)mi,k

×

×
∏

1≤i≤j<k

Θ(q−mj,k+
∑N
a=k+1(mi,a−mj,a) qyj

tyi
; q, p)mi,k

Θ(q−mj,k+
∑n
a=k+1(mi,a−mj,a) yj

yi
; q, w)mi,k

. (5.1)

Then the elliptic gamma lift fE.G.
n (x|y|q, t, p) is defined by

fE.G.
n (xi|yi|q, t, w) :=

∑
mi,j

CE.G.
n

(
M ; yi|q,

q

t
, w
) ∏

1≤i<j≤n

(
xj
xi

)mi,j
. (5.2)

Note that we have made a change of variable from t to q/t. In fact, fE.G.
n (x|y|q, t, w) is

equal [35] to

fE.G.
n (x|y|q, t, w) = lim

p→0
PE.G.
n (pn−ixi; p|sn−iyi; s|q, t, w) = Z(xi|yi|q, t, w) (5.3)

By the relation (2.10), fE.G.
n (xi|yi|q, t, w) reduces to the Noumi-Shiraishi representation of

the Macdonald function in the limit w → 0.

One of the main results of a recent paper [36] is that up to some normalization con-

stant C, the elliptic lift fE.G.
n (xi|yi|q, t, p) gives the PQ dual form of the Shiraishi function

Pn(xi; p|yi; s|q, t) on the special locus s = t−1/n. Namely they proved that

Pn(x̃i; p
1/n|ỹi; t−1/n|q, t) = C · fE.G.

n (yi|xi|q, t, p), (5.4)

5Strictly speaking we should choose the integration contour appropriately to achieve such a symmetry.
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where the spectral parameters xi and yi are scaled as

x̃k := p−k/nxk, ỹk := tk/nyk. (5.5)

The normalization constant is

C :=

(
(qp/t; q, p)∞

(p; p)∞(pt; q, p)∞

)n ∏
1≤i<j≤n

Γ(txi/xj ; q, p)

Γ(qxi/xj ; q, p)

∏
1≤i<j≤n

(txi/xj ; q)∞
(qxi/xj ; q)∞

. (5.6)

Originally p and s are a pair of elliptic parameters in the Shiraishi function, but on

the r.h.s. of (5.4) one of the parameters is constrained by s = t−1/n, and the remaining

parameter p appears as the elliptic modulus of the theta function. Note that the variables

xi and yi are exchanged on the left and the right hand sides of (5.4). In this sense,

fE.G.
n gives a PQ dual representation of the Shiraishi function. The restriction to the

special locus s = t−1/n comes from the fact that the affine screening operators employed

in [39] can be reproduced from the intertwiners of the Ding-Iohara-Miki (DIM) algebra only

when s = t−1/n [36]. In the proof of (5.4), the duality formula for the DIM intertwiners

established in [55] was used, and this is the reason why it is valid only on the special locus.

That is, (5.4) is a consequence of equating the results of computing the same network

diagram in two different ways exchanging the vertical and the horizontal direction. The

fact that the affine screening operators in [39] agree with the DIM screening operators

only at s = t−1/n seems consistent with the fact that the DIM algebra does not have any

elliptic parameter. We can extend DIM algebra to an elliptic DIM algebra with the elliptic

parameter w (see the next section). However, the affine screening operators in [39] suggests

the existence of another elliptic deformation with parameter s.

The computation of [36] should be compared with that of the M-string partition func-

tion [56, 57]. The difference is that there are no surface defects in [56, 57], and we would

obtain the formulas without the mod n selection rule. The M-string partition function is

obtained from the toric (network) diagram where external legs are identified (compactified)

along either of the vertical (preferred) and the horizontal (unpreferred) directions. Hence,

there are two ways of computing the M-string partition function, which are related by

duality. Comparing the formulas (Case I and Case II in section 3 of [56]), we find that

the compactification along the vertical direction corresponds to the original definition of

the Shiraishi function, while the compactification along the horizontal direction gives the

elliptic lift fE.G.
n .

6 ELS-function and the double compactified DIM network

Once we understand that the Shiraishi function comes from the network with one direc-

tion compactified, it is natural to expect that the network with double compactification

gives the ELS-function PE.G.
n (xi; p|yi; s|q, t, w). The relation of double compactified toric

diagram to the Dell system has been expected since [50]. In the simplest case (n = 1), the

corresponding diagram represents the resolved conifold geometry. The single compactifi-

cation produces a (degenerate) genus one curve as a pair of rational curves P1 attached
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Figure 2. Double compactification of the resolved conifold is a degenerate genus two curve. The

Kähler parameters of three rational curves P1 match three moduli of genus two curves.

together at two punctures, while the double compactification gives a (degenerate) genus

two curve consisting of a triple of rational curves attached together at two punctures (see

figure 2). Note that the genus two curve has three moduli, which are two elliptic moduli p

and w and the mass of the adjoint matter t = e−m. Since these parameters come from the

Kähler parameters of three rational curves P1, we may expect a triality among them.

