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Figure 1. Topological vertex as the intertwiner of DIM representations. a) The action of the gen-

erator x+(z) on the level one Fock representation ρu sitting on the horizontal leg of the topological

vertex (denoted by the dashed line) is the same as its action on the product of two representations

— the “vertical” ρ
|
v and “diagonal” ρ

/
−uv. b) Appropriate contraction of two intertwiners is also

an intertwiner. This gives the vertex operator of the corresponding conformal field theory with

deformed Virasoro symmetry, corresponding to a single vertical brane in figure 2.

1 Introduction

Nekrasov functions, describing instanton corrections in supersymmetric Yang-Mills theo-

ries [1]–[11], and AGT related conformal blocks [12–16] possess rich symmetries that can

be separated into large and infinitesimal. The former describe dualities between differ-

ent models, while the latter define equations on the partition functions in each particular

case. They are also known as “Virasoro constraints” [17, 18] for associated conformal or

Dotsenko-Fateev (DF) matrix models [19–30], which are further promoted to network ma-

trix models [31–34], looking like convolutions of refined topological vertices [35–37] and

possessing direct topological string interpretation.

As conjectured in a number of papers throughout recent years [38]–[49] and re-

cently summarized in [50], in full generality the symmetry underlying the AGT corre-

spondence [51–53], is the Ding-Iohara-Miki algebra (DIM) [54]–[69], in particular, the in-

finitesimal Ward identities are controlled by DIM from which the (deformed) Virasoro and

WK emerge as subalgebras in particular representations. In other words, the full symmetry

of the Seiberg-Witten theory seems to be the Pagoda triple-affine elliptic DIM algebra (not

yet fully studied and even defined), and particular models (brane patterns or Calabi-Yau

toric varieties labeled by integrable systems a la [3, 4]) are associated with its particular

representations. The ordinary DF matrix models arise when one specifies “vertical” and

“horizontal” directions, then convolutions of topological vertices can be split into vertex

operators and screening charges, and the DIM algebra constraints can be attributed in the

usual way [70–79] to commutativity of screening charges with the action of the algebra in

the given representation. Dualities are associated with the change of the vertical/horizontal

splitting, or, more general, with the choice of the section, where the algebra acts [80–82].

All this is illustrated in pictures 1 and 2, which we borrowed from [50], and our purpose

in this paper is to provide very explicit examples of how these pictures are converted into

formulas. A great deal of these formulas already appeared in the literature. Putting them

together, we hope to illustrate their general origin and better formulate the remaining open

problems.
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Figure 2. a) Type IIA brane diagram consisting of two horizontal and three vertical intersecting

lines representing NS5 and D4 branes. The low energy theory in this background is 4d N = 2

gauge theory with SU(2)2 gauge group. Λi are exponentiated complexified gauge couplings, a(a)

are Coulomb moduli and ma are the hypermultiplet masses. b) The toric diagram of the Calabi-Yau

threefold, corresponding to the 5d gauge theory with the same matter content. Edges represent two-

cycles with complexified Kähler parameters Qi, which play the same role as the distances between

the branes in a). c) The quiver encoding the matter content of the gauge theory. SU(2) gauge

groups live on each node and bifundamental matter on each edge. The squares represent pairs of

(anti)fundamental matter hypermultiplets.

The main scheme could be formulated as follows:

• To build a functor

rank-r Lie algebra G −→ quantized double-center double-loop DIM(G), (1.1)

perhaps, q123...-dependent and elliptic

• To obtain a non-linear Sugawara construction of stress tensor and other symmetry

generators from a comultiplication ∆DIM .

• To clarify the interplay between two “orthogonal” (“horizontal” and “vertical”) co-

multipilcations.

• To apply the functor (1.1) to central-extended loop algebras G, starting from G =

(̂gl(1), to obtain triple-affine Pagoda DIM algebras. One of the immediate problems

– 3 –
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is that the known construction of DIM(G) for non-affine glN algebras [54, 83–85]

already involves the affine Dynkin diagrams, thus, for an affine ĝlN one can need

something more sophisticated.

• An additional light on the problem can be shed by comparative analysis of DIM(gl2),

DIM(gl3), DIM(so5), DIM(g2) and DIM(ĝl1), first four of them being explicitly con-

structed, and by studying their various limits including the one to the affine Yangian

and further to the standard conformal algebras (coset constructions of conformal field

theories, [86]).

Actually, the first three issues are actively studied by various authors (and there has

been already achieved a serious progress), and we do not achieve too much in the two last

challenging directions in the present paper, which can be considered as an introduction to

the problem. What we actually do, is search for a q, t-deformed network analogue of the

CFT Ward identity [12] 〈∏
a

V̂αa(za) · T̂+(z) · Q̂r
〉

= 0 (1.2)

where < . . . > denotes the matrix element < vac| . . . |vac > between two vacua of operators

in the fixed chronological order and in the chiral sector [87, 88]. Here Vα(z) is a primary

field (vertex operator) in the free field c = 1 CFT, T (z) is its stress-energy tensor and

Q is the corresponding screening charge [70–72], which is the integral Q =
∮
x S(x) of the

screening current S(x).

The order of operators in (1.2) means that in the conformal correlator〈〈∏
a

Vαa(za)T+(z)Qr
〉〉

(1.3)

(where << . . . >> denotes the chiral part of the CFT correlator) all |za| > |z| and |z| > |xi|,
where xi’s lies on the integration contours of the screening currents.

The Ward identity (1.2) can be manifestly written as

z2

∮
xi

∑
a,b

1

4

αaαb
(z − za)(z − zb)

+
∑
a,i

αa
(z − za)(z − xi)

+

r∑
i,j=1

1

(z − xi)(z − xj)


×

〈〈∏
a

Vαa(za)
r∏
i=1

S(xi)

〉〉
= Pol(z) (1.4)

and the notation Pol(z) means a power series, i.e. any positive powers of z are allowed.

The underlined terms just contribute to Pol(z) (since |za| > |z|) and can be omitted giving

finally

z2

∮
xi

∑
a,i

αa
(z − za)(z − xi)

+
r∑

i,j=1

1

(z − xi)(z − xj)

〈〈∏
a

Vαa(za)
r∏
i=1

S(xi)

〉〉
= Pol(z)

(1.5)
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Though equivalent, (1.2) and (1.5) are in fact very different. The second one is about

field theory correlators, it is dictated by operator expansions and is especially simple be-

cause a free field formalism is available for conformal theories. The first one is actually

about matrix elements, and the difference is that it depends on the ordering of operators,

while correlators do not. Another way to say this is that the projected stress tensor T+(z)

does not have a simple operator product expansion (OPE) with other operators, the pro-

jection is a non-local operation and actually depends on the position: if T+(z) was placed

to the left of vertex operators V (za), the matrix element would no longer vanish. At the

same time, in this case the underlined terms in (1.4) also contribute (since |z| > |za|), and

they exactly cancel non-zero matrix element leading to the same Ward identity (1.5).

These are trivial remarks for the old-fashioned field theory, where the Ward identities

were discovered and treated as sophisticated recurrence relations between Feynman dia-

grams, but in modern CFT we got used to the formalism based on the operator product ex-

pansion and moving the integration contours, which provides a shortcut for the derivations.

Unfortunately, in the network models, only the operator approach is currently available,

and this is the reason why we need to develop the formalism from this starting point.

Still, some elements of the free field formalism are already worked out in particular

representations of DIM, and for a special class of balanced network models, drawn as a

set of horizontal lines with vertical segments in between, see figure 3, a), one has a direct

counterpart of (1.2). In (extremely) condensed notation it looks like〈∏
a

Ψλa [za]Ψ
∗
µa [z∗a] T̂+(z;u|ξ)

∏
b

(∑
µ

ΨµΨ∗µ

)〉
= 0 (1.6)

and involves operators like

∏
I

ΨλI [zI ]
∏
J

Ψ∗µJ [z∗J ] −→
∏
I,J

exp

∑
n 6=0

1

n

(
ω|n|[λI , zI ]nan − [µJ , z

∗
J ]na

∗
n

) (1.7)

where

[λ, z]n ≡ sign(n)
∑
i

(
qλi−1/2t1/2−iz

)n
(1.8)

are the Miwa variables associated with the Young diagram λ, and the Drinfeld-Sokolov

operator (generalized stress energy tensor = Miura transformation from Λi(z))

T̂ (z;u|ξ) = z1/2 logω ξ :
K∏
i=1

(
ω−2z∂z − uiΛi(zω2(i−1))

)
:

z−1/2 logω ξ =
K∑
k=1

ξK−k
∑

i1<...<iM

k∏
a=1

uia : Λia(zω2(a−1)) : (1.9)

defining numerous flows, is a linear combination of all W(m) with m ≤ K. Here Λi(z)

are also made from the annihilation and creation operators α̂±n, ω =
√
q/t and T̂ (z;u|ξ)

depends on an additional parameter ξ generating different W(m)(z) and on spectral pa-

rameters of DIM representation ui.

– 5 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
3

w1

y1

λ
(1)
1z

(1)
1

λ
(2)
1z

(2)
1

w2

y2

λ
(1)
2z

(1)
2

λ
(2)
2z

(2)
2

w3

y3

λ
(1)
3z

(1)
3

λ
(2)
3z

(2)
3

w4

y4

λ
(1)
4z

(1)
4

λ
(2)
4z

(2)
4

u1

u2

u3

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

a)

(ρ
(1,0)
u1 ⊗ ρ

(1,0)
u2 ⊗ ρ

(1,0)
u3 )∆2(t(z))

(ρ
(1,0)

u′
1

⊗ ρ
(1,0)

u′
2

⊗ ρ
(1,0)

u′
3

)∆2(t(z))

u1

u2

u3

u′1

u′2

u′3

b)
(ρ

(1,0)
u1 ⊗ ρ

(1,0)
u2 ⊗ ρ

(1,0)
u3 )∆2(t(z))

(ρ
(1,0)

u′′
1

⊗ ρ
(0,1)

z
(1)
1

⊗ ρ
(0,1)

z
(1)
2

⊗ ρ
(1,0)

u′
2

⊗ ρ
(1,0)

u′
3

)∆4(t(z))

u1

u2

u3

u′′1

z
(1)
1 z

(1)
2

u′2

u′3

c)

Figure 3. a) An example of balanced network. Notice that the numbers of incoming and outgoing

vertical branes are the same in each horizontal section. Because of this, the slopes of the horizontal

branes have the same slopes (1, 0) to the left and to the right of the diagram. b) The action of a

DIM algebra element on the section of the diagram.

A counterpart of (1.2) emerges when the dashed vertical section in figure 3, b) is shifted

to the left, through external vertical legs, which do not commute with T̂ (z). Moreover,

now we can also consider deformations of the section which do not preserve verticality, like

the dotted one in figure 3, c), and everything can still be calculated. This should provide

a qualitatively new insight into spectral dualities [89–94] associated with global rotations

of the network graph.

Non-balanced networks, where the right-most and left-most branes in figure 4 are tilted

and the number of operators Ψ differs from that of Ψ∗, can be considered as certain limits of

the balanced ones, but these limits are non-trivial and singular when, say, q, t −→ 1. From

the point of view of representation theory these limits should have independent description,

making use of more complicated intertwiners. A full-fledged free field description for them

comparable to the one in [95–97] for ordinary affine case still needs to be worked out.
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Restriction to the balanced networks is a great technical simplification, but it requires

a somewhat lengthy comments on what this means and whether this really restricts the set

of handy physical models.

DIM is a quantization of double loop (double affine) algebras, and the existing free

field formalism, which we are going to expose and exploit in the present paper, explicitly

breaks the symmetry between the two loops. Bosonized/fermionized are only the Chevalley

generators, in the case of DIM there are many, still they depend on one of the two loop

parameters, while the other loop is associated with their multiple commutators and is

described very differently: in terms of Young diagrams parameterizing states in the Fock

space. This breaks the symmetry of the DIM algebra: the SL(2,Z)-automorphisms acting

on the square lattice of the generators and introduces asymmetry between horizontal and

vertical directions in the planar graphs which are used to define the network models,

and makes the spectral dualities interchanging these two directions highly non-trivial. In

particular, allowed networks look like infinite “horizontal” lines, connected by vertical

segments, see figure 4, a), and not vice versa. We call these lines horizontal, though they

can have varying slopes, however, they have a non-trivial projection on the horizontal axis,

i.e. are strictly non-vertical. In the original brane theory interpretation these horizontal

lines depict the D-branes, while vertical are the NS branes, from this point of view our

description applies only to the conformal models (Nf = 2Nc) with definite Nc = M = #

of horizontal lines. Quiver models ⊗SU(Ni) with different Ni can seem excluded, but in

fact they appear after application of the spectral duality: a 90◦ rotation of the graph, see

Fig, 4, b). After this rotation, the infinite horizontal lines get associated with the infinite

NS branes, while the vertical segments with D-branes between them. This pattern looks

more relevant from the gauge theory point of view, but we emphasize that our free fields live

on the infinite horizontal lines, the three-valent vertices (the DIM algebra intertwiners Ψ

and Ψ∗, also known as topological vertices) act as operators in the Fock spaces horizontally,

while the third vertical edge carries a Young-diagram label, not converted into operator

language. In result these vertices can look like ⊥ or >, but not like ` or a.

All these restrictions can be lifted by switching from Fock to MacMahon modules,

which are representations of DIM spanned by 3d partitions, but such a description is only

combinatorial so far, no generalization to the full-fledged double-loop free field formalism

is available yet. This is what makes tedious the consideration of dotted sections in fig-

ure 3, c). We briefly touch this issue at the very end of this text, but detailed presentation

is postponed to the future work. Our main purpose here is to describe the powerful free

field formalism for the balanced network as a straightforward generalization of that for

the ordinary conformal theories, and explain how the DIM algebra becomes the symme-

try of generic Nekrasov functions generalizing the Virasoro/W symmetry of the ordinary

conformal blocks and Dotsenko-Fateev matrix models.

In the next section 2, we explain how the elementary theory of a harmonic oscillator

can be straightforwardly developed and lifted to description of generic networks, i.e. of

generic Nekrasov functions. In section 3, in the simplest examples we demonstrate the

actual formalism in full detail. It is important that most complications come from so-

phisticated notation, which are largely no more than a change of variables (normalization

– 7 –
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M + 2
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D

D

D

NS NS

b)

Figure 4. a) An example of non-balanced web with infinite “horizontal” lines shown in blue.

Bending of the “horizontal” lines due to tension from the vertical segments is reflected in their

slopes marked above them. b) Spectral duality acts by rotating the diagram a). After rotation

one can identify the conventional Hanany-Witten (or brane web/geometric engineering) setup with

NS5 and D5-branes ().

of creation and annihilation operators). The really big change comes in section 4, when

one looks at the symmetry : it is indeed essentially deformed. But this deformation ac-

tually simplifies things, reducing all the symmetries to the action of the DIM generators,

while the Sugawara construction of Virasoro and W-operators and of their sophisticated

q-deformations is no more than the simple comultiplication rule. At last, at section 5 we

briefly discuss the spectral duality action on symmetry generators. Finally, the appendix

contains further details about various DIM algebras and their representations. At present

stage of development, different parameters are treated as providing different algebras, but

further studies can promote them to parameters of different representations of a single

unified algebra (like the triple-affine elliptic Pagoda DIM algebra anticipated in [50]).

Notation. Throughout the text we use the notation

ω ≡
√
q

t
(1.10)

2 Basic example: theme with variations

We assume some familiarity with [50] and do not repeat the general logic, leading to Ward

identities like (1.2) in DF and network matrix models.

2.0 The main theme

Screening charge Q̂, acting on the Fock space Fα =
{

Pols(τn)
}
· eαT0 , is

Q̂ =

∮
Ŝ(x)dx = resx=0 Ŝ(x),

– 8 –
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Ŝ(x) = : e
√

2φ̂(x) : = exp

(∑
n>0

τnx
n

n

)
︸ ︷︷ ︸∑

n x
nχn{τ}

eT0x2∂0 exp

(
−
∑
n>0

2

xn
∂

∂τn

)
(2.1)

where χn{τ} are the characters of symmetric representations [n] of sl algebras (the Schur

polynomials in this particular case). Applied to a highest-weight state (i.e. the one anni-

hilated by all negative modes â−n = −
√

2n ∂
∂τn

) with negative half- integer α∣∣∣m+ 1
〉

= e−
1
2

(m+1)T0 (2.2)

it gives

Q̂
∣∣∣m+ 1

〉
= χm{τ}

∣∣∣m− 1
〉

(2.3)

Residue is non-vanishing, because x2∂0 converts |m+ 1 > into x−m−1. Similarly

Q̂2
∣∣∣m+ 2

〉
= χ[mm]{τ}

∣∣∣m− 2
〉

(2.4)

where the calculation involves

− 1

2

∑
m1,m2

χm1χm2

∮ ∮
dx1dx2x

m1−m−2
1 xm2−m−2

2 (x1 − x2)2 = χ2
m − χm+1χm−1 = χ[m,m]

(2.5)

and

Q̂r
∣∣∣m+ r

〉
= χ[mr]{τ}

∣∣∣m− r〉 (2.6)

i.e. the power of Q̂ acts as a character of rectangular Young diagram. This is the old result

by [98–104]. The rectangular diagrams arise from the Cauchy formula

r∏
i=1

exp

(∑
n>0

τnx
n
i

n

)
= exp

(∑
n>0

1

n
τn

r∑
i=1

xni

)
=
∑
λ

χλ{τ}χλ[~x] (2.7)

with a sum over all Young diagrams λ (actually, with no more than r lines) after the

Vandermonde projection

r∏
i=1

∮
dxi

xm+r
i

∆(~x)2 χλ[~x] ∼ δλ,[mr] (2.8)

which is a direct generalization of (2.5).

