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1 Introduction

General relativity often arises as the leading term in a low-energy effective field theory (EFT),
in which the Einstein-Hilbert term receives higher-derivative corrections associated with new
physics. These higher-derivative terms are suppressed by powers of a mass scale associated
with degrees of freedom that have been integrated out, which sets the limit of validity of
the EFT. As a result, such terms usually produce only small corrections to the low-energy
physics. It was recently shown that maximally rotating black holes are an exception: small
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higher-derivative corrections to Einstein’s equation can result in tidal force singularities on
the horizon of large extremal Kerr black holes [1]. These singularities are unusual in that all
scalar curvature invariants remain finite. Nonextremal black holes remain smooth, but the
tidal forces blow up like a power of 1/T , where T is the black hole temperature. This power
is very small, so T must be exponentially small before large tidal forces appear.

We show that the inclusion of a nonzero black hole charge Q results in a much stronger
singularity at the horizon. In particular, the divergence of tidal forces as T → 0 is much
more rapid. Moreover, this result does not depend too much on the matter content of
the ultraviolet theory, as long as it generates higher-derivative terms containing the U(1)
gauge field, resulting in an Einstein-Maxwell EFT. For example, these terms — the so-called
Euler-Heisenberg Lagrangian — are generated if the ultraviolet contains charged particles
(in the case of our universe, the leading contribution to the Einstein-Maxwell EFT comes
from the electron loops), though a massive dilaton coupled to the Maxwell kinetic term can
also generate the effects of interest at tree level.

As we review in sections 2 and 5, the leading EFT corrections to Einstein-Maxwell theory
in four spacetime dimensions can be reduced to three four-derivative terms [2, 3],

∫
M

d4x
√
−g
(
c6R

abcd Fab Fcd + c7 Fab F
ab Fcd F

cd + c8 Fab F
bc Fcd F

da

)
. (1.1)

These terms produce singularities on the horizon for the following reason. Near an extremal
horizon the metric may be approximated as

g ≈ gNH + ργh, (1.2)

where gNH is the near-horizon metric, ρ is an affine distance from the horizon, h is a smooth
tensor, and the scaling dimension γ is determined from the equations of motion. For Einstein-
Maxwell solutions, the horizons are smooth and the leading corrections have integer γ, starting
with γ = 1. The EFT corrections to the action perturb this solution. While gNH is smooth,
γ can be shifted away from its integer value. For Kerr, the γ = 1 mode is not shifted, but
γ ≥ 2 is. We will show that for Kerr-Newman, γ = 1 is shifted by EFT corrections, and this
makes a significant difference in the strength of the singularity.

In ingoing null coordinates where ℓ = ∂/∂ρ is tangent to affinely parameterized null
geodesics, and setting m = ∂/∂ϕ for ϕ the coordinate of axisymmetry, the Weyl tensor
near the extremal horizon is

Cabcdℓ
ambℓcmd ∼ γ(γ − 1)ργ−2. (1.3)

Analogously, at finite temperature the tidal forces at the horizon are

Cabcdℓ
ambℓcmd|H ∼ γ(γ − 1)T γ−2. (1.4)

For Kerr, we showed in ref. [1] that Riemann-cubed corrections, with a sign determined
by the spin of the lightest massive particles integrated out at one loop (and dominated in
the standard model by the neutrinos), decrease γ slightly below 2, so there is a singularity.
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For Kerr-Newman, since γ = 1 is shifted, for any sign of δγ the singularity is stronger. To
first order in the coefficients ck,

Cabcdℓ
ambℓcmd|H ∼ δγ/T. (1.5)

Since the leading EFT corrections cause a large change to the horizon, one might expect
that higher-order terms will also cause large changes, so including just the four-derivative
terms is not reliable. As we discuss in section 9, this is not the case. The breakdown of
EFT is more subtle.

1.1 Rough estimates

We now estimate at what T the EFT-generated tidal forces will exceed the ambient curvature.
A physically motivated ultraviolet completion of the higher-dimension operator terms con-
taining Fab is a charged, massive particle integrated out at one loop, that is, a gravitational
extension of the Euler-Heisenberg Lagrangian [3–8]. In that case, c7,8 will go like (q/m)4

for the particle integrated out, while c6 will go like (q/m)2, all multiplied by loop factors
of order 10−4. The standard model particle with the largest charge-to-mass ratio that we
can integrate out is an electron. Since in geometric units qe/me ≈ 2× 1021, we may expect
that c7 and c8 will yield larger first-order contributions than c6.

