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Abstract: We investigate color superconductivity on the lattice using the gap equation
for the Cooper pair condensate. The weak coupling analysis is justified by choosing the
physical size of the lattice to be smaller than the QCD scale, while keeping the aspect
ratio of the lattice small enough to suppress thermal excitations. In the vicinity of the
critical coupling constant that separates the superconducting phase and the normal phase,
the gap equation can be linearized, and by solving the corresponding eigenvalue problem,
we obtain the critical point and the Cooper pair condensate without assuming its explicit
form. The momentum components of the condensate suggest spatially isotropic s-wave
superconductivity with Cooper pairs formed by quarks near the Fermi surface. The chiral
symmetry in the massless limit is spontaneously broken by the Cooper pair condensate,
which turns out to be dominated by the scalar and the pseudo-scalar components. Our
results provide useful predictions, in particular, for future lattice simulations based on
methods to overcome the sign problem such as the complex Langevin method.

Keywords: Non-Zero Temperature and Density, Phase Transitions, Lattice Quantum
Field Theory, Spontaneous Symmetry Breaking
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1 Introduction

Elucidating the nature of quark matter is one of the long-standing issues in modern physics.
In fact, the phase structure of QCD at finite quark density is expected to be extremely rich
and its exploration has been challenged on both experimental and theoretical sides. The
experimental attempts include the heavy-ion collision [1] and the observation of neutron
stars by X-ray and gravitational waves [2]. On the theoretical side, the access to the
finite density region based on the underlying theory, QCD, has been restricted due to the
notorious sign problem, which represents the breakdown of importance sampling in lattice
Monte Carlo simulations; see, e.g., ref. [3]. However, the situation is changing drastically
thanks to the recent development of various approaches such as the complex Langevin
method [4–9], the Lefschetz thimble method [10–18], the path optimization method [19–
21] and the tensor renormalization group method [22]. In particular, the complex Langevin
method has been successfully applied to QCD at finite density [23–33].

One of the most intriguing phenomena in QCD at finite density is the color supercon-
ductivity (CSC) due to the formation of Cooper pairs by quarks [34–37]. This phenomenon
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is predicted from the calculation of a one-gluon exchange diagram, which gives rise to an at-
tractive force in the color anti-triplet channel of quark pairs causing the Cooper instability
at low temperatures. Such weak coupling calculations are justified, for instance, when the
chemical potential is sufficiently larger than the QCD scale ΛQCD ∼ 200 MeV due to the
asymptotic freedom. However, this setup is not easy to realize in lattice simulations since
it requires the lattice spacing to be sufficiently smaller than the inverse of the chemical
potential and one typically has to use a huge lattice to suppress finite size effects.

Another possibility for validating the weak coupling calculations is to consider QCD
in a box which is sufficiently smaller than Λ−1

QCD ∼ 1 fm. This setup is particularly useful
in testing the aforementioned methods for finite density QCD since the required lattice
size is quite modest. For instance, two-color QCD1 in a small box was investigated by
lattice simulations at finite density [38]. Related perturbative calculations have been done
in QCD on S3 × S1 at one loop [39], where the quark number susceptibility, the Polyakov
line and the chiral condensate are found to have intriguing dependence on the chemical
potential. There are also lattice simulations of the Nambu-Jona-Lasinio (NJL) model at
finite density, which exhibit some evidence for BCS diquark condensation [40].

Although superconductivity is basically a weak coupling phenomenon, the analysis of
the Cooper pair condensate requires some methods to sum up infinitely many loop diagrams
as in the analysis of the chiral condensate in the NJL model. An established tool for that
is the gap equation, which is a self-consistent equation for the Cooper pair condensate that
can be derived from the Dyson equation. It is usually formulated in the continuum to obtain
useful information, for instance, on how the energy gap scales with the coupling constant;
see ref. [41] and references therein. In order to make quantitative predictions, however,
further simplification using an assumption on the form of the Cooper pair condensate is
needed since the gap equation is too complicated to be solved in full generality.

In this paper we study the CSC on a finite lattice so that the gap equation becomes
a finite number of coupled equations. Furthermore we focus on the vicinity of the critical
point, where the energy gap is small assuming a continuous phase transition, so that the gap
equation reduces to a linear equation. By simply solving an eigenvalue problem associated
with this linear equation, we can investigate the existence of a non-trivial solution and
make quantitative predictions on the CSC. In particular, no assumption on the form of
the Cooper pair condensate is required unlike similar calculations in the continuum [42].
We apply this strategy to the cases with staggered and Wilson fermions on a lattice with
the extent in the imaginary time direction being much greater than the spatial size in
order to suppress thermal excitations. Thus we identify the critical coupling constant that
separates the CSC phase and the normal phase, which exhibits many peaks as a function of
the chemical potential reflecting the discretized energy levels of quarks in a finite system.
We also obtain the form of the Cooper pair condensate at the critical point, and investigate
its momentum components and flavor structure. Part of the results has been presented in
a proceedings article [43].2

1This is an SU(2) gauge theory with fermions in the fundamental representation, which does not suffer
from the sign problem even at finite density.

2The result for Wilson fermions on a 43 × 64 lattice was presented already in this proceedings article as
figure 4. However, we found a mistake in the code used to generate that figure. The result after correction
is shown in figure 10 of the present paper.
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The rest of this paper is organized as follows. In section 2 we explain the general
formalism which enables us to investigate the CSC on the lattice. In particular, we derive
the condition for determining the critical point from the gap equation. In section 3 we
present our numerical results for the critical coupling constant and the form of the Cooper
pair condensate in the case of staggered fermions and Wilson fermions. Section 4 is devoted
to a summary and discussions. In the appendices, we provide some details of the gap
equation and the method used to solve it.

2 The general formalism

In this section we derive the gap equation, which is a self-consistent equation for the Cooper
pair condensate. The critical point is obtained from it by assuming a continuous phase
transition, which implies that the condensate vanishes at the critical point.3

2.1 Derivation of the gap equation

The gap equation is a self-consistent equation for the Cooper pair condensate, which we
derive below. For that, it is useful to work in the Nambu-Gor’kov formalism [34, 36, 47]
based on the Nambu basis

Ψa
ρ(N) =

ψaρ(N)
ψ
a
ρ(N)

 , Ψa
ρ(N) =

(
ψ
a
ρ(N) ψaρ(N)

)
(2.1)

and its propagator

Saa′ρρ′ (N,N ′) =
〈

Ψa
ρ(N)Ψa′

ρ′(N ′)
〉

=

〈ψaρ(N)ψa
′

ρ′(N ′)
〉 〈

ψaρ(N)ψa′ρ′ (N ′)
〉

〈
ψ
a
ρ(N)ψa

′

ρ′(N ′)
〉 〈

ψ
a
ρ(N)ψa′ρ′ (N ′)

〉
 . (2.2)

Here 〈. . .〉 implies taking the quantum and thermal average and the fermion fields are
represented by ψaρ(N) and ψaρ(N), where N and a are the indices for the lattice site and
color, while ρ represents the flavor and spinor indices collectively. Assuming that the lattice
translational symmetry is not spontaneously broken, the propagator in the momentum
space is given by

S̃aa′ρρ′ (p, p′) =
〈

Ψ̃a
ρ(p)Ψ̃

a′

ρ′(p′)
〉

= δp+p′S̃aa
′

ρρ′ (p) (2.3)

= δp+p′

S̃aa′11,ρρ′(p) S̃aa
′

12,ρρ′(p)
S̃aa

′
21,ρρ′(p) S̃aa

′
22,ρρ′(p)

 = δp+p′


〈
ψ̃aρ(p)ψ̃

a′

ρ′(−p)
〉 〈

ψ̃aρ(p)ψ̃a′ρ′ (−p)
〉

〈
ψ̃
a

ρ(p)ψ̃
a′

ρ′(−p)
〉 〈

ψ̃
a

ρ(p)ψ̃a
′
ρ′ (−p)