Since the screening charge commutes

[L̂n, Q̂] = 0 (2.9)

with the Virasoro generators

L̂n =
∑
k

(k + n)τk
∂

∂τk+n
+

n−1∑
k=1

k(n− k)
∂2

∂τk∂τn−k
+ 2n

∂2

∂τn∂T0
, n > 0 (2.10)

– 9 –
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one has

L̂nQ̂
r
∣∣∣m+ r

〉
= Q̂rL̂n

∣∣∣m+ r
〉

= 0 for n > 0 (2.11)

In application to (2.6), this gives

L̂nχ[mr] = n(m− r)
∂χ[mr]

∂τn
n > 0 (2.12)

while the action of

L̂0 =
∑
k

kτk
∂

∂τk
+

∂2

∂T0∂T0
(2.13)

gives just the size of the Young diagram:

L̂0χ[mr] = mr · χ[mr] (2.14)

In the Miwa parametrization τn =
∑

iX
n
i , this turns into the statement about the Calogero

eigenfunctions. Also Qr
∣∣∣m + r

〉
are singular vectors in Verma modules and (2.12) can

be considered as the simplest version of BPZ equations for correlators with degenerate

fields, [12].

Equation (2.12) provides a simple example of the Ward identity for the state Q̂r|m+

r >, which can be promoted to identity for the matrix element in conformal field theory,

i.e. in the abstract Fock module and corresponding Sugawara energy-momentum tensor

(which we denote by Gothic letters), χ[mr] =< m − r|ĈT (z)Q̂r|m + r > by additional

insertion of the intertwining operator, see below. We are now ready to formulate the main

theme of the present paper:

A trivial symmetry property (2.9) gives rise to a non-trivial equation for the matrix

element (2.12), provided one can calculate (2.6).

In what follows we extend this simple example to matrix elements of an arbitrary

network of intertwining operators, what allows to reveal in a rather explicit form the

hidden DIM symmetry of the Seiberg-Witten/Nekrasov theory.

We continue in this section with variations on the main theme, developing it at con-

ceptual level. Next sections will describe technical details of the story.

2.1 Variation I: matrix elements in the free-field theory

Actually, in theory of free field φ(z), the bra vacuum state is annihilated by all the negative

mode operators â−n = τn/
√

2, n > 0, i.e. contains
∏
n>0 δ(a−n) in holomorphic represen-

tation. Thus, one can not simply convert (2.6) into a statement that χ[mr]{τ} is equal to

< m− r|Qr |m+ r >: this matrix element would not depend on τ at all. The way out is

to introduce a special intertwining operator

Ĉ{p} = exp

(∑
n>0

pnân
n

)
(2.15)

which converts the bra vacuum into the coherent state

〈m| −→ 〈m| Ĉ{p} (2.16)
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with the property

〈m| Ĉ{p} â−n = pn · 〈m| Ĉ{p} (2.17)

This allows us to rewrite (2.6) as

χ[mr]{
√

2pn} =
〈
m− r

∣∣∣ Ĉ{p} Q̂r ∣∣∣m+ r
〉

(2.18)

Among many complications as compared with (2.6), there is
√

2, which reflects the fact

that the character is extracted here from the screening charge in a single field (“current”)

realization. A more adequate kind of formulas arise within the fermionic realization (see

section 3.2 of [72] and section 2.6 below) which involves two scalar fields, and
√

2 is a result

of basis rotation to their symmetric combination.

2.2 Variation II: generating functions

We can make from particular Virasoro generators L̂n a single operator (stress tensor)

T̂ (z) =
∑
n∈Z

L̂n
zn+2

(2.19)

Positive and zero modes with n ≥ 0 are given by (2.10) and (2.13) respectively, negative

modes are:

L̂−n =
∑
k

kτk+n
∂

∂τk
+ τn

∂

∂T0
+

1

4

n−1∑
k=1

τkτn−k (2.20)

so that

[L̂n, L̂m] = (n−m)L̂n+m +
n(n2 − 1)

12
δn+m,0 (2.21)

for the properly regularized sum
∑

n>0 n = − 1
12 .

Symmetry (2.9) actually holds for all n ∈ Z.

We will also need a “current”

Ĵ(z) = ∂zφ̂(z) =
∑
n∈Z

Ĵn
zn+1

with Ĵ−n =
τn√

2
, Ĵ0 =

√
2
∂

∂T0
, Ĵn =

√
2n

∂

∂τn
(2.22)

and

[Ĵn, Ĵm] = nδn+m,0

[L̂n, Ĵm] = −mJn+m (2.23)

The two operators are related by the Sugawara relation

T̂ (z) = :
1

2
Ĵ(z)2 : (2.24)

where normal ordering puts all p-derivatives to the right of all p’s (in each term of the

formal series).
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The generating functions satisfy the commutation relations

[Ĵ(z), Ĵ(w)] = δ′(w/z)

δ(x) =
∑
n∈Z

xn (2.25)

In terms of generating functions, the Ward identity (2.12), i.e. the corollary of sym-

metry (2.9) becomes [
z2 T̂ (z)− m− r√

2
zĴ(z)

]
−
· χ[mr] = 0 (2.26)

or, in other words, a regularity constraint(
z2 T̂ (z)− m− r√

2
zĴ(z)

)
· χ[mr] = Pol(z) (2.27)

This will be the typical form of Ward identities (regularity condition for qq-characters) for

network Nekrasov functions Z generalizing the simple character χ[mr].

2.3 Variation III: DF model

Expressions (2.6) and (2.1) together imply the integral representation of the matrix element

χ[mr]{τ} =
〈
m− r

∣∣∣ Ĉ{τn/√2} Q̂r
∣∣∣m+ r

〉
= − 1

r!

∮
. . .

∮
︸ ︷︷ ︸

r

(
r∏
i=1

G{τ |xi} dxi
xm+r
i

)∏
i<j

(xi − xj)2 =
〈

1
〉

DFm,r

G{τ |x} = exp

( ∞∑
n=1

τnx
n

n

)
=

∞∑
n=0

xnχn{τ} (2.28)

which is the archetypical example of DF or conformal matrix model [70–72, 102–104].

Ward identity (2.27), which is a trivial corollary of commutativity (2.9) looks now like

a not-so-obvious set of integral identities:(
z2 T̂ (z)− m− r√

2
zĴ(z)

)〈
1
〉

DFm,r

(2.29)

=

〈∑
k,i

τkx
k+1
i

z − xi
+

r∑
i,j=1

xixj
(z − xi)(z − xj)

− (m− r)
∑
i

xi
(z − xi)

〉
DFm,r

= Pol(z)

Actually there are two standard ways to derive the l.h.s.:

(1) by using bosonization, which is the simplest version of free-field (FF) formalism, i.e.

the Wick rule for decomposition of correlators into pair ones,

T̂ (z)
〈

1
〉

DFm,r

=

〈
Ĉ(τn/

√
2) · T (z)︸ ︷︷ ︸

1
2

:∂ϕ(z)2:

·
r∏
i=1

∮
e
√

2ϕ(xi)dxi

〉
FFm

(2.30)

where the index m refers to a special way of handling the zero mode of ϕ and ϕ(z)

refers to the scalar field acting in the abstract Fock module, and
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(2) by a change of integration variables δxi = εxn+1
i in the multiple integral (2.28), [17,

18, 73–79]: in this case we get the identities in a slightly different form:〈
r∑
i<j

2
xn+1
i − xn+1

j

xi − xj
+
∑
i,k

τkx
k+n
i +

r∑
i

(n+ 1−m− r)xni

〉
DFm,r

= 0, n > 0

(2.31)

In this paper we actually need an outdated and tedious third way:

(3) the operator formalism based on an explicit calculation of commutators arising when

the stress tensor is carried from the left to the right through the screening operators:

this is what we are now doing, starting from section 2.0 and this is what in the

simplest case brought us to the Ward identity in the form (2.29).

Both the OPE-based and change-of-integration-variables/total-derivative approaches

should also work in the network model context, but they still need to be developed.

2.4 Variation IV: multi-field case

The network matrix models can be considered as associated with networks of branes (brane-

webs [105–110]), which being projected onto the 4−5 plane look like segments with different

slopes. From the point of view of Yang-Mills theories, interpretation of the different slopes

is different. Surprisingly or not, it is also different at the present level of understanding of

the DIM symmetry. Throughout the section, we distinguish only between the horizontal

and vertical segments, while intermediate slopes appear in this section only in sections 2.8

and 2.9. Our next variations introduce and describe the associated notions.

The first one is horizontal branes. These are associated with different free fields.

Generalization of the DF model to K-field case provides WK constraints for models with

K horizontal branes. An additional procedure can be applied to separate a “center-of-

mass” field: this explains why in the previous subsection 2.3 the number of fields was one

rather than two.

The multi-field conformal model [72] is defined as〈
~m− ~r

∣∣∣∣∣
K−1∏
a=1

Ĉa{τ (a)
n /
√

2} Q̂raa

∣∣∣∣∣ ~m+ ~r

〉
= 〈1〉DF~m,~r

(2.32)

where the screening charges now carry additional indices labeled by K − 1 simple roots

~αa of slK . They are actually associated with segments of the vertical branes ending on

two adjacent horizontal branes, figure 3, a), in accordance with the decomposition ~αa =

~ea+1−~ea. In other words, a better labeling of Q is by pairs of indices ab, each corresponding

to a particular horizontal (in fact, any non-vertical, see section 2.5) brane.1 Now the matrix

model partition function depends on K sets of times, one of which is associated with the

“center of mass” and actually decouples in the DF model (2.28), thus it was actually

suppressed in that formula. However, this is not always true: the decoupling will not take

1To avoid possible confusion, note that in [50] an “orthogonal” labeling rule was used, treating horizontal

edges of the network as segments between the vertical ones.
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place already in the Chern-Simons deformation of (2.28) in section 2.5, and all theM sets

of times will be relevant in generic DIM considerations. This phenomenon is familiar in the

CFT approach to Nekrasov functions, where relevant is the Heis + V irasoro symmetry

and its generalizations rather than the V irasoro alone. This is also reflected in appearance

of “1′′ in the popular notation W1+∞.

Algebraically, the multi-field generalization is controlled by the comultiplication ∆DIM ,

which builds all the symmetry generators from a single element of DIM:

current algebra

↓
Virasoro

↓
W3

↓
. . .

↓
WK

↓
. . . (2.33)

This comultiplication adds new scalar fields, and non-linearity of the usual 4d Sugawara

formulas is mostly due to elimination of the center-of-mass field; what makes this possi-

ble is the exponential form of symmetry generators beyond 4d. Somewhat symbolically,

the Sugawara formulas for the stress tensor (at the second level of DIM) arise from the

expansion of characters (in fact, q-characters)

K = 2 : Tsl2 =
1

2

(
eJ + e−J

)
= 1 +

1

2
J2 + . . .

K = 3 : Tsl3 =
1

3

(
eJ1 + eJ2−J1 + e−J2

)
= 1 +

1

3
(J2

1 − J1J2 + J2
2 ) + . . .

. . .

K : TslK = 1 +
1

K!

K−1∑
a,b=1

CabJaJb + . . .

. . .

K =∞ : Tsl∞ = 1 + const ·
∫

(∇J)2 + . . . (2.34)

underlined in the first two lines are terms appearing due to the center-of-mass reduction

K∑
a=1

Ja = 0 (2.35)

Cab is the Cartan matrix for slK , which the K = ∞ limit describes a difference Laplace

operator ∇2. Other W-operators made from higher powers of J arise in the same way at
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higher levels of DIM, i.e. after several applications of the comultiplication ∆DIM , e.g. at

K = 3 the second generator of the W3-algebra is

W(3)
sl3

=
1

3

(
e−J1 + eJ1−J2 + eJ2

)
(2.36)

so that the standard W3-generator is a difference

Tsl3 −W
(3)
sl3
∼ 1

3
J1J2(J1 − J2) + . . . (2.37)

2.5 Variation V: Chern-Simons (CS) model

The brane slopes show up in a specially designed 4d limit as additional square-logarithmic

terms (log xi)
2 in the action of the DF matrix model (2.28), giving rise to what is often

called the CS matrix model [111–124]:

〈
1
〉

CSr

=
1

r!

r∏
i=1

∮
dxiG{τ |xi}eγ(log xi)

2
∏
i<j

(xi − xj)2 (2.38)

The parameter γ controls the brane slope, it vanishes for the horizontal branes, while for the

vertical ones it becomes infinite and the story gets a separate twist, see section 2.6 below.

From the point of view of DIM symmetry of the network model, the Virasoro/Ward

constraints should look similar with and without these logarithmic terms, in the sense that

they should be always dictated by the Wick theorem hidden in the algebraic structures

of DIM. There is, however, a crucial difference: in this case, the U(1)-mode should not

decouple for non-trivial slopes, and two sets of times survive (see section 2.6). This is

reflected in the fact that one needs to consider G{τ |x} depending on τn>0 and τn<0 in (2.38),

G{τ |x} = exp

( ∞∑
n∈Z

τnx
n

n

)
(2.39)

in order to construct the Ward identities. Then, a counterpart of (2.31) for (2.38) looks

somewhat different [122, 123, 125–127]:〈
(n− r + 1)

r∑
i

xni +

r∑
i

xni (log θ(xi|q))′ + 2
∑
i<j

xn+1
i − xn+1

j

xi − xj
+
∑
k,i

τkx
n+k
i

〉
= 0 (2.40)

where q = exp( 1
2γ ) and θ(x|q) =

∑∞
ν=−∞ q

ν2/2xν .

2.6 Variation VI: correlators with vertex operators

The vertical branes are associated with insertions of vertex operators into the DF and CS

models. A particular instance of the vertex operator is the screening current. As already

mentioned in section 2.4, screening charges are segments of vertical branes between the

two neighbour horizontal ones, and they can be considered as contractions of two ver-

tex operators attached to these two branes. However, the relevant operators are special,
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namely, they are eαφ with α = ±1: a kind of “fermion vertices” (in fact, intertwining op-

erators) ψ± = e±φ. Accordingly, the screening charges should be associated with bilinears

ψ+
a (x)ψ−b (x), “non-local” in the vertical direction:

Q̂ab =

∮
ψ+
a (x)ψ−b (x)dx (2.41)

This non-locality explains, among other things, why the screening currents are “naturally”

exponentials rather than ∂φ-like currents, as well as the emergency of peculiar
√

2 in (2.1)

coming from the 45◦ rotation of the basis φ1, φ2 into φ1±φ2√
2

.

In general, fermion operators (peculiar intertwiners in DIM) carry a Young-diagram

label λ instead of x and the screening charge is a convolution of these indices (see s.3.2

of [72] for details). Interchanging of + and − labels changes the screening charge to

the dual one (in algebraic terms, this corresponds to using instead of a positive root the

corresponding negative one): as usual in conformal matrix models [70–72], the use of dual

charges is unnecessary. In fact, one can connect every screening charge with a simple root:

one can associate with each end of leg a a basis vector ~ea, then, the screening charge Qa,a+1

corresponds to a simple root ~αa = ~ea+1 − ~ea.
In operator formalism the correlator of vertex operators is just a matrix element of an

ordinary product of linear operators. A generic vertex operator is constructed from the

primary field Vα(x) and is labeled by the Young diagram λ:

V̂ λ
α = L̂−λVα(x) (2.42)

with L̂−λ =
∏
i L̂−λi . The conjugation with L̂−1 moves it to an arbitrary point z:

V̂ λ
α (x+ z) = ezL̂−1 V̂ λ

α (x)e−zL̂1 (2.43)

However, in CFT the positions of operators does not matter: they can be considered as

located at points in the complex z-plane, or, more generally, on a Riemann surface (in the

latter case same traces need to be taken in operator formalism).

Still, location of the stress-tensor insertion does matter: in the Riemann surface picture,

it is associated with a choice of a contour encircling the vertex operator insertions, and

correlator depends on the homology class of this contour. Changing the class is equivalent to

commutation of T (z) with the vertex operator, which is read off the commutation relations

[Ln, Vα(x)] = xn+1V ′α(x) + α2(n+ 1)xnVα(x) (2.44)

and those of the Virasoro algebra. This is what we did in the derivation of (1.5) placing

the stress-tensor to the left, and to the right of vertex operators.

Central-charge-preserving comultiplication ∆MS. The action of Virasoro algebra

is provided by the Moore-Seiberg comultiplication ∆MS , which is given by the ordinary

Leibnitz rule on the negative modes T−, but the positive modes act differently:

∆MS(Ln)R1 ⊗R2 =

( ∞∑
k=0

zn+1−k
(
n+ 1

k

)
Lk−1R1

)
⊗R2 +R1 ⊗ LnR2 (2.45)
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This comultiplication can be read off the conformal Ward identities, [128] and celebrates

two important properties:

• It is parameterized by an arbitrary parameter z,

• it does not change the central charge, in contrast with the comultiplication in the

DIM algebra that we use below.