In [38] the (refined) elliptic genus of HilbnC2 was computed by the method of the

refined topological vertex. The relevant toric diagram is the double compactified conifold

diagram. To the diagram, we can associate the Kähler parameter Λ of the base P1 and

those of the compactified two dimensional fiber Q1 and Q2. Since the conifold geometry

engineers U(1) gauge theory, the fixed points of the torus action are labeled by a single

Young diagram λ. The result of [38] is

Z6d
U(1)(Qi,Λ; q, t)

=
∑
λ

(qΛ)|λ|
∞∏
k=0

∏
�∈λ

(1− q−1Qk+1
1 Qk2q

a(�)t`(�)+1)(1− q−1Qk1Q
k+1
2 qa(�)t`(�)+1)

(1−Qk1Qk2qa(�)t`(�)+1)(1− q−2Qk+1
1 Qk+1

2 qa(�)t`(�)+1)

×(1− q−1Qk+1
1 Qk2q

−a(�)−1t−`(�))(1− q−1Qk1Q
k+1
2 q−a(�)−1t−`(�))

(1−Qk1Qk2q−a(�)−1t−`(�))(1− q−2Qk+1
1 Qk+1

2 q−a(�)−1t−`(�))
(6.1)

where q = (t/q)1/2 and, for � = (i, j), we define the arm length a(�) := λi− j and the leg

length `(�) := λ∨j − i, with ∨ denoting the transposition of the Young diagram. Making

the change of variables

w := Q1Q2, s := t−1, (6.2)

we can rewrite the above formula in terms of the theta functions:

Z6d
U(1)(w,Q1,Λ; q, s) =

∑
λ

(qΛ)|λ|
∏
�∈λ

θw(q−1Q1q
a(�)s−`(�)−1)θw(q−1Q1q

−a(�)−1s`(�))

θw(qa(�)s−`(�)−1)θw(q−a(�)−1s`(�))
.

(6.3)
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Note that using the formula proved in [58], we can show the following identity for the

elliptic Nekrasov factor [42];

Nλ,µ(u|q, s−1, w) =

∞∏
i,j=1

Γ(uqλj−µisi−j ; q, w)

Γ(usi−j ; q, w)
· Γ(usi−j+1; q, w)

Γ(uqλj−µisi−j+1; q, w)

=
∏
�∈λ

θw(uqaλ(�)s`µ(�)+1)
∏
�∈µ

θw(uq−aµ(�)−1s−`λ(�)). (6.4)

Let us look at the case n = 1, though it is trivial as an integrable system. In this case, the

selection rule is empty, and the ELS-function becomes a summation over a single Young

diagram λ. Using the formula (6.4), we obtain

PE.G.
n=1 (p|s|q, t, w) =

∑
λ

(p
t

)|λ|∏
�∈λ

θw(tqa(�)s−`(�)−1) · θw(tq−a(�)−1s`(�))

θw(qa(�)s−`(�)−1) · θw(q−a(�)−1s`(�))
. (6.5)

Hence, by the identification q−1Q1 = t, qΛ = p/t, we see the agreement of Z6d
U(1)(w, y,Λ; q, t)

and PE.G.
n=1 (p|s|q, t, w).

Note that equivalently one can describe the double compactification of the network

as sums of traces of two intertwiners: upon identification p → P⊥, w → Q, t → P
√
q/t,

s→ t−1 (notice also a rescaling of the mass parameter m→ −2πim), formula (6.5) reduces

to [34, (6.31)] obtained this way. One may try to consider an immediate generalization [34,

(6.43)] with 2n intertwiners. The answer can not literally give the ELS-function, because

it describes the case of n variables yi and still only one variable x, while in (2.12) there are

both n variables yi and n variables xi. However, if one impose all xi coinciding, the answer

is ELS-function without the selection rule. In order to get the selection rule, one has to

make the next step. We return to the network picture of the ELS-function elsewhere [59].

In [50] the following symmetry among the moduli parameters in the Seiberg-Witten

curve was pointed out6

τ̂ +
m

2πi
←→ τ +

m

2πi
←→ m

2πi
(6.6)

In terms of the exponentiated parameters

w = e2πiτ̂ , p = e2πiτ , t = e−m, (6.7)

this is a symmetry among (w/t, p/t, t/(qs)) (qs = 1 in the unrefined case). If we take into

account the relations (6.2) to the parameters of the Kähler parameters of three rational

curves in the double compactified network, we can see that this symmetry comes from the

symmetry among (Λ, Q1, Q2).

Let us note that (6.1) is evidently symmetric w.r.t. the permutation Q1 ↔ Q2. In

terms of ELS-function parameters, it is the symmetry under w/t ↔ t/(qs) at constant s

and t. Let us test the second, less evident p/t↔ t/(qs) symmetry, which one would expect

because of the duality between the elliptic parameters p and w. Note that the symmetry

6We denote the dimensionless mass parameter βm in [50] by −m. The sign of the mass parameter

changes under the flop of local Calabi-Yau geometry.
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p/t↔ t/(qs) can be checked already at the level of the ordinary Shiraishi function. To do

this, we consider the w = 0 limit of (6.1).

In the limit of Q2 = 0, formula (6.1) reduces to

Z5d
U(1)(Q1,Λ; q, t) =

∑
λ

(qΛ)|λ|
∏
�∈λ

(1− q−1Q1q
a(�)t`(�)+1)(q−1Q1 − qa(�)+1t`(�))

(1− qa(�)t`(�)+1)(1− qa(�)+1t`(�))
. (6.8)

This is the Shiraishi function at n = 1 (upon an evident identification of parameters) [39].

The symmetry we check is Λ↔ Q1 at constant q and t.