〉
 ,

3Strictly speaking, phase transitions are obscured in finite systems due to statistical fluctuations, which
are suppressed by O(1/

√
V ) for system size V . These fluctuations are ignored in the mean-field approach

like the one we adopt. In fact, one can incorporate these fluctuations by adopting the phenomenological
Landau prescription [44, 45] or the static path approximation [46]. Analyses based on such approaches are
left for future investigations.
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Figure 1. Diagrammatic representation of the one-loop contribution to the self-energy Σ̃, where g
represents the bare gauge coupling constant and the curly line represents the gluon propagator.

where p and p′ represent the lattice momenta, and the Fourier components are defined as

f̃(p) =
∑
N

e−ip·Nf(N) for f = ψaρ , ψ
a
ρ, Ψa

ρ, Ψa
ρ . (2.4)

The off-diagonal parts of the propagator correspond to the Cooper pair condensate. One
of the relations satisfied by the propagator is the Dyson equation

S̃−1,aa′
ρρ′ (p) = D̃aa′

ρρ′ (p) + Σ̃aa′
ρρ′ (p) . (2.5)

On the right-hand side, the first term is given by

D̃aa′
ρρ′ (p) =

D̃aa′
11,ρρ′(p) 0

0 D̃aa′
22,ρρ′(p)

 =

D̃aa′
ρρ′ (p) 0
0 −D̃a′a

ρ′ρ(−p)

 , (2.6)

where D̃aa′
ρρ′ (p) = δaa′D̃ρρ′(p) represents the inverse of the free-quark propagator, and the

second term represents the self-energy

Σ̃aa′
ρρ′ (p) =

Σ̃aa′
11,ρρ′(p) Σ̃aa′

12,ρρ′(p)
Σ̃aa′

21,ρρ′(p) Σ̃aa′
22,ρρ′(p)

 , (2.7)

whose diagonal and off-diagonal parts are associated with the chiral condensate and the
superconducting gap, respectively.

Since S̃ and Σ̃ are the unknowns in eq. (2.5), another relation is needed to determine
them. In the weak coupling regime, we obtain a relation depicted in figure 1 to the lowest
order in the loop expansion. This relation together with eq. (2.5) forms the gap equation.
In particular, the off-diagonal parts determine the superconducting gap Σ̃12(21). When the
gap equation has a non-trivial solution Σ̃12(21) 6= 0 with the free energy smaller than that
for the trivial solution Σ̃12(21) = 0, the superconducting phase is favored.

2.2 Linearizing the gap equation

Let us focus on the vicinity of the critical point, where the non-trivial solution for Σ̃12(21) is
close to zero. We assume that the chiral condensate Σ̃11(22) is zero and ignore higher-order
corrections to S̃12(21). Then, from eq. (2.5), we obtain

S̃aa
′

12,ρρ′(p) =
[
−D̃−1

11 (p)Σ̃12(p)D̃−1
22 (p)

]aa′
ρρ′

+O
(
Σ̃12(21)(p)2

)
, (2.8)

S̃aa
′

21,ρρ′(p) =
[
−D̃−1

22 (p)Σ̃21(p)D̃−1
11 (p)

]aa′
ρρ′

+O
(
Σ̃12(21)(p)2

)
, (2.9)
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(a) Σ̃aa′
12,ρρ′(p) =

1

−p, ρ′ , a′ p, ρ, aΣ̃12
D̃−1 D̃−1

(b) 1
β
M(pρρ′)(qσσ′)=

1
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1
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q, σ

−q, σ′ 

Figure 2. Diagrammatic representation of the gap equation for (a) the off-diagonal self-energy
Σ̃aa′

12,ρρ′(p) and (b) the β-independent matrix M(pρρ′)(qσσ′) with β = 2Nc/g2. The colors of the
incoming and outgoing quark pairs are anti-symmetrized. The curly and solid lines represent the
gluon propagator and the free fermion propagator D̃−1,aa′

ρρ′ (p), respectively.
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·
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β
M
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Figure 3. Diagrammatic representation of the T-matrix.

which makes the gap equation linear in Σ̃12(21). For instance, the equation for Σ̃12 is given
diagrammatically in figure 2(a). Let us note that the vertex is proportional to gTBaa′ , where
B represents the color charge of the gluon and TBaa′ represents a generator of SU(Nc) with
Nc being the number of colors. By using the identity

g2∑
B

TBabT
B
a′b′ = Nc − 1

2β (δabδa′b′ + δab′δa′b)−
Nc + 1

2β (δabδa′b′ − δab′δa′b) , (2.10)

where β = 2Nc/g
2, we can decompose the gap equation into those for the color-symmetric

part Σ̃(+)aa′
12(pρρ′) and the color-antisymmetric part Σ̃(−)aa′

12(pρρ′) as

Σ̃(±)aa′
12,(pρρ′) =

Σ̃aa′
12,ρρ′(p)± Σ̃a′a

12,ρρ′(p)
2 . (2.11)

The color-symmetric and antisymmetric terms in eq. (2.10) have different signs, which
reflects the fact that the interaction is repulsive (attractive) in the color-symmetric (anti-
symmetric) channel. Since the Cooper instability occurs in the attractive channels, we will
concentrate on the off-diagonal self-energy in the color anti-symmetric channel Σ̃(−)aa′

12(pρρ′)
from now on. Also, we will suppress the color indices because the equation has the same
form for any choice of colors. Thus, the gap equation becomes∑

qσσ′

M(pρρ′)(qσσ′)Σ̃
(−)
12(qσσ′) = β Σ̃(−)

12(pρρ′) , (2.12)
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where the β-independent matrixM(pρρ′)(qσσ′) is defined in figure 2(b). The explicit forms
of M(pρρ′)(qσσ′) for staggered and Wilson fermions are given in appendix A. The largest
eigenvalue λ1 ofM is identified as the critical value of β

βc = λ1[M] (2.13)

since no condensate occurs above this value; i.e., the system is in a normal phase at weaker
coupling. In order to obtain the largest eigenvalue, we use the power iteration method as
explained in appendix B. From the eigenvector corresponding to the largest eigenvalue βc,
we obtain the form of the Cooper pair condensate at the critical point. Note also that the
use of Σ̃21 instead of Σ̃12 leads to the same condition.

The condition (2.13) can be regarded as a generalization of the Thouless criterion [48],
which is given by the divergence of the T-matrix for specific types of interaction. Indeed,
the T-matrix given diagrammatically in figure 3 implies that eq. (2.12) is equivalent to the
divergence of the T-matrix.

3 Results for the critical point and the Cooper pair condensate

In this section we use the general formalism in the previous section to determine the param-
eter region for the CSC and the form of the Cooper pair condensate at the critical point.
Our results for the critical point include large values of β, which correspond to a small
physical size of the system4 compared to Λ−1

QCD. In that case, our weak coupling analysis is
justifiable and provides an excellent testing ground for non-perturbative approaches such
as the complex Langevin method. In sections 3.1 and 3.2 we discuss the case of four-flavor
staggered fermions, which has the advantage of maintaining some part of chiral symmetry
explicitly. In section 3.3 we show our results in the case of Wilson fermions, which has the
advantage of applicability to any number of flavors.

3.1 The critical point for staggered fermions

Here we identify the boundary of the normal and CSC phases characterized by βc as a
function of the quark chemical potential µ on lattices L3

s × Lt = 43 × 64, 83 × 128 and
163 × 256. The chosen aspect ratio Ls/Lt = 1/16 is small enough to suppress the thermal
fluctuations that may destroy the CSC.