2.7 Variation VII: Nekrasov functions

We define the Nekrasov function as partition function of the DF/CS network matrix model

depending on parameters ~αi, zi and Na, associated respectively with external legs (assumed

vertical), horizontal and vertical edges of the graph Γ: schematically,

ZΓ =

〈
4∏
i=1

V̂~αi(zi) exp

(
K−1∑
a=1

Q̂a,a+1

)〉
DFNa

(2.46)

and this partition function describes the A1-quiver with obvious modifications for more

sophisticated quivers, [50] (changing the number of vertex operators and adding more

screening charges that differ by the choice of the integration contours). The right numbers

of screening charges are automatically selected from the series expansion of the exponential

by zero mode conditions.

On the gauge theory side, this data describes the theory with the gauge group SU(K)

and 2K fundamental matter hypermultiplets (i.e. zero β-function). Here the numbers

Na are the Coulomb moduli, the hypermultiplet masses are parameterized by the vertex

operator parameters ~αi and the positions of vertices (rather their double-ratio) control the

instanton expansion in the gauge theory. Note that this theory is characterized by zero

β-function, all other cases are obtained by evident degeneration. The case of adjoint matter

hypermultiplets is described by the elliptic DIM algebras2 [140–143] and is out of scope of

the present paper. The other quiver theories, say Ak are described, on the physical side,

by a product of k gauge groups:
∏k
i SU(ni) with κi = 2ni − ni−1 − ni+1 bifundamental

hypermultiplets for each i transforming under the gauge groups SU(ni) and SU(ni+1).

There are also κ0 and κk fundamental hypermultiplets that are transformed under SU(n1)

or SU(nk) (we put n0 = nk+1 = 0). These theories have also zero β-functions, other

cases can be obtained by a degeneration of hypermultiplet masses. Note that the Nekrasov

network partition functions typically contain additional singlet fields, which corresponds to

U(K) instead of SU(K) group. The contribution of this singlet factorizes out and reduces

just to a simple multiplier in the Nekrasov function.

While exponentiation of bosonized screenings Q =
∮
eφ can look somewhat artificial,

the same procedure is very natural in the fermionic version Q =
∮
ψ+ψ−: this adds ψ-

bilinear terms to the free fermion action, i.e. leaves it quadratic. This is the reason for

integrability, and in bosonized version this is reflected in integrable properties of Toda like

systems with exponential actions.

Exponentiation of fermionic screenings makes a new interesting twist after the q-

deformation in section 2.10, see eq. (2.50) below.

2By DIM algebras in this paper we mean both DIM and its limits like affine Yangian [49, 129–139].
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(1, 1)

Qv1

v2

u

v

n = v1 × v2 = 0

a)

I

J

K

b)

Figure 5. a) Simplest toric diagram. The intermediate edge has slope (1, 1) and length Q and

framing factor n = v1 × v2 = 0. The “horizontal” line with spectral parameters u and v is shown

in blue. The length of the intermediate edge is determined by the ratio of the spectral parameters

on the adjacent edges, Q = v
u . b) An example of a 3d Young diagram which contributes to the

vertex C[1],[2],[2,1]. The vertex C[1],[2],[2,1] is given by the weighted sum over all 3d Young diagrams

with three fixed asymptotics shown in blue.

2.8 Variation VIII: network model level. Network as a Feynman diagram

Network model is defined for a planar 3-valent graph Γ with edges parameterized by slopes

and lengths. Slopes are given by pairs of numbers (X1, X2), see figure 5, and lengths by

parameters Q. The 2-component vectors ~X are conserved at the vertices of Γ: ~Xv
′+ ~Xv

′′+
~Xv
′′′ = 0 at each vertex v; this is a stability condition for the brane-web. The graph Γ with

this structure describes a la [3, 4] the tropical spectral curve of the underlying integrable

system, but for our purposes it can be considered just as a Feynman diagram with cubic

vertices and momenta Q ~X on the edges, associated with some effective Chern-Simons-type

field theory. Expressions ZΓ for this Feynman diagram (Nekrasov partition function or gen-

eralized conformal block) is build by convolution of vertices CIJK( ~X ′, ~X ′′, ~X ′′′|q) and prop-

agators ΠIJ(Q), where indices I, J,K are Young diagrams, and CIJK are, in turn, “(refined)

topological vertices” [35–37] given [144–148] by sums over 3d (plane) partitions with three

boundary conditions described by three ordinary Young diagrams I, J,K, see figure 5, b).

In the generic network matrix model, the exponentials of screening charges no longer

turn into exponential of “fermions”: it produces an elementary 3-valent vertex (=refined

topological vertex) providing the true DIM intertwiner. Automatic is now not only adjust-

ment of the number of screenings, but also matching between their ψ+ and ψ− constituents.

• Screening charges are substituted by vertical lines between pairs of horizontal brains,∮
exp(~αij~φ), involving two free fields associated with the corresponding branes.
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• Slopes of the horizontal branes enter the matrix model description through (log xi)
2

terms in the action, see (3.45) in s.3. The coefficient is made out of the skew product

(see figure 5 a))

~Xv1 ∧ ~Xv2 (2.47)

where ~Xv1 , ~Xv2 are associated with the external horizontal lines, one incoming, the

other one outgoing. In the case with several horizontal lines, see e.g. (3.42), one has

to consider ~Xv1 , ~Xv2 for different horizontal lines, and the answer in this case does

not depend on the concrete choice of these lines.

We described in this subsection a generic network model. One can consider its partic-

ular case: the model that gives rise to the quiver gauge theory (as described in the previous

subsection). In this case (for any quiver gauge theory), one can construct a K-theoretic

version of the Nekrasov functions, ZΓ, [149–152]. They coincides [36, 37, 153, 154] with

the refined partition functions in the corresponding geometry, which can be constructed

via the refined topological vertex.

Another possibility is to consider the quiver theories with zero β-functions (so that

all other can be obtained via various limiting procedures from these) and all gauge groups

coinciding, ni = n ∀i. These theories are associated with so called balanced networks

and can be immediately described within the representation theory of DIM algebras, and

the requirement of all gauge groups having the same rank is implied by a possibility of

immediate extension of DIM to the elliptic DIM: this latter describes the quiver gauge

theories with adjoint matter, where the condition ni = n is inevitable. We discuss the

issue of balanced networks in the next subsection.

2.9 Variation IX: balanced network model

As usual, the q, t-deformation leads to overloaded formulas, but in fact it drastically simpli-

fies them by providing a very clear and transparent interpretations and unifying seemingly

different ingredients. Namely, everything gets controlled by the DIM symmetry: the edges

of graph carry DIM representations, the topological vertices C become their intertwiners,

and symmetries (stress-tensor and its W-counterparts) are just the generators of DIM act-

ing in tensor products of representations and thus defined by powers of the comultiplication

∆DIM (which is different from ∆MS).

An exhaustive description of the network models depends on development of represen-

tation theory for the double affine algebra DIM, and it is not yet brought to the generality

level of [95–97] for ordinary affine algebras. In particular, at the moment, it is not immedi-

ate to describe within the DIM framework an arbitrary DF or CS matrix model. However,

among the DF matrix models there is a subclass that is directly lifted to rather peculiar

networks, which we call balanced which are controlled by an analogue of the level one

representations of Kac-Moody algebras and allow a drastically simplified bosonization and

even fermionization. As we already mentioned the balanced networks correspond to special

quiver gauge theories with zero β-functions.
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We provide the details in section 3 below, and devote the rest of this subsection to

a bird’s eye view survey which makes use of an oversimplified, almost symbolic notation.

One can find the exact formulas in section 3.

The network basically is a constructor with the main building block being a (refined)

topological vertex, which is a matrix element of an intertwining operator that intertwines

three representations, hence, the topological vertex is associated with three legs.

The balanced network is defined by three requirements:

(a) Consider a class of representations of DIM such that each leg is parameterized by a

pair of integers ~M = (M1,M2) (DIM central charges) and a Young diagram Y . Then,

the integers are subject to the conditions:
∑3

i
~Mi = 0 and | ~Mi∧ ~Mj | = 1 for any pair

of legs in the vertex.3 As in section 2.8, we associate every vector (M1,M2) with an

edge of the network, and parameterize slopes as ratios M2/M1.

(b) Assume one of the legs of vertices is always vertical, ~M = (0,M). This implies that

M = ±1 and that the two other vertices are (±1, L ± 1). From a general network

with rational slopes one can make this minimal (i.e. that with all vertices having a

vertical edge) by a sequence of resolutions, introducing new edges and triple vertices.

Reversing, a general rational network arises from a minimal one, when some edges

are shrunk to a point while others “fattened” (i.e. described by M1 and M2 which

are not coprime, this can be needed to keep vertices three-valent).

We represent such a minimal rational network (figure 4, a)) by a set of K horizontal

lines connected by vertical segments (for planar graph, only adjacent lines can be

connected), which can also be as external vertical legs (to the lowest and highest

horizontal lines). Horizontal segments are also labeled by slopes: in other words, we

draw all non-vertical edges horizontal, but keep the slopes as labels.

(c) Balanced is the minimal rational network where all external legs are either vertical

or horizontal, i.e. either (±1, 0) or (0,±1).

Partition functions for non-balanced networks have singular limit t −→ 1, q/t =fixed

and thus do not directly reduce to a DF model in 4d. Also the U(1) center-of-mass field does

not split from the Virasoro and other symmetries in this case. However, maybe not these

two issues are the main drawbacks, the real problem is a more sophisticated representation

theory needed to lift any of the three above restrictions: balance, minimality and rationality

(in the order of complexity).

From now on, we draw all networks on the square lattice: the vertical lines (0, 1) are ver-

tical, while all the lines with slopes (1,M) are horizontal and just carry the charges (1,M).

The partition function for the balanced network is a contraction of just two types of

vertices: the generalized “fermions” Ψ and Ψ∗, which intertwine the DIM representations:

(1,M) ⊗ (0, 1) −→ (1,M + 1) and (1,M + 1) ⊗ (0,−1) −→ (1,M). These intertwiners

can be described in terms of free field, which acts as an operator in “horizontal” direction,

i.e. converts the Verma module V(1,M) into V(1,M±1). Thus, of the three Young diagrams

3In terms of topological strings, these are the Calabi-Yau and smoothness conditions.
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Ψ depends explicitly only on one: that sitting on the vertical leg, while those on two

other, horizontal legs parameterize the states in the Fock space, but not the operator.

Instead Ψ depends on the spectral parameter u, as well as on the position. The position

is described by a continuous coordinate z along the horizontal line and by the discrete

number a labelling the horizontal line itself. Actually, all Ψa and Ψ∗a with a given a depend

on the free field φa: there are K independent free fields for K horizontal lines. It remains

to provide explicit formulas for the Ψ-operators, slightly symbolically

∏
I

ΨλI [zI ]
∏
J

Ψ∗µJ [z∗J ] −→
∏
I,J

exp

∑
n 6=0

1

n

(
ω|n|[λI , zI ]nan − [µJ , z

∗
J ]na

∗
n

) (2.48)

and details can be found in the next section 3 (see especially section 3.5).

Clearly, this description of balanced networks is as asymmetric w.r.t. verti-

cal/horizontal symmetry as only possible. Thus, it does not respect most of interesting

dualities, which appear as non-trivial properties of the answers. Instead, it is extremely

simple and very close to conventional matrix model techniques. In particular, it provides a

very simple description of infinitesimal symmetries (Ward identities), and this is some com-

pensation for non-transparency of large invariances (dualities). Moreover, as mentioned in

the Introduction, the Ward identities are now labeled by sections of the network. The

description is simple when the sections are pure vertical, but they can be easily deformed

to include horizontal pieces, and the study of such cases can bring us closer to description

of spectral dualities, even in this asymmetric formalism.

2.10 Variation X: q-deformation

The main new thing at this level is Jackson discretization of integrals:∫ z

0
f(x)dx −→ (1− q)

∑
n>0

zqnf(qnz) (2.49)

It can seem that there is a problem here, because the screening charges would require

integrals along closed contours, and one may think the Jackson integral is not their good

counterpart. What makes this deformation possible is the fact that the screening charges

in the DF matrix models of [24–30] are actually defined along open contours between

ramification points.

The most important result of discretization is the Young diagram expansion for expo-

nentiated screening in fermionic realization (2.41) (an avatar of the Cauchy formula):

exp(Q̂) = exp

(∮
ψ+
a (x)ψ−a+1(x)dx

)
−→ exp

(
(1− q)

∞∑
n>0

qnψ+
a (qn)ψ−a+1(qn)

)
=
∑
λ

q|λ|

ζλ
Ψ+
a,λΨ−a+1,λ (2.50)

where λ = {λ1 ≥ λ2 ≥ . . . ≥ λl(λ) > 0} is the Young diagram with |λ| =
∑l(λ)

i=1 λi boxes,

Ψλ =
∏
i ψ(qλi) and ζλ =

∏
rmr!, where mr is a number of times r appears in the partition

λ. This formula is a simple avatar of the Cauchy expansion.
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Operators of the type ψλ play a crucial role in building particular network models:

they are intertwiners of peculiar representations of DIM and their matrix elements are

the topological vertices (perhaps, refined) within the topological string framework. Since

elements of some Verma modules of double affine algebra DIM(gl1) are labeled by 3d

Young diagrams (just like Verma modules of affine Virasoro by ordinary Young diagrams),

topological vertices are naturally expressed as sums over plane partitions.

2.11 Variation XI: q, t, . . .-deformations

Everything, what we surveyed above is straightforwardly deformed, at least from Schur

to the Macdonald level, or, in group theory terms, from ordinary and affine (current) to

double affine algebras DIM. Moreover, one can expect a topicality of the elliptic and further

Kerov deformations, and, perhaps, even further, to triple-affine Pagoda algebras of [50], at

least, to those corresponding to the double elliptic systems.

A short list of algebraic deformations is (in accordance with the columns:

dimension|deformation

parameters|symmetric polynomials|algebra of symmetry):

4d t = 1, q = 1 Schur Virasoro/W1+∞
4d t = qβ , q → 1 generalized Jack affine Yangian

5d t = q Schur q −Virasoro

5d t, q generalized Macdonald DIM

(2.51)

From the gauge theory/string perspective, the deformation parameters are associated with

compactification radius of the fifth dimension R5:

q = eε1R5 , t = e−ε2R5 (2.52)

One naturally expects more parameters: the q, t probably can be lifted to a three-parameter

deformation associated with F-theory compactified on an elliptically fibred Calabi-Yau

four-fold. Some evidence that the Seiberg-Witten/Nekrasov theory survives in a nice form

beyond the Macdonald q, t-deformation is provided by the double elliptic studies on integra-

bility side [155–159] and by reinterpretation of the Seiberg duality for Nf > 2Nc [160–164]

in terms of topological strings [165–169]. It remains to repeat once again that potential of

the DIM algebras is also far from being exhausted by the q, t-deformation.

From CFT perspective, the most natural is the β-deformation, t = qβ , β =
√
ε1/ε2,

which shifts the Virasoro central charge away from unity and other integer values in the

multi-field case. As to the q-like deformations, they are long known to be natural for hyper-

geometric series and their generalizations, which CFT is really about. One of the main new

things is that the stress tensor and more general WK generators are now unified: they are

all combinations of primary vertex operators, form a closed subalgebra and possess a non-

vanishing centralizer so that one can consider models with the corresponding symmetry.

Another interesting point is a drastic increase of applicability domain for fermioniza-

tion: after discretization of screening integrals, it continues to work in many representations

beyond c = 1, moreover, the fermionic intertwiners in DIM are actually the refined topo-

logical vertices from topological string theory.
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The most impressive result of deformation is clear unification of a huge variety of

notions and phenomena, which appeared in different branches of science. It gets clear that

they were describing the same things, just in different interpretations and limits, about

one and the same object: the network matrix model, which is no more than a generic

DIM-symmetric partition function on graphs.

In the last part of this section, we briefly consider the peculiarities of the simplest

deformation, t = qβ , q → 1.

2.12 Variation XII: β-deformation to non-unit Virasoro central charge

The main new thing at non-unit β = log t/ log q as compared with subsection 2.0 is that the

Vandermonde determinants in the matrix model measure are raised to power 2β instead

one 2, i.e. the matrix models are lifted to the β-ensembles [24–30, 104, 170–174], what leads

to a temporal loss of connection to integrability theory (which is presumably restored after

the q-deformation). Anyhow, technically most formulas are obtained by analytical contin-

uation from integer values of β. The possibility to do so (unambiguously) comes from β-

polynomiality of the Selberg integrals, which define most correlators in the DF β-ensembles.

In the conformal field theory representation [104], the β-ensemble corresponds to the-

ory with non-unit central charge. As already mentioned, for non-integer Virasoro central

charge c one can expect problems with fermionization: only bosonization is straightfor-

ward. However, an appropriate substitute of fermionized formulas actually survives all the

deformations, all the way to DIM, at least in some representations (not restricted to β = 1).