Astrophysical black holes can carry a small charge. One often hears that a charged black
hole will preferentially accrete matter of the opposite charge, and so realistic black holes are
neutral. But this only means that their charge Q is negligible in comparison to their mass,
M ≫ Q, and thus one may safely use the Kerr solution to describe their exterior. However,
black holes are often in environments with external magnetic fields, and Wald [9] noticed that
a rotating black hole embedded in an external magnetic field produces a nonzero electric field
nearby (just as a rotating surface would do in classical electrodynamics). As a result, the
black hole attracts charges of one sign (depending on the orientation of the spin with respect
to the magnetic field). This process continues until the accumulated electric charge is enough
to balance the electric field produced by rotation, yielding Q = 2BJ . So Q/M grows with
the size of the black hole (if B is constant). For the supermassive black hole in the center of
our galaxy, it has been estimated that Q/M ≈ 10−12 [10]. Black holes can temporarily have
much larger charge in certain dynamical situations. Since a pulsar has very strong magnetic
fields, a black hole that is about to merge with a pulsar can have [11]

Q/M ≈ 10−7. (1.6)

We can estimate the size of the shift in γ generated by the last two terms in eq. (1.1) as
follows. Metric perturbations are sourced by c7,8F

4, so since γ is dimensionless,

δγ ∼ Gc7,8F
4(GM)2 ∼ c7,8Z

4/G3M2, (1.7)

where Z = Q/M and we have restored powers of Newton’s constant. Using c7,8 ≈
10−4(qe/me)4 ≈ 1081G2, we get

δγ ∼ 1081Z4/(GM2) ∼ 1081Z4/S, (1.8)

where S is the black hole entropy.
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Since the curvature scales like δγ/T we have

δCρϕρϕ|H ∼ 1081 Z4

GMST
. (1.9)

The factor GM in the denominator arises since ϕ is dimensionless, so the curvature component
Cρϕρϕ|H is dimensionless. Since it is order one in the background, the new tidal forces will
be important when T < TEF T , with

TEF T ∼ 1081Z4

GMS
. (1.10)

It was shown in refs. [12, 13] that at very low T , there is an important quantum correction
to Kerr (and Kerr-Newman [12, 14]) that is not captured by the EFT. It comes from a graviton
mode in the near-horizon throat that becomes very light in the extremal limit. Including
this mode modifies the low-energy density of states and removes the puzzling ground-state
degeneracy suggested by the nonzero entropy of the extremal solution.1 The effects of this
mode become important at a temperature

Tq = π

GMS
. (1.11)

We see that for any Z above 10−20 the effect of the EFT loop corrections that we are discussing
are important before this quantum gravity effect.

It should be noted that unless Z is of order one, TEF T is a very low temperature in
the EFT of the standard model. A typical nonextremal black hole has T ∼ 1/GM , and a
solar mass black hole has S ∼ 1078. So for Z given in eq. (1.6), TEF T is exceedingly small,
of order 10−25/GM . Said another way, to see these new tidal forces the black hole has to
be much closer to extremality, i.e., J →M2, than any astrophysical black hole is expected
to be. We will return to the question of possible astrophysical relevance in section 8, after
we numerically construct EFT-corrected black holes farther from extremality.

Of course, properties of charged black holes are of fundamental theoretical interest,
independent of possible astrophysical applications. In particular, the behavior of black holes
under higher-derivative corrections is of great interest for the weak gravity conjecture [2, 16–
21]. For this reason we will not restrict to small Q, but consider EFT corrections to the
general extreme Kerr-Newman black hole.