Figure 4 shows the phase diagram in the µ-β plane for staggered fermions on an
83 × 128 lattice with quark mass m = 0 and 0.1 in lattice units. The existence of the CSC
is suggested below βc although it may be affected by higher order corrections in the small

4Note that large β corresponds to small lattice spacing a through the relationship

β = Nc

2π β0 ln
(

1
aΛQCD

)2

(3.1)

with β0 = (11−2Nf/3)/4π in the weak-coupling regime according to the renormalization group of the QCD
coupling at the one-loop level. The system size decreases exponentially as β increases, and for Nf = 4,
Nc = 3 and Λ−1

QCD ∼ 1 fm, the lattice spacing becomes a ∼ 2 × 10−14 fm at β ∼ 20, which corresponds to
T ∼ 8×1013 MeV for Lt = 128 used in figure 4. CSC is realized even at high T due to a small spatial volume.
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Figure 4. The phase diagram in the µ-β plane. The region above the critical coupling βc corre-
sponds to the normal phase, whereas the region below βc corresponds to the CSC phase. The results
for staggered fermions on an 83 × 128 lattice with m = 0 (red solid line) and m = 0.1 (blue dashed
line) are shown. The solid gray line represents the quark number Nq for free quarks with m = 0.

β region. The obtained βc has many peaks as a function of µ similarly to the results for the
NJL model in a finite box [49]. Each peak corresponds to the enhancement of the energy
gap that occurs when µ is close to an energy level of the free quark

E(p) = sinh−1

√√√√ 3∑
i=1

sin2 pi +m2 , (3.2)

where the momentum in the first Brillouin zone is given by

{p|p ∈ BZs} =
{(2πn1

Ls
,

2πn2
Ls

,
2πn3
Ls

)∣∣∣∣− Ls
4 ≤ ni <

Ls
4 , ni ∈ Z

}
. (3.3)

The size of the momentum space is half (Ls/2) of the spatial lattice size since staggered
fermions correspond to Dirac fermions on a coarser lattice with twice as large lattice spacing
as the original one. Note that the peak at µ = 0 that appears for m = 0 shifts for finite
m to the location corresponding to the lowest energy level E(0) = sinh−1m. This peak is
considered to be a finite-size artifact since it is caused by the condensate of quark-quark and
antiquark-antiquark pairs with each (anti)quark having zero momentum, which vanishes
in the thermodynamic limit Ls →∞.

In figure 4 we also plot the quark number for free quarks given by

Nq = NspNcNf
∑

p∈BZs

[nF(E(p)− µ)− nF(E(p) + µ)] , (3.4)

where Nsp = 2, Nc = 3 and Nf = 4 represent the spin, color, and flavor degrees of freedom,
respectively, and nF(x) = [exp(x/T ) + 1]−1 represents the Fermi distribution function at
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Figure 5. (a) The critical coupling βc is plotted against the quark chemical potential µ for staggered
fermions with quark mass m = 0 on various lattices Ls = 4, 8, 16 with a fixed aspect ratio Ls/Lt =
1/16. Appropriate normalization is used to reveal the expected scaling behavior at large Ls. The
gray vertical lines indicate the expected positions of the peaks in the Ls →∞ limit. (b) The height
βc/ lnLs and the position Lsµ/(2π) of the peaks are plotted against 1/Ls for momentum modes p =
(2π/Ls)(1, 0, 0), (2π/Ls)(1, 1, 0), (2π/Ls)(1, 1, 1). The lines in the plot below represent µ = E(p).

temperature T . As µ increases, the Fermi sphere becomes larger and includes more high-
momentum modes, which leads to the stepwise increase of Nq [50]; i.e., the quark number
Nq jumps when µ reaches µ = E(p), a discrete energy level of quarks. The critical βc has
a peak at µ corresponding to the jump of Nq. This is consistent with the picture that the
condensate is mainly caused by the scattering of fermions near the Fermi surface.

Next, let us discuss the lattice-size dependence of βc. By using the dimensional analysis
and the β function at the one-loop level, we expect a scaling behavior

βc ∼ f
(
L̂µ̂, L̂T̂

)
ln
(

1
aΛQCD

)
= f

(
Lsµ,

Ls
Lt

)
ln
(

Ls

L̂ΛQCD

)
, (3.5)

where a is the lattice spacing, f is a dimensionless function, while L̂ = aLs, µ̂ = µ/a and
T̂ = 1/(aLt) are the dimensionful spatial extent, the quark chemical potential and the
temperature, respectively. Eq. (3.5) suggests

βc ∝ lnLs (3.6)

with the dimensionful quantities µ̂, T̂ and L̂ fixed, or equivalently, Lsµ, Ls/Lt and L̂ fixed.
Figure 5(a) shows the lattice-size dependence of βc for a fixed aspect ratio Ls/Lt = 1/16.
In figure 5(b) we show the Ls dependence of the height and the position of the peaks corre-
sponding to the momentum p = (2π/Ls)(1, 0, 0), (2π/Ls)(1, 1, 0), (2π/Ls)(1, 1, 1). For all
momenta, βc/ lnLs depends linearly on 1/Ls and converges to a finite value as Ls → ∞,

– 8 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
1

representation condensate Ncomp

scalar
S̃fgs (p) = εab3

〈
ψ̃af (p)Γsψ̃bg(−p)

〉
1

Γs = γ5C

pseudo-scalar
S̃fgps (p) = εab3

〈
ψ̃af (p)Γpsψ̃bg(−p)

〉
1

Γps = C

vector
S̃fgv,ν(p) = εab3

〈
ψ̃af (p)Γv,νψ̃bg(−p)

〉
4

Γv,ν = Cγ5γν

pseudo-vector
S̃fgpv,ν(p) = εab3

〈
ψ̃af (p)Γpv,νψ̃bg(−p)

〉
4

Γpv,ν = Cγν

self-dual antisymmetric
tensor

S̃fgt,νν′(p) = εab3
〈
ψ̃af (p)Γt,νν′ψ̃bg(−p)

〉
3

Γt,νν′ = Cγ5σνν′

pseudo-self-dual
antisymmetric tensor

S̃fgpt,νν′(p) = εab3
〈
ψ̃af (p)Γpt,νν′ψ̃bg(−p)

〉
3

Γpt,νν′ = Cσνν′

Table 1. The irreducible representations of the Euclidean Lorentz group for the Cooper pairs. The
condensate and the number of components Ncomp that correspond to each representation are also
shown. We use the Euclidean Dirac gamma matrices γν , γ5 = γ1γ2γ3γ4, σνν′ = (i/2)[γν , γν′ ] and
the charge conjugation operator C = γ2γ4. Note that Ncomp = 3 for S̃fgt(pt),νν′(p) is obtained from
the constraints S̃fgt(pt),νν′(p) = −S̃fgt(pt),ν′ν(p) and S̃fgt(pt),ν1ν2

(p) = (i/2)εν1ν2ν3ν4 S̃
fg
t(pt),ν3ν4

(p).

which suggests that the height of each peak scales as lnLs for large Ls. The peak po-
sitions agree with µ = E(p) and converge to Lsµ/(2π) =

√
n2

1 + n2
2 + n2

3 (n1,2,3 ∈ Z) as
Ls → ∞. In fact, we find that the peak height βc at µ = 0 is almost independent of Ls
and it does not follow the scaling (3.6) unlike the other peaks,5 which is consistent with
our aforementioned interpretation that the peak at µ = 0 is merely a finite-size artifact.

3.2 The Cooper pair condensate for staggered fermions

The Cooper pair condensate at the critical point can be obtained from the eigenvector
corresponding to the largest eigenvalue βc ofM through eq. (2.8) up to an overall factor.

5See the decrease of the peak height at µ = 0 with increasing Ls.
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Figure 6. The three largest eigenvalues λ1,2,3 ofM for staggered fermions on an 83 × 128 lattice
are plotted against the quark mass m at µ = E(|p| = 2π/Ls).