Screening charge Q̂, acting on the Fock space Fα =
{

Pols(τn)
}
· eαT0 , is

Q̂ =

∮
Ŝ(x)dx = resx=0 Ŝ(x),

Ŝ(x) =: e
√

2βφ(x) : = exp

(∑
n>0

√
βτnx

n

n

)
︸ ︷︷ ︸∑

n x
nχn{τ}

e
√
βT0x2

√
β∂0 exp

(
−
∑
n

√
β

nxn
∂

∂τn

)
(2.53)

where χn{p} are the characters of symmetric representations [n] of sl algebras (the Jack

polynomials in this particular case). Applied to the highest-weight state∣∣∣m+ 1
〉

= e−αr,sT0 , αr,s = (1 + r)

√
β

2
− (1 + s)

1

2
√
β

(2.54)

it gives

Q̂
∣∣∣α−1,m

〉
= χm{τ}

∣∣∣α1,m

〉
(2.55)

Similarly

Q̂r
∣∣∣α−r,m〉 = χ[mr]{τ}

∣∣∣αr,m〉 (2.56)

These screening charge commutes

[L̂n, Q̂] = 0 (2.57)
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with the Virasoro generators

L̂n =
∑
k

(k+n)τk
∂

∂τk+n
+
n−1∑
k=1

k(n−k)
∂2

∂τk∂τn−k
+2n

√
β

∂2

∂τn∂T0
−n(n+1)Q

∂

∂τn
, n > 0

(2.58)

where Q =
√
β − 1√

β
. Then, one obtains

L̂nχ[mr] = 2n
√
βαr,m

∂χ[mr]

∂τn
n > 0 (2.59)

while the action of

L̂0 =
∑
k

kτk
∂

∂τk
+ β

∂2

∂T0∂T0
+ (1− β)

∂

∂T0
(2.60)

still gives the size of the Young diagram:

L̂0χ[mr] = mr · χ[mr] (2.61)

The negative modes are:

L̂−n =
∑
k

kτk+n
∂

∂τk
+
√
βτn

∂

∂T0
+

1

4

n−1∑
k=1

τkτn−k +
n− 1

2
Qτn (2.62)

so that

[L̂n, L̂m] = (n−m)L̂n+m +
n(n2 − 1)

12

(
1− 6Q2

)
δn+m,0 (2.63)

and the current modes are now

Ĵ−n =
τn√

2
, Ĵ0 =

√
2β

∂

∂T0
, Ĵn =

√
2n

∂

∂τn
(2.64)

while the Sugawara relation is

T̂ (z) = :
1

2
Ĵ(z)2 : +

Q√
2
∂zJ(z) (2.65)

In terms of generating functions, the Ward identity (2.59), i.e. the corollary of symme-

try (2.57) becomes [
z2 T̂ (z)−

√
2βαr,m zĴ(z)

]
−
· χ[mr] = 0 (2.66)

or (
z2 T̂ (z)−

√
2βαr,m zĴ(z)

)
· χ[mr] = Pol(z) (2.67)

Now similarly to obtaining (2.28), we can get the matrix element that is given by the

integral (β-ensemble) representation. It looks like

χ[mr]{τ} =
〈
αr,m

∣∣∣ Ĉ{τn/√2} Q̂r
∣∣∣α−r,m〉

= − 1

r!

∮
. . .

∮
︸ ︷︷ ︸

r

(
r∏
i=1

G{τ |xi} dxi
xm+r
i

)∏
i<j

(xi − xj)2β =
〈

1
〉

DFm,r

(2.68)

However, the symmetric function χ[mr]{τ} is now not the Schur, but the Jack polynomial.
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The Ward identity (2.29) is now substituted by(
z2 T̂ (z)−

√
2βαr,m zĴ(z)

)〈
1
〉

DFm,r

= Pol(z) (2.69)

=

〈∑
k,i

τkx
k+1
i

z − xi
+

r∑
i,j=1

xixj
(z − xi)(z − xj)

−Q
∑
i

z2

(z − xi)2
− 2
√
βαr,m

∑
i

xi
(z − xi)

〉
DFm,r

One has to get two important points from considering this β-deformation:

• The deformation preserves the structure of equations and the vertex operators, mod-

erately changing only the screening charges (the change that can be removed to

a rescaling of the Heisenberg algebra operators), while the main change is due to

changing the Sugawara relation, i.e. the construction of the Virasoro/W algebra.

• Matrix models partition functions are also changed moderately, basically with only

the Vandermonde determinant being deformed (hence, changing the Ward identities).

These two properties will persist in the generic q, t-case, as we demonstrate in the next

sections.

In fact, one could repeat this matrix model consideration in the deformed case with

non-unit q, following the lines of [175–181]. However, the actual symmetry in this case

becomes much larger than the Virasoro algebra: it is the DIM algebra, and we start its

general description in the next section.

3 DIM calculus for balanced network model

In this section, we demonstrate how to deal with the balanced network model by methods

of the DIM algebra, which is a development based on the previous consideration in [31–

34, 48, 50, 182]. It is rather special from the algebraic perspective: only the DIM(gl1)

algebra with special values of central charges and rather peculiar representations allowing

straightforward bosonization and even fermionization is considered, however, this covers

almost all what is presently known about Nekrasov partition functions.

Details on various DIM algebras and their simplest representations are provided in the

appendix, which can be useful for further development of the theory.

3.1 DIM algebra

Let us first remind the definition of the DIM algebra Uq,t(
̂̂
gl1). It looks like a deformation of

the affine quantum algebra Uq(ĝl2) with the four Drinfeld currents: the positive/negative

root generators x±(z) =
∑

n∈Z x
±
n z
−n, two exponentiated Cartan generators ψ+(z) and

ψ−(z), which are power series in z−1 and z correspondingly, and the central element γ.

Commutation relations are

G∓(z/w)x±(z)x±(w) = G±(z/w)x±(w)x±(z)

[x+(z), x−(w)] =
(1− q)(1− t−1)

1− q/t

(
δ(γ−1z/w)ψ+(γ1/2w)− δ(γz/w)ψ−(γ−1/2w)

)
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ψ±(z)ψ±(w) = ψ±(w)ψ±(z) (3.1)

ψ+(z)ψ−(w) =
g(γw/z)

g(γ−1w/z)
ψ−(w)ψ+(z)

ψ+(z)x±(w) = g(γ∓1/2w/z)∓1 x±(w)ψ+(z)

ψ−(z)x±(w) = g(γ∓1/2z/w)±1 x±(w)ψ−(z)

Sym
z1,z2,z3

z2z
−1
3 [x±(z1), [x±(z2), x±(z3)]] = 0

The DIM algebra is a Hopf algebra with comultiplication

∆
(
ψ±(z)

)
= ψ±(γ

±1/2
2 z) ⊗ ψ±(γ

∓1/2
1 z)

∆
(
x+(z)

)
= ψ−(γ

1/2
1 z) ⊗ x+(γ1z) + x+(z) ⊗ 1 (3.2)

∆
(
x−(z)

)
= 1 ⊗ x−(z) + x−(γ2z) ⊗ ψ+(γ

1/2
2 z)

where γ
±1/2
1 = γ±1/2⊗ 1, γ

±1/2
2 = 1⊗ γ±1/2 and the functions g(z) = G+(z)

G−(z)
is restricted

by the associativity requirement g(z)−1 = g(z−1). We omit expression for the counit and

antipode, since we will not need them.

This data allows one to construct the universal R-matrix [67–69].

In these relations, γ±1/2 and ψ+
0 ≡ ψ+(z = ∞), ψ−0 ≡ ψ−(z = 0) are the central

elements. Parameterizing their values as

γ = ω−M1 , ψ±0 = ω±M2 , ω ≡
√
q

t
(3.3)

we reproduce the (M1,M2) pairs of integers enumerating representations in section 2.9. The

action of this comultiplication increases the central charges, in contrast with the Moore-

Seiberg comultiplication ∆MS (2.45). This is why the number of free fields is also increased

by action of the comultiplication. In particular, starting from one free field (Kac-Moody

level), we produce the Virasoro by acting with comultiplication, which adds yet another free

field etc. Of the two integers M1 and M2, the first one is a counterpart of the Kac-Moody

algebra level so that the refined topological vertex is a matrix element of the operator

intertwining the level one representations, i.e. it can be realized by one free field. We

explain this construction manifestly in the next subsections.

The structure of the algebra is encoded in the function G(z) which is often chosen to

be cubic in z with additional restriction q1q2q3 = 1:

G±(z) = (1− q1z)(1− q2z)(1− q3z) =
(

1− q±1z
)(

1− t∓1z
)(

1− (q/t)∓1z
)

(3.4)

Without any harm to commutation relations and comultiplication, it can be further

promoted to unrestricted q1,2,3 and more general Kerov deformations, and even to the

elliptic function, though details of bosonization procedure below should still be worked

out in these cases.
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3.2 Bosonization in the case of special slopes

Explicit expressions for CIJK are currently known only for particular slopes: ~s′′ = (0, 1)

and ~s′ = (1,M), ~s′′′ = (1,M ± 1), see figure 5. According to [66], they can be expressed in

terms of the following bosonization:

φ(z) =
∑
n>0

(
1− tn

1− qn
zna−n
n
− 1− tn

1− qn
an
nzn

)
,

[an, am] = n
1− q|n|

1− t|n|
δm+n,0 (3.5)

From this free field we can construct pre-vertex operators depending on infinitely many

time-variables pn:

C{p} = exp

(∑
n>0

1− tn

1− qn
an
n
pn

)

C̄{p} = exp

(
−
∑
n>0

1− tn

1− qn
an
n
pn

)

C†{p} = exp

(∑
n>0

1− tn

1− qn
a−n
n
pn

)
(3.6)

C̄†{p} = exp

(
−
∑
n>0

1− tn

1− qn
a−n
n
pn

)

with

C†

{
pn =

∑
i

zni

}
C̄

{
pn =

∑
i

z−ni

}
= :

∏
i

eφ(zi) : (3.7)

These operators can be used to define the main vertex operators for the above-mentioned

particular slopes:

Ψλ(z)=Ψ

[
�� ?

z, λ

−uz u

M M−1

]
=

(−z)M |λ|

cλ(fλ)M
C†
[
t−1qλtρ+1/2z

]
C̄
[
q−λt−ρ−1/2qz−1

]
× (−uz)|λ|qn(λT )

Ψ∗λ(z)=Ψ

[
��

?
z, λ

−v/z v
L L+1

]
=

(−z)L|λ|(fλ)L

cλ
C̄†
[
qλtρq−1/2z

]
C
[
q−λt−ρq1/2z−1

]
×(v/q)−|λ|qn(λT ) (3.8)

Here only one Young diagram λ is shown explicitly, the two others label matrix elements

of the operator. The operator acts on the Fock space Fu, in which the basis vectors

are labelled by Young diagrams (e.g. the Schur functions provide a basis, χY (a−n)|u,∅〉).
The edge parameters/lengths Q are encoded in the spectral parameters u and z. More

precisely, edge lengths are given by ratios of the spectral parameters between the parallel

lines, as shown in figure 5, a). Notice that the vertices Ψ, Ψ∗ depend only on two spectral

parameters, the third one being determined by the momentum conservation condition.
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This condition follows from the requirement that the vertices intertwine the action of the

zero mode of the generator x+(z). An additional notation is:

fλ =
∏

(i,j)∈λ

(−) ·qj−1/2t1/2−i, cλ =
∏

(i,j)∈λ

(
1−qλi−jtλ

T
j −i+1

)
, n(λT ) =

∑
(i,j)∈λ

(j−1)

(3.9)

where λTj are row lengths of transposed Young diagram. Finally,

C[qλtρ+1/2] = C

pn =
∑
i≥1

(qnλi − 1)tn(1−i) +
1

1− t−n

 |t|>1
= C

pn =
∑
i≥1

qnλitn(1−i)


(3.10)

Here the requirement |t| > 1 is needed for convergence of the sum. However, the result is

analytic, and thus valid for any complex t 6= 1.

The Feynman diagram is made from horizontal lines and vertical segments between

them. Operators along the horizontal lines are simply multiplied, but each horizontal line

depends on its own free field, i.e. with K-line diagram we associate operators acting in the

K-th tensor power of the single field Fock space, Fu1 ⊗ · · · ⊗ FuK . Sum over the Young

diagrams, λ on vertical segments is performed with the simple weight, which is independent

of the edge length Q : all Q-dependent factors are already included in the definitions of Ψ.

One can understand this procedure as cutting the propagators ΠIJ in two halves (taking

a “square root”) and attaching the resulting stubs to the corresponding adjacent vertices.

3.3 Relation to topological vertex

The operator C{p} defined in eq. (3.6) switches between the Fock space and the time vari-

ables: for the vacuum state annihilated by all operators a−n with n > 0, 〈0|a−n = 0 we have

〈0|C{p} a−n = pn 〈0|C{p}

〈0|C{p} an = n
1− qn

1− tn
∂

∂pn
〈0|C{p} (3.11)

This 〈0|C{p} is a p-dependent set of common coherent eigenstates of all the annihilation

operators a−n. Accordingly, one can use the Macdonald polynomials Mλ{p} to define

“Macdonald states”:

Mλ{p} = 〈0|C{p}|Mλ〉
and their involutions

M̄λ{p} = Mλ{−p} = 〈0|C̄{p}|Mλ〉
The skew characters are given by the matrix elements

Mλ/µ{p} =
〈Mµ|C{p}|Mλ〉
〈Mµ|Mµ〉

(3.12)

The matrix elements of the intertwiners Ψ, Ψ∗ in the basis of the Macdonald states

give the standard expression for the AK version of the refined topological vertex [36, 37]

〈M̄µ|Ψ

[
�� ?

z, λ ]
|M̄ν〉=||Mλ||2||Mν ||2

(
− t1/2u

q(−z)M

)|λ|
f−Mλ (t−1/2z)|µ|−|ν|f−1

ν Cµλν (q, t)

(3.13)
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〈M̄ν |Ψ

[ ��

?
z, λ

]
|M̄µ〉=||Mµ||2

(
−q(−u)L

t1/2z

)
fLλ (t−1/2u)−|µ|+|ν|fνCµλ

ν(q, t) (3.14)

where

Cµλ
ν(q, t) = M

(q,t)
λ [tρ]

∑
σ

M̄
(t,q)

µT /σT
[t−λ

T
qρ]M

(q,t)
ν/σ [qλtρ](q/t)

|σ|−|ν|
2 f−1

ν (q, t), (3.15)

Cµλν(q, t) = (−1)|λ|+|µ|+|ν|CµTλT
νT (t, q) (3.16)

The IKV vertices [35] arise in another basis: for the q, t-independent Schur states |sλ〉
and their q, t-dependent duals 〈Sλ| w.r.t. to the Macdonald scalar product.

3.4 Building screening charges and vertex operators

The screening charges and vertex operators of the Virasoro or WK-algebra arise as combi-

nations of intertwiners Ψ, Ψ∗. The screening charges should commute with the Virasoro

generators, and since the Virasoro algebra is generated by an element of DIM algebra, the

intertwiners of DIM are the natural candidates for the screening charges. We will see in the

next section that one can interpret the commutation graphically. The Virasoro generators

act on the horizontal lines, and the screening charges are segments of the vertical lines be-

tween the horizontal ones. There are also external vertical lines, which correspond to the

Virasoro vertex operators. These do not commute with the Virasoro algebra, because the

corresponding intertwiner contains an extra representation, the vertical one. The action of

energy-momentum tensor on this additional representation gives extra terms, making the

commutation rules nontrivial.

Screenings charges. Let us start by building the screening charges. They correspond

to internal vertical lines in the web. The minimal example contains two intertwiners,

which are contracted with each other to form a vertical segment between the adjacent

horizontal lines. The whole procedure resembles the free fermion construction of the

screening currents from section 2.6. Each intertwiner plays the role of a free fermion,

so that their contraction gives rise to fermion bilinears, i.e. the screening currents of

dimension one. The integral of the currents is replaced by the sum over intermediate

states in the vertical representation as in section 2.10.