In more exotic scenarios, it is of course possible that the leading contributions to F 4

terms do not come from integrating out the electron at one loop, but are larger and generated
via other mechanisms. Possibilities include a massive dilaton coupled to F 2, the Born-Infeld
Lagrangian, and more, though the Wilson coefficients have been constrained by experiment
to not be parametrically larger than the Euler-Heisenberg values [22, 23]. However, the
obstacle to seeing our result in the standard model can be alleviated by new physics; for
example, a new ultralight dark sector with charged matter and a dark U(1) can dramatically
enhance the values of the Wilson coefficients for the analogous operators for the dark photon,
as long as the new gauge field remains unbroken [24] and the black hole is charged under
it (e.g., U(1)B−L scenarios [25, 26]).

1This is an extension of earlier work [15], which established a similar result for (nonsupersymmetric)
extremal charged black holes.
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Fully exploring the parameter space for new physics leading to F 4 terms, as well as
their astrophysical phenomenology, is a task we leave to future work. The upshot of the
present paper will be to again demonstrate that black holes can be sensitive probes of new
physics, in a manner even more dramatic than the pure Kerr case of ref. [1], and in a way
that persists beyond the strict extremal limit.

1.2 Summary of the results and plan of the paper

In this paper we investigate higher-curvature corrections to the extreme (and near extreme)
Kerr-Newman spacetime. These corrections are of fourth order in the derivatives of the
background metric and the Maxwell field.

We start by reviewing the general EFT for the Einstein-Maxwell theory in section 2. We
also review the Kerr-Newman solution and its near-horizon geometry (and gauge field). The
next three sections are focused on this near-horizon region, and our results are all obtained
analytically. In section 3 we solve for the axially symmetric, stationary perturbations of this
near-horizon geometry (in Einstein-Maxwell theory) and calculate their scaling dimensions.
Previously, these were known only for Kerr(-AdS) and Reissner-Nordström(-AdS) [27]. In
section 4, the EFT corrections to the near-horizon geometry of Kerr-Newman are found.
Then in section 5, the EFT corrections to the scaling dimensions are computed. We explicitly
verify that these shifts are field redefinition invariant. In particular, it is shown that the
mode with γ = 1 has a shift in its scaling dimension, which implies the appearance of a
singularity on the horizon.

To confirm this result, in the next two sections we numerically compute the full asymp-
totically flat EFT-corrected solutions. In section 6 we first construct solutions at finite
temperature. We measure the tidal forces at the horizon and verify than they blow up as
T → 0 in the manner predicted above. Next, in section 7 we directly compute the extremal
EFT-corrected solution. We recover the change in the scaling exponents from the full solution
and show that they agree with the near-horizon analysis. Most importantly, we show that
the tidal forces indeed blow up as ρ→ 0 as expected. We also confirm that scalar curvature
invariants remain finite at the horizon.

In section 8 we explore whether there are astrophysical applications of our results. Finally,
in section 9 we discuss some implications of our results and potential future directions.

2 Setting the scene

In this section, we review background material that will be needed for our analysis.

2.1 EFT with Maxwell fields

We start by considering the leading parity-preserving higher-derivative corrections to the
Einstein-Maxwell effective theory,

S≡
∫
M

d4x
√
−gL

=
∫
M

d4x
√
−g
(

1
2κ2R− 1

4FabF
ab+c1R

2+c2R
abRab+c3RabcdR

abcd+c4RF
abFab

+c5R
abF c

a Fbc+c6R
abcdFabFcd+c7FabF

abFcdF
cd+c8FabF

bcFcdF
da

)
,

(2.1)
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where κ2 = 8πG, G is Newton’s constant, and F = dA. If the Einstein-Maxwell EFT is
generated by integrating out a fermion of charge q and mass m, one has [3–8]

(c7, c8) =
q4

π2m4 ×
(
− 1
576 ,

7
1440

)
(c4, c5, c6) =

q4

π2m2 ×
( 1
576 ,−

13
1440 ,

1
1440

)
,

(2.2)

while for a scalar, one finds

(c7, c8) =
q4

π2m4 ×
( 1
4608 ,

1
5760

)
(c4, c5, c6) =

q2

π2m2 ×
(
− 1
1152 ,−

1
1440 ,−

1
2880

)
.

(2.3)

Threshold values of c1,2,3 are not calculable within quantum field theory (though their beta
functions are [19, 28]); they are fixed by quantum gravity and are expected to be string-
or Planck-suppressed.