Let us first put t = q and note that a(�) + `(�) + 1 = h�, the hook length. Then,

Z5d
U(1)(Q1,Λ; q) =

∑
λ

Λ|λ|
∏
�∈λ

(1−Q1q
h�)(Q1 − qh�)

(1− qh�)2
. (6.9)

One can check that this formula is not symmetric w.r.t. the permutation of Λ and Q1: it

is possible to perform the summation explicitly [60, eq. (33)],7

Z5d
U(1)(Q1,Λ; q) =

∏
k,m≥0

[
(1− Λk+1Qk1q

m+1)(1− ΛkQk+1
1 qm+1)

(1− Λk+1Qk+1
1 qm+1)(1− Λk+1Qk+1

1 qm+1)

]m+1

·
∏
k=1

1

(1− ΛkQk1)
·
∏
m=1

1

(1−Q1qm)m

and what spoils the symmetry is the last factor. Fully (Λ, Q1)-symmetric is the product∏
m=1

(1−Q1q
m)m · Z5d

U(1)(Q1,Λ; q) (6.10)

The formula for Z5d
U(1)(Q1,Λ; q) can be rewritten in terms of the plethystic exponential

P.E.
[
F ({xi})

]
:= exp

(∑
k

1

k
F ({xki })

)
(6.11)

where by {xi} we understand all the variables (Qi,Λ, q, t), and

Z5d
U(1)(Q1,Λ; q) = P.E.

[
Λ(1− qQ1)(Q1 − q)
(1− ΛQ1)(1− q)2

]
= P.E.

[
ΛQ1(1 + q2)− q(Λ +Q1)

(1− ΛQ1)(1− q)2
+

qQ1

(1− q)2

]
(6.12)

The last term is the only non-symmetric one, and it exactly corresponds to the MacMahon

function as in (6.10).

At last, at the generic values of t, (6.8), one similarly obtains [61, eq. (1.4)] (this

formula was first discussed in [58, 62, 63])

Z5d
U(1)(Q1,Λ; q, t) = P.E.

[
qΛ(1− tq−1Q1)(q−1Q1 − q)

(1− ΛQ1)(1− q)(1− t)

]
= P.E.

[
ΛQ1(1 + tq)−

√
qt(Λ +Q1)

(1− ΛQ1)(1− q)(1− t)
+

√
qtQ1

(1− q)(1− t)

]
(6.13)

7Notice various misprints in this equation in that paper.
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Again, only the last term is non-symmetric, and this means the invariant is the product∏
l,m≥0

(1−Q1q
l+ 1

2 tm+ 1
2 ) · Z5d

U(1)(Q1,Λ; q, t) (6.14)

This should not come as a surprise: Z5d
U(1)(Q1,Λ; q, t) describes the instanton sum in the 5d

theory with adjoint matter hypermultiplet, while this additional factor is the perturbative

contribution [38], and the full partition function is invariant. This factor also coincides

with the normalization factor in [34, eq. (6.31)].

Similarly, the perturbative factor in the 6d theory is given by [38, eq. (3.40)]

P.E.

[
−
√
qt(Q1 +Q2)− (1 + qt)Q1Q2

(1− q)(1− t)(1−Q1Q2)

]
(6.15)

Indeed, one can check (see the next section) that, in the case of general parameters, the

triality symmetric function is given by

P.E.

[
−
√
qt(Q1 +Q2)− (1 + qt)Q1Q2

(1− q)(1− t)(1−Q1Q2)

]
× Z6d

U(1)(Qi,Λ; q, t) =

=
∏

i1,i2,i3≥0

(1−Qi1+1
1 Qi12 q

i2+ 1
2 ti3+ 1

2 )(1−Qi11 Q
i1+1
2 qi2+ 1

2 ti3+ 1
2 )

×(1−Qi1+1
1 Qi2+1

2 qi2ti3)(1−Qi1+1
1 Qi1+1

2 qi2+1ti3+1)

×Z6d
U(1)(Qi,Λ; q, t) (6.16)

Similar computations for n > 1 is more demanding, but it is interesting to see how the

above symmetry among (p, w, t) survives for n > 1.

7 Summing up Z6d
U(1)(Qi,Λ; q, t)

One can perform a summation in formula (6.1) and present Z6d
U(1)(Qi,Λ; q, t) as a plethystic

exponential. The coefficients of this exponential are expressed through a single periodic

function. Indeed, let us rewrite (6.1) in the form

Z6d
U(1)(Qi,Λ; q, t) =

∑
λ

(qΛ)|λ|
∏
�∈λ

Φ(q−1Q1, Q1Q2; qa(�)t`(�)), (7.1)

where

Φ(Q,w;u) :=
θw(utQ)θw(Q/(qu))

θw(ut)θw(1/(qu))
(7.2)

The function Φ(q−1Q1, Q1Q2;u) is symmetric in Q1, Q2. Hence, Z6d
U(1)(Qi,Λ; q, t) celebrates

the same property. We construct it in a simple way out of Φ(Q,w; 1) below.

As before, let us first consider the case of t = q so that

Z6d
U(1)(Qi,Λ; q) =

∑
λ

Λ|λ|
∏
�∈λ

Φ(Q1, Q1Q2; qh(�)), (7.3)
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and expand the function Φ(Q1, Q1Q2; 1) (i.e. the Λ-linear term in Z6d
U(1)(Qi,Λ; q), which

corresponds to the item with a single-box Young diagram Λ = [1]) into the power series

Φ(Q1, Q1Q2; 1) =
q

(1− q)2
·
∑
i,j≥0

c
(q)
i,jQ

i
1Q

j
2, (7.4)

i.e.