We define the Cooper pair condensate in the momentum space as

S̃fgαβ(p) ≡
∑
a,b

εabcS̃
ab
12,(fα)(gβ)(p) =

∑
a,b

εabc
〈
ψ̃afα(p)ψ̃bgβ(−p)

〉
, (3.7)

where ψ̃afα(p) is the four-flavor Dirac fermion field with the 4d momentum p = (p, p4)
constructed from the staggered fermion field with a, f and α being the color, flavor and
spinor indices, respectively; see eq. (A.3). We fix the color index to c = 3 on the right-
hand side of eq. (3.7) since the following results do not depend on this choice. We have
confirmed that eq. (3.7) has large values when p satisfies µ ≈ E(p) and p4 is given by the
lowest Matsubara frequencies p4 = ±π/Lt [43], which is consistent with the fact that the
condensate is formed by quarks with momenta near the Fermi surface.

Since the Cooper pair is a product of two Dirac spinors, it can be decomposed into
irreducible representations of the Euclidean Lorentz group as

S̃fgαβ(p) = 1
4Γs

αβS̃
fg
s (p) + 1

4Γps
αβS̃

fg
ps (p) + 1

4
∑
ν

Γv,ν
αβ S̃

fg
v,ν(p) + 1

4
∑
ν

Γpv,ν
αβ S̃fgpv,ν(p)

+ 1
8
∑
ν>ν′

Γt,νν′
αβ S̃fgt,νν′(p) + 1

8
∑
ν>ν′

Γpt,νν′
αβ S̃fgpt,νν′(p) , (3.8)

where the quantities on the right-hand side are defined in table 1. Note that Γs(ps)
αβ and

Γt(pt),νν′
αβ are anti-symmetric with respect to the exchange of α and β, while Γv(pv),ν

αβ are
symmetric. Strictly speaking, the Euclidean Lorentz symmetry is broken to the discrete
rotational group on the lattice. However, the violation is expected to be small for βc at µ
corresponding to the peaks (See the values of βc in figure 4.). The Dirac gamma matrices
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Staggered 8^3x128, 1st peak

s ps v pv t pt
0.0

0.2
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0.6

0.8

1.0

s ps v pv t pt
0.0
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1.0

s ps v pv t pt
0.0

0.2
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R i

i i i

Orthogonal bases of degenerate space of the largest eigenvalue Eigenvector of the 2nd largest eigenvalue

Staggered, , 83 × 128 m = 0

Figure 7. The components of the Cooper pair condensate Ri (i = s, ps, v, pv, t, pt) for staggered
fermions on an 83 × 128 lattice with m = 0 at µ = E(|p| = 2π/Ls). The figures on the left and the
middle show the results for the two orthogonal bases of the eigenspace of the degenerate two largest
eigenvalues βc as described in the text. The figure on the right shows the result for the eigenvector
corresponding to the second largest eigenvalue.

are defined, for instance, by

γi =

 0 iσi

−iσi 0

 , γ4 =

I2 0
0 −I2

 (3.9)

with the Pauli matrices σi and the 2× 2 identity matrix I2.
To investigate the components of the Cooper pair condensate, we define

Rs(ps) = A
∑
p,f,g

∣∣∣S̃fgs(ps)(p)
∣∣∣2 , (3.10)

Rv(pv) = A
∑
p,f,g,ν

∣∣∣S̃fgv(pv),ν(p)
∣∣∣2 , (3.11)

Rt(pt) = A

2
∑
ν>ν′

∑
p,f,g

∣∣∣S̃fgt(pt),νν′(p)
∣∣∣2 , (3.12)

where A is a normalization factor chosen so that
∑
i=s,ps,v,pv,t,ptRi = 1. The results are

almost the same even if we restrict the sum over the momentum to the region µ ≈ E(p)
and p4 = ±π/Lt, where the Cooper pair condensate becomes large.

In figure 6 we plot the three largest eigenvalues λ1,2,3 ofM against the quark mass. As
one approaches m = 0, the two largest eigenvalues come close to each other, which implies
the double degeneracy at m = 0. As we discuss later, this degeneracy is related to the U(1)
chiral symmetry of staggered fermions, which is respected even at a finite lattice spacing.
In figure 7 we show the components of the Cooper pair condensate represented by Ri for
the eigenvectors corresponding to the eigenvalues up to the third largest one for m = 0.
For the two largest eigenvalues, which are degenerate as shown in figure 6, we define the
corresponding two eigenvectors in such a way that either the scalar or the pseudo-scalar
component becomes zero. In general, the Cooper pair condensate at the critical point is
represented by a linear combination of the scalar and the pseudo-scalar components with
the rest of the components being small.
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Staggered 4^3x64, 1st peak
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Staggered, , 43 × 64 m = 0

Figure 8. The same as figure 7 except that the lattice size is 43 × 64.
Staggered 8^3x128, mq=0.4, 1st peak
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0.8
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0.8
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i i i

Eigenvector of 

the largest eigenvalue

Eigenvector of 

the 2nd largest eigenvalue

Eigenvector of 

the 3rd largest eigenvalue

Staggered, , 83 × 128 m = 0.4

Figure 9. The components of the Cooper pair condensate Ri (i = s, ps, v, pv, t, pt) for the eigen-
vectors corresponding to the eigenvalues up to the third largest one for staggered fermions on an
83 × 128 lattice with m = 0.4 at µ = E(|p| = 2π/Ls).

In figure 8 we show the results on a 43×64 lattice. By comparing them with the results
on an 83 × 128 lattice in figure 7, we observe that the components other than the scalar
and the pseudo-scalar are suppressed as the lattice size increases. This suggests that the
existence of these components is due to the breaking of the Euclidean Lorentz symmetry
by the lattice discretization. The result that the scalar or pseudo-scalar condensate is
favored is consistent with the previous work [37, 51–55], which shows that pairing that
breaks rotational symmetry is weaker. Similarly, the result of Ri for m = 0.4 is shown in
figure 9. The degeneracy of the largest eigenvalues is lifted due to the finite mass, and the
scalar condensate is favored at the critical point in contrast to the massless case. This is
consistent with a speculation that the effect of quark mass favors the scalar condensate
instead of the pseudo-scalar condensate [56].

Since the scalar and pseudo-scalar condensates are anti-symmetric with respect to the
spinor indices, they satisfy

S̃fgs(ps)(p) = −S̃gfs(ps)(−p) (3.13)

due to the anti-commuting property of the fermion fields. Eq. (3.13) can be rewritten as

S̃
(±)fg
s(ps) (p) = ∓S̃(±)gf

s(ps) (p) , (3.14)
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where we have defined the spatially symmetric and anti-symmetric components as

S̃
(±)fg
s(ps) (p) =

S̃fgs(ps)(p)± S̃
fg
s(ps)(−p)

2 . (3.15)

In order to determine which component is dominant, we calculate

R
(±)
s(ps) = A′

∑
f,g,p

∣∣∣S̃(±)fg
s(ps) (p)

∣∣∣2 , (3.16)

where A′ is a normalization factor chosen so that R(+)
s(ps) + R

(−)
s(ps) = 1. For both the scalar

and pseudo-scalar cases, we obtain R(+)
s(ps) ≈ 0.71 for an 83× 128 lattice, which implies that

the spatially symmetric component S̃(+)fg
s(ps) (p) is dominant.

Let us also comment (See ref. [43].) that S̃(+)fg
s(ps) (p) do not depend on the direction

of p, which suggests spatially isotropic s-wave superconductivity. Note that the complex
phase of S̃(+)fg

s(ps) (p), which is independent of p, can take an arbitrary value, reflecting the
spontaneous breaking of the U(1)B baryon-number symmetry ψ̃(p)→ eiθBψ̃(p) for θB ∈ R.