Throughout this paper, we will always treat all the higher-corrections perturbatively,
and in particular we will work only to first order in Wilson coefficients ci. These are not
fundamental quantities and may be changed by field redefinitions [17, 18].2 The most general
field redefinition relevant at this order in derivatives is

gab → gab + r1Rab + r2Rgab + r3κ
2FacF

c
b + r4κ

2gabFcdF
cd (2.4)

for some arbitrary coefficients ri. For later use, it is convenient to introduce rescaled
Wilsonian coefficients di as

d1,2,3 = κ2 c1,2,3

d4,5,6 = c4,5,6 (2.5)
d7,8 = κ−2 c7,8 ,

so that all the di have uniform mass dimension −2; that is, in a tree-level completion,
di ∼ 1/Λ2, where Λ is the scale of new physics. The only four combinations of the Wilson
coefficients that are left invariant (to first order in ri, ci) are

d0 ≡ d2 + 4d3 + d5 + d6 + 4d7 + 2d8

d9 ≡ d2 + 4d3 + d5 + 2d6 + d8 ,
(2.6)

along with d3 and d6. Any physical observable must be a function of d0, d3, d6, and d9 only.
Moreover, we know that the Gauss-Bonnet term,∫

M
d4x

√
−g

(
R2 − 4RabR

ab +RabcdR
abcd

)
, (2.7)

is topological in four spacetime dimensions and thus cannot affect the equations of motion.
The net result is that one can take d6, d7, and d8 as a basis for the EFT corrections (as

2This ambiguity exists because the effective action is derived in the context of scattering processes, and the
S-matrix is invariant upon such redefinitions.
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in eq. (1.1)), but for now we include all terms to explicitly check that our results are field
redefinition invariant.

The equations of motion that follow from eq. (2.1) read [2]

∇aFab = c4J
c4
b + c5J

c5
b + c6J

c6
b + c7 J

c7
b + c8J

c8
b

Rab −
1
2Rgab − κ2

(
F c

a Fbc−
1
4gabFcdF

cd
)
= κ2(c1T

c1
ab + c2T

c2
ab + c3T

c3
ab + c4T

c4
ab

+ c5T
c5
ab + c6T

c6
ab + c7T

c7
ab + c8T

c8
ab

)
,

(2.8)

where

Jc4
a = 4

(
R∇bFba − Fab∇bR

)
Jc5

a = −2
(
R c

a ∇bF
b

c +Rcb∇bFac + F c
a ∇bR

b
c + F cb∇bRac

)
Jc6

a = −4Radbc∇dF bc − 4F bc∇dRadbc

Jc7
a = 8∇e

(
FeaF

cdFcd

)
Jc8

a = −8∇b (F p
a FcpF

c
b)

(2.9)

and

T c1
ab = 4∇a∇bR− 4gab□R− 4RabR+ gabR

2

T c2
ab = 4∇c∇(aR

c
b) − 2□Rab − 2gab∇d∇cR

cd − 4R c
a Rbc + gabRcdR

cd

T c3
ab = −

(
4R cde

a Rbcde − gabRcdefR
cdef + 8∇c∇dR

c d
(a b)

)
T c4

ab = 4F cd∇(a∇b)Fcd + 4∇aF
cd∇bFcd − 4gabF

cd□Fcd

− 4gab∇eFcd∇eF cd − 2RabFcdF
cd − 4F c

a FbcR+ gabFcdF
cdR

T c5
ab = 4F c

(a Rb)dF
d

c − 2F c
a F d

b Rcd + gabF
e

c F cdRde − 2∇(aF
c

b) ∇dF
d

c

− 2∇d∇(aFb)cF
cd − 2∇d∇(aF

cdFb)c − 2□F c
(a Fb)c

− gabF
cd∇d∇eFce − 2∇dF

c
(a ∇b)Fcd − 2∇dF c

a ∇dFbc

+ gab∇cF
cd∇eF

e
d − gabF

cd∇e∇dF
e

c − gab∇dFce∇eF cd

T c6
ab = −

(
6F c

(aF
deRb)cde − gabF

cdF efRcdef − 4Fc(a∇c∇dFb)d

− 4Fd(a∇d∇cFb)d + 4∇cF
c

a ∇dF
d

b + 4∇cFbd∇dF c
a

)
T c7

ab = F pqFpq

(
gabF

cdFcd − 8FacF
c

b

)
T c8

ab = gabF
p

c FdpF
cqF d

q − 8F p
a FcpF

q
b F c

q .