∞∏
k=0

(
1− qQk+1

1 Qk2

)(
1− q−1Qk+1

1 Qk2

)(
1− qQk1Q

k+1
2

)(
1− 1

qQ
k
1Q

k+1
2

)
(

1− qQk+1
1 Qk+1

2

)2(
1− q−1Qk+1

1 Qk+1
2

)2 =
∑
i,j≥0

c
(q)
i,jQ

i
1Q

j
2

(7.5)

The coefficients c
(q)
i,j = c

(q)
j,i , since this function is symmetric. These coefficients sometimes

vanish: they vanish within the area with the upper boundary

i 0 1 2 3 4 5 6 7 8 9 10 . . .

j 3 5 7 8 10 11 13 14 15 17 18 . . .
(7.6)

while the lower boundary is given by the switch i↔ j.

Since the θ-function is quasi-periodic: θw(wz) = −z−1θw(z), such is the function

Φ(Q1, Q1Q2; 1), (7.4), and the coefficients c
(q)
i,j satisfy the relation

c
(q)
i,j = c

(q)
2i−j+2,i (7.7)

and, being repeated k times,

c
(q)
i,j = c

(q)
i(k+1)−jk+k(k+1),ik−j(k−1)+k(k−1) (7.8)

Since c
(q)
i,j 6= 0 only at i, j ≥ 1, this generates the vanishing coefficients c

(q)
i,j ,

Now we are ready to formulate the answer for Z6d
U(1)(Qi,Λ; q): it is given by the plethys-

tic exponential

Z6d
U(1)(Qi,Λ;q) (7.9)

= P.E.

[
q

(1−q)2

{
F (Λ,Q1,Q2;q)+Λ− Λ(Q1−q)(Q1−q−1)

1−ΛQ1
− Λ(Q2−q)(Q2−q−1)

1−ΛQ2

}]
where the function F (Λ, Q1, Q2; q) is a symmetric function of all three variables Λ, Q1 and

Q2 given by a power series

F (Λ, Q1, Q2; q) =
∑
i,j,k≥1

c
(q)
ik,j+(i−1)(k−1)Λ

iQj1Q
k
2 (7.10)

Note that, while symmetricity of the F -function (7.10) w.r.t. permuting Λ and Q2 is evident

from (7.10), that w.r.t. permuting Q1 and Q2 is not evident, and is an additional property

of the coefficients c
(q)
i,j . The triple symmetry can be made explicit, if one notes that actually

c
(q)
ik,j+(i−1)(k−1) = c

(q)
ijk
M
, ijk
M

+2M+1−i−j−k
(7.11)
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where Mi,j,k := max(i, j, k), and ijk
M = min(ij, ik, jk), i.e. is fully symmetric. This formula

looks like tropical, which adds to mysteries of the ELS-functions, which will be discussed

elsewhere.. Note also that Z6d
U(1)(Qi,Λ; q) becomes symmetric in all three variables upon

multiplying (7.9) with the perturbative factor (6.15) at t = q.

Finally, let us consider the case of generic t and again expand the function

Φ(qQ1, Q1Q2; t), i.e. the Λ-linear term in Z6d
U(1)(Qi,Λ; q, t) corresponding to the one-box

Young diagram [1], into the power series

Φ(q−1Q1, Q1Q2; 1) =
θw(Q1t)θw(Q1q

−1)

θw(t)θw(q−1)

∣∣∣∣
w=Q1Q2

=

√
qt

(1− q)(1− t)
·
∑
i,j≥0

c
(q,t)
i,j Qi1Q

j
2 (7.12)

Again the coefficients c
(q,t)
i,j = c

(q,t)
j,i , since this function is still symmetric. In fact, c

(q,t)
i,j

have the same symmetry and vanishing properties as c
(q)
i,j which we considered above. In

particular, the periodicity condition leads to the relation

c
(q,t)
i,j = q2k(j−i)−2k2 · c(q,t)

i(k+1)−jk+k(k+1),ik−j(k−1)+k(k−1), ∀k (7.13)

which differs from (7.8) only by a factor of q.

Now we are ready to formulate the final answer for Z6d
U(1)(Qi,Λ; q, t): it is given by the

plethystic exponential

Z6d
U(1)(Qi,Λ; q, t) = P.E.

[ √
qt

(1− q)(1− t)

{
F (Λ, Q1, Q2; q, t) + Λ−

Λ(Q1 −
√
qt)(Q1 − 1√

qt
)

1− ΛQ1

−
Λ(Q2 −

√
qt)(Q2 − 1√

qt
)

1− ΛQ2

}]
(7.14)

where the function F (Λ, Q1, Q2; q, t) is a symmetric function of all three variables Λ, Q1

and Q2 given by a power series

F (Λ, Q1, Q2; q, t) = q ·
∑
i,j,k≥1

c
(q,t)
ik,j+(i−1)(k−1)Λ

iQj1Q
k
2 (7.15)

Again, Z6d
U(1)(Qi,Λ; q, t) becomes symmetric in all three variables upon multiply-

ing (7.14) with the perturbative factor (6.15).

In fact, it is highly non-trivial fact that the sum over the Young diagrams is given

by a reasonable product formula (by the plethystic exponential of a simple sum). In the

5d case, it was first noticed in [58, 60, 62, 63] (see also later discussions in [64] and [36,

section3.4]). Later, this kind of formula was discussed in mathematical literature [65, 66],

however, the issue has not become clearer. We demonstrated that the sum over the Young

diagrams can be still rewritten in a relatively simple plethystic form also in the 6d case,

with a triality emerging (as a symmetry between Λ, Q1 and Q2). Since this case is elliptic,

for mathematicians the formula can be probably also named “elliptic deformation of the

(q, t) Nekrasov-Okounkov formula”.

