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1 Introduction

Understanding nonperturbative effects in the presence of strong coupling is one of the
most difficult problems in modern physics. Analytical results in strong coupling are rare
and extremely difficult to obtain. A remarkable tool for strongly coupled QFT is offered
by the holographic principle [1, 2]. The Anti-de Sitter gravity/conformal field theory
(AdS/CFT) correspondence [3–5] provides a rare window to gain analytical insight into
strongly coupled physics. In the most helpful limit to exploit this correspondence, we use
the weakly coupled bulk description to study the physics of strong coupling by performing
gravitational perturbative calculations.

On the other hand, while the AdS/CFT correspondence is a powerful tool, we have yet
to fully harness its computational power for the most fundamental observables of conformal
field theories (CFTs) — the correlators of local operators. Stress tensor correlators provide
critical information about the energy, momentum, and stress distribution of a system.
Previous studies on holographic correlators of the stress tensor have mainly focused on
CFTs with trivial topology, with holographic computations done in pure AdS space [6–9],
even in AdS3/CFT2 [10]. The study of holographic field theories on manifolds with nontrivial
topologies [11], e.g., tori or higher genus Riemann surfaces, is important as it provides a
way to study the holographic principle in curved spacetimes and understand the behavior
of conformal field theories in curved spacetimes (to study the holographic principle and
behavior of CFTs in curved spacetimes). This has important implications for the study of
quantum gravity and the AdS/CFT correspondence. However, investigating the correlators
in CFTs with nontrivial topology through the variational principle requires solving Einstein’s
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equation in a nontrivial bulk background geometry. While near-boundary solutions are
well-understood [12–16], solving the global boundary value problem is generally very difficult
without the full symmetry of pure AdS. This is even true for linearized equations and
has been discussed in previous literature [17–20]. Moreover, the higher-point stress tensor
correlators in strongly coupled CFTs with nontrivial topology are still not well understood.
Therefore, explicit results from holographic computations are highly desirable.

We address (the) long-standing problem in AdS3/CFT2 by computing the holographic
torus correlators of the stress tensor via Einstein’s equation in the thermal AdS background.
We then propose a prescription, which applies to any Riemann surface, for computing
n-point correlators by deriving a recurrence relation. Our results are consistent with the
corresponding CFT data [21], providing a non-trivial check of AdS3/CFT2 for correlators
and Ward identities in torus CFTs. We extend our program of computing holographic
stress tensor correlators to the cutoff-AdS/T T̄ -CFT holography, which is a valuable tool
for exploring and better understanding holography in asymptotically AdS and non-AdS
spacetimes in a controlled setting. The T T̄ -deformation [22, 23] of holographic CFTs has
been proposed as a way to move the conformal boundary to a finite cutoff in the bulk
AdS space [24]. While stress tensor correlators of T T̄ -deformed CFTs have been studied
in the complex plane [25, 26] and on the torus [21, 27], and holographic correlators in the
complex plane were investigated in [25, 28], we present the first computation of holographic
correlators on a torus at a finite cutoff in thermal AdS3. We also obtain a recurrence
relation of correlators similar to that in the case of CFTs.

2 Holographic prescription

In holographic computation, we use the Fefferman-Graham coordinates near the conformal
boundary [14]. This allows us to express the bulk metric in a simple form as following

ds2 = dr2

r2 + 1
r2 gij(x, r)dxidxj . (2.1)

In dimension three, the Fefferman-Graham series of the metric truncates as Banados
space-time [29]

gij(x, r) = g
(0)
ij (x) + g

(2)
ij (x)r2 + g

(4)
ij (x)r4, (2.2)

and Einstein’s equation is reduced to one equation that determines g(4) in terms of g(0) and
g(2):

g
(4)
ij = 1

4g
(2)
ik g(0)klg

(2)
lj , (2.3)

and another two equations

∇(0)i
g

(2)
ij = ∇(0)

j g(2)i

i, (2.4)

g(2)i

i = −1
2R[g(0)] (2.5)

where the covariant derivative and raising (lowering) indices are all with respect to the
metric g(0). If the holographic field theory lives on a cutoff surface r = rc as the boundary,
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the background metric of the field theory γ is identified with the induced metric h on the
boundary by

γij = r2
c hij . (2.6)

By taking the functional derivative of the gravity on-shell action [15, 30, 31] with respect
to the boundary metric, we can identify the one-point correlator of the stress tensor with
the Brown-York tensor on the boundary

⟨Tij⟩ = − 1
8πG

(Kij − Khij + hij), (2.7)

where G is Newton constant and Kij is the extrinsic curvature. From (2.4) and (2.5) (or
from the Gauss-Codazzi equation in general dimensions), we have the conservation equation

∇i⟨Tij⟩ = 0, (2.8)

and the trace relation

⟨T ⟩ = R

16πG
+ 4πGr2

c (⟨T ij⟩⟨Tij⟩ − ⟨T ⟩2). (2.9)

For CFTs, the cutoff surface is at the conformal boundary rc = 0, and the trace relation
reduces to the Weyl anomaly

⟨T ⟩ = R

16πG
. (2.10)

For T T̄ -deformed CFTs, the cutoff location rc is related to the T T̄ deformation parameter
µ by [24]

µ = 16πGr2
c . (2.11)

To obtain multi-point correlators, it suffices to compute the varied one-point correlator
for a variation of the boundary metric. Equations (2.8) and (2.10)(or (2.9)) serve as our
basis for this computation, but they don’t fully determine the one-point correlator, or in the
bulk language, the near-boundary solution to Einstein’s equation is (understandably) not
unique. The remaining information, which in our case is two constants of integration, must
be drawn from the global geometry of the bulk space by requiring that the near-boundary
solution reconstructed from the one-point correlator can be extended to be a global solution.
We will show in our case that this condition, dubbed as the global regularity condition,
fixes the two constants.