(2.10)

In the following sections, we are going to study a number of solutions to these equations of
motion. As mentioned above, we are always going to work assuming that the right-hand
sides of both expressions in eq. (2.8) are perturbatively small compared with the background
solution, which we take to be a Kerr-Newman black hole.
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2.2 Kerr-Newman black holes

The metric and Maxwell potential of a Kerr-Newman black hole are [29]

ds2
KN =− ∆(r)

Σ(r, θ)(dt− a sin2 θ dϕ)2 +Σ(r, θ)
(

dr2

∆(r) + dθ2
)

+ sin2 θ

Σ(r, θ)
[
a dt− (r2 + a2)dϕ

]2
AKN =−

√
2Qr

κΣ(r, θ)(dt− a sin2 θ dϕ)−
√
2P cos θ
κΣ(r, θ)

[
a dt− (r2 + a2)dϕ

]
,

(2.11)

with
Σ(r, θ) = r2 + a2 cos2 θ and ∆(r) = r2 + a2 − 2M r +Q2 + P 2. (2.12)

In the above, ϕ and θ can be regarded as standard azimuthal and polar angle coordinates
on the S2, respectively, with ϕ ∼ ϕ + 2π and θ ∈ [0, π].

Once we are given an axisymmetric and stationary metric, we can compute the total
electric charge, magnetic charge, angular momentum, and mass using standard Komar
integrals,

Qe = lim
r→+∞

∫
S2

r

⋆F, J = 1
2κ2 lim

r→+∞

∫
S2

r

⋆dm,

Qm = lim
r→+∞

∫
S2

r

F, E = − 1
κ2 lim

r→+∞

∫
S2

r

⋆dk ,
(2.13)

with m = ∂/∂ϕ and k = ∂/∂t the axial and stationary Killing vector fields of the Kerr-
Newman spacetime. Note that these expressions will remain valid even in the presence of
higher-derivative corrections, as long as the novel EFT terms decay sufficiently rapidly near
spatial infinity [17]. All the higher-derivative terms appearing in eq. (2.1) fall under this class.

For the Kerr-Newman spacetime, we have

Qe =
4π

√
2

κ
Q , Qm = 4π

√
2

κ
P , J = aE , and E = 8πM

κ2 . (2.14)

In what follows, we will be interested in purely electrically charged solutions, so we set P = 0.
For brevity, we will assume throughout that J > 0 and Q > 0 without loss of generality.
For M ≥

√
a2 +Q2, the Kerr-Newman spacetime describes a black hole. The upper bound,

M =
√
a2 +Q2, corresponds to an extremal black hole and plays the leading role in this

work. Extremal black holes have minimum energy for given values of the electric charge and
angular momentum. The black hole event horizon corresponds to the null hypersurface3

3To see that r = r+ is a null hypersurface, one needs to first change to regular coordinates at r = r+.
These are akin to the so-called Kerr coordinates,

dv± = dt ± r2 + a2

∆(r) dr

dφ± = dϕ ± a

∆(r)dr ,

with φ± ∼ φ± +2π. The coordinates (v+, φ+) show that r = r+ is a future event horizon, while the coordinates
(v−, φ−) cover a different extension of the Kerr-Newman metric and reveal that, in that extension, r = r+ is a
white hole horizon.
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r = r+, with r± =M ±
√
M2 − a2 −Q2. The null hypersurface r = r−, on the other hand,

is a Cauchy horizon. When the black hole becomes extremal, r+ = r−, at which point the
Cauchy horizon and event horizon coalesce.