Mathematically, we obtained that Z6d
U(1)(Qi,Λ; q, t) turns out to be a generating func-

tion of the elliptic genera of the Hilbert scheme of points on C2. Indeed, in [67], a formula
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for the elliptic genera of the Hilbert scheme, which is a resolution of the orbifold singu-

larities of the symmetric products, was derived from the data of the elliptic genus of C2.

This formula is a non-equivariant version, i.e. that without the Ω-background. Later, the

formula was generalized to the equivariant version in [68].

To be more concrete, since the equivariant χy genus is [61, eq. (2.25)]

χQ(C2; t1, t2) =
(1−Qt1)(1−Qt2)

(1− t1)(1− t2)
, (7.16)

the equivariant elliptic genus of C2 is

Ell(C2;w,Q, t1, t2) =
θw(Qt1)θw(Qt2)

θw(t1)θw(t2)
= Φ(Q,w; 1) (7.17)

where t1 = t, t2 = q−1 are equivariant parameters.

Now the equivariant version of the formula due to [67] says [68, Theorem 11] that, if

Ell(C2;w,Q, t1, t2) =
∑

m,`,k1,k2

C(m, `, ki)w
mQ`tk11 t

k2
2 (7.18)

then ∑
n

Ell((C2)[n];w,Q, t1, t2) · pn =
∏

m,n,`,ki

1

(1− pnwmQ`tk11 t
k2
2 )C(nm,`,ki)

. (7.19)

After a proper choice of variables in the generating function (and a slight redefinition

of this later), this formula reduces to the plethystic exponential of (7.15), and the r.h.s.

of (7.9), (7.14) is, indeed, a generating function of the elliptic genera of the Hilbert scheme

of points on C2.

Thus, formula (7.15) for the F -function means that the ELS-function, at least, at

n = 1, provides a generating function of the elliptic genera of the Hilbert scheme of points

on C2. We discuss this issue in the next section in detail in the case of ELS-function at

general n.

8 Elliptic genus of the affine Laumon space

In this section, we argue that the ELS-function computes the generation function of the

elliptic genera of the affine Laumon spaces. Laumon moduli spaces are certain smooth

closures of the moduli spaces of maps from the projective line to the flag variety of GLn.

In [39], it was shown that the Shiraishi function agrees with the generating function of

the Euler characteristics of the affine Laumon spaces. The relation of the Calogero-Moser

system and the (non-affine) Laumon space was established by A. Negut [69]. (See also [70].)

An extension to the affine Laumon space see in [71].

Let X be a Kähler manifold of complex dimension d, and E an elliptic curve with

modulus τ . Recall that a line bundle over E is labeled by a parameter z ∈ Jac E ' E.

The elliptic genus Ell(X) is defined as the genus one (or one-loop in the sense of string

theory) partition function of N = 2 supersymmetric sigma model on E with the target
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space X [72–74]. We impose the periodic boundary conditions on both the left- and the

right-moving fermions. This leads to the insertion of (−1)F in the trace, where F = FL+FR
is the sum of the left- and the right-moving fermion numbers. Using the trace over the

Hilbert space of the Ramond-Ramond sector, the elliptic genus is

Ell(X; q, y) := TrH(X)

[
(−1)FQFLwL0− d8 w̄L̄0− d8

]
, (8.1)

where w = e2πiτ , Q = e2πiz and L0, L̄0 are zero modes of the Virasoro algebra. It is known

that only the ground states contribute to the trace in the right moving sector [75]. When

there is a torus action on the target space X, the elliptic genus becomes character valued.

For example, one can insert exp
(∑n

i=1 εiT
i
)

in the trace to define an equivariant version

of the elliptic genus, where T i are generators of the torus action. Then the elliptic genus

is a polynomial in the exponentiated equivariant parameters eεi .

The elliptic genus is also defined as the index of the ∂̄-operator8 twisted by a vector

bundle Ew,Q [76]. For any vector bundle V over X, we can define the following formal sum:

ΛtV = ⊕k≥0t
kΛkV, StV = ⊕k≥0t

kSkV, (8.2)

where Λk and Sk denote the k-th exterior and symmetric product, respectively. Then the

vector bundle Ew,Q is defined as

Ew,Q := Q−
d
2

⊗
n≥1

(
Λ−Qwn−1T ∗X ⊗ Λ−QwnTX ⊗ SwnT ∗X ⊗ SwnTX

)
, (8.3)

where TX is the holomorphic tangent bundle of X. The index theorem tells that the elliptic

genus is expressed in terms of the characteristic classes:

Ell(X;w,Q) = index
(
∂̄Ew,Q

)
=

∫
X

ch(Ew,Q)td(X), (8.4)

where ch(V ) denotes the Chern character of a vector bundle V , and td(X) is the Todd

class of X. Let {x1, x2, · · · , xd} be the Chern roots of TX . Then we have

Ell(X;w,Q) = y−
d
2

∫
X

∏
n≥1

d∏
k=1

(1−Qwn−1e−xk)(1−Q−1wnexk)

(1− wne−xk)(1− wnexk)
·
d∏

k=1

xk
1− e−xk

, (8.5)

where the last factor comes from td(X). When X has a torus action with isolated fixed

points {p1, p2, · · · p`}, we can employ the (Atiyah-Bott) localization theorem to evaluate

the integral over X by the sum of the contribution from each fixed point [50, 76]. Let

{vi,1, vi,2, · · · vi,d} be the weights of the torus action at pi. The localization theorem implies