There is another way to determine the two constants of integration, which naturally
leads to a recurrence relation for the holographic higher-point correlators. These two
constants represent the one-point-averaged correlators, which correspond to changes in
lower-point correlators due to global metric variations. On a Riemann surface, global
metric variations are related to the differentiation with respect to the moduli. This concept
has previously been used to investigate the stress tensor insertion Ward identities (see
references [32] and [33]). In particular, for a torus with metric ds2 = dzdz̄ and modular
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parameter τ , if we let the global metric vary as δγz̄z̄(z) = α and δγzz(z) = ᾱ, the new
metric is given by:

ds2 = dzdz̄ + ᾱdz2 + αdz̄2,

= (1 + α + ᾱ)d(z + α(z̄ − z))d(z̄ + ᾱ(z − z̄))+O(α2). (2.12)

One can perform a Weyl transformation by multiplying a global factor 1 − α − ᾱ and
a coordinate transformation ϕ : z′ = z + α(z̄ − z), z̄′ = z̄ + ᾱ(z − z̄) to equation (2.12).
We obtain a torus with the Euclidean metric ds2 = dz′dz̄′ and a new modular parameter
τ ′ = τ + α(τ̄ − τ). Therefore, variations of modular parameter of the torus are equivalent
to global variations of the metric and coordinate transformations. For a general correlator
⟨O⟩, we have:

(τ̄ − τ)∂τ ⟨O⟩ = L(z−z̄)∂z
⟨O⟩ +

∫
T2

d2z

(
δ⟨O⟩

δγz̄z̄(z) − δ⟨O⟩
δγzz̄(z)

)
, (2.13)

(τ − τ̄)∂τ̄ ⟨O⟩ = L(z̄−z)∂z̄
⟨O⟩ +

∫
T2

d2z

(
δ⟨O⟩

δγzz(z) − δ⟨O⟩
δγzz̄(z)

)
. (2.14)

Here L denotes the Lie derivative. The explicit realization of [32, 33] is crucial for deriving
the holographic recurrence relation of higher-point stress tensor correlators, discussed later
in this letter.

3 Torus correlators in holographic CFT

We start by computing the holographic torus correlators of stress tensor on the conformal
boundary (for CFTs) from the thermal AdS3. Other classical gravity saddles (real smooth
ones) with the torus conformal boundary are classified in [34] (first considered in [35]).
They can all be obtained from the thermal AdS3 by modular transformations. The thermal
AdS3 is a solid torus with the metric

ds2 = dρ2 + cosh2 ρdt2 + sinh2 ρdϕ2, (3.1)

or in the form of the Fefferman-Graham series

ds2 = dr2

r2 + 1
r2

[
dzdz̄ − r2π2(dz2 + dz̄2) + r4π4dzdz̄

]
, (3.2)

with

r = 1
πeρ

, z = ϕ + it

2π
, z̄ = ϕ − it

2π
, (3.3)

where z, z̄ are doubly periodically identified (z, z̄) ∼ (z + 1, z̄ + 1) ∼ (z + τ, z̄ + τ̄). The
conformal boundary at ρ = ∞ or r = 0 is a torus with two periods 1 and τ and the
Euclidean boundary metric γijdxidxj = dzdz̄. We read off one-point correlators from the
bulk geometry

⟨Tzz⟩ = − π

8G
, ⟨Tz̄z̄⟩ = − π

8G
, ⟨Tzz̄⟩ = 0. (3.4)
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To compute the holographic correlators, we take a variation of the boundary metric

δγijdxidxj = ϵfij(z, z̄)dxidxj . (3.5)

The variation δγij induces a bulk metric variation δgµν through Einstein’s equations. The
resulting variation of one-point correlators can be formally expressed by powers of the
infinitesimal parameter ϵ

∞∑
n=1

ϵnT
[n]
ij . (3.6)

From (2.8) and (2.10), we can order-by-order solve T
[n]
ij to compute n + 1 point correlators.

For the first-order, we find

T
[1]
zz̄ = 1

16πG
(−2π2(fzz + fz̄z̄) + ∂2

z̄ fzz − 2∂z∂z̄fzz̄ + ∂2
z fz̄z̄),

T [1]
zz (z) = 1

16πG

[
(−∂z∂z̄fzz + 2∂2

z fzz̄)(z) + C [1]

+ 1
π

∫
T2

d2wGτ (z − w)(−4π2∂w − ∂3
w)fz̄z̄(w)

]
,

T
[1]
z̄z̄ (z) = c.c. of T [1]

zz (z) (3.7)

where “c.c.” denotes complex conjugate, C [1], C̄ [1] are constants of integration, and

Gτ (z) = ζτ (z) − 2ζτ

(1
2

)
z + 2πi

Imτ
Imz (3.8)

is a Green’s function on a torus with ζτ (z) being the Weierstrass Zeta function. More
details can be found in appendix A.

As we discussed earlier, any choice of constants corresponds to a near-boundary solution
to Einstein’s equation in its Fefferman-Graham coordinates. Although the Fefferman-
Graham coordinates of the varied bulk metric may be different from the ρ, ϕ, t or r, z, z̄

coordinates of the solid torus, we can make them coincide in the region ρ ∈ (0,∞) by using
a boundary-preserving diffeomorphism. Therefore, a generic bulk metric solution in the
region ρ ∈ (0,∞) for a varied boundary metric is given by a Fefferman-Graham series in
ρ, ϕ, t from equation (3.7), plus a change by a boundary-preserving diffeomorphism. To
satisfy the global regularity condition, the metric must be regular at ρ = 0. We leave the
details of the computation to appendix B, but to the first order, we have the following
condition: ∫

T2
d2z[g(2)[1]

zz − g
(2)[1]
z̄z̄ + 2π2(g(0)[1]

zz − g
(0)[1]
z̄z̄ )] = 0,∫

T2
d2z[g(2)[1]

zz + 2g
(2)[1]
zz̄ + g

(2)[1]
z̄z̄ ] = 0 (3.9)

where g(0)[1] and g(2)[1] are the first-order variations of g(0) and g(2), respectively. The above
conditions determine the constants as follows:

C [1] = 4π2

Imτ

∫
T2

d2zfz̄z̄, C̄ [1] = 4π2

Imτ

∫
T2

d2zfzz. (3.10)
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The constants can be also obtained by (2.13) and (2.14). Finally, we can obtain two-point
correlators as follows:

⟨Tzz(z)Tzz(w)⟩ = 1
32π2G

(
℘

′′
τ (z − w) + 4π2℘τ (z − w) + 8π2ζτ

(1
2

))
,

⟨Tzz(z)Tz̄z̄(w)⟩ = − 1
32πG

∂z∂z̄δ(z − w),

⟨Tzz̄(z)Tzz(w)⟩ = 1
32πG

(−2π2 + ∂2
z )δ(z − w),

⟨Tzz̄(z)Tzz̄(w)⟩ = − 1
32πG

∂z∂z̄δ(z − w), (3.11)

where δ(z −w) is the delta function and ℘τ (z) = −ζ
′
τ (z) is the Weierstrass P function. The

two-point correlator coincides with the one derived in the field theory, cf. equation (58)
in [21].