As expected from Hawking’s rigidity theorem, the horizon is a Killing horizon, with
the horizon generator being

K = k +Ωm, (2.15)

where Ω = a/(a2 + r2
+) is the black hole’s angular velocity. To the Killing horizon we can

associate a Hawking temperature [30],

T = 1
2π

√√√√−1
4
∇a(KcKc)∇a(KdKd)

KeKe

∣∣∣∣∣
H

=
r2

+ − a2 −Q2

4π r+ (r2
+ + a2)

, (2.16)

from which we note that extremal black holes have T = 0. The two-surface of constant t
and r = r+ is the so-called bifurcating Killing surface where K vanishes identically, which
we denote by B+.

Another quantity that we can associate with a Killing horizon is the so-called electric
chemical potential µ defined as

µ = − κ√
2

(
KaAa|H − lim

r→+∞
KaAa

)
= Q

r2
+ + a2 . (2.17)

So long as the horizon is Killing, the expressions above for the temperature and chemical
potential are valid even in the presence of higher-derivative corrections [31].

The last quantity of interest for us is the Wald entropy [31], defined for stationary
solutions only and given by

SW = −2π
∮
B+

d2x
√
σ

δL
δRabcd

εabεcd , (2.18)

where εab is the binormal to the bifurcating Killing surface, with normalization εabε
ab = −2,

σ is the determinant of the two-dimensional metric on B+, and L is the Lagrangian of the
theory under consideration, which for us is defined in eq. (2.1).

It is a simple exercise to show that when no higher-derivative terms are present, we
recover the usual Bekenstein-Hawking entropy [32, 33],

lim
ci→0

SW = SBH = 2π A
κ2 , (2.19)

with A the area of B+. For the terms proportional to c7 and c8, we will only need SBH,
as the corresponding higher-derivative corrections do not depend on the Riemann tensor.
However, for the remaining ci, the Wald entropy will be different from the standard Bekenstein-
Hawking entropy and will play a role later in the paper.

One can show that, with the definitions above, the electrically charged Kerr-Newman
black hole satisfies a first law of black hole mechanics,

dM = T dSW + µ dQ+ΩdJ . (2.20)

Indeed, we expect the above to be valid even in the presence of higher-derivative corrections;
in fact, this is how the Wald entropy was initially derived and the reason why it only applies
to stationary solutions [31].
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2.3 The near-horizon geometry of Kerr-Newman black holes

There is a limit of the extremal Kerr-Newman black hole that will be important in what
follows. This is the so-called near-horizon limit and in the current example generalizes the
Bardeen-Horowitz construction [34]. To take this limit, we set the spin parameter a to√
M2 −Q2, introduce x = cos θ, and take

t = 4M(2− Z2)τ
λ
, r = r+

(
1 + λ ρ

4

)
, and ϕ = φ+ a

a2 + r2
+
t , (2.21)

where we again used Z ≡ Q/M for the charge-to-mass ratio in geometric units. The limit
that we are interested in sends λ→ 0 while keeping (τ, ρ, x, φ) fixed. The resulting metric
and Maxwell potential read4

ds2
NH−KN = 2M2[F (0)

1 (x)]2
[
−ρ2dτ2 + dρ2

ρ2 + dx2

1− x2 + [F (0)
2 (x)]2(1− x2)

(
dφ+ ρω

(0)
NH dτ

)2
]

ANH−KN =
√
2M
κ

[
Q

(0)
NH ρ dτ + (1− x2)F (0)

2 (x)F (0)
3 (x)

(
dφ+ ρω

(0)
NH dτ

)]
,

(2.22)
where

F
(0)
1 (x) =

√
1 + (1− Z2)x2

√
2

, F
(0)
2 (x) = (2− Z2)

1 + (1− Z2)x2 , F
(0)
3 (x) = Z

√
1− Z2

2− Z2 ,

ω
(0)
NH = 2

√
1− Z2

2− Z2 , and Q
(0)
NH = Z3

2− Z2 .

(2.23)

We note that in going from the full extremal Kerr-Newman black hole to its near-horizon
geometry, we also apply a gauge transformation to A of the form

A+ dχ with χ =
√
2
κ

Z

2− Z2 t (2.24)

before taking the near-horizon limit λ → 0. Note that eq. (2.22), with symmetry group
O(2, 1) × U(1), is more symmetric than the initial Kerr-Newman spacetime, as is typical
of near-horizon extremal geometries [1, 34, 36–40].