8Strictly speaking, (8.1) computes the index of the Dirac operator on the loop space LX [73, 74]. But

when X is hyperKähler and consequently has the vanishing first Chern class, we can neglect the difference.
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that

Ell(X;w,Q) = Q−
d
2

∑̀
i=1

ch(Ew,Q)[pi] · td(X)[pi]∏d
k=1 vi,k

= Q−
d
2

∑̀
i=1

∏
n≥1

d∏
k=1

(1−Qwn−1e−vi,k)(1−Q−1wnevi,k)

(1− wn−1e−vi,k)(1− wnevi,k)

= Q−
d
2

∑̀
i=1

d∏
k=1

θw(Qe−vi,k)

θw(e−vi,k)
, (8.6)

where ch(Ew,Q)[pi] and td(X)[pi] denote the evaluation at the fixed point pi, and
∏d
k=1 vi,k

is the contribution of the Euler class, which physically comes from the Gaussian path

integral of quantum fluctuation at the fixed point.

Now let us take the moduli space Mn,k of U(n)-instantons with instanton number

k as the target space X. A torus action on Mn,k is induced from the action (z1, z2) →
(t1z1, t2z2) on C2 ≡ R4 and the Cartan torus of the gauge group U(n). We denote associated

equivariant parameters ti (t1 = t, t2 = q−1) and uα (α = 1, · · · , n), respectively. The

isolated fixed points of the torus action onMn,k are labelled by n-tuples of Young diagrams
~λ = {λ(α)} with k = |~λ| =

∑n
α=1 |λ(α)|. According to [77, 78], the equivariant character of

the tangent space T~λMn,k at the fixed point ~λ is given by

χ(uα; ti) = N∗K + t1t2K
∗N − (1− t1)(1− t2)K∗K, (8.7)

where9

N :=

n∑
α=1

uα, K :=

n∑
α=1

uα ·

 ∑
(i,j)∈λ(α)

t1−j1 t1−i2

 , (8.8)

and we denote the dual characters by N∗ and K∗. We have the following combinatorial

formula for χ(uα; ti) [77]:

χ(uα; ti) =

n∑
α,β=1

uβ
uα

 ∑
�∈λ(α)

t
aα(�)+1
2 t

−`β(�)
1 +

∑
�∈λ(β)

t
−aβ(�)
2 t

`α(�)+1
1

 , (8.9)

In the original expression (8.7), there are both positive and negative contributions. But

after cancellation, only positive terms survive, and there are precisely 2nk terms, which

agrees with the (complex) dimensions of Mn,k. This means the tangent spaces at the

fixed points are regular, and we can safely read off the weights of the torus action from

formula (8.9). Combining (8.6) and (8.9), we can compute the elliptic genus of the moduli

space Mn,k as follows:

Ell(Mn,k;w,Q) (8.10)

= Q−nk
∑
|~λ|=k

n∏
α,β=1

 ∏
�∈λ(α)

θw(Q
uβ
uα
t
aα(�)+1
2 t

−`β(�)
1 )

θw(
uβ
uα
t
aα(�)+1
2 t

−`β(�)
1 )

∏
�′∈λ(β)

θw(Q
uβ
uα
t
−aβ(�′)
2 t

`α(�′)+1
1 )

θw(
uβ
uα
t
−aβ(�′)
2 t

`α(�′)+1
1 )

 .

9Our convention follows [77]. To compare this one with some other in the literature, we have to exchange

t1 and t2, or make the transposition of the Young diagram.

– 18 –



J
H
E
P
0
8
(
2
0
2
0
)
1
5
0

Thus the generating function of the elliptic genera of the instanton moduli spaces

Z :=

∞∑
k=0

pnkEll(Mn,k;w,Q)

=
∑
~λ

(pQ−1)n|
~λ|

n∏
α,β=1

Nλ(α),λ(β)
(
uβ
uα

∣∣∣∣ t−1
2 , t−1

1 , w

)
(8.11)

is expressed in terms of the elliptic lift of the Nekrasov factor Nλ(α),λ(β)(u|q, s, w) defined

by (2.14). As was pointed out by E. Witten [73, 74], the role of the Dirac operator in K

theory is replaced by the supersymmetric sigma model in elliptic cohomology. Hence we

may call the factor Nλ(α),λ(β)(u|q, s, w) elliptic cohomological one.

To make similar computations for the affine Laumon space, we use the equivalence of

the instantons with parabolic structure (surface defect) and the ramified instantons under

the Zn action on C2 by

(z1, z2)→ (z1, ωz2) (8.12)

with ωn = 1, [79, 80]. See also [81–83] for literatures directly related to the present case

of full surface defect. Computational aspects of the ramified instantons are described, for

example, in [84–87]. Note that this action is different from

(z1, z2)→ (ωz1, ω
−1z2), (8.13)

which defines a subgroup of SU(2) and gives ALE space of An−1 type as a resolution of

C2/Zn. According to (8.12), we replace t2 → t
1
n
2 and assign the charge 1/n to t

1
n
2 . We also

put

uα = eaαt
−α
n

2 (8.14)

so that eaα has the charge α/n to keep uα neutral. Let us decompose N and K by the Zn
orbifold charge. For N this is simply

N =
n∑

α=1

t
−α
n

2 Wα, Wα = eaα . (8.15)

On the other hand, we have

K =

n∑
α=1

n∑
β=1

eaαt 1
n

(1−α−β)