Alternatively, the constants can be derived from (2.13) and (2.14) in the form of
a recurrence relation. We begin by turning on a boundary Euclidean metric variation
δγz̄z̄ = F while keeping other components fixed, then we get the holographic Virasoro Ward
identity [36, 37] from (2.8) and (2.10):

∂z̄⟨Tzz⟩ − 2∂zF ⟨Tzz⟩ − F∂z⟨Tzz⟩ + 1
16πG

∂3
z F = 0. (3.12)

Taking the n-th functional derivative with respect to F and evaluating at F = 0, we find

∂z̄⟨Tzz(z)Tzz(z1) . . . Tzz(zn)⟩

−
n∑

i=1
∂zδ(z − zi)⟨Tzz(z)Tzz(z1) . . . T̂zz(zi) . . . Tzz(zn)⟩

−1
2

n∑
i=1

δ(z − zi)∂z⟨Tzz(z)Tzz(z1) . . . T̂zz(zi) . . . Tzz(zn)⟩

+ 1
32πG

δn,1∂3
z δ(z − z1) = 0. (3.13)

Where δn,1 is the discrete delta function and T̂zz(zi) means to drop the i-th operator.
Solving with Green’s function on the torus, we have

⟨Tzz(z)Tzz(z1) . . . Tzz(zn)⟩

= 1
π

n∑
i=1

[
∂zGτ (z − zi)⟨Tzz(z1) . . . Tzz(zn)⟩ − 1

2Gτ (z − zi)∂zi⟨Tzz(z1) . . . Tzz(zn)⟩
]

− 1
32π2G

δn,1∂3
z Gτ (z − z1) + 1

Imτ

∫
T2

d2v⟨Tzz(v)Tzz(z1) . . . Tzz(zn)⟩. (3.14)

The last term of one-point-averaged correlators, corresponding to the constants of integration,
can be obtained from (2.13) by setting O = Tzz(z1) . . . Tzz(zn) with the last term vanishing
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for CFTs. Then we obtain the recurrence relation

⟨Tzz(z)Tzz(z1) . . . Tzz(zn)⟩

= −i∂τ ⟨Tzz(z1) . . . Tzz(zn)⟩ + 1
32π2G

δn,1℘
′′
τ (z − z1)

− 1
2π

n∑
i=1

[
2
(

℘τ (z − zi) + 2ζτ

(1
2

))
⟨Tzz(z1) . . . Tzz(zn)⟩

+
(

ζτ (z − zi) − 2ζτ

(1
2

)
(z − zi)

)
∂zi⟨Tzz(z1) . . . Tzz(zn)⟩

]
, (3.15)

which is consistent with the field theory derivation, cf. equation (57) in [21]. This recurrence
relation recovers the two-point correlators for thermal AdS3 (3.11) and provides an efficient
way to compute higher-point correlators. For example, the three-point correlator is given by

⟨Tzz(z1)Tzz(z2)Tzz(z3)⟩

=− 1
64π3G

[
12℘τ (z1−z2)℘τ (z2−z3)℘τ (z3−z1)

+4π2
(
℘τ (z1−z2)℘τ (z2−z3)+℘τ (z2−z3)℘τ (z3−z1)+℘τ (z3−z1)℘τ (z1−z2)

)
+
(

16π2ζτ

(1
2

)
−g2,τ

)(
℘τ (z1−z2)+℘τ (z2−z3)+℘τ (z3−z1)

)]

+ 1
320π3G

(
−4
(

g2,τ +60π2ζτ

(1
2

))
ζτ

(1
2

)
−iπ∂τ g2,τ +18g3,τ

)
. (3.16)

We have used the identities

℘
′′
τ (z) = 6℘2

τ (z) − 1
2g2,τ (3.17)

and

2πi∂τ ℘τ (z) =
(

ζτ (z) − 2ζτ

(1
2

)
z

)
℘

′
τ (z) + 1

3℘
′′
τ (z) − 4ζτ

(1
2

)
℘τ (z) − 1

6g2,τ (3.18)

with g2,τ and g3,τ being the invariants

g2,τ = 60
∑

(m,n)∈Z2\(0,0)

1
(m + nτ)4 ,

g3,τ = 140
∑

(m,n)∈Z2\(0,0)

1
(m + nτ)6 . (3.19)

The recurrence relation (3.15) can be employed to compute the correlators for any dominant
gravity saddle in the path integral or to calculate the exact correlators from a complete
partition function if it is available. However, this task is considerably more intricate and
challenging, as demonstrated by prior research such as [34, 38].
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4 T T̄ -deformed Torus correlators

In this section, we compute the holographic stress tensor correlators on a torus at a finite
cutoff (for T T̄ -deformed CFTs). We start by embedding a torus as a cutoff surface into the
thermal AdS3

ds2 = dρ2 + π2e2ρ[dZdZ̄ − e−2ρ(dZ2 + dZ̄2) + e−4ρdZdZ̄]. (4.1)

By taking the periods in Z to be 1 and Ω = τ+e−2ρc τ̄
1+e−2ρc and defining the coordinates for torus

z = Z − e−2ρcZ̄

1 − e−2ρc
, z̄ = Z̄ − e−2ρcZ

1 − e−2ρc
(4.2)

and the Fefferman-Graham radial coordinate

r = 1
πeρ(1 − e−2ρc) , (4.3)

we get a torus at ρ = ρc with periods 1 and τ in the z, z̄ coordinates, and a field theory
background metric γijdxidxj = r2

c hijdxidxj = dzdz̄. We read off one-point correlators from
the bulk geometry

⟨Tzz⟩ = − π

8G

1 − e−2ρc

1 + e−2ρc
, ⟨Tz̄z̄⟩ = − π

8G

1 − e−2ρc

1 + e−2ρc

⟨Tzz̄⟩ = π

8G

e−2ρc − e−4ρc

1 + e−2ρc
. (4.4)