3 Scaling dimensions for extremal Kerr-Newman black holes

Asymptotically flat extremal black holes have corrections to the near-horizon geometry that
decay as the horizon is approached. In this section, we start with Einstein-Maxwell theory
and determine how fast stationary, axisymmetric deformations can decay as we approach the
Kerr-Newman near-horizon geometry. These are the deformations that we will EFT-correct
in the following sections.

4This was first derived in ref. [35], including a nonzero cosmological constant.
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In order to study these deformations, we first consider a more general ansatz for the
metric and gauge field of the form5

ds2 = 2M2 [f (0)
1 (x, ρ)]2

−ρ2dτ2 + dρ2

ρ2 f
(0)
7 (x, ρ) +

(
dx+ f

(0)
8 (x, ρ)dρ

)2

f
(0)
6 (x, ρ) (1− x2)

+f (0)
2 (x, ρ)

2 (
1− x2

) (
dφ+ ρ f

(0)
4 (x, ρ) dτ

)2


(3.1)

and

A =
√
2M
κ

[
f

(0)
5 (x, ρ) ρ dτ + (1− x2)f (0)

3 (x, ρ)f (0)
2 (x, ρ)

(
dφ+ ρ f

(0)
4 (x, ρ) dτ

)]
. (3.2)

Next, we note that in these expressions, we have not fixed diffeomorphisms, i.e., the above
metric and gauge field remain invariant under arbitrary redefinitions of ρ and x that are
not dependent on τ or φ. To fix these coordinate redundancies, we set f (0)

7 (ρ, x) = 1 and
f

(0)
8 (x, ρ) = 0, so that our (partially) gauge-fixed metric takes the simpler form

ds2 = 2M2 [f (0)
1 (x, ρ)]2

[
− ρ2dτ2 + dρ2

ρ2 + dx2

f
(0)
6 (x, ρ) (1− x2)

+ f
(0)
2 (x, ρ)

2 (
1− x2

) (
dφ+ ρ f

(0)
4 (x, ρ) dτ

)2
]
.

(3.3)

To proceed, we further consider

f
(0)
i (x, ρ) = F

(0)
i (x)

[
1 + δf̂

(0)
i (x, ρ)

]
for i = 1, 2, 3, (3.4)

along with

f
(0)
4 (x, ρ) = ω

(0)
NH

[
1 + δf̂

(0)
4 (x, ρ)

]
f

(0)
5 (x, ρ) = Q

(0)
NH

[
1 + δf̂

(0)
5 (x, ρ)

]
f

(0)
6 (x, ρ) = 1 + δf̂

(0)
6 (x, ρ),

(3.5)

with the F (0)
i (x) given in eq. (2.23). The δf̂ (0)

i (x, ρ) are assumed to be arbitrarily small,
reflecting the expectation that we envisage the near-horizon geometry of extremal Kerr-
Newman to be robust with respect to the deformations under consideration. So the δf̂ (0)

i

satisfy linearized equations on the background of the near-horizon geometry.
So far, we have not made any use of the O(2, 1) symmetry of the background solution.

Indeed, we can further expand δf̂
(0)
i (x, ρ) into harmonics of O(2, 1). These harmonics will

be labeled by a real number γ(0), and it turns out that modes with γ(0) ̸= 1 behave very
differently than those with γ(0) = 1. For simplicity, we will start with the former case.

5We use a superscript (0) on quantities in this section to reflect the fact that we are not yet including any
higher derivative corrections.
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3.1 Modes with γ(0) ̸= 1

For time-independent perturbations, the harmonics of O(2, 1) are simply ργ(0) , and for this
reason we take

δf̂
(0)
i (x, ρ) = ργ(0)

δf
(0)
i (x) , (3.6)

where we assume in this subsection that γ(0) ̸= 1.
The perturbed equations governing the δf (0)

i , i = 1, . . . , 6, are too daunting to explicitly
write in the main text. However, they are by construction linear in the δf (0)

i (x) and depend
on γ(0). Schematically, these equations take the form

(0)∆ijδf
(0)
j = 0 , (3.7)

where (0)∆ij is a differential operator that depends on x and γ(0). Indeed, γ(0) turns out to