The product of intertwiners is given by

λz

−vz
Ψ

v

−u/z
Ψ∗

u

(1, L+1) (1, L)

(1,M) (1,M+1)

=
∑
λ

||Mλ||−2Ψ∗λ(z)⊗Ψλ(z) =

=
∑
λ

(qv
u

(−z)M−L+1
)|λ| fM−L−1λ q2n(λ

T )

cλc′λ
exp

−∑
n≥1

1

n

1−tn

1−qn
(

1+
(q
t

)n)
pn(qλtρq−1/2z)α̃−n

×
× exp

∑
n≥1

1

n

1− tn

1− qn
(

1 +
(q
t

)n)
pn(q−λt−ρq1/2z−1)α̃n

 =
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=
∑
λ

(qv
u

(−z)M−L+1
)|λ| fM−L−1λ q2n(λ

T )

cλc′λ
:
∏
i≥1

S(qλitρiq−1/2z) : (3.17)

where c′λ =
∏

(i,j)∈λ(1− qλi−j+1tλ
T
j −i) and

S(x) = exp

−∑
n≥1

1

n

1− tn

1− qn
(

1 +
(q
t

)n)
xnα̃−n

 exp

∑
n≥1

1

n

1− tn

1− qn
(

1 +
(q
t

)n)
x−nα̃n


(3.18)

We see that the contraction of two intertwiners depends on a particular (“Virasoro”) com-

bination of the bosonic oscillators acting on the two horizontal Fock representations:4

α̃n =
1

1 + ω2|n| (a
(1)
n − ω|n|a(2)

n ), ω ≡
√
q

t
(3.19)

where a
(1)
n = an ⊗ 1 and a

(2)
n = 1⊗ an. The generators α̃n are normalized differently from

the original Heisenberg generators an (cf. eq. (3.5)):

[α̃n, α̃m] = n
1− q|n|

(1− t|n|)(1 + ω2|n|)
δn+m,0. (3.20)

The contraction of intertwiners provides us with an indefinite number of screening

currents, since the product in the last line of eq. (3.17) is infinite. This corresponds to

the exponential of the screening charge and fits well with the picture where the pair of

intertwiners gives fermion bilinear screening current:

∑
λ

||Mλ||−2Ψ∗λ(z)⊗Ψλ(z) ∼ exp

(∮
S(x)dx

)
=
∑
N

1

N !

∮ N∏
i=1

S(xi)d
Nx (3.21)

According to the q-deformation prescription from section 2.10, the positions of the screening

currents are discrete and parameterized by the Young diagrams λ:

xi = qλitρiq−1/2z, (3.22)

so that the contour integral in eq. (3.21) is replaced by the sum over λ.5 To get a definite

number of screenings one should put some vertex operators and external states into the

system. Then, the selection rules automatically provide one with a necessary number of

screening charges. We will see this effect below, when discussing the vertex operators.

The operator product expansion of two screening operators immediately defines the

corresponding matrix model measure. We have

S(x)S(y) ∼

(
x
y ; q
)
∞

( y
x ; q
)
∞(

txy ; q
)
∞

(
t yx ; q

)
∞

: S(x)S(y) : (3.23)

4We conform with the notations of [50].
5One can understand this recipe in different ways: either as the Jackson integral, or as a sum over

residues of the normal ordered operator expression. The final result for the sum over Young diagrams is

the same in the both approaches.
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where (x; q)∞ =
∏
k≥1(1 − qkx). This means that the matrix model is of (q, t)-deformed

type, with the measure given by

∆(q,t)(x) =
∏
i 6=j

(
xi
xj

; q
)
∞(

t xixj ; q
)
∞

(3.24)

It is known [31, 32, 80–82] that such a matrix model explicitly computes the Nekrasov

partition function and the Virq,t conformal block.

Of course, the expression for the intermediate vertical segment between any two ad-

jacent horizontal lines (e.g. i-th and (i + 1)-th) has the same form as eq. (3.17). The

only difference is that the Heisenberg generators are a
(i)
n and a

(i+1)
n instead of a

(1)
n and

a
(2)
n . On the tensor product of K ≥ 3 Fock representations acts the WK-algebra and the

intermediate segments correspond to (K − 1) different screening charges commuting with

this algebra. The combinations of the differences between the adjacent bosonic oscillators

correspond to the roots of the AK−1 algebra.

Vertex operators. As we have already mentioned, vertex operators should be built from

the intertwiners with external vertical legs. Again, a minimal example contains a pair of

intertwiners on two horizontal lines, which are, however, not contracted in this case. Their

product now essentially depends on the both horizontal oscillators. This corresponds to

a composite vertex operator having two parts: the Virasoro part depending on ãn and

the Heisenberg part depending on the orthogonal linear combination of the oscillators, ān.

This is exactly as prescribed by the AGT relation [175–181, 183–185], where the Nekrasov

functions for the gauge group U(N) correspond to the conformal block of the algebra

Virq,t ⊗ Heisq,t.

We have the following result:

w1 ∅

w2 ∅

−v/w2 Ψ∗ v

−uw1 Ψ u

(1, L) (1, L+1)

(1,M+1) (1,M)

= Ψ∅(w1, v)⊗Ψ∗∅(w2, u) = Ṽ Vir
w1/w2

(
(w1w2)1/2

)
V Heis
w1/w2

(
(w1w2)1/2

)

(3.25)

where the indices denote the Liouville-like momenta of the vertex operators

Ṽ Vir
P (z)=exp

−∑
n≥1

Pn/2+P−n/2

n(1− qn)
znα̃−n

exp

−∑
n≥1

qn(Pn/2+P−n/2)

n(1− qn)
z−nα̃n

 , (3.26)

V Heis
P (z)=exp

−∑
n≥1

ω−n((ω2P )n/2 − (ω2P )−n/2)

n(1− qn)
znᾱ−n


× exp

−∑
n≥1

(qt)n/2((P/ω2)−n/2 − (P/ω2)n/2)

n(1− qn)
z−nᾱn

 . (3.27)

– 31 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
3

where α̃n are defined in eq. (3.19) and

ᾱn =
ω|n|

1 + ω2|n|

(
ω|n|a(1)

n + a(2)
n

)
(3.28)

Notice that the momenta in the U(1) part are slightly different (by t2/q2) for the positive

and negative modes which matches the AGT prescription [41, 186–188].

The vertex operator (3.26), though it depends on the right combination of the oscilla-

tors α̃n is not the full Virasoro vertex operator (in particular, it does not have a smooth

limit for t, q → 1). The same comment actually applies to the exponential of the screening

charge (3.17). The reason for this behavior is that both (3.17) and (3.25) are not balanced.

This means that either incoming or outgoing representations are not horizontal. To get

the balanced combination, one should consider the product of (3.17) and (3.25), i.e. the

partial contraction of four intertwiners:

w1 ∅

w2 ∅

−vz/w2Ψ∗ −v

zλ

−uw1/z Ψ −u

(1, L) (1, L)

(1,M+1) (1,M+1)

Ψ

Ψ∗

=
∑
λ

||Mλ||−2Ψ∅(w1)Ψ∗λ(z)⊗Ψ∗∅(w2)Ψλ(z) =

= V Heis
w1/w2

(
(w1w2)1/2

)∮ N∏
i=1

S(xi)d
NxV Vir

(tw2)/(qw1)

(
(w1w2q/t)

1/2
)
, (3.29)

where tN =
√

t
q
z
w1

and

V Vir
P (x) = exp

−∑
n≥1

1

n

xn

1− qn
α̃−n

(
Pn/2 − P−n/2

) (3.30)

× exp

−∑
n≥1

1

n

qn

1− qn
x−nα̃n

(
P−n/2 − Pn/2

)
Of course, one can change w1 to w2 and vice versa in all the formulas. The balanced

combination of the operators automatically fixes two problems: it determines the number

of screening charges N and gives the correct expression for the Virq,t vertex operator (3.30)

in terms of free fields [175, 176].

Other combinations of four intertwiners. In this paragraph we give an exhaustive

list of webs, both balanced and unbalanced, obtained from combinations of four intertwiners

on two horizontal lines. The first possibility is given by eq. (3.29), the second we describe

below in (3.42), when we discuss conformal blocks. Here we consider two more variations.

– 32 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
3

1. Two antiparallel lines.

λ1z1 λ2z2

−v/z1
Ψ

v

Ψ∗

−v/z2

−uz1
Ψ∗

u −uz2
Ψ

(1, L+1) (1, L) (1, L+1)

(1,M)
(1,M+1)

(1,M)

=
∑
λ1,λ2

(qv
u

(−z1)M−L+1
)|λ1|(qu

v
(−z2)L−M−1

)|λ2|
×

×
fM−L−1
λ1

fM−L−1
λ2

q2n(λT1 )+2n(λT2 )

cλ1c
′
λ1
cλ2c

′
λ2

:
∏
i≥1

S2(qλ2,itρiq−1/2z2) : :
∏
j≥1

S1(qλ1,j tρjq−1/2z1) :

(3.31)

Notice that here S2 depends on the combination of the oscillators corresponding to

the affine (imaginary) root of the algebra Â1:

α̃(2)
n =

1

1 + ω2n

(
a(2)
n − ωna(1)

n

)
, n ≥ 1 (3.32)

α̃
(2)
−n =

1

1 + ω2n

(
a

(2)
−n − ωna

(1)
−n

)
, n ≥ 1

This diagram is balanced and corresponds to a particular case of the compactified

toric diagram. The two antiparallel vertical lines should be understood as living on

the two sides of the cylinder. We will give a more general “quasi-periodic” version of

this diagram in section 3.7, where we describe the affine (q, t)-matrix model.

2. Horizontal cut. This strange variation is obtained by adding two “internal” lines

ending at empty diagrams:

∅
w1

∅
w2

λz
−vw2

Ψ

v

Ψ

−v/z

−u/w1

Ψ∗

u −uz

Ψ∗

(1, L+1) (1, L) (1, L−1)

(1,M)
(1,M+1)

(1,M+2)

=
∑
λ

(qv
u

(−z)M−L+1
)|λ| fM−L−1

λ q2n(λT )

cλc
′
λ

×

× V̂ Heis
w1/w2

(
√
w1w2)V̂ Vir

w1/w2
(
√
w1w2) :

Ñ∏
j=1

S(qλj tρjq−1/2z) : (3.33)

where tÑ = z
w1

and

V̂ Vir
P (z) = exp

−∑
n≥1

ωn(Pn/2 − P−n/2)

n(1− qn)
znα̃−n


× exp

−∑
n≥1

qnωn(P−n/2 − Pn/2)

n(1− qn)
z−nα̃n

 , (3.34)
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V̂ Heis
P (z) = exp

−∑
n≥1

ω−n(Pn/2 − P−n/2)

n(1− qn)
znᾱ−n


× exp

−∑
n≥1

ω−n(P−n/2 − Pn/2)

n(1− qn)
z−nᾱn

 (3.35)

This network is unbalanced and, hence, produces wrong vertex operators V̂ Vir, i.e.

those which do not satisfy the usual commutation relations with the q-deformed Vira-

soro energy-momentum tensor. Notice also that the Heisenberg vertex operator V̂ Heis

is not the required Carlsson-Okounkov vertex operator [189, 190], i.e. the momenta

are not shifted for the positive and negative modes (see also [186–188]).

3.5 Network partition function

Now we have all ingredients necessary for constructing network partition functions. It

schematically has the form〈∏
a

Ψλa [za]
∏
b

Ψ∗µb [z
∗
b ]
∏
c

(∑
µ

ΨµΨ∗µ

)〉
(3.36)

where the first product describes the external vertex operators, and the second one the

“internal” screening operators. We denoted the vertex attached to brane a by Ψa.

As we already mentioned at the end of the previous section, the deformation does

not influence much the screening and vertex operators. This means that one can straight-

forwardly construct (3.36). Indeed, one can choose the normalization of the Heisenberg

algebra operators in such a way that the pre-vertex operators become very simple:

C{p} = exp

(∑
n>0

anpn
n

)
C̄{p} = exp

(
−
∑
n>0

anpn
n

)

C†{p} = exp

(∑
n>0

a−npn
n

)
C̄†{p} = exp

(
−
∑
n>0

a−npn
n

)
(3.37)

and the screening currents (3.18) get the non-deformed form

S(x) = exp

−∑
n≥1

1

n
xnã−n

 exp

∑
n≥1

1

n
x−nãn

 (3.38)

In this simplified notation, the first part of formula (3.36), the external vertex operators, can

be rewritten in the form (we are using equation (3.8) with the rescaled Heisenberg algebra)

∏
I

ΨλI [zI ]
∏
J

Ψ∗µJ [z∗J ] −→
∏
I,J

exp

∑
n 6=0

1

n

(
ω|n|[λI , zI ]nan − [µJ , z

∗
J ]na

∗
n

) (3.39)
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where all incoming vertex operators (labeled by the index I) are associated with the

horizontal brane described by the Heisenberg operators an, while those outgoing ones

(labeled by the index J) correspond to the Heisenberg operators a∗n. Here the symbol

[λ, z]n ≡ sign(n)
∑
i

(
qλi−1/2t1/2−iz

)n
(3.40)

introduces the Miwa variables. This is exactly the formula (1.7).

Formulas (3.38) and (3.39) give simple expressions for the ingredients of (3.36), thus

providing a description of the network partition functions.

As we already explained, in variance with vertex operators, the Virasoro/W-algebra

non-trivially changes with deformation. We shall discuss this phenomenon in the next two

sections, and here give a few examples of conformal blocks (calculated in terms of the

non-rescaled Heisenberg algebras).

3.6 Examples of conformal blocks

The simplest conformal block BPG. The simplest possible contraction corresponding

to a nontrivial conformal block includes four intertwiners. It gives a peculiar “pure gauge”

limit of the four-point Virasoro conformal block B4(P1, P2, P3, P4, P, x), which, in the gauge

theory language, corresponds to the pure SU(2) gauge theory partition function. In this

limit [191], the dimensions Pi of all the external fields become infinite, and simultaneously

the points 0 and x merge in a very particular way:

Pi →∞, x→ 0, xP1P2P3P4 = Λ4 = fixed (3.41)

Only two parameters, ∆ and Λ remain finite, so that BPG = BPG(P,Λ).

The corresponding web partition function is equal to

λ1z1 λ2z2
−vz1
〈∅|

Ψ

v

Ψ

−v/z2
|∅〉

−u/z1
〈∅| Ψ∗

u −uz2
|∅〉Ψ∗

(1, L+1) (1, L) (1, L−1)

(1,M)
(1,M+1)

(1,M+2)

=〈P1| exp

(∮
C1
S(x)dx

)
exp

(∮
C2
S(x)dx

)
|P4〉=BPG(P,Λ) =

=
∑
λ1,λ2

(qv
u

(−z1z2)
M−L+1

2

)|λ1|+|λ2|
(
−z1
z2

)M−L+1
2 (|λ1|−|λ2|) fM−L−1λ1

fM−L+1
λ2

q2n(λ
T
1 )+2n(λT

2 )

cλ1
cλ2

c′λ1
c′λ2

×

×
〈∅,−u/z1|
⊗

〈∅,−vz1|
:
∏
i≥1

S(qλ1,itρiq−1/2z1) : :
∏
i≥1

S(qλ2,itρiq−1/2z2) :
|∅,−uz2〉
⊗

|∅,−v/z2〉
(3.42)

Here C1 and C2 are the contours encircling the two points 1 and Λ. P1 and P4 denote the

momenta of the fields at points 0,∞. These momenta are actually infinite in the pure gauge

limit. However, the infinite charges at zero and at infinity are compensated by the infinite

number of screening charges coming from the two exponentials, so that the dimension of

the field in the intermediate channel is finite and equal to P . In our formalism, P is
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related to u
v (since u and v are dimensions associated with the intermediate segments of

the horizontal lines) and the Λ = z1
z2

.

Using eq. (3.23), we can evaluate the matrix element of the two normal ordered factors

in the last line of (3.42) to obtain the Vandermonde determinant:

〈∅| ⊗ 〈∅| :
∏
i≥1

S(qλ2,itρiq−1/2z2) : :
∏
i≥1

S(qλ1,itρiq−1/2z1) : |∅〉 ⊗ |∅〉 ∼ ∆(q,t)({x}, {y})

(3.43)

where

xi = qλ1,it−iz1, yi = qλ2,it−iz2. (3.44)

Substituting the Vandermonde determinant back to eq. (3.42), one can verify that what is

left is a particular limit of (q, t)-matrix model with the Chern-Simons terms:

BPG(P,Λ) = (3.45)

= lim
N1,2→∞

∮ ∮
dN1x dN2y∆(q,t)(x)∆(q,t)(y)∆(q,t)({x}, {y})

N1∏
i=1

xα1
i e

(M−L+1)
(ln xi)

2

ln q

N2∏
j=1

yα2
j e

(M−L+1)
(ln yj)

2

ln q

where qα1,2 = qv
u z

M−L+1
1,2 . The parameter Λ = z1

z2
is hidden inside the definition of the

contour integrals C1,2. Notice that the Chern-Simons coupling constants depend on the

relative slope of the two “horizontal” lines and, in particular, vanish for L = M + 1, when

we also have α1 = α2.

Let us also give a spectral dual gauge theory interpretation for this conformal block. In

the AGT correspondence, this limit of the conformal block corresponds to the pure SU(2)

gauge theory, with Λ being the instanton counting parameter (coupling constant) and P

being related to the Coulomb modulus a. After applying the spectral duality, however, we

have a different interpretation: the coupling constant Λ and the Coulomb modulus q2a are

exchanged. This spectral dual approach is directly applicable to eq. (3.42). If we simplify

the infinite products (3.42) (or equivalently in the Vandermonde factors in eq. (3.45)) we

get:

BPG(P,Λ) =
∑
λ1,λ2

(qv
u
zM−L+1

1

)|λ1| (qv
u
zM−L+1

2

)|λ2|
(fλ1fλ2)M−L+1 1

zvec

(
z1
z2
, λ1, λ2

)
(3.46)

where zvec is the standard Nekrasov factor. Notice that the whole sum becomes the

Nekrasov function for the pure SU(2) theory (with additional “framing” factors in the

case of general slopes L 6= M + 1). However, the instanton counting parameter and the

Coulomb modulus are related to u
v and z1

z2
respectively, while, following the AGT duality it

should be vice versa. Thus, what we write in eq. (3.46) is actually the spectral dual of the

AGT dual Nekrasov function corresponding to the pure gauge limit of the conformal block.