Next let us focus on the flavor structure of S̃(+)fg
s(ps) (p). Since it is anti-symmetric with

respect to the exchange of f and g as shown in eq. (3.14), we can decompose it as

S̃
(+)fg
s(ps) (p) = κ̃1,s(ps)(p)t

fg
1 + κ̃3,s(ps)(p)t

fg
3 + κ̃13,s(ps)(p)ω

fg
13 + κ̃24,s(ps)(p)ω

fg
24

+ κ̃25,s(ps)(p)(t2t5)fg + κ̃45,s(ps)(p)(t4t5)fg, (3.17)

where t1, t3, ω13, ω24, t2t5 and t4t5 are linearly independent anti-symmetric matrices defined
through tµ = tγµ, ωµν = (i/2)[tµ, tν ], t5 = t1t2t3t4. We calculate the coefficients κ̃j,s(ps)
numerically for m = 0 and m = 0.1 and find6

S̃(+)fg
s (p) ' κ̃13,s(p)ωfg13 , S̃(+)fg

ps (p) ' κ̃24,ps(p)ωfg24 . (3.18)

Let us discuss the chiral transformation properties of the Cooper pair condensate
S̃

(+)fg
s(ps) (p). Here we focus on the U(1)c chiral symmetry of staggered fermions, which is a

remnant of the SU(Nf)L × SU(Nf)R chiral symmetry of the continuum theory defined by
the transformation

ψ̃(p)→ eiθcγ5⊗t5ψ̃(p) , θc ∈ R , (3.19)

where γ5 = γ1γ2γ3γ4 and t5 act on the spinor and flavor indices, respectively. It is straight-
forward to derive the transformation

S̃
(+)fg
αβ (p)→ S̃

(+)fg
αβ (p) + iθc

∑
f ′,α′

t5,ff ′γ5,αα′S̃
(+)f ′g
α′β (p) +

∑
g′,β′

S̃
(+)fg′
αβ′ (p)t5,gg′γ5,ββ′


(3.20)

6We obtain
∑

p
|κ̃13,s(p)|2/κ̃2

sum,s = 1.000 and
∑

p
|κ̃24,ps(p)|2/κ̃2

sum,ps = 1.000 with κ̃2
sum,s(ps) =∑

p

∑
j=1,3,13,24,25,45 |κ̃j,s(ps)(p)|2, which shows that κ̃13,s(p) and κ̃24,ps(p) are dominant.
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under eq. (3.19) for infinitesimal θc. By contracting the spinor indices as in table 1 to
extract the scalar and pseudo-scalar components, one obtains the transformation

S̃(+)fg
s (p)→ S̃(+)fg

s (p) + 2iθcκ̃24,ps(p)ωfg13 , (3.21)

S̃(+)fg
ps (p)→ S̃(+)fg

ps (p) + 2iθcκ̃13,s(p)ωfg24 , (3.22)

which amounts to  κ̃13,s(p)
κ̃24,ps(p)

→ e2iθcσ1

 κ̃13,s(p)
κ̃24,ps(p)

 (3.23)

for a finite θc. Thus we find that the Cooper pair condensate breaks the U(1)c chiral
symmetry spontaneously, which is reflected in the double degeneracy for m = 0 in figure 6.
A finite mass explicitly breaks the symmetry and lifts the degeneracy of the scalar and
pseudo-scalar condensates.

In the continuum limit, it is expected that the degeneracy of the largest eigenvalues
in the massless case enhances from 2 to 12 due to the recovery of the original SU(4)L ×
SU(4)R chiral symmetry since there are six ways to select two flavors for anti-commuting
indices from four flavors. In other words, all the eigenvalues corresponding to the twelve
condensates κ̃1,s(ps), . . . , κ̃45,s(ps) in eq. (3.17) are expected to degenerate in the continuum
limit, which should be seen explicitly by using larger lattices than the ones used in this work.
Thus we expect that the condensate predicted in ref. [57] for four flavors can be realized.

3.3 Results for Wilson fermions

In this section we present our results for Wilson fermions, which have the advantage of ap-
plicability to any number of flavors at the expense of the explicit chiral symmetry breaking.
The analysis based on the gap equation is common to all Nf ≥ 2, whereas the single flavor
Nf = 1 case has to be treated separately since the absence of the flavor degrees of freedom
restricts the possible form of the condensate due to the anti-commutating property of the
fermion fields. Here we first discuss the Nf ≥ 2 case comparing the results with those for
Nf = 4 staggered fermions, and then discuss the Nf = 1 case.

Figure 10 shows the critical point βc as a function of the quark chemical potential
µ for Wilson fermions together with the result for staggered fermions. Note that the
largest eigenvalue βc is non-degenerate. Similarly to staggered fermions, we observe a peak
structure, where the peak positions correspond to the energy levels µ = E(p) with the
dispersion relation

E(p) = 2 sinh−1

√√√√√√
∑3
i=1 sin2 pi +

(
m+ 2

∑3
i=1 sin2 pi

2

)2

4
(
1 +m+ 2

∑3
i=1 sin2 pi

2

) . (3.24)

Here we define m = 1/(2κ) − 4 as the quark mass in the free theory with the hopping
parameter κ and the Wilson parameter r = 1. The momentum p is chosen to be in the
first Brillouin zone, which is given for Wilson fermions as

{p|p ∈ BZw} =
{(2πn1

Ls
,

2πn2
Ls

,
2πn3
Ls

)∣∣∣∣− Ls
2 ≤ ni <

Ls
2 , ni ∈ Z

}
. (3.25)
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Figure 10. The critical coupling βc on (a) 43 × 64 and (b) 83 × 128 lattices is plotted against the
quark chemical potential µ for Nf ≥ 2 Wilson (red solid lines) and staggered (blue dashed lines)
fermions, respectively. The hopping parameter for Wilson fermions is set to κ = 0.12195, which
corresponds to m = 0.1 in the free theory. The mass of staggered fermions is set to m = 0.1 for
comparison.

s ps v pv t pt
0.0

0.2

0.4

0.6

0.8

1.0

s ps v pv t pt
0.0

0.2

0.4

0.6

0.8

1.0

Wilson

R i

i i

Wilson, , 83 × 128 κ = 0.12195Wilson, , 43 × 64 κ = 0.12195

Figure 11. The components of the Cooper pair condensate Ri (i = s, ps, v, pv, t, pt) for Nf ≥ 2
Wilson fermions on 43 × 64 and 83 × 128 lattices with κ = 0.12195 at µ = E(|p| = 2π/Ls).

The results for Wilson and staggered fermions agree in the small µ region, which is under-
standable since they have the same low-momentum properties with the dispersion relation
E(p) ≈

√
p2 +m2. Better agreement is observed for the larger lattice, which shifts the

peaks towards smaller µ. On the other hand, the results exhibit some discrepancies at
large µ. Note, in particular, that the Wilson fermions have additional peaks there, which
is understood as a consequence of the difference in the size of the first Brillouin zone (See
eqs. (3.3) and (3.25).).

In figure 11 we show the components of the Cooper pair condensate by calculating Ri
(i = s, ps, v, pv, t, pt), which are defined in the same manner as in the staggered fermion
case (3.10)–(3.12). We find that the Cooper pair condensate is of the scalar type, which
agrees with the result for staggered fermions with a finite mass.

As in the staggered fermion case, we calculate (3.16) and find that R(+)
s ≈ 0.9997 for the

scalar case with an 83× 128 lattice, which implies that the spatially symmetric component
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Figure 12. (Left) The critical point βc is plotted against the quark chemical potential for Wilson
fermions on an 83 × 128 lattice with κ = 0.12195. The blue dashed line corresponds to the Nf = 1
case, whereas the red solid line corresponds to the Nf ≥ 2 case. (Right) The components of the
Cooper pair condensate Ri (i = s, ps, v, pv, t, pt) for Nf = 1 Wilson fermions on an 83 × 128 lattice
with κ = 0.12195 and µ = E(|p| = 2π/Ls).

S̃
(+)fg
s (p) is dominant. Thus we find that the dominant Cooper pair condensate is anti-

symmetric with respect to the flavor indices, which implies two-flavor color superconduc-
tivity (2SC) for Nf = 2 and color-flavor locked color superconductivity (CFL) for Nf = 3.