As in the previous section, we can solve the varied one-point correlator order by order
from (2.8) and (2.9) for a variation of the field theory metric ϵfijdxidxj . Leaving the
computation of T

[1]
ij to appendix C, we obtain the two-point correlator

⟨Tzz(z)Tzz(w)⟩

= 1
16πG

{
1

(1 + e−2ρc)4

[
2π(℘Ω(Z − W ) + e−8ρc℘Ω(Z − W ))

+ 1
2π

(℘′′
Ω(Z − W ) + e−8ρc℘

′′
Ω(Z − W )) + 4π

(
ζΩ

(1
2

)
+ e−8ρcζΩ̄

(1
2

))]

− 1
(1 − e−4ρc)3

[
2π2e−2ρc(1 − e−2ρc)2(1 + e−4ρc)

+ (2e−2ρc − 3e−6ρc + 2e−10ρc)∂2
z − (e−4ρc + e−8ρc)∂z∂z̄ + e−6ρc∂2

z̄

]
δ(z − w)

}
. (4.5)

To relate to the T T̄ -deformed CFT, we have ρc = sinh−1 1
2πrc

and rc in turn is related
to the T T̄ deformation parameter µ by (2.11). As a cross-check, we can compute the
generating functional I from the one-point correlators (4.4) (as a special case of (2.13)
and (2.14)) by

i∂τ I = ⟨Tzz⟩ − ⟨Tzz̄⟩
−i∂τ̄ I = ⟨Tz̄z̄⟩ − ⟨Tzz̄⟩ (4.6)
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We obtain

I = iπ

8G
(1 − e−2ρc)(τ − τ̄)

= i

µ
(τ − τ̄)

(√
1 + πµc

6 − 1
)

(4.7)

It satisfies the T T̄ flow equation for partition function [27, 39, 40] with CFT limit I =
iπ
12c(τ − τ̄), cf. equation (2.14) in [40] with the identification of the deformation parameter
µ = −2λ2. A recurrence algorithm to compute higher-point correlators can be derived in a
way similar to the previous section, but it does not have a simple form like (3.15). So we
leave it to appendix C.

5 Conclusions and perspectives

In this letter, we investigate the holographic correlators of the stress tensor on the conformal
boundary for CFTs and at a finite cutoff for T T̄ -deformed CFTs on torus topology. First,
we solve Einstein’s equation with a torus boundary to complete a direct calculation of
the correlators. Then, we develop a holographic recurrence algorithm to calculate higher-
point correlators of the stress tensor. The resulting recurrence relation for holographic
CFTs is identical to that found in standard CFTs, which provides an explicit check of the
AdS3/CFT2. The recurrence relation in T T̄ -deformed CFTs can also be obtained using this
algorithm and the low point correlators coincide with that obtained by different perspectives
in the literature. Moreover, the recurrence algorithm can be naturally generalized to
higher-genus Riemann surfaces.

It would be interesting to extend our computation of holographic correlators to other
operators and higher dimensions. Exact results could contribute significantly to the
understanding of CFTs with non-trivial topology, in terms of OPEs, conformal blocks [41–
48] and possible bootstrap programs [49] on the cylinder or the other topologies. With a
proper prescription for analytic continuation to Minkowski signature, we can also obtain
exact results for holographic transport coefficients, as was done in [50] and numerous
subsequent works.
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A Green’s function on torus

In this appendix, we briefly introduce the Green’s functions on a torus with a modular
parameter τ . The defining equations for the Green’s functions Gτ (z, w) and G̃τ (z, w) are

1
π

∂z̄Gτ (z, w) = δ(z − w) − 1
Imτ

(A.1)

and

1
π

∂z∂z̄G̃τ (z, w) = δ(z − w) − 1
Imτ

, (A.2)

where δ(z − w) is the delta function with respect to the measure d2z = i
2dz ∧ dz̄. Green’s

functions can be rewritten as Gτ (z − w) and G̃τ (z − w) by translational invariance. For
Green’s function Gτ (z), since it takes the form 1

z in the complex plane, it is tempting to
represent Green’s function on the torus as a formal series

∑
(m,n)∈Z2

1
z − (m + nτ) (A.3)

with manifest double periodicity. To make the formal series convergent, it’s natural to add
the holomorphic terms

∑
(m,n)∈Z2\(0,0)

1
(m+nτ) −

z
(m+nτ)2 and we obtain the Weierstrass Zeta

function

ζτ (z) = 1
z

+
∑

(m,n)∈Z2\(0,0)

( 1
z − (m + nτ) + 1

(m + nτ) + z

(m + nτ)2

)
. (A.4)

It’s straightforward to prove ζτ (z + 1) − ζτ (z) and ζτ (z + τ) − ζτ (z) are independent
on z, so we can restore the double periodicity by adding a linear function, obtaining the
Green’s function on the torus

Gτ (z) = ζτ (z) − 2ζτ

(1
2

)
z + 2πi

Imτ
Imz. (A.5)

Similarly, we have

G̃τ (z) = log(|στ (z)|2) − ζτ

(1
2

)
z2 − ζτ

(1
2

)
z̄2 − 2π

Imτ
(Imz)2 (A.6)

where

στ (z) = z
∏

(m,n)∈Z2\(0,0)

(
1 − z

m + nτ

)
e

z
m+nτ

+ z2
2(m+nτ)2 (A.7)

is the Weierstrass sigma function, with its log derivative being the Weierstrass zeta function.
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B Global regularity condition

As discussed in section 3, we can make the Fefferman-Graham coordinates of the varied bulk
metric (Fefferman-Graham coordinates always exist near the conformal boundary, see [16]
for example) coincide with the torus coordinates ρ, ϕ, t by a diffeomorphism in the region
ρ ∈ (0,∞). So the varied bulk metric in this region is given by a Fefferman-Graham series
in ρ, ϕ, t, determined from (3.7), plus a change by a boundary preserving diffeomorphism.
We characterize the diffeomorphism by a vector expanded in powers of ϵ

V =
∞∑

n=1
ϵnV [n] (B.1)