Though this example is very simple in the gauge theory, as well as for the webs of

intertwiners, from the point of view of the CFT it looks a bit contrived. The reason is that

the corresponding diagram is not balanced. Let us describe a more regular example of a

balanced diagram corresponding to a general four-point conformal block.
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More general Virasoro conformal blocks. To get the general four-point conformal

block B4, we should combine the two balanced building blocks from eq. (3.29):

w1 ∅

w2 ∅

−vz1/w2
Ψ∗ −v

z1λ1
−uw1/z1

〈∅|

Ψ

−u

(1, L) (1, L)

(1,M+1)
〈∅|

(1,M+1)

Ψ

Ψ∗

w3 ∅

w4 ∅

Ψ∗ −vw4/z2

z2λ2

Ψ −uz2/w3

|∅〉

(1, L)

|∅〉

(1,M+1)

Ψ

Ψ∗

= 〈P1| exp

(∮
C1
S(x)dx

)
VP2(x)

× exp

(∮
C2
S(x)dx

)
VP3(1)|P4〉 =

= B4(P1, P2, P3, P4, P, x)

=
∑
λ1,λ2

(qv
u

(−z1)M−L+1
)|λ1| (qvw4w3

u
(−z2)M−L−1

)|λ2| f
M−L−1
λ1

fM−L+1
λ2

q2n(λT
1 )+2n(λT

2 )

Cλ1Cλ2C
′
λ1
C′λ2

×

×
〈∅,−uz1/w1|

⊗
〈∅,−vw2/z1|

V Heis
w1/w2

(
(w1w2)1/2

)
V Heis
w3/w4

(
(w3w4)1/2

)
:

N1∏
i=1

S(qλ1,i tρiq−1/2z1) : ×

× V Vir
(tw2)/(qw1)

(
(w1w2q/t)

1/2
)

:

N2∏
i=1

S(qλ2,i tρiq−1/2z2) : V Vir
(tw4)/(qw3)

(
(w3w4q/t)

1/2
) |∅,−uw3/z2〉

⊗
|∅,−vw4/z2〉

(3.47)

Here tN1 =
√

t
q
z1
w1

and tN2 =
√

t
q
z2
w3

. Notice that the Heisenberg vertex operators commute

with the Virasoro ones and also with the screening operators, so that their contribution

factorizes and adds the standard “U(1) factor” to the conformal block. Employing the

scaling invariance argument, one can consider only the conformal blocks in which the

position of the last Virasoro vertex operator is the identity, so that w3w4q/t = 1 and

w1w2q/t = x. The dimensions of the primary fields are given by

P1 =
qv

u
, P2 =

tw2

qw1
, P3 =

w4

w3
, P4 =

uz2
2

qvw4w3
(3.48)

P =
tN1+1P2

qP1
=
tN2P4

P3
(3.49)

The corresponding matrix model is of the Penner type with the additional Chern-Simons

terms:

B4(P1, P2, P3, P4, P, x) =

=

∮ ∮
dN1x dN2y∆(q,t)(x)∆(q,t)(y)∆(q,t)({x}, {y})

N1∏
i=1

xα1
i e

(M−L+1)
(ln xi)

2

ln q

(
q1−α2xi/x; q

)
∞

(xi/x; q)∞

(
q1−α3xi; q

)
∞

(xi; q)∞
×

×
N2∏
j=1

yα4
j e

(M−L+1)
(ln yj)

2

ln q

(
q1−α3yj ; q

)
∞

(yj ; q)∞

(
q1−α2yj/x; q

)
∞

(yj/x; q)∞
(3.50)

where qαi = Pi.

The five-point conformal block can be obtained by putting three building blocks

like (3.29) together. This gives a product of three Virasoro vertex operators, three Heisen-
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berg vertex operators and three groups of screening charges. Schematically, one has:

w1 ∅

w2 ∅

−vz1/w2
Ψ∗ −v

z1λ1
−uw1/z1

〈∅|

Ψ

−u

(1, L) (1, L)

(1,M+1)
〈∅|

(1,M+1)

Ψ

Ψ∗

w3 ∅

w4 ∅

Ψ∗ −vw4

z2

z2λ2

Ψ −u z2
w3

(1, L)

(1,M+1)

Ψ

Ψ∗

w5 ∅

w6 ∅

Ψ∗
−vw4w6

z2z3

z3λ3

Ψ −u z2z3
w3w5

|∅〉

(1, L)

|∅〉

(1,M+1)

Ψ

Ψ∗

= (3.51)

= 〈P1| exp

(∮
C1
S(x)dx

)
VP2(x1) exp

(∮
C2
S(x)dx

)
VP3(x2) exp

(∮
C3
S(x)dx

)
VP4(1)|P5〉

where VP includes both the Virasoro and Heisenberg parts.

Conformal blocks of WK-algebra. Generalizing our formalism in another direction,

we consider the W3 algebra conformal block. In this case, there are three horizontal lines

and two different types of screening currents S1 and S2, which correspond to the vertical

segments between the first and second or the second and third lines respectively:

Si(x) = exp

−∑
n≥1

1

n

1− tn

1− qn
(
1 + ω2n

)
xnα̃

(i)
−n

 exp

∑
n≥1

1

n

1− tn

1− qn
(
1 + ω2n

)
x−nα̃(i)

n


(3.52)

where

α̃(i)
n =

1

1 + ω2n

(
a(i)
n − ωna(i+1)

n

)
, n ≥ 1 (3.53)

α̃
(i)
−n =

1

1 + ω2n

(
a

(i)
−n − ωna

(i+1)
−n

)
, n ≥ 1

The simplest example is the pure gauge limit of the four-point block, which is given by the

following web diagram:

w1 ∅

w2 ∅

−vz(1)1 /z
(2)
1Ψ∗ −v

z
(1)
1λ

(1)
1

z
(2)
1λ

(2)
1

−uw1/z
(1)
1

〈∅|

Ψ

−u

(1, L) (1, L)

(1,M+1)
〈∅|

(1,M+1)

−tz(2)1 /w2

(1, K)
〈∅|

(1, K)

−t

Ψ

Ψ∗

Ψ

Ψ∗

w3 ∅

z
(2)
2λ

(2)
2

w4 ∅

Ψ∗ −vz(2)2 /z
(1)
2

z
(1)
2λ

(1)
2

Ψ −uz(1)2 /w3

|∅〉

(1, L)

|∅〉

(1,M+1)

−tz(2)2 /w4

|∅〉
(1, K)

Ψ

Ψ∗

Ψ

Ψ∗

= (3.54)

= 〈~P1| exp

(∮
C1
S1(x)dx

)
exp

(∮
C1
S2(x)dx

)
exp

(∮
C2
S1(x)dx

)
exp

(∮
C2
S2(x)dx

)
|~P4〉
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3.7 Compactified network and the affine screening operator

Let us also give an expression for the compactified diagram describing the affine quiver

gauge theory. The compactification identifies the vertical line going down the lower edge

of the diagram with the line coming from the upper edge. Moreover, to get the general

diagram, one should add one more ingredient, the shift in the spectral parameter. There is

an automorphism of the DIM algebra, which multiplies the spectral parameters of all lines

(and all elements of the algebra) by a constant. In general, the vertical compactification,

i.e. the trace over vertical representation can contain a “twist” by this automorphism, which

does not spoil the nice intertwining properties of the whole diagram. Taking the twist into

account, one arrives at the “quasiperiodic” compactification, where the lines wrapping the

compactification cylinder have their spectral parameters shifted. The whole picture now

looks as follows:

z2 λ2

z2

Qw2

λ2

−vz1/w2Ψ∗ −v

z1λ1

−uz2/z1 Ψ −u

(1, L) (1, L)

(1,M+1) (1,M+1)

Ψ

Ψ∗

=

=
∑
λ1,λ2

(qv
u

(−z1)M−L+1
)|λ1|

(
quw2

vz2
Q(−z2)L−M−1

)|λ2| fM−L−1
λ1

fM−L−1
λ2

q2n(λT1 )+2n(λT2 )

cλ1c
′
λ1
cλ2c

′
λ2

×

× :
∏
i≥1

S̃2(qλ2,itρiq−1/2z2) : :
∏
j≥1

S1(qλ1,j tρjq−1/2z1) : (3.55)

Here the wavy lines denote the identification of two vertical edges and the shift auto-

morphism is marked by a short horizontal line. The automorphism shifts the spectral

parameter of the line passing through it by w2
z2

and simultaneously adds Q to the length of

the corresponding edge. As in eq. (3.31) one has two types of screening operators S1 and

S̃2 corresponding to two simple roots of Â1, however because of the shift, the definition of

the set of “root” oscillators inside the second screening is different:

α̃(2)
n =

1

1 + ω2n
(a(2)
n − ωn(z2/w2)na(1)

n ), n ≥ 1 (3.56)

α̃
(2)
−n =

1

1 + ω2n

(
a

(2)
−n − ωn(w2/z2)na

(1)
−n

)
, n ≥ 1

Taking an average, i.e. using the Wick theorem, one arrives at the affine q-Selberg

matrix model [50]:∮
dN1x dN2y

∆(q,t)(x)∆(q,t)(y)

∆(q,t)({x}, {y})∆(q,t)({y}, {t̃x})

N1∏
i=1

xα1
i e

(M−L+1)
(ln xi)

2

ln q

N2∏
j=1

yα2
j e
−(M−L+1)

(ln yj)2

ln q

(3.57)

where the parameter of compactification t̃ =
√

q
t
z2
w2

, qα1 = qv
u , qα2 = Q qu

v . Notice the

characteristic combination of the Vandermonde factors in the measure, which is determined
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by the Cartan matrix of the affine algebra Â1. This matrix model can also be understood

as the refined version of the ABJM matrix model [111–116], in particular, the level of the

two Chern-Simons terms are opposite to each other. On the other hand, the spectral dual

of this network is described by the elliptic DIM algebra (see appendix A2).

If one can cuts the diagram (3.55) along the vertical compactified line, one arrives at

the regular Virasoro vertex operator (3.29). This is equivalent to the decompactification

limit Q→∞, since in this case only λ2 = ∅ contributes.

4 The action of Virasoro and DIM(gl1)

There is a simple way [62] to build q-deformed Virasoro or WK-algebras from DIM gener-

ators. To this end, one considers the dressed current t(z):

t(z) = α(z)x+(z)β(z) (4.1)

where

α(z) = exp

−∑
n≥1

1

γn − γ−n
b−nz

n

 , β(z) = exp

∑
n≥1

1

γn − γ−n
bnz
−n

 (4.2)

and bn are the modes of the ψ± generators:

ψ±(z) = ψ±0 exp

±∑
n≥1

b±nγ
n/2z∓n

 . (4.3)

The dressing is needed to kill the extra Heisenberg part of the algebra. The element t(z)

acts as a WK algebra current in the K-fold tensor product of Fock modules Fu1⊗· · ·⊗FuK .

One has:

ρu1,...,uK (t(z)) =

K∑
i=1

uiΛi(z) (4.4)

where

Λi(z) = exp

∑
n≥1

1− t−n

n
znα̂

(i)
−n

 exp

−∑
n≥1

1− tn

n
z−nα̂(i)

n

 (4.5)

The oscillators α̂
(i)
n are defined as

α̂(i)
n = ˆ̂α(i)

n − ᾱn (4.6)

where (compare with [72, s.4.2]

ˆ̂α(i)
n = a(i)

n ω
(i−1)n, n ≥ 1, (4.7)

ˆ̂α
(i)
−n = (1− ω−2n)

(
a

(1)
−n + a

(2)
−nω

−n + . . .+ a
(i−1)
−n ω(2−i)n

)
+ a

(i)
−nω

(1−i)n, n ≥ 1 (4.8)

and the Heisenberg part oscillators are given by

ᾱn =
1− ω−2n

1− ω−2nK

(
a(1)
n + a(2)

n ω−n + . . .+ a(K)
n ω(1−K)n

)
, n ≥ 1, (4.9)
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ᾱ−n =
1− ω−2n

1− ω−2nK

(
a

(1)
−n + a

(2)
−nω

−n + . . .+ a
(K)
−n ω

(1−K)n
)
, n ≥ 1, (4.10)

Here a
(i)
n acts in the i-th Fock module. Notice that we can obtain the “root” bosons α̃

(i)
n

from α̂
(i)
n :

α̃(i)
n =

ω(i+1)n

1 + ω2n
(α̂(i)

n − α̂(i+1)
n ), (4.11)

α̃
(i)
−n =

ω(1−i)n

1 + ω2n
(α̂

(i)
−n − α̂

(i+1)
−n )

Another useful property of the oscillators α̂
(i)
n is that they commute with the “U(1)” oscil-

lators ᾱn:

[α̂n, ᾱm] = 0. (4.12)

The WK algebra is built from the generators Λi(z) by the Miura transform:

Wk+1(z) =
∑

i1<...<ik+1

ui1 · · ·uik+1
: Λi1(z)Λi2(ω2z) · · ·Λik+1

(ω2kz) : (4.13)

The screening charges are built from the contractions of the DIM intertwiners. Thus,

they commute with any element of the DIM algebra, e.g. with t(z) by construction. This

returns us to the definition of the Virasoro algebra as the centralizer of the screening

charges [50]. Any element of the DIM algebra acts in the tensor products of some of

the representations corresponding to the lines of the network. This can be described as

an action in a particular section of the diagram (see figure 1). The DIM element acts

in the tensor product of Fock modules associated with the legs intersected by the dotted

line. The section can be brought through the intertwiners, so that eventually the element

of the algebra acts on the external lines. These external lines correspond to the vertex

operators, and the commutation with the intertwiners leads to the Ward identities for the

corresponding CFT or matrix model.

One should always be careful to include all the spaces, which are intersected by the

section. Let us give an example of commutation of the DIM element with the contraction

of two vertices. Pictorially we have:

λy

−v
y

Ψ

v

−uy
Ψ∗

u

ρ
(1,M)
−uy ⊗ ρ

(1,L+1)
− v

y
∆(x±(z)) ρ

(1,M+1)
u ⊗ ρ

(1,L)
v ∆(x±(z))

= λy

−v
y

Ψ

v

−uy
Ψ∗

u
(4.14)

This can be written out as follows:[
ρu1 ⊗ ρu2(∆(x±(ωz))),

∑
λ

||Mλ||−2

(
Ψ∗λ(y)
⊗

Ψλ(y)

)]
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=

[
ρu1(x±(ωξ±z))⊗ ρu2(Ξ−ξ∓(z)),

∑
λ

||Mλ||−2

(
Ψ∗λ(y)
⊗

Ψλ(y)

)]
+

+

[
ρu1(Ξξ±(z))⊗ ρu2(x±(ωξ∓z)),

∑
λ

||Mλ||−2

(
Ψ∗λ(y)
⊗

Ψλ(y)

)]
=

= (ω/q)ξ∓
∑
λ

q

||Mλ||2

l(λ)∑
i=1

A−λ,iδ(xity/(qz))

 ρu1 (Ξξ± (z))Ψ∗λ−ξ±·1i
(y)

⊗
Ψλ−ξ∓·1i (y)ρu2 (Ξ−ξ∓ (z))

+

+ (ω/q)ξ∓
∑
λ

1

||Mλ||2

l(λ)+1∑
i=1

A+
λ,iδ(xity/z)

 ρu1 (Ξξ± (z))Ψ∗λ+ξ∓·1i
(y)

⊗
Ψλ+ξ±·1i (y)ρu2 (Ξ−ξ∓ (z))

 =

= (ω/q)ξ∓
∑
λ

l(λ)+1∑
i=1

(
qA−λ+1i,i

||Mλ+1i ||2
+

A+
λ,i

||Mλ||2

)
δ(xity/z)

×

 ρu1 (Ξξ± (z))Ψ∗λ+ξ∓·1i
(y)

⊗
Ψλ+ξ±·1i (y)ρu2 (Ξ−ξ∓ (z))

 = 0 (4.15)

where

A+
λ,i = (1− t)

i−1∏
j=1

(
1− t xixj

)(
1− q

t
xi
xj

)
(

1− xi
xj

)(
1− q xixj

) (4.16)

A−λ,i = (1− t−1)

∞∏
j=i+1

(
1− t

q
xi
xj

)(
1− 1

t
xi
xj

)
(

1− 1
q
xi
xj

)(
1− xi

xj

) (4.17)

ξ+ = 1, ξ− = 0, Ξ±1(y) = ψ∓(ω1/2y), Ξ0(y) = 1, xi = qλit−i (4.18)

and we remind that ω =
√
q/t. The last line in eq. (4.15) vanishes because of a particular

sum rule for the norms of Macdonald polynomials. Commutation with ψ±(z) can also be

explicitly verified:

ρu1 ⊗ ρu2∆(ψ±(y))
∑
λ

||Mλ||−2

(
Ψ∗λ(z)
⊗

Ψλ(z)

)
=
∑
λ

||Mλ||−2

(
ρu1 (ψ±(ω∓1/2y))Ψ∗λ(z)

⊗
ρu2 (ψ±(ω±1/2y))Ψλ(z)

)
=

=
∑
λ

||Mλ||−2

(
Ψ∗λ(z)ρu1 (ψ±(ω∓1/2y))

⊗
Ψλ(z)ρu2 (ψ±(ω±1/2y))

)
=
∑
λ

||Mλ||−2

(
Ψ∗λ(z)
⊗

Ψλ(z)

)
ρu1 ⊗ ρu2∆(ψ±(y)) (4.19)

All the commutation calculations above work by a similar mechanism, summarized

schematically in figure 1, b). The action of the DIM element on the two horizontal represen-

tations is first transformed into its action on the intermediate vertical segment and finally

the other side of the dashed line is also pulled through the vertex to get the commutation.