Let us finally comment on the single-flavor case Nf = 1, which is realized by restricting
the eigenvector space so that the condensate satisfies the anti-commuting property of the
fermion fields without the flavor indices as described in appendices A.2 and B.1. Figure 12
shows a comparison between Nf = 1 and Nf ≥ 2. From the left panel, we observe that
the CSC region shrinks in the Nf = 1 case due to the restriction of the eigenvector space.
From the right panel, we find that the scalar component is comparable to the vector and
pseudo-vector components unlike the Nf ≥ 2 case. Note here that, in the case of Nf = 1,
the scalar condensate is spatially anti-symmetric suggesting the p-wave superconductivity,
whereas the vector and pseudo-vector components are spatially symmetric suggesting the
s-wave superconductivity. Note, in particular, that the latter implies the color-spin locking,
which is predicted in ref. [53]. Which case is realized in the continuum limit remains to be
seen by calculations on a larger lattice. By the same token, the difference of βc between
the Nf = 1 and Nf ≥ 2 cases, which is visible only for µ . 0.4 in the left panel, is expected
to extend to the larger µ region in the continuum limit.

4 Summary and discussions

In this paper we provided analytic predictions for the CSC on the lattice, using the fact
that the gap equation reduces to a linear equation by focusing on the critical point. In
particular, we determined the boundary of the normal and CSC phases in the µ-β plane
for both staggered and Wilson fermions. The phase boundary shows characteristic peak
structure as a function of the quark chemical potential, which is due to the discretization
of the quark energy levels in finite systems.
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Furthermore, we investigated the form of the Cooper pair condensate at the criti-
cal point. In the case of four-flavor staggered fermions, we observed that the scalar and
pseudo-scalar condensates are favored in the massless limit of quarks owing to the U(1)c
chiral symmetry of staggered fermions, which is a remnant of the SU(4)L × SU(4)R chiral
symmetry in the continuum. The observed Cooper pair condensate of four-flavor staggered
fermions breaks the chiral symmetry spontaneously as well as the U(1)B baryon-number
symmetry. When the quark mass is finite, we found that the degeneracy of the scalar and
pseudo-scalar condensates is lifted and that the scalar condensate is favored. From the
momentum components of the condensate, we confirmed that spatially isotropic s-wave su-
perconductivity is realized by the Cooper pairs composed of quarks near the Fermi surface.

In the case of Wilson fermions, we find that the results for Nf ≥ 2 are essentially the
same as staggered fermions with a finite mass. In particular, we find that the Cooper pair
condensate is anti-symmetric with respect to the flavor indices, which implies 2SC and CFL
in the case of Nf = 2 and Nf = 3, respectively. The Nf = 1 case was discussed separately
and the results turned out to be different from the Nf ≥ 2 case.

Our results obtained for QCD in a small box provides useful predictions for first-
principle calculations based on methods to overcome the sign problem such as the complex
Langevin method. Simulations in this direction are ongoing [32, 33]. Once our predictions
are reproduced, the next step would be to make the physical size of the box larger either
by decreasing β or by using a larger lattice in order to investigate the CSC in a fully
non-perturbative regime.

As an extension of our work, it would be interesting to include the chiral conden-
sate, which corresponds to the diagonal components of the Dyson equation in the Nambu-
Gor’kov formalism.
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A Explicit forms of M for staggered and Wilson fermions

In this appendix we give the explicit forms of M for staggered and Wilson fermions. We
also make some remarks on the numerical calculation ofM.
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A.1 Staggered fermions

Here we derive the form of M in the case of staggered fermions. The action of staggered
fermions with mass m and the quark chemical potential µ in lattice units is given by

S = 1
2
∑

n,ν,a,a′

ην(n)
{
χa(n)eδν4µUν,aa′(n)χa′(n+ ν̂)− χa(n− ν̂)e−δν4µU †ν,aa′(n− ν̂)χa′(n)

}
+m

∑
n,a

χa(n)χa(n) + Sg . (A.1)

Sg is the action for gluons, n is an integer vector labeling the position on the hypercube, a
and b are color indices, ν̂ is the unit vector in the ν (= 1, 2, 3, 4) direction, χ(n) and χ(n)
are the staggered fermion fields, and Uν(n) = eig

∑
B
ABν (n)TB is the link variable related

with the gluon field ABν (n). We have also introduced the usual site-dependent sign factor
ην(n) = (−1)

∑ν−1
ν′=1 nν′ . We impose periodic boundary conditions on χ(n) and χ(n) in

the spatial (ν = 1, 2, 3) directions and anti-periodic boundary conditions in the temporal
(ν = 4) direction. The lattice extent in the ν direction is denoted by Lν .

First let us derive the Feynman rules for staggered fermions. Following ref. [58], we
redefine the fermion field as

χaρ(N) = χa(2N + ρ) , (A.2)

where ρ is a four-vector with ρν = 0 or 1, while N is a new lattice coordinate labeling the
sites on a lattice with twice as large spacing as the original one. This new field (A.2) is
related to the four-flavor Dirac fermion field through

ψafα(N) ∼
∑
ρ

(Tρ)αfχaρ(N) , (A.3)

where α and f are the spinor and flavor indices, respectively, and Tρ is defined by

Tρ = γρ1
1 γρ2

2 γρ3
3 γρ4

4 (A.4)

with γµ being the Euclidean Dirac gamma matrices. In terms of χaρ(N), the free part of
the action is written as

Sfree
f =

∑
N,N ′,ρ,ρ′,a,a′

χaρ(N)Daa′
ρρ′ (N −N ′)χa

′
ρ′(N ′) , (A.5)

Daa′
ρρ′ (N) = δa,a′

∑
ν

ην(ρ)
2

{
eδν4µ(δρ+ν̂,ρ′δN,0 + δρ−ν̂,ρ′δN+ν̂,0) (A.6)

− e−δν4µ(δρ−ν̂,ρ′δN,0 + δρ+ν̂,ρ′δN−ν̂,0)
}

+ m̃qδa,a′δρρ′δN,0 ,

where ην(2N + ρ) = ην(ρ) has been used. Let us switch to the momentum representation
by using the Fourier transformation

f̃(p) =
∑
N

e−ip·(2N)f(N) for f = χaρ, χ
a
ρ , (A.7)
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and restrict the range of momentum p to the first Brillouin zone

{p|p ∈ BZs} =
{(2πn1

L1
,

2πn2
L2

,
2πn3
L3

,
(2n4 + 1)π

L4

)∣∣∣∣− Lν
4 ≤ nν <

Lν
4 , nν ∈ Z

}
, (A.8)

using the periodicity f̃(p + πν̂) = f̃(p). Eq. (A.5) can then be written in the momentum
representation as

Sfree
f =

∑
p∈BZs

∑
ρ,ρ′,a,a′

χ̃
a
ρ(p)D̃aa′

ρρ′ (p)χ̃a
′
ρ′(−p) , (A.9)

D̃aa′
ρρ′ (p) = δaa′

(∑
ν

iΓνρρ′(2p) sin pν +mδρρ′

)
, (A.10)

from which we obtain the fermion propagator

D̃−1,aa′
ρρ′ (p) = δaa′D̃

−1
ρρ′(p) = δaa′

−
∑
ν iΓνρρ′(2p) sin pν +mδρρ′∑

ν sin2 pν +m2 . (A.11)

Here we have introduced pν = pν − iµδν4 and

Γνρρ′(2p) = eip·(ρ−ρ
′)(δρ+ν̂,ρ′ + δρ−ν̂,ρ′)ην(ρ) , (A.12)

which satisfies the same algebra as the Dirac gamma matrices as {Γν(2p),Γν′(2p)}ρσ =
2δνν′δρσ.