To the first order, the varied bulk metric is given by

ds2 = (1 + ϵLV [1])(dρ2 + cosh2 ρdt2 + sinh2 ρdϕ2) + ϵg
F G[1]
ij dxidxj , (B.2)

where gF G[1] is the first-order variation of the bulk metric in its Feffermen-Graham coordi-
nates, given by

gF G[1]
zz = g(2)[1]

zz − e−2ρg(2)[1]
zz̄ + π2e2ρg(0)[1]

zz − π2e−2ρg
(0)[1]
z̄z̄ ,

gF G[1]
zz̄ = −1

2e−2ρg(2)[1]
zz −

1
2e−2ρg(2)[1]

z̄z̄ + g(2)[1]
zz̄ + π2(e2ρ − e−2ρ)g(0)[1]

zz̄ ,

gF G[1]
z̄z̄ = g(2)[1]

z̄z̄ − e−2ρg(2)[1]
zz̄ + π2e2ρg

(0)[1]
z̄z̄ − π2e−2ρg(0)[1]

zz . (B.3)

We require the metric to be regular at ρ = 0, that is, its components in the (t, x, y)
coordinates

t = t, x = ρ cos ϕ, y = ρ sin ϕ (B.4)

which properly covers ρ = 0, are regular. We have the transformation equation of the
components

gtt = gtt,

gtρ = gtx cos ϕ + gty sin ϕ,

gtϕ = ρ(−gtx sin ϕ + gty cos ϕ),
gρρ = gxx cos2 ϕ + 2gxy cos ϕ sin ϕ + gyy sin2 ϕ,

gϕϕ = ρ2(gxx sin2 ϕ − 2gxy cos ϕ sin ϕ + gyy cos2 ϕ),
gρϕ = ρ[−(gxx − gyy) cos ϕ sin ϕ + gxy(cos2 ϕ − sin2 ϕ)]. (B.5)

Take the ρ → 0 limit, the components in (t, x, y) coordinates on the right-hand side should
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go to a limit that can only depend on t with a period Imτ

lim
ρ→0

gtt = g∗tt(t),

lim
ρ→0

gtρ = g∗tx(t) cos ϕ + g∗ty(t) sin ϕ,

lim
ρ→0

gtϕ

ρ
= −g∗tx(t) sin ϕ + g∗ty(t) cos ϕ,

lim
ρ→0

gρρ = g∗xx(t) cos2 ϕ + 2g∗xy(t) cos ϕ sin ϕ + g∗yy(t) sin2 ϕ,

lim
ρ→0

gϕϕ

ρ2 = g∗xx(t) sin2 ϕ − 2g∗xy(t) cos ϕ sin ϕ + g∗yy(t) cos2 ϕ,

lim
ρ→0

gρϕ

ρ
= −(g∗xx(t) − g∗yy(t)) cos ϕ sin ϕ + g∗xy(t)(cos2 ϕ − sin2 ϕ). (B.6)

Now we impose these conditions on the varied bulk metric in (B.2), and we find

lim
ρ→0

(2coshρsinhρV [1]ρ+2cosh2 ρ∂tV
[1]t+g

F G[1]
tt ) = g∗[1]

tt(t),

lim
ρ→0

(∂tV
[1]ρ+cosh2 ρ∂ρV [1]t) = g∗[1]

tx(t)cosϕ+g∗[1]
ty(t)sinϕ,

lim
ρ→0

cosh2 ρ∂ϕV [1]t+sinh2 ρ∂tV
[1]ϕ+g

F G[1]
tϕ

ρ
=−g∗[1]

tx(t)sinϕ+g∗[1]
ty(t)cosϕ,

lim
ρ→0

2∂ρV [1]ρ = g∗[1]
xx(t)cos2 ϕ+2g∗[1]

xy(t)cosϕsinϕ+g∗[1]
yy(t)sin2 ϕ,

lim
ρ→0

2coshρsinhρV [1]ρ+2sinh2 ρ∂ϕV [1]ϕ+g
F G[1]
ϕϕ

ρ2 = g∗[1]
xx(t)sin2 ϕ−2g∗[1]

xy(t)cosϕsinϕ

+g∗[1]
yy(t)cos2 ϕ,

lim
ρ→0

∂ϕV [1]ρ+sinh2 ρ∂ρV [1]ϕ

ρ
=−(g∗[1]

xx(t)−g∗[1]
yy(t))cosϕsinϕ+g∗[1]

xy(t)(cos2 ϕ−sin2 ϕ).

(B.7)

In addition, we have the power series expansion of (B.3) at ρ = 0

g
F G[1]
ϕϕ = g

F G[1]
1ϕϕ ρ + g

F G[1]
2ϕϕ ρ2 + O(ρ3)

=
[ 1

2π2 (g(2)[1]
zz + 2g(2)[1]

zz̄ + g(2)[1]
z̄z̄) + g(0)[1]

zz + 2g
(0)[1]
zz̄ + g

(0)[1]
z̄z̄

]
ρ

− 1
2π2 (g(2)[1]

zz + 2g(2)[1]
zz̄ + Az̄z̄)ρ2 + O(ρ3),

g
F G[1]
tϕ = g

F G[1]
0tϕ + O(ρ2) = i

4π2 (g(2)[1]
zz − g(2)[1]

z̄z̄) + i

2(g(0)[1]
zz − g

(0)[1]
z̄z̄ ) + O(ρ2),

g
F G[1]
tt = g

F G[1]
0tt + O(ρ) = − 1

2π2 (g(2)[1]
zz − 2g(2)[1]

zz̄ + g(2)[1]
z̄z̄) + O(ρ). (B.8)

Integrating the third equation in (B.7) over the torus, we find∫
T2

d2z g
F G[1]
0tϕ = 0. (B.9)
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From the fourth equation in (B.7) we know V [1]ρ can be linearly approximated near ρ = 0

V [1]ρ = a0 + a1ρ + o(ρ). (B.10)

Then we subtract the fifth equation from the fourth and integrate it over the torus. We find∫
T2

d2z g
F G[1]
2ϕϕ = 0. (B.11)

Plugging (B.8) into (B.9) and (B.11), we obtain the global regularity condition (3.9).

C Computation of holographic correlators for T T̄ -deformed CFT

As in the section 3, to compute holographic correlators we solve the varied one-point
correlator order by order from (2.8) and (2.9). For the first order, we get

∂z̄T [1]
zz +∂zT [1]

zz̄ = π

8G

1−e−2ρc

1+e−2ρc
(−∂zfzz−3∂zfz̄z̄ +2e−2ρc∂z̄fzz +2e−2ρc∂zfzz̄), (C.1)

∂zT [1]
z̄z̄ +∂z̄T [1]

zz̄ = π

8G

1−e−2ρc

1+e−2ρc
(−∂z̄fz̄z̄−3∂z̄fzz +2e−2ρc∂zfz̄z̄ +2e−2ρc∂z̄fzz̄), (C.2)

and

(1+e−4ρc)T [1]
zz̄ +e−2ρc(T [1]

zz +T [1]
z̄z̄)

=−π(1−e−2ρc)
8G

2
(fzz +fz̄z̄ +2e−2ρcfzz̄)+ 1−e−4ρc

16πG
(∂2

z̄ fzz−2∂z∂z̄fzz̄ +∂2
z fz̄z̄). (C.3)

Adding ∂z (C.1) and ∂z̄ (C.2), and then plugging in (C.3), we get an equation of T [1]
zz̄

(1 − e−2ρc)2∂Z∂Z̄T1zz̄

= −π(1 − e−2ρc)2

8G
∂z∂z̄(fzz + fz̄z̄ + 2e−2ρcfzz̄)

+ 1 − e−4ρc

16πG
∂z∂z̄(∂2

z̄ fzz − 2∂z∂z̄fzz̄ + ∂2
z fz̄z̄)

− πe−2ρc

8G

1 − e−2ρc

1 + e−2ρc

[
− ∂2

z fzz − 3∂2
z fz̄z̄ − ∂2

z̄ fz̄z̄ − 3∂2
z̄ fzz

+ 2e−2ρc(∂z∂z̄fzz + ∂2
z fzz̄ + ∂z∂z̄fz̄z̄ + ∂2

z̄ fzz̄)
]
. (C.4)

We solve this equation with the Green’s function G̃Ω on torus (see appendix A)

T [1]
zz̄(z) = 1

8π2G

∫
T2

d2WG̃Ω(Z − W )
[
−π2∂w∂w̄(fzz + fz̄z̄ + 2e−2ρcfzz̄)

+ 1 + e−2ρc

2(1 − e−2ρc)∂w∂w̄(∂2
w̄fzz − 2∂w∂w̄fzz̄ + ∂2

wfz̄z̄)

− π2e−2ρc

1 − e−4ρc
(−∂2

wfzz − 3∂2
wfz̄z̄ − ∂2

w̄fz̄z̄ − 3∂2
w̄fzz

+ 2e−2ρc(∂w∂w̄fzz + ∂2
wfzz̄ + ∂w∂w̄fz̄z̄ + ∂2

w̄fzz̄))
]
(w) + 1

8πG
D[1], (C.5)
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and T [1]
zz, T [1]

z̄z̄ follow from (C.2) and (C.3)

T [1]
zz = 1

π

∫
T2

d2wGτ (z − w)
[

π

8G

1 − e−2ρc

1 + e−2ρc
(−∂wfzz − 3∂wfz̄z̄

+ 2e−2ρc∂w̄fzz + 2e−2ρc∂wfzz̄) − ∂wT [1]
zz̄

]
+ E[1]

8πG
, (C.6)

T [1]
z̄z̄ = 1

π

∫
T2

d2wGτ (z − w)
[

π

8G

1 − e−2ρc

1 + e−2ρc
(−∂w̄fz̄z̄ − 3∂w̄fzz

+ 2e−2ρc∂wfz̄z̄ + 2e−2ρc∂w̄fzz̄) − ∂w̄T [1]
zz̄

]
+ Ē[1]

8πG
, (C.7)

where D[1], E[1], Ē[1] are constants of integration. The global regularity condition reads in
the present context as∫

T2
d2Z

[
g(2)[1]

ZZ − g(2)[1]
Z̄Z̄ + 2π2(1 − e−2ρc)2(g(0)[1]

ZZ − g(0)[1]
Z̄Z̄)

]
= 0, (C.8)∫

T2
d2Z

[
g(2)[1]

ZZ + 2g(2)[1]
ZZ̄ + g(2)[1]

Z̄Z̄

]
= 0. (C.9)

In addition, by integrating (C.3) over the torus we find

(1 + e−4ρc)D[1] + e−2ρc(E[1] + Ē[1]) = −π2(1 − e−2ρc)2 1
Imτ

∫
T2

d2z(fzz + fz̄z̄ + 2e−2ρcfzz̄).

(C.10)

We determine the constants from the three equations above

D[1] = −π2(1 − e−2ρc)
(1 + e−2ρc)3

[
(1 + 4e−2ρc + e−4ρc) 1

Imτ

∫
T

d2z(fzz + fz̄z̄)

+ 2e−2ρc(1 − 2e−2ρc − e−4ρc) 1
Imτ

∫
T

d2zfzz̄

]
,

E[1] = 2π2(1 − e−2ρc)
(1 + e−2ρc)3

[
(1 + e−2ρc + e−4ρc) 1

Imτ

∫
T2

d2zfz̄z̄

+ (2e−4ρc + e−6ρc) 1
Imτ

∫
T2

d2zfzz − 2e−2ρc
1

Imτ

∫
T2

d2zfzz̄

]
,

Ē[1] = 2π2(1 − e−2ρc)
(1 + e−2ρc)3

[
(1 + e−2ρc + e−4ρc) 1

Imτ

∫
T2

d2zfzz

+ (2e−4ρc + e−6ρc) 1
Imτ

∫
T2

d2zfz̄z̄ − 2e−2ρc
1

Imτ

∫
T2

d2zfzz̄

]
. (C.11)

We can compute all two-point correlators by taking the functional derivative of T
[1]
ij with

respect to fij . As in section 3, the constants can also be determined from (2.13) and (2.14).
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Setting O = Tzz we obtain

(τ̄ − τ)∂τ ⟨Tzz(w)⟩ = (w − w̄)∂w⟨Tzz(w)⟩ + 2⟨Tzz(w)⟩ +
∫

T2
d2z

(
δ⟨Tzz(w)⟩
δγz̄z̄(z) − δ⟨Tzz(w)⟩

δγzz̄(z)

)
,

(τ − τ̄)∂τ̄ ⟨Tzz(w)⟩ = (w̄ − w)∂w̄⟨Tzz(w)⟩ − 2⟨Tzz̄(w)⟩ +
∫

T2
d2z

(
δ⟨Tzz(w)⟩
δγzz(z) − δ⟨Tzz(w)⟩

δγzz̄(z)

)
.

(C.12)

In addition, we take a functional derivative with respect to γz̄z̄ in (2.9), and integrate over
one point∫

T2
d2z

δ⟨Tzz̄(z)⟩
δγz̄z̄(w) − ⟨Tzz(w)⟩

+ 8πGr2
c

∫
T2

d2z

[
2⟨Tzz̄(z)⟩δ⟨Tzz̄(z)⟩

δγz̄z̄(w) − ⟨Tzz(z)⟩δ⟨Tz̄z̄(z)⟩
δγz̄z̄(w) − ⟨Tz̄z̄(z)⟩δ⟨Tzz(z)⟩

δγz̄z̄(w)

]
= 0.

(C.13)

The three equations above determine the constants D[1], E[1], Ē[1] as one-point-averaged
correlators.

A recurrence algorithm for holographic correlators similar to (3.15) can be derived, but
it takes a much more complicated form. Turning on a variation of the metric γz̄z̄ = F , the
varied one-point correlator is solved as

T
[n]
zz̄ (z)

= 1
π

∫
T2

d2WG̃Ω(Z−W ) (C.14)

×
(
− e−2ρc

(1−e−2ρc)2
(
∂(3∂FT [n−1]

zz +2F∂T [n−1]
zz )+∂̄(∂̄FT [n−1]

zz )+2∂∂̄(FT
[n−1]
zz̄ )

)
+ 1−e−4ρc

(1−e−2ρc)2 ∂∂̄

(
FT [n−1]

zz + ∂2F

16πG
−8πGr2

c

n−1∑
m=1

(T [m]
zz̄ T

[n−m]
zz̄ −T [m]

zz T
[n−m]
z̄z̄ )

))
(w)+ D[n]

8πG
,

and

T [n]
zz (z) = 1

π

∫
T2

d2wGτ (z−w)(−∂T
[n]
zz̄ +3∂FT [n−1]

zz +2F∂T [n−1]
zz )(w)+ E[n]

8πG
, (C.15)

T
[n]
z̄z̄ (z) = 1

π

∫
T2

d2wGτ (z−w)
(
−∂̄T

[n]
zz̄ +∂̄FT [n−1]

zz +2∂(FT
[n−1]
zz̄ )

)
(w)+ Ē[n]

8πG
, (C.16)

where D[n], E[n] and Ē[n] are constants of integration. To fix D[n], E[n] and Ē[n], we set
O = Tzz(z1) . . . Tzz(zn) in (2.13) and (2.14), and obtain

(τ̄ − τ)∂τ ⟨Tzz(z1) . . . Tzz(zn)⟩

=
n∑

i=1
[(zi − z̄i)∂zi⟨Tzz(z1) . . . Tzz(zn)⟩ + 2⟨Tzz(z1) . . . Tzz(zn)⟩]

+
∫

T2
d2z

[
δ⟨Tzz(z1) . . . Tzz(zn)⟩

δγz̄z̄(z) − δ⟨Tzz(z1) . . . Tzz(zn)⟩
δγzz̄(z)

]
, (C.17)
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(τ − τ̄)∂τ̄ ⟨Tzz(z1) . . . Tzz(zn)⟩

=
n∑

i=1
[(z̄i − zi)∂z̄i⟨Tzz(z1) . . . Tzz(zn)⟩ − 2⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . . Tzz(zn)]

+
∫

T2
d2z

[
δ⟨Tzz(z1) . . . Tzz(zn)⟩

δγzz(z) − δ⟨Tzz(z1) . . . Tzz(zn)⟩
δγzz̄(z)

]
, (C.18)

where T̂zz(zi) means dropping the i-th operator. In addition, we take n times of functional
derivatives with respect to γz̄z̄(z1), . . . , γz̄z̄(zn) in (2.9), and integrate over one point to get∫

T2
d2z⟨Tzz̄(z)Tzz(z1) . . . Tzz(zn)⟩

= − e−2ρc

1 + e−4ρc

(∫
T2

d2z⟨Tzz(z)Tzz(z1) . . . Tzz(zn)⟩ +
∫

T2
d2z⟨Tz̄z̄(z)Tzz(z1) . . . Tzz(zn)⟩

)
+ 1 − e−4ρc

1 + e−4ρc

(
n

2 ⟨Tzz(z1) . . . Tzz(zn)⟩ −
∫

T2
d2zM(z, z1, . . . , zn)

)
, (C.19)

where we denote

M(z, z1, . . . , zn)

=
n−1∑
m=1

∑
σ

8πGr2
c

m!(n − m)!
[
⟨Tzz̄(z)Tzz(zσ(1)) . . . Tzz(zσ(m))⟩⟨Tzz̄(z)Tzz(zσ(m+1)) . . . Tzz(zσ(n))⟩

− ⟨Tzz(z)Tzz(zσ(1)) . . . Tzz(zσ(m))⟩⟨Tz̄z̄(z)Tzz(zσ(m+1)) . . . Tzz(zσ(n))⟩
]

(C.20)

with σ running over all permutations of (1, . . . , n).
With the constants of integration determined by (C.17), (C.18) and (C.19), we obtain

the following recurrence relations for correlators

⟨Tzz̄(z)Tzz(z1) . . .Tzz(zn)⟩

=− 1
π

1
1−e−4ρc

n∑
i=1

{[
e−2ρc

2(1+e−2ρc)
(
(∂Zi

+e−2ρc∂Z̄i
)G̃Ω(Z−Zi)∂zi

+(e−2ρc∂Zi
+∂Z̄i

)G̃Ω(Z−Zi)∂z̄i

)
− 1

2(1+e−2ρc)2

(
−2(e−2ρc +e−6ρc)∂2

Z−4e−6ρc∂2
Z̄

)
G̃Ω(Z−Zi)

]
⟨Tzz(z1) . . .Tzz(zn)⟩

+ e−2ρc

(1+e−2ρc)2 (e−2ρc∂2
Z +e−2ρc∂2

Z̄
)G̃Ω(Z−Zi)⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . .Tzz(zn)⟩

}

+
n∑

i=1

[
1−8e−4ρc−e−8ρc

2(1−e−4ρc)2 ⟨Tzz(z1) . . .Tzz(zn)⟩

− e−2ρc +e−6ρc

(1−e−4ρc)2 ⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . .Tzz(zn)⟩
](

δ(z−zi)−
1

Imτ

)

+ δn,1

32π2G

{
e−2ρc

(1+e−2ρc)4 (∂4
Z +e−4ρc∂4

Z̄
)G̃Ω(Z−Z1)

+ π

(1−e−4ρc)3

[
(1+e−12ρc)∂2

z +(e−4ρc +e−8ρc)∂2
z̄ +(e−2ρc−6e−6ρc +e−10ρc)∂z∂z̄

]
δ(z−z1)

}
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− 1
π

∫
T2

d2wG̃Ω(Z−W )∂w∂w̄M(w,z1, . . . ,zn)

+ 1
(1+e−2ρc)2Imτ

{
−(1−e−4ρc)

∫
T2

d2wM(w,z1, . . . ,zn)

−e−2ρc

n∑
i=1

⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . .Tzz(zn)⟩

− 1
2e−2ρc

[
(τ̄−τ)∂τ +(τ−τ̄)∂τ̄ +

n∑
i=1

(z̄i−zi)∂zi

+
n∑

i=1
(zi−z̄i)∂z̄i

−n(4+e2ρc−e−2ρc)
]
⟨Tzz(z1) . . .Tzz(zn)⟩

}
. (C.21)

⟨Tzz(z)Tzz(z1) . . .Tzz(zn)⟩

= 1
π

1
1−e−4ρc

n∑
i=1

{[
− 1

2(1+e−2ρc)
(
(∂Z +e−6ρc∂Z̄)G̃Ω(Z−Zi)∂zi

+(e−2ρc∂Z +e−4ρc∂Z̄)G̃Ω(Z−Zi)∂z̄i

)
+ 1

(1+e−2ρc)2

(
(1+e−4ρc)∂2

Z +2e−8ρc∂2
Z̄

)
G̃Ω(Z−Zi)

]
⟨Tzz(z1) . . .Tzz(zn)⟩

+ 1
(1+e−2ρc)2 (e−2ρc∂2

Z +e−6ρc∂2
Z̄

)G̃Ω(Z−Zi)⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . .Tzz(zn)⟩
}

− δn,1

32π2G

1
(1+e−2ρc)4 (∂4

Z +e−8ρc∂4
Z̄

)G̃Ω(Z−Z1)+ 1
π

∫
T2

d2wG̃Ω(Z−W )∂2
wM(w,z1, . . . ,zn)

+
n∑

i=1

[
e−2ρc +3e−6ρc

(1−e−4ρc)2 ⟨Tzz(z1) . . .Tzz(zn)⟩

+ 2e−4ρc

(1−e−4ρc)2 ⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . .Tzz(zn)⟩
](

δ(z−zi)−
1

Imτ

)

− δn,1

16πG

1
(1−e−4ρc)3

[
(2e−2ρc−3e−6ρc +2e−10ρc)∂2

z −(e−4ρc +e−8ρc)∂z∂z̄ +e−6ρc∂2
z̄

]
δ(z−z1)

+ 1
(1+e−2ρc)2Imτ

{
−(1−e−4ρc)

∫
T2

d2wM(w,z1, . . . ,zn)

−e−2ρc

n∑
i=1

⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . .Tzz(zn)⟩

+ 1
2

[
(1+e−2ρc +e−4ρc)(τ̄−τ)∂τ −e−2ρc(τ−τ̄)∂τ̄ +(1+e−2ρc +e−4ρc)

n∑
i=1

(z̄i−zi)∂zi

−e−2ρc

n∑
i=1

(zi−z̄i)∂z̄i
−2n(1+e−2ρc +2e−4ρc)

]
⟨Tzz(z1) . . .Tzz(zn)⟩

}
. (C.22)
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⟨Tz̄z̄(z)Tzz(z1) . . .Tzz(zn)⟩

= 1
π

1
1−e−4ρc

n∑
i=1

{[
− 1

2(1+e−2ρc)
(
(e−4ρc∂Z +e−2ρc∂Z̄)G̃Ω(Z−Zi)∂zi

+(e−6ρc∂Z +∂Z̄)G̃Ω(Z−Zi)∂z̄i

)
+ 1

(1+e−2ρc)2

(
(e−4ρc +e−8ρc)∂2

Z +2e−4ρc∂2
Z̄

)
G̃Ω(Z−Zi)

]
⟨Tzz(z1) . . .Tzz(zn)⟩

+ 1
(1+e−2ρc)2 (e−6ρc∂2

Z +e−2ρc∂2
Z̄

)G̃Ω(Z−Zi)⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . .Tzz(zn)⟩
}

− δn,1

32π2G

e−4ρc

(1+e−2ρc)4 (∂4
Z +∂4

Z̄
)G̃Ω(Z−Z1)+ 1

π

∫
T2

d2wG̃Ω(Z−W )∂2
w̄M(w,z1, . . . ,zn)

+
n∑

i=1

[
e−2ρc +3e−6ρc

(1−e−4ρc)2 ⟨Tzz(z1) . . .Tzz(zn)⟩

− 1−4e−4ρc +e−8ρc

(1−e−4ρc)2 ⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . .Tzz(zn)⟩
](

δ(z−zi)−
1

Imτ

)

− δn,1

32πG

1
(1−e−4ρc)3

[
(e−2ρc +e−10ρc)(∂2

z +∂2
z̄ )+(1−3e−4ρc−3e−8ρc +e−12ρc)∂z∂z̄

]
δ(z−z1)

+ 1
(1+e−2ρc)2Imτ

{
−(1−e−4ρc)

∫
T2

d2wM(w,z1, . . . ,zn)

+(1+e−2ρc +e−4ρc)
n∑

i=1
⟨Tzz̄(zi)Tzz(z1) . . . T̂zz(zi) . . .Tzz(zn)⟩

+ 1
2

[
(1+e−2ρc +e−4ρc)(τ−τ̄)∂τ̄ −e−2ρc(τ̄−τ)∂τ +(1+e−2ρc +e−4ρc)

n∑
i=1

(zi−z̄i)∂z̄i

−e−2ρc

n∑
i=1

(z̄i−zi)∂zi +2n(e−2ρc−e−4ρc)
]
⟨Tzz(z1) . . .Tzz(zn)⟩

}
. (C.23)

By taking the limit ρc → ∞, the second one reproduces the recurrence relation (3.15) in
the main text for holographic CFTs.
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