The action of the element t(z) gives the Ward identities of the corresponding matrix

model. This can be seen directly by computing the operator product expansion of this

current with the screening charges. For example in the Virasoro case (see [50] for details):

ρu1 ⊗ ρu2(∆(t(z)))S(y) =
1− tyz
1− y

z

: u1Λ1(z)S(y) : +t
1− q

t
y
z

1− q yz
: u2Λ2(z)S(y) : (4.20)
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Since t(z) commutes with the screening charges, in any correlator with these latter it can be

brought through to the vacuum, which is annihilated by the negative modes of t(z). Follow-

ing this logic, one gets the matrix model Ward identities, the regularity of certain averages:〈
K+(z)

∏
i

1− txiz
1− xi

z

+K−(z)
∏
i

1− q
t
xi
z

1− q xiz

〉
= Regular(z) (4.21)

where K±(z) are certain polynomials. This equation is the appropriate (q, t)-deformations

of the familiar Ward identity (1.5).

5 Vertical action of DIM

As was mentioned earlier, the vertical representation of the DIM algebra has a combinato-

rial description in terms of Young diagrams, [60, 63]. We have

ρ(0,1)
u (x+(z))|M (q,t)

λ 〉 =

l(λ)+1∑
i=1

A+
λ,iδ(xitu/z)|M (q,t)

λ+1i
〉 (5.1)

ρ(0,1)
u (x−(z))|M (q,t)

λ 〉 = ω

l(λ)∑
i=1

A−λ,iδ(xitu/(qz))|M (q,t)
λ−1i
〉 (5.2)

ρ(0,1)
u (ψ+(z))|M (q,t)

λ 〉 = ωB+
λ (u/z)|M (q,t)

λ 〉 (5.3)

ρ(0,1)
u (ψ−(z))|M (q,t)

λ 〉 = ω−1B−λ (z/u)|M (q,t)
λ 〉 (5.4)

where A±λ,i were defined in eq. (4.16) and

B+
λ (z) =

∞∏
i=1

1− zxi
1− tzxi

1− t2

q zxi

1− t
qzxi

(5.5)

B−λ (z) =

∞∏
i=1

1− z
xi

1− z
txi

1− q
t2

z
xi

1− q
t
z
txi

(5.6)

where xi = qλit−i.

Similar action in the Yangian limit q, t → 1 has been considered in [49], where the

matrix model Ward identities or regularity condition for qq-characters (4.21) were derived

from the intertwining property with the Virasoro vertex operators. We should note here

that the interpretation of the vertex operators in this work was spectrally dual to our

present consideration, i.e. the SU(N) gauge theory corresponded there to the four-point

conformal block of the WN algebra as prescribed by the AGT relation.

In our formalism such an intertwining relation is natural: the vertex operator is build

out of the DIM intertwiners, which combinations commute with elements of DIM. However,

this is only true unless there are external legs. If we consider a horizontal section of the web

diagram, and try to move it between the “layers” of the diagram, we necessarily encounter

the external legs, or vertex operators in the language of [49]. The DIM generators do

not commute with the intertwiners having external legs, since one should consider the
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additional terms due to the action of DIM element on these legs. However, these terms

turn out to be tractable. Indeed, they precisely reproduce the qq-character insertion into

the matrix model average. The matrix model arises from the sum over diagrams residing

on the legs intersected by the horizontal section.

Spectral duality and change of basis

In [31, 32] it was shown that the change of preferred direction in refined topological string

is a nontrivial change of basis. The change of basis is nontrivial in the sense that for the

states on several parallel legs the matrix of this transformation does not factorize into a

tensor product of matrices acting on each leg. Indeed, the transformation is given by the

spectral duality, and the two basis sets are the standard Schur (or Macdonald) symmetric

functions and the generalized Macdonald polynomials [41, 192–195]. This matrix was called

generalized Kostka function in [31, 32].

In this subsection, we show how the spectral duality shows up in our present

algebraic approach. Let us consider the “vertical” basis in the tensor product of vertical

representations ρ
(0,1)
u1,...,uK = ρ

(0,1)
u1 ⊗ · · · ⊗ ρ(0,1)

uK , which we define as the set of eigenvalues of

the particular DIM element ψ+
−1:

ρ(0,1)
u1,...,uK

∆K−1ψ+
−1|M

(q,t)
λ1
〉 ⊗ · · · ⊗ |M (q,t)

λK
〉 (5.7)

= (1− t)(1− t/q)
K∑
k=1

(
uk

∞∑
i=1

qλk,it−i

)
|M (q,t)

λ1
〉 ⊗ · · · ⊗ |M (q,t)

λK
〉

where ψ+
−1 =

∮
ψ+(z)dz. For generic ui, all eigenvalues are distinct, so this property

defines the basis uniquely. This basis is certainly very simple: it is a tensor product of

Macdonald polynomials.

Let us now perform the spectral duality. In the DIM algebra, this corresponds to

the S-transformation from SL(2,Z) acting on the generators of the algebra. Under this

transformation, ψ+
−1 transforms into x+

0 =
∮
x+(z)dz/z. The basis (5.7) transforms into

the basis of x+
0 with the same eigenvalues. However, the operator x+

0 should be taken in

the new representation ρ
(1,0)
u1,...,uM = ρ

(1,0)
u1 ⊗ · · · ⊗ ρ(1,0)

uK :

ρ(1,0)
u1,...,uK

∆K−1x+
0 |M

(q,t)
λ1,...,λK

(u1, . . . , uK)〉 (5.8)

= (1− t)(1− t/q)
K∑
k=1

(
uk

∞∑
i=1

qλk,it−i

)
|M (q,t)

λ1,...,λK
(u1, . . . , uK)〉

We recognize the operator ρ
(1,0)
u1,...,uK∆K−1x+

0 : this is just the generalized Macdonald Hamil-

tonian. The eigenvalues also match, so the new basis |M (q,t)
λ1,...,λK

(u1, . . . , uK)〉 is the basis

of generalized Macdonald polynomials. The generalized Kostka functions are just repre-

sentations of this SL(2,Z) transformation.

6 Conclusion

In this paper, we presented technical details on evaluation of the Nekrasov functions and

their symmetries (including the qq-character correlators) from the free field formalism for
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the DIM(gl1) algebra. This is a very powerful method, but it is only at the first stage of

development. There are several restrictions which should be consequently lifted at the next

stages. If one considers them as a consequent specification of representation types, the list

should be read in inverse order.

• The construction that admits fermionization of intertwiners Ψ and Ψ∗ at the level one

of DIM is much similar to that for the level k = 1 Kac-Moody algebras. Hence, one

could expect a straightforward generalization to arbitrary level a la [95–97] involving

analogues of the b, c-systems. Note, however, that the requirement on the level does

not restrict the value of the Virasoro central charge regulated by β: all matrix models

and β-ensembles and, hence, the generic Liouville and WK-conformal blocks are al-

ready handled by the existing formalism. Also, at this level the difference disappears

between the vertex operators (in particular, the screening charges) and the stress

tensors (including the W-operators): all these are described by exponentials of the

free fields, the differences emerge only in the limit q, t −→ 1.

• The formalism is best developed for the intertwiners, which act as operators between

the two “horizontal” Fock modules F (1,L) and F (1,L±1), while the third representation

is the “vertical” leg associated with F (0,±1). Such a non-symmetricity is inevitable

since the resulting topological vertex of [35] is still asymmetric and remembers about

the distinguished vertical direction. Technically this restricts consideration to the

balanced networks, what makes many important models, including the quiver ones,

treatable only via additional application of the spectral duality.

• A better treatment should involve infinitely many free fields, giving rise to MacMahon

type modules, what should also allow one to define skew intertwiners, where all the

three legs are non-vertical. An existing description of the MacMahon modules is pure

combinatorial, in terms of 3d Young diagrams (plane partitions). A naive free field

formalism would involve fields depending on two coordinates instead of one, and this

requires a far-going generalization of holomorphic fields used in the ordinary 2d CFT.

Such a formalism is now developing, also with the motivation coming from MHV

amplitudes, but its incorporation into the DIM representation theory is a matter of

future. Still, it seems important for a full understanding of the spectral dualities

and of generic networks, including the sophisticated ones from [165–169]. They can

be treated by the existing formalism, but it leaves the underlying symmetries well

hidden: they show up only in answers, but not at any of the intermediate stages.

• A further challenge is further generalization from DIM(gl1) to DIM(gln) and the

triple-Pagoda algebras DIM(ĝl1) and DIM(ĝln). An intriguing problem (see appendix

A3) is that already DIM(gln) is built from the affine Dynkin diagram of ĝln, thus,

the triple-affine generalization should involve more sophisticated Dynkin diagrams.

We hope that the present text can serve as a good introduction in the DIM-based

generalization of conformal theories, where the conformal blocks are the generic Nekrasov

functions and the Ward identities are the associated regularity conditions for qq-characters.

– 45 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
3

We hope that it will help to attract more attention to emerging challenging problems, which

we have just enumerated. Technical means for this seem to be already at hand.
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A Properties of the DIM algebras and their limits

In this appendix, we describe the algebraic structures of DIM algebras and their degener-

ations.

A.1 Constructing DIM(gl1) from W1+∞ algebra

Let us discuss how one can construct DIM(gl1) starting from the algebra of difference

operators, [55, 196].

Algebra W1+∞. Consider the algebra W1+∞ (as usual, 1 +∞ refers here to adding the

Heisenberg algebra to W∞) given by the generators W k
n = W (znDk), n ∈ Z, k ∈ Z≥0,

where D = z∂z. One can consider the central extension of this algebra:

[W (znDk),W (zmDl)] = W
(

[znDk, zmDl]
)

+ cδn+m,0 · ψn,kl,

ψn,kl =

{∑n
j=1(−j)k(n− j)l, n > 0

0 n = 0
(A.1)

or, in the different basis of W k
n = W (znDk) with D ≡ tD (see (A.22)),

[W (znDk),W (zmDl)] = (tmk − tnl)W
(
zn+mDk+l

)
− cδn+m,0

tmk − tnl

tk+l − 1
(A.2)

Note that, if k + l 6= 0, the second term in the right hand side of (A.2) can be absorbed

into the first term by redefining the generators W (Dk) with k 6= 0: W (Dk) → W (Dk) −
c

tk − 1
, k 6= 0. However, at k + l = 0 this term can not be absorbed and is equal to

nct−nkδn+m,0δk+l,0, see (A.3).
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Algebra W1+∞. The next step is to consider the algebra W1+∞ =
{
W (znqkD), n, k ∈

Z
}

, which is a double of the W1+∞ and may have two central extensions:

[W (znDk),W (zmDl)] = (tmk − tnl)W
(
zn+mDk+l

)
+ t−nk(nc1 + kc2)δm+n,0δk+l,0 (A.3)

Automorphisms. The algebra W1+∞, (A.3) has the evident automorphisms σ, σ̃ and τ

defined by

σ(W k
n ) = t−nkW−nk , σ(c1) = −c2 , σ(c2) = c1 ,

σ̃(W k
n ) = −Wn

k , σ̃(c1) = c2 , σ̃(c2) = c1 ,

τ(W k
n ) = t

1
2
n2
W k+n
n , τ(c1) = c1 + c2 , τ(c2) = c2 . (A.4)

In particular, σ and τ form SL(2,Z) acting on two central charges c1 and c2 .

Heisenberg subalgebras. By the commutation relations (A.3), it is easy to see that it

contains a Heisenberg subalgebra generated by {W 0
n , c1}n∈Z satisfying

[W 0
n ,W

0
m] = nc1δn+m,0 . (A.5)

From the viewpoint of the root lattice of W1+∞ , this can be seen as the vertical embedding

of the Heisenberg algebra. By using the automorphisms σ and τ in the above, it is easy to

find the horizontal and the embedding with arbitrary slope α ∈ Z as follows;

[Wn
0 ,W

m
0 ] = nc2δn+m,0 ,

[Wαn
n ,Wαm

m ] = nt−αn
2
(c1 + αc2)δn+m,0 . (A.6)

Chevalley generators and Serre relations. The generators W±,0n = W (znD±1,0) form

a closed subalgebra:[
W+
n ,W

−
m

]
= (tm − t−n)W 0

m+n + (nc1 + c2)t−nδn+m,0[
W 0
n ,W

±
m

]
= (1− t±n)W±m+n[

W 0
n ,W

0
m

]
= nc1δn+m,0 (A.7)

One can generate the whole algebra from this subalgebra provided the Serre relations are

added: [
W±n , [W

±
n+1,W

±
n−1]

]
= 0 (A.8)

Quantization: from W1+∞ to DIM(gl1). This algebra can be deformed with the de-

formation parameter q. Let us denote the deformed (properly rescaled) generators through

W 0
n → x0

n, W±n → x±n . Then,[
x0
n, x
±
m

]
= ∓κn

n
q(n±|n|)c1/2x±n+m[

x0
n, x

0
m

]
= −κn

n

qc1n − q−c1n

q− q−1
δn+m,0
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[
x+
n , x

−
m

]
=

1

κ1
(qc2+nc1ψ+

n+m − q−nc1−c2ψ−n+m) (A.9)

where

κn ≡ (qn1 −1)(qn2 −1)(qn3 −1), q1 = t2, q2 = q−2t−2, q3 = q2 (q1q2q3 = 1) (A.10)

and
∞∑
k=0

ψ±k z
∓k ≡ q∓c2 exp

(
±
∞∑
n=1

x0
±nz

∓n

)
(A.11)

Introducing the series of generators,

ψ±(z) =
(1− q2)(1− q−2)

κ2
1

∞∑
k=0

ψ±k q
−c1k/2z∓k, x±(z) =

∑
n∈Z

x±n z
−n (A.12)

we immediately come to the DIM(gl1) algebra of section 3.1 upon identification q1 = q,

q2 = t−1.

Free field realization. At the values of central charges (c1, c2) = (1, 0), the constructed

DIM algebra has the deformed affine U(1) subalgebra so that the generators are realized

in its terms as

x+(z) = exp

(∑
n>0

1− t−n

n
· znpn

)
· exp

(∑
n>0

(qn − 1)z−n∂pn

)
,

x−(z) = exp

(
−
∑
n>0

1− t−n

n
· ω−nznpn

)
· exp

(
−
∑
n>0

(qn − 1)ω−nz−n∂pn

)
,

ψ+(z) = exp

(∑
n>0

(qn − 1)(1− ω−2n)z−nωn/2∂pn

)
,

ψ−(z) = exp

(∑
n>0

1− t−n

n
(1− ω−2n)ωn/2 · znpn

)
(A.13)

After the Miwa transform of variables pn =
∑N

i z
n
i , these expressions reduce to the Mac-

donald operators

(t±1 − 1)

N∑
i=1

∏
j( 6=i)

t±1zi − zj
zi − zj

· zni q±Di (A.14)

=

∮
dz

2πiz
z−n

{
t±N exp

(∑
n>0

1− t∓n

n
znpn

)
− exp

(∑
n>0

1− t±n

n
z−np−n

)}
exp

(∑
n>0

(q±n − 1)z−n∂pn

)
with Di := zi

∂
∂zi

. Note that the second term in the r.h.s. of the above equation vanishes

for n > 0 so that

(t±1 − 1)

N∑
i=1

∏
j( 6=i)

t±1zi − zj
zi − zj

· zni q±Di = (qt)
n∓n

4 t±Nx±−n − δn,0 (A.15)

with n ≥ 0. Similarly, at the values of central charges (c1, c2) = (2, 0) this DIM algebra

contains a q-deformed subalgebra (Virasoro ⊗ Û(1)) (and is realized by two free fields), at

(c1, c2) = (3, 0) it contains a q-deformed subalgebra (W (3)⊗ Û(1)) (and is realized by three

free fields), etc.

– 48 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
3

A.2 Elliptic DIM(gl1) algebra

Elliptic version of DIM algebra is generated by the same set of operators as the ordinary

DIM: x±(z), ψ±(z) and the central element γ. The relations are a copy of eq. (3.1), except

for the [x+, x−] relation, which changes to

[x+(z), x−(w)] =
Θq′(q; q

′)Θq′(t
−1; q′)

(q′; q′)3
∞Θq′(q/t; q′)

(
δ(γ−1z/w)ψ+(γ1/2w) − δ(γz/w)ψ−(γ−1/2w)

)
(A.16)

where Θp(z) = (p; p)∞(z; p)∞(p/z; p)∞ is the theta-function. Also, most importantly, the

structure function G±(z) is now not trigonometric, but elliptic:

G±ell(z) = Θp(q
±1z)Θp(t

∓1z)Θp(q
∓1t±1z), (A.17)

The comultiplication ∆ is exactly the same as in the trigonometric case, given by eqs. (3.2).