By expanding Uν(n) = eig
∑

B
ABν (n)TB with respect to g, we obtain the interaction term

Sint
f = ig

∑
N,N ′,ρ,ρ′,a,a′,B

χaρ(N)
∑
ν

ην(ρ)
2

×
{
eδν4µABν (2N + ρ)TBaa′(δρ+ν̂,ρ′δN,N ′ + δρ−ν̂,ρ′δN+ν̂,N ′) (A.13)

− e−δν4µABν (2N + ρ− ν̂)TBaa′(δρ−ν̂,ρ′δN,N ′ + δρ+ν̂,ρ′δN−ν̂,N ′)
}
χa
′
ρ′(N ′) +O(g2) ,

which can be rewritten in the momentum space as

Sint
f = 1

V ′V

∑
k∈BZg

∑
p∈BZs

∑
ρ,ρ′,a,a′,B,ν

igΠBν
ρρ′,aa′(p, k)χ̃aρ(−p)ÃBν (−k)χ̃a′ρ′(p+ k) , (A.14)

using the three-point vertex ΠBν
ρρ′,aa′(p, k) given by

ΠBν
ρρ′,aa′(p, k) = e−ik·ρ cos

(
pν + kν

2

)
Γνρρ′ (2(p+ k))TBaa′ . (A.15)

Here we have introduced the momentum representation for the gluon field [58] as

ABν (n) = 1
V

∑
k∈BZg

eik·n+ikν/2ÃBν (k) , (A.16)

where V = L1L2L3L4 and

{k|k ∈ BZg} =
{(2πn1

L1
,

2πn2
L2

,
2πn3
L3

,
2πn4
L4

)∣∣∣∣− Lν
2 ≤ nν <

Lν
2 , nν ∈ Z

}
. (A.17)

– 19 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
1

1

B, μ B′ , μ′ k

1

ρ′ , a′ ρ, ap
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= δaa′D̃
−1
ρρ′(p) = δaa′

−
∑
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ν sin2 pν +m2

1
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1
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1
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p + k , ρ′ , a′ 

1

S12−p, ρ′ , a′ p, ρ, a

1

p, ρ

−p, ρ′ 

q, σ

−q, σ′ 

= δBB′δνν′G(k) = δBB′δνν′
1

4
∑
ν′′ sin2

(
kν′′

2

)

1
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1
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1

p, ρ, a
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p + k , ρ′ , a′ 

1

S12−p, ρ′ , a′ p, ρ, a

1
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−p, ρ′ 

q, σ

−q, σ′ 
= igTBaa′Πν

ρρ′(p, k) = igTBaa′e
−ik·ρ cos

(
pν + kν

2

)
Γνρρ′ (2(p+ k))

Figure 13. Feynman rules for staggered fermions used in our calculation.

p qq − π

normalumklapp

− π
2

momentumBZf
π
2 pq q + π

normal umklapp

− π
2

momentumBZf
π
2

(a) (b)

Figure 14. One-dimensional illustration of the two possible scatterings in the cases of (a) p ≤ q

and (b) q < p for the fermion momenta p and q.

Note that the range of momentum in the first Brillouin zone is different from eq. (A.8) for
the fermion field. The gluon propagator is given by [58]

GBB
′

νν′ (k) = δBB′

k̃2

{
δνν′ − (1− α0) k̃ν k̃ν

′

k̃2

}
= G(k)δBB′

{
δνν′ − (1− α0) k̃ν k̃ν

′

k̃2

}
, (A.18)

where k̃ν = 2 sin(kν/2) and α0 is the gauge parameter. Since the results are independent of
the choice of α0 at the one-loop level, we choose the Feynman gauge α0 = 1 for simplicity.

Figure 13 summarizes the Feynman rules used in our calculation. The other terms,
such as the multi-gluon vertices, contribute only to higher-order corrections and hence are
ignored in our calculation. Using these rules, we obtainM defined in figure 2(b) as

M(pρρ′)(qσσ′) = Nc + 1
V

∑
ν,γ,γ′

∑
k∈BZg

δ̃F
q−p−kG(k)

×Πν
ργ(p, k)D̃−1

γσ (p+ k)Πν
ρ′γ′(−p,−k)D̃−1

γ′σ′(−p− k) . (A.19)

Here we have introduced the periodic delta function

δ̃F
k =

1 (k1,··· ,4 ∈ πZ)
0 (otherwise) ,

(A.20)

which has the period π in each direction inherited from that of BZf in (A.8). It should
be noted that the difference in the size of the first Brillouin zone between fermions and
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gluons allows two scattering processes, namely the normal and umklapp scatterings, in each
direction for any p and q. Figure 14 is a one-dimensional illustration of these processes.
Due to the range of the gluon momentum −π ≤ k < π, not only the normal process but
also the umklapp process, where p+k exceeds the domain of the first Brillouin zone, always
occurs for any fermion momenta. In four dimensions, the existence of both scatterings in
each direction is represented by the solution of δ̃F

q−p−k = 1 in −π ≤ kν < π given by

kν = qν − pν − πρ′′ν sgn+(qν − pν) (ρ′′ν = 0, 1) (A.21)

with

sgn+(x) =

1 for x ≥ 0
−1 for x < 0 .

(A.22)

After performing the sum over k in eq. (A.19), we obtain

M(pρρ′)(qσσ′) = Nc + 1
V

∑
ν,γ,γ′

∑
ρ′′

G
(
k(q, p, ρ′′)

)
Πν
ργ

(
p, k(q, p, ρ′′)

)
D̃−1
γσ (p+ k(q, p, ρ′′))

×Πν
ρ′γ′

(
−p,−k(q, p, ρ′′)

)
D̃−1
γ′σ′(−p− k(q, p, ρ′′)) , (A.23)

where k(q, p, ρ′′) is defined by eq. (A.21). In the case of Wilson fermions discussed in
the following subsection, only one of the normal and umklapp scatterings occurs for a
given momentum transfer because there is no difference in the first Brillouin zone between
fermions and gluons.

A.2 Wilson fermions

Next let us derive the form ofM in the case of Wilson fermions, where the fermion fields
on the lattice site N are denoted by ψafα(N) and ψafα(N) with a, f and α being the color,
flavor and spinor indices, respectively. The action is given by

S = 1
2

∑
N,a,a′,α,α′,f,ν

{
ψ
a
fα(N)(γν)αα′eµδν4Uν,aa′(N)ψa′fα′(N + ν̂) (A.24)

−ψafα(N + ν̂)(γν)αα′e−µδν4U †ν,aa′(N)ψa′fα′(N)
}

+m
∑

N,a,α,f

ψ
a
fα(N)ψafα(N)

− r

2
∑

N,a,a′,α,f,ν

{
ψ
a
fα(N)eµδν4Uν,aa′(N)ψa′fα(N + ν̂)

−2ψafα(N)δa,a′ψa
′
fα(N) + ψ

a
fα(N + ν̂)e−µδν4U †ν,aa′(N)ψa′fα(N)

}
+ Sg ,

where m and µ are the mass and the quark chemical potential in lattice units, respectively,
and r is the Wilson parameter, which defines the hopping parameter as κ = 1/(2m+ 8r).

Similarly to staggered fermions, the Feynman rules are derived from the action [58]. In
figure 15 we summarize the Feynman rules in the momentum space used in our calculation.
According to these rules,M is evaluated as

M(pfαf ′α′),(qhβh′β′) = δfhδf ′h′
Nc + 1
V

G(q−p)
∑
γ,γ′,µ

Πµ
α′γ′(−p, q)D̃

−1
γ′β′(q)Π

µ
αγ(p,−q)D̃−1

γβ (−q)

(A.25)

– 21 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
1

1

B, μ B′ , μ′ k

1

a′ , f′ , α′ a, f, αp

1

p, a, f, α
k , B, μ

p + k , a′ , f ′ , α′ 

1

S12−p, ρ′ , a′ p, ρ, a

1

p, ρ

−p, ρ′ 

q, σ

−q, σ′ 

= δaa′δff ′D̃
−1
αα′(p) = δaa′δff ′

−
∑
ν iγ

ν
αα′ sin pν +M(p)δαα′∑
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Figure 15. Feynman rules for Wilson fermions used in our calculation. We have introduced
qν = qν − iµδν4 and M(p) = m+ 2r

∑
ν sin2(pν/2).

with V = L1L2L3L4. As for the indices of M, let us recall that the indices ρ, ρ′, σ and
σ′ used in section 2 represent the flavor and spinor indices collectively. The first Brillouin
zone for Wilson fermions is given by the momentum region

{p|p ∈ BZw} =
{(2πn1

L1
,

2πn2
L2

,
2πn3
L3

,
2πn4
L4

)∣∣∣∣− Lν
2 ≤ nν <

Lν
2 , nν ∈ Z

}
. (A.26)

Since M acts trivially on the flavor indices, i.e., M(pfαf ′α′),(qhβh′β′) ∝ δfhδf ′h′ , the
largest eigenvalue is independent of Nf as far as the number of flavors is Nf ≥ 2. For
the single flavor case Nf = 1, however, the largest eigenvalue can be different because of
the restriction on the eigenvectors Σ̃(−)

12(pfαf ′α′) due to the anti-commuting property of the
fermion fields (See appendix B.1.). Namely, since Σ̃(−)

12(pfαf ′α′) = Σ̃(−)
12(pαα′), the eigenvector

must satisfy Σ̃(−)
12(pαα′) = Σ̃(−)

12(−pα′α) because of eq. (B.3). This is in contrast to the multi-
flavor case, where more general types of condensate are allowed since Σ̃(−)

12(pfαf ′α′) can be
anti-symmetric with respect to the flavor indices f and f ′.

A.3 Some remarks on the calculation of M

Here we make some remarks on the numerical calculation of M that applies to both
staggered and Wilson fermions. First we point out that the elements corresponding to
zero momentum transfer diverge due to G(0), which is the contribution from the gluon
zero modes. This is an artifact of perturbation theory on a finite lattice, which disappears
in the large volume limit. Note also that the divergence does not appear in non-perturbative
treatments (See ref. [59], for instance). In this work, we simply omit the contribution from
G(0) by hand.

The next point concerns the memory consumption by M, which is a huge and dense
matrix. For instance, for staggered fermions, the number of elements is 256V 2 for the
lattice volume V , which amounts to 18TB for V = 83× 128 with double precision complex
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numbers. Therefore, keeping all the elements in the memory is not practical. Instead, we
decomposeM into parts whose memory consumption is at most O(V ), such as G and D̃−1

in eq. (A.23), and calculate the elements ofM from these parts every time they are needed.

B Details of the power iteration method

B.1 Initial condition for the power iteration

In the power iteration method, one extracts the largest eigenvalue and the corresponding
eigenvector by multiplyingM many times to a randomly selected initial vector. However,
in order to obtain eigenvectors with appropriate symmetry properties, one needs to impose
some condition on the initial vector.

Note that the anomalous propagator for fermions S̃(aa′)
12,ρρ′(p) = 〈ψ̃aρ(p)ψ̃a′ρ′ (−p)〉 satisfies

the relation

S̃aa
′

12,ρρ′(p) = −S̃a′a12,ρ′ρ(−p) . (B.1)

Similarly, the anomalous self-energy satisfies

Σ̃aa′
12,ρρ′(p) = −Σ̃a′a

12,ρ′ρ(−p) , (B.2)

as one can see from eq. (2.5). Therefore, we have

Σ̃(−)
12(pρρ′) = Σ̃(−)

12(−pρ′ρ) (B.3)

for Σ̃(−)
12(pρρ′) in eq. (2.12).
Let us decompose the vector space V on whichM acts as V = VF + VB, where VF(B)

is the vector space whose elements satisfy

v(qρρ′) = v(−qρ′ρ) for v ∈ VF , (B.4)
v(qρρ′) = −v(−qρ′ρ) for v ∈ VB . (B.5)

By using the relation

M(pρρ′)(qσσ′) =M(−pρ′ρ)(−qσ′σ) , (B.6)

which is obtained from the representation in figure 2(b), one can show that

Mv ∈ VF if v ∈ VF , (B.7)
Mv ∈ VB if v ∈ VB , (B.8)

which implies that VF and VB are not mixed by multiplying M. Therefore, the initial
vector must satisfy eq. (B.4) in order to obtain the eigenvector satisfying eq. (B.3).

The eigenvalue equation for Wilson fermions reduces to∑
qββ′

M′(pαα′)(qββ′)Σ̃
(−)
12(qfβf ′β′) = β Σ̃(−)

12(pfαf ′α′) , (B.9)
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whereM′ is related toM given by eq. (A.25) as

M(pfαf ′α′),(qhβh′β′) = δfhδf ′h′M′(pαα′),(qββ′) .

As we mentioned in appendix A.2, the allowed forms of the eigenvector Σ̃(−)
12(pfαf ′α′) are

different between the single- and multi-flavor cases for Wilson fermions. Let us decompose
Σ̃(−)

12(pfαf ′α′) into the symmetric and antisymmetric parts with respect to f and f ′. Abbre-
viating the flavor indices, we denote the former and latter parts by Σ̃(−+)

12(pαα′) and Σ̃(−−)
12(pαα′),

respectively. In the single-flavor case, Σ̃(−−)
12(qββ′) does not exist, which forces us to choose

the initial vector to satisfy the condition

Σ̃(−+)
12(qββ′) = Σ̃(−+)

12(−qβ′β) (B.10)

due to eq. (B.3).

B.2 Extension to the second and the third largest eigenvalues

In this section we extend the power iteration method to the calculation of the second and
the third largest eigenvalues as well as the corresponding eigenvectors. Let us assume that
the largest eigenvalue λ1 and the corresponding eigenvector v1 ofM defined in figure 2(b)
are obtained. If one defines ṽ by projecting out the v1 component from v and applies the
power iteration to ṽ, the second largest eigenvalue λ2 and the corresponding eigenvector
v2 are obtained. By repeating this procedure, one obtains the third largest one as well.

If M were Hermitian, the projection can be made by using the orthogonality of the
eigenvectors. In fact,M is not Hermitian but pseudo-Hermitian [60–62]

M†(pρρ′)(qσσ′) =
[
ηMη−1

]
(pρρ′)(qσσ′)

(B.11)

with a Hermitian matrix η for both staggered and Wilson fermions.
In order to make the projection in this case, we need to consider the relationship

among the eigenvectors under the condition (B.11). Let λn and vn be an eigenvalue and
the corresponding eigenvector, respectively, with the ordering |λ1| ≥ |λ2| ≥ · · · . The
eigenvalue equation reads

Mvn = λnvn . (B.12)

By using its Hermitian conjugate and eq. (B.11), we obtain

v†nηM = λ∗nv
†
nη . (B.13)

Acting this on vm and using eq. (B.12), we have

(λm − λ∗n)v†nηvm = 0 . (B.14)

From this, we find that the eigenvalue λn is real if v†nηvn 6= 0 and that the eigenvectors
satisfy v†nηvm = 0 if λm 6= λ∗n, which can be regarded as a generalization of the properties
in the Hermitian case.
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Suppose we have already obtained v1, v2, . . . , vm−1 for an integer m ≥ 1, which satisfy
v†nηvn 6= 0 and v†nηvn′ = 0 for all n, n′ < m. Then we can get rid of these components as

ṽ = v −
∑
n<m

anvn , (B.15)

where the coefficient an for n < m is given by

an = v†nηv

v†nηvn
. (B.16)

As mentioned above, we can extract λm and vm by applying the power iteration to ṽ. As
far as v†nηvn 6= 0 is satisfied for the obtained eigenvectors, we can repeat the procedure to
extract other eigenvalues and eigenvectors. In the process of our calculations, we checked
v†nηvn 6= 0 for the obtained eigenvectors.
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