2

∑
m≥0

λ
(α)
mn+β∑
i=1

t1−i1 t−m2

 =

n∑
γ=1

t
− γ
n

2 Kγ . (8.16)

Now the condition 1 − α − β ≡ −γ (mod n) implies α = γ − β + 1 for 1 ≤ β ≤ γ and

α = γ − β + n+ 1 for γ + 1 ≤ β ≤ n. Hence we find

Kγ =

γ∑
β=1

eaγ−β+1
∑
m≥0

λ
(γ−β+1)
mn+β∑
i=1

t1−i1 t−m2 +
n∑

β=γ+1

eaγ−β+1
∑
m≥0

λ
(γ−β+1)
mn+β∑
i=1

t1−i1 t−m−1
2 , (8.17)
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where we have used aα+n = aα and λ(α+n) = λ(α). Then Zn invariant part of the “orb-

ifolded” equivariant character (8.7) with t2 → t
1
n
2 is

χ(uα; qi)
Zn =

n∑
α=1

(
N∗αKα + t1K

∗
α−1Nα − (1− t1)K∗αKα + (1− t1)K∗α−1Kα

)
, (8.18)

with K0 ≡ Kn.

The affine Laumon space M
n,~d

gives a (small) resolution of the moduli space of in-

stantons with a full surface operator (or a maximal monodromy defect), which is described

as follows. Since the surface operator breaks SU(n) gauge group10 to U(1)n−1, there are

(n− 1) gauge fields on the surface S ⊂ C2. We can define (n− 1) monopole numbers

mi =
1

2π

∫
S
Fi, (i = 1, · · ·n− 1) (8.19)

and also define mn := −m1 − · · · −mn−1. Then the second Chern number of the ramified

instantons is given by

c2 = k +

n∑
i=1

αimi, (8.20)

where αi measures the monodromy of the gauge fields around the codimension two defect.11

It is convenient to combine k, which we call instanton number, and the monopole numbers

to ~d = (d1, d2, · · · , dn) by

d0 = dn = k, di − di−1 = mi,
n∑
i=1

mi = 0, (8.21)

so that the topological type of the affine Laumon space M
n,~d

is labelled by ~d. Similarly to

the ordinary instantons, the fixed points of the torus action onM
n,~k

is labelled by n-tuples

of partitions ~λ which satisfy the condition

di−1 =
∑
α≥1

∑
α+β≡i
(mod n)

λ(β)
α . (8.22)

It is known that the complex dimension of M
n,~k

is 2n
∑n

i=1 di. We define the generating

function of elliptic genera by

Z =
∑
~k

n∏
i=1

x2nmi
i Ell(M

n,~k
;w,Q). (8.23)

10For the sake of simplicity, we omit the overall U(1) symmetry.
11See also [88, 89] for an alternative description in the Bethe/Gauge correspondence.
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According to [81], the character formula for the affine Laumon spaceM
n,~k

at the fixed

point ~λ is

Ch(~a; ti) = (1− t1)

n∑
k=1

∑
1≤`

∑
1≤˜̀

eak−`+1−ak−˜̀t

(
b ˜̀−k
n
c−b `−k−1

n
c
)

2

λ
(k−˜̀)
˜̀∑
i=1

ti−1
1

λ
(k−`+1)
`∑
j=1

t1−j1

+t1

n∑
k=1

∑
1≤˜̀

eak−ak−˜̀t

(
b ˜̀−k
n
c−b− k

n
c
)

2

λ
(k−˜̀)
˜̀∑
i=1

ti−1
1

−(1− t1)
n∑
k=1

∑
1≤`

∑
1≤˜̀

eak−`+1−ak−˜̀+1t

(
b ˜̀−k−1

n
c−b `−k−1

n
c
)

2

λ
(k−˜̀+1)
˜̀∑
i=1

ti−1
1

λ
(k−`+1)
`∑
j=1

t1−j1

+

n∑
k=1

∑
1≤`

eak−`+1−bkt
(b−kn c−b

`−k−1
n
c)

2

λ
(k−`+1)
`∑
j=1

t1−j1 , (8.24)

where we have substituted ~b = ~a and ~µ = ~λ in the original formula [81, Prop. 4.15].

Replacing `→ mn+ ` and ˜̀→ m̃n+ ˜̀ with 0 ≤ m, m̃ and 1 ≤ `, ˜̀≤ n, we can rewrite the

character as follows:

Ch(~a; ti) = (1− t1)

n∑
k=1

V ∗k−1(~a,~λ)Vk(~a,~λ) + t1

n∑
k=1

V ∗k−1(~a,~λ)Wk(~a)

−
n∑
k=1

(1− t1)V ∗k (~a,~λ)Vk(~a,~λ) +
n∑
k=1

W ∗k (~b)Vk(~a,~λ), (8.25)

where Wk(~a) := eak and

Vk(~a,~λ) :=
∑
0≤m

n∑
`=1

eak−`+1t
−m−1−b `−k−1

n
c

2

λ
(k−`+1)
mn+`∑
j=1

t1−j1

 . (8.26)

To eliminate the floor function b `−k−1
n c in (8.26), we note that, for 1 ≤ ` ≤ k, it takes

value −1, while, for k+ 1 ≤ ` ≤ n, it vanishes. Then we can see that (8.25) exactly agrees

with (8.18).

Thus the weights of the torus action on the tangent space of the affine Laumon space

M
n,~d

can be identified with Zn invariant terms in (8.9), the generic term being uβ/uα ·
tk1t

`/n
2 . Taking the Zn charges of uα, t1 and t

1/n
2 into account, we can see the selection rule

for the Zn invariant terms is β−α+ ` ≡ 0 (mod n), which is nothing but the selection rule

in (2.13). The monomial x-factor in (2.12) also matches the relation of ~d and the monopole

numbers (8.21).

9 Conjecture and various limits

We are now ready to make the main claim of the present paper, which is supported by the

consideration of the previous sections.
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Conjecture. The ELS-function satisfies non-stationary equations with (yet not completely

understood) quantum Dell Hamiltonians.

Equivalently, we expect that this is the instanton partition function with full mon-

odromy defect in the 6d SYM theory with adjoint matter hypermultiplet.

By the AGT correspondence, it is the 2-point conformal block on torus with one

degenerate field in a double elliptic version of the quantum toroidal algebra. Let us see how

the associated parameters look like in these pictures. Note that the limits and symmetries

below require some proper normalization of the ELS-functions as we explained in section 6.

The ELS-function PE.G.
n (xi; p|yi; s|q, t, w) depends on the five parameters (p, s, q, t, w):

q, s are two Ω-background deformation parameters on the gauge theory side, s governs the

non-stationarity. The limit of s → 1 reduces the system to the quantum integrable

system, and the non-stationary Dell equation to the eigenvalue Dell Hamiltonian

problem. On the algebra side, they rescale the dimensions of the operators.

t is the central charge parameter on the algebra side, and the coupling constant param-

eter on the integrable side. The integrable system becomes free upon t→ 1. On the

gauge theory side, it is related to the mass of the adjoint hypermultiplet, t = e−m.

p is the elliptic parameter that controls the coupling in the gauge theory (the bare torus

and the bare charge). On the integrable side, it is associated with the torus where

the coordinates live. On the algebra side, it is associated with the torus where the

2d fields in the 4d limit live. In the limit p→ 0, the instanton corrections disappear,

and one gets the perturbative limit.

w is the elliptic parameter that is associated with the Kaluza-Klein torus in the gauge

theory (remind that one considers Seiberg-Witten 6d theory with two dimensions

compactified onto a 2d torus). On the integrable side, it is associated with the torus

where the momenta live.

Thus the correspondence table between parameters of ELS- and 6d Nekrasov functions

looks as follows:

w = e2πiτ̂ , p = e2πiτ , t = e−m, q = e−2πiε1 , s = e−2πiε2 (9.1)

To this, we add an expectation of a peculiar pair of trialities: the triality of (q, s, t) and the

elliptic parameter triality of (p/t, w/t, t/(qs)). Note that this parametrization is in terms

of dimensionless parameters. Actually, they depend on a length scale L: ε1,2 → Lε1,2,

m → Lm. Taking into account the behaviour of these parameters under the modular

transformation τ̂ → −1/τ̂ (see12 [34, eqs. (6.36)-(6.38)]) and that τ̂ is the ratio of radii of

the 5th and 6th dimensions under compactification, it is natural to choose this length to

be one of these radii.

12There is a misprint in [34, eq. (6.38)]: P contains an additional factor eπi(ε1+ε2), which, however, does

not influence the calculations.
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This association implies the following degenerations:

w → 0. It drives the system to the 5d gauge theory with adjoint matter. In this limit, we get

the Shiraishi function, which is the instanton partition function with a monodromy

defect in the 5d theory with adjoint matter hypermultiplet.

By the AGT correspondence, it is the 2-point conformal block on torus with one

degenerate field in q-Virasoro algebra.

On the integrable side, this function has to satisfy a non-stationary elliptic Ruijse-

naars equation, in accordance with the general rule [12]. This is, indeed, the case,

see [39], where various further limits are also studied.

The s → 1 limit of the Shiraishi function describes the eigenfunctions of the elliptic

Ruijsenaars Hamiltonians, as it should be, since this the Nekrasov-Shatashvili limit.

s→ 1. In this limit, the ELS-function is the eigenfunction of the Dell Hamiltonians.

p→ 0. It is the perturbative limit, which is described by the dual elliptic Ruijsenaars system.

The corresponding ELS-functions are given by (2.17), Z(xi|yi|q, t, w).

It is unclear if the Hamiltonians coincide with the recent suggestion in [43]: in the last

limit and n = 2, their eigenfunctions [1, eqs. (67)-(68)] look rather different from (2.17).

10 Conclusion

To conclude, we made one more step towards a complete solution of the Dell system.

According to the general approach of network models, they are obtained by closing (com-

pactifying) the DIM network in the both directions, horizontal and vertical. Making this

directly for representation theory of the DIM algebra is still to be done, we used a some-

what different approach from [1, 35] based on the Shiraishi functor, which can naturally

provide eigenfunctions of the still-not-fully known Hamiltonians. This approach is anal-

ogous to consideration of hypergeometric series per se without explicit reference to their

origins/interpretation in terms of representation theory of SL(2,R) [90], and, in many re-

spects, it is considerably simpler. As we explained, for describing the Dell systems, one

actually needs an elliptic lift of the ordinary Shiraishi series, where the Pochhammer sym-

bols are changed for their elliptic counterparts. We discussed it in some detail, paying a

special attention at various limits and particular cases. In fact, the elliptic substitute of the

Pochhammer symbol is only a very particular deformation: one can actually change it for

an arbitrary function, with many properties of the Shiraishi functions still preserved [35].

However, this is the elliptic deformation that very non-trivially preserves the relation to

symmetric functions (see section3). In this paper, we concentrate on the elliptic (theta-

function) deformation by this reason and since it is supposed to lead to the theory of Dell

systems and a related description of 6d SUSY gauge theory with adjoint matter hypermul-

tiplet compactified on the two-dimensional torus.
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