The essential difference with the trigonometric case appears when one tries to build Fock

representation of elliptic DIM: one set of bosons turns out not to be enough. One needs at

least two sets of Heisenberg generators ân and b̂n to reproduce the commutation relations

of the elliptic algebra. Concretely, we have for the level one representation:

ρu(x+(z)) = uη(z) = u : exp

−∑
n 6=0

(1− tn)z−n

n(1− q′|n|)
ân

 exp

−∑
n 6=0

(1− t−n)q′|n|zn

n(1− q′|n|)
b̂n

 :

ρu(x−(z)) = u−1ξ(z) = u−1 : exp

∑
n 6=0

(1− tn)ω−|n|z−n

n(1− q′|n|)
ân

 exp

∑
n 6=0

(1− t−n)ω|n|q′|n|zn

n(1− q′|n|)
b̂n

 :

ρu(ψ+(z)) = ϕ+(z) = exp

(∑
n>0

(1− tn)(ω−n − ωn)ω−n/2

n(1− q′n)

(
z−nân − ωnq′nznb̂n

))
(A.18)

ρu(ψ−(z)) = ϕ−(z) = exp

(
−
∑
n>0

(1− t−n)(ω−n − ωn)ω−n/2

n(1− q′n)

(
znâ−n − ωnq′nz−nb̂−n

))
ρu(γ) = (t/q)1/2 (A.19)

where the bosons ân and b̂n satisfy the following commutation relations:

[âm, ân] = m
(1− q′|m|)(1− q|m|)

1− t|m|
δm+n,0,

[b̂m, b̂n] = m
(1− q′|m|)(1− q|m|)

(pq′)|m|(1− t|m|)
δm+n,0,

[âm, b̂n] = 0.

The dressed current t(z) = α(z)x+(z)β(z), corresponding to the stress energy tensor

is given by exactly the same expression (4.1), as in the ordinary DIM case. Moreover, the

dressing operators α(z) and β(z) are constructed from the ψ± generators of the elliptic

DIM algebra using the same formulas (4.2) as give above. In the level two representation

ρ
(2)
u1,u2 the element t(z) produces the elliptic Virasoro stress-energy tensor

T (z) = : eΦ̂(z)e−Φ̂(t−1z) : + t : e−Φ̂(tz/q)eΦ̂(z/q) : (A.20)
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where

Φ̂(z) =
∑
n 6=0

zn

n(1− q′|n|)
â−n√

1 + ω|n|
−
∑
n 6=0

z−n

n(1− q′|n|)
(ω2q′)|n|/2b̂−n (A.21)

Let us also mention that the undressed elliptic DIM charge
∮
x+(z)dz/z also leads to

several very interesting objects. In the level one representation it gives elliptic Ruijse-

naars Hamiltonian, while in the second level representation it is the difference version of

the intermediate long-wave Hamiltonian [197–202], which itself is a generalization of the

Benjamin-Ono system.

A.3 Rank > 1: DIM(gln) = quantum toroidal algebra of type gln

In complete parallel with the previous consideration, DIM(gln) emerge as a deformation of

the universal enveloping algebra of the Lie algebra An = Matn ⊗ C[z±1, D±1] with

D = q
z ∂
∂z

1 (A.22)

i.e. of n×n matrices with entries being elements of the algebra of functions on the quantum

torus, zD = q1Dz. The deformation of AN introduces another parameter, q2. Providing

this deformed algebra with two-dimensional central extension, one arrives at DIM(gln).

The set of generators of DIM(gln) is Eik, Fik, Hir,K
±
i0, q

±c with k ∈ Z, r ∈ Z/{0},
0 ≤ i ≤ n− 1. The generating functions (currents) are:

Ei(z) =
∑
k∈Z

Eikz
−k,

Fi(z) =
∑
k∈Z

Fikz
−k,

K±i (z) = K±1
i0 exp

(
±(q− q−1)

∞∑
r=1

Hi,±rz
∓r

)
(A.23)

The two centers are qc and κ =
∏n−1
i=0 Ki0.

The commutation relations are

dijGij(z, w)Ei(z)Ej(w) +Gji(w, z)Ej(w)Ei(z) = 0,

dijGij(z, w)K±i

(
q(1∓1)c/2z

)
Ej(w) +Gji(w, z)Ej(w)K±i

(
q(1∓c)/2z

)
= 0,

djiGji(z, w)Fi(z)Fj(w) +Gij(w, z)Fj(w)Fi(z) = 0,

djiGji(z, w)K±i

(
q(1±1)c/2z

)
Fj(w) +Gij(w, z)Fj(w)K±i

(
q(1±c)/2z

)
= 0,

[
Ei(z), Fj(w)

]
=

δij
q− q−1

(
δ

(
qcw

z

)
K+
i (z)− δ

(
qcz

w

)
K−i (w)

)
Gij(q

−cz, w)

Gij(qcz, w)
K−i (z)K+

j (w) =
Gji(w, q

−cz)

Gji(w, qcz)
K−i (z)K+

j (w)[
K±i (z),K±j (w)

]
= 0 (A.24)
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where, in variance with the DIM(gl1)-case,

q1 = tq−1, q2 = q2, q3 = t−1q−1 (A.25)

and powers of q are made from entries of the Cartan matrix. The commutation relations

can be added with the Serre relations

for n ≥ 3 symz1,z2

[
Ei(z1),

[
Ei(z2), Ei±1(w)

]
q

]
q−1

= 0

for n = 2 symz1,z2,z3

[
Ei(z1),

[
Ei(z2),

[
Ei(z3), Ei±1(w)

]
q2

]
q0=1

]
q−2

= 0 (A.26)

and similarly for F . The q-commutator is [A,B]q = AB − qBA.

The comultiplication is the same as for DIM(gl1).

The structure functions are build from the affine Dynkin diagrams and for gln-case

are defined as follows:

• for the simply laced case n ≥ 3

Ân
Gij(z, w) =


(z − q1w) for i = j − 1

(z − q2w) for i = j

(z − q3w) for i = j + 1

(z − w) for i 6= j, j ± 1

dij =

{
t±1 for i = j ± 1, n ≥ 3

1 otherwise
(A.27)

• The affine Dynkin diagram for n = 2 is not simply laced, and in this case

G
gl2
00 (z, w) = G

gl2
11 (z, w) = (z − q2w)

Â1 G
gl2
01 (z, w) = G

gl2
10 (z, w) = (z − q1w)(z − q3w)

d00 = d11 = 1, d01 = d10 = −1 (A.28)

• For n = 1 we return to section 3.1, i.e.

G
gl1
00 (z, w) = (z − q1w)(z − q2w)(z − q3w), d00 = 1 (A.29)

• One expects in the Pagoda (triple-affine) case DIM(ĝl1) (or Uq,t,t̃(
̂̂̂
gl1), hence, the

name Pagoda) the Dynkin diagram of the form:

A.4 Affine Yangian of gl1 [139]

One can consider a “quasiclassical” limit of the DIM(gl1) algebra, q = e~h1 , t−1 = e~h2 ,

t/q = e~h3 with properly rescaled generators. We also use another parameterizations:

σ1 = h1 + h2 + h3 = 0, (A.30)
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σ2 = h1h2 + h1h3 + h2h3,

σ3 = h1h2h3 (A.31)

In the limit of ~ → 0, one obtains the affine Yangian, which, on the gauge theory side,

describes the 4d theories/Nekrasov functions. It is given by the commutation relations:

[ei, fj ] = ψi+j (A.32)

[ψi, ψj ] = 0 (A.33)

[ei+3, ej ]− 3[ei+2, ej+1] + 3[ei+1, ej+2]− [ei, ej+3]

+σ2

(
[ei+1, ej ]− [ei, ej+1]

)
− σ3(eiej + ejei) = 0

[ψi+3, ej ]− 3[ψi+2, ej+1] + 3[ψi+1, ej+2]− [ψi, ej+3]

+σ2

(
[ψi+1, ej ]− [ψi, ej+1]

)
− σ3(ψiej + ψjei) = 0 (A.34)

and two more relations similar to (A.34) with ei substituted by fi and σ3 substituted by

−σ3. These commutation relations should be added by the Serre relations

symi1,i2,i3

[
ei1 , [ei2 , ei3+1]

]
= 0 (A.35)

and similarly for fi.

The commutation relations should be supplemented with the “initial conditions”:

• ψ0,1 are the central elements, i.e. commute with everything all generators

• ψ2 is the grading element, i.e.

[ψ2, ej ] = 2ej , [ψ2, fj ] = −2fj , [ψ2, ψj ] = 0 (A.36)

Note that, introducing the generator functions

e(u) =
∞∑
i=0

eiu
−i−1,

f(u) =

∞∑
i=0

fiu
−i−1,

ψ(u) = 1 + σ3

∞∑
i=0

ψiu
−i−1 (A.37)

one can rewrite the commutation relations as

e(u)e(v) ∼ Φ(u− v) e(v)e(u),

f(u)f(v) ∼ Φ(v − u) f(v)f(u),

ψ(u)e(v) ∼ Φ(u− v) e(v)ψ(u),

ψ(u)f(v) ∼ Φ(v − u) f(v)ψ(u),

e(u)f(v)− f(v)e(u) ∼ − 1

σ3

ψ(u)− ψ(v)

u− v
,

ψ(u)ψ(v) ∼ ψ(v)ψ(u) (A.38)

with Φ(u) = (u+h1)(u+h2)(u+h3)
(u−h1)(u−h2)(u−h3) .
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Virasoro ⊕ Heisenberg subalgebra

The commutation relations of the Virasoro algebra with extended Û(1)-algebra,

[Jm, Jn] = kmδm+n

[Lm, Jn] = −nJm+n

[Lm, Ln] = (m− n)Lm+n +
c

12
n(n2 − 1)δm+n (A.39)

can be realized with identification:

J−1 = e0, J1 = −f0,

L−1 = e1 + αe0, L1 = f1 − αf0, =⇒ L0 = ψ2 + 2αψ1 + α2ψ0

L−2 =
1

2
[e2, e0]− 1

2
βσ3ψ0[e1, e0], L2 =

1

2
[f2, f0] +

1

2
βσ3ψ0[f1, f0] (A.40)

From the first line it follows that k = ψ0. The other current mode are constructed by

repeated commutators: J−2 = [e1, e0], J2 = −[f1, f0] etc. Consistency conditions (e.g.

J−3 ∼ [L−1, J−2] ∼ [L−2, J−1]) require 2α = (1−β)σ3ψ0 (the dependence on h-parameters

comes from relation with [e0, ψ3], which does not involve e3, because [e3, ψ0] = 0). Thus,

there remains a free parameter β.

The central charge is c = −σ2ψ0 − σ3ψ
3
0 = 1 − (1 − λ1)(1 − λ2)(1 − λ3), where λa =

−ψ0hbhc with (abc) is a cyclic permutation of (123).

Representations: plane partitions

The basis of a quasi-finite representation of this affine Yangian6 can be described by plane

partitions (3d Young diagrams). The generators of algebra act on the plane partition as

follows:

e(u) ∼ adding a box to 3d Young diagram

f(u) ∼ removing a box to 3d Young diagram

ψ(u) ∼ diagonal action (A.41)

More precisely,

• the diagonal action is

ψ|Λ > = ψΛ(u)|Λ >

ψΛ(u) = ψ∅(u)
∏
�∈Λ

Φ
(
u− u0 − h(�)

)
(A.42)

where h(�) = xh1 + yh2 + zh3 and (x, y, z) are the coordinates of the box within the

plane partition;

6Such representations are labeled by a triple of ordinary Young diagrams: “minimal” plane partitions

are labeled by boundary conditions, [65, 139].
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• the raising (lowering) action is

e(u)|Λ > =
∑

�∈Λ+\Λ

E(Λ −→ Λ+)

u− u0 − h(�)
|Λ+ >,

f(u)|Λ > =
∑

�∈Λ\Λ−

F (Λ −→ Λ−)

u− u0 − h(�)
|Λ− > (A.43)

where Λ+ (Λ−) denotes arbitrary plane partition with one additional (one subtracted)

box as compared to Λ.

Here F and E are coefficients which have to be defined from the commutation relations

of the algebra and are some residues of ψΛ(u), u0 is a constant shift, a counterpart of

inhomogeneity in the standard spin chain.

Formula (A.42) is derived by acting with the both sides of the commutation relation

ψ(u)e(v) ∼ Φ(u−v) e(v)ψ(u) on |Λ >, using (A.43) and then taking the residue at v = h(�)

Constraints on the coefficients E and F . Constraints on functions E(Λ −→ Λ+)

and F (Λ −→ Λ−) can be derived from the commutation relations [ei, fj ] = ψi+j . For the

generating functions it looks like

ψΛ(u) = 1+σ3

∑
�

E(Λ− −→ Λ)F (Λ −→ Λ−)

u− h(�)
−σ3

∑
�

F (Λ+ −→ Λ)E(Λ −→ Λ+)

u− h(�)
(A.44)

where the second-order pole does not contribute. This relation does not fix E and F

completely. Imposing an additional requirement of unitarity E(Λ −→ Λ+) = F (Λ+ −→ Λ),

one immediately obtains [139]

σ3E(Λ −→ Λ+)2 = −resu−→h(�)ψΛ(u)

σ3E(Λ− −→ Λ)2 = resu−→h(�)ψΛ(u) (A.45)

One still has to fix the sign (after taking the square root).

The commutation relation e(u)e(v) ∼ ϕ(u − v)e(v)e(u) relates adding two boxes in

different order:

E(Λ −→ Λ + �A)E(Λ + �A −→ Λ + �A + �B)

E(Λ −→ Λ + �B)E(Λ + �B −→ Λ + �A + �B)
= Φ

(
h�B − h�A

)
(A.46)

To check that it is satisfied, calculate the square of the l.h.s.:

resu−→h(�A)ψΛ(u) · resu−→h(�B)ψΛ+�A
(u)

resu−→h(�B)ψΛ(u) · resu−→h(�A)ψΛ+�B
(u)

=
resu−→h(�A)ψΛ(u) · resu−→h(�B)

{
ψΛ(u)Φ

(
u−h(�A)

)}
resu−→h(�B)ψΛ(u) · resu−→h(�A)

{
ψΛ(u)Φ

(
u−h(�B)

)} =

=
Φ
(
h(�B)− h(�A)

)
Φ
(
h(�A)− h(�B)

) = Φ
(
h(�B)− h(�A)

)2

(A.47)

Similarly one can check the Serre relations by adding three boxes:∑
π∈S3

[
h(�Aπ(1)

)− 2h(�Aπ(2)
) + h(�Aπ(3)

)
]
E
(

Λ −→ Λ + �Aπ(1)

)
×

×E
(

Λ −→ Λ + �Aπ(1)
+ �Aπ(2)

)
E
(

Λ −→ Λ + �Aπ(1)
+ �Aπ(2)

+ �Aπ(3)

)
= 0 (A.48)
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A simplest example of the highest-weight representation. Consider a representa-

tion with the highest weight |Λ >:

ψj |Λ >= ψj,Λ|Λ >, fj |Λ >= 0 (A.49)

Since we consider the quasi-finite representations, there should be linear relations among

ei|Λ >. Consider vectors in the representation at the first level with finitely many, r − 1

independent vectors. This means that the Shapovalov matrix at the level one, which is

BΛ(ei, ej) < Λ|Λ >=< Λ|fiej |Λ >= ψi+j,Λ < Λ|Λ > (A.50)

should have only r − 1 independent lines, i.e. there is a relation

r−1∑
i=0

αiψi+k,λ = 0, k ≥ 0 (A.51)

Then, the generating function of eigenvalues

ψΛ(u) = 1 + σ3

∞∑
j=0

ψj,Λu
−j−1 =

f(u)

g(u)
(A.52)

where f(u) and g(u) are polynomials of degree r − 1.

Consider the case of r = 2, i.e. a single state at the level one and linear functions f(u)

and g(u):

ψλ(u) =
u+ σ3ψ0,λ

u
= 1 +

σ3ψ0,λ

u
(A.53)

Then, the commutation relations and the Serre relations implies that there are 3 states

at the second level (this is since the function Φ(u) is a ratio of cubic polynomials) and 6

states at the third level. These particular numbers are equal to the number of 3d Young

diagrams with a given number of boxes. This means that the highest weight is associated

with the trivial plane partition |λ >= ∅, and the single first level vector is associated with

the only one box plane partition |� >:

ei|∅ >= 0, i > 0; e0|∅ >∼ |� >; ψi|∅ >= 0, i > 0 (A.54)

Since ψ1 is a center and [ψ2, e0] = 2e0 one immediately obtains

ψ1|� >= 0, ψ2|� >= 2|� > (A.55)

Using these formulas, from the Serre relations that involve ψj and e0,1,2,3, one gets

ψ(u)|� > =
u+ σ3ψ0,∅

u
ϕ(u)|� > (A.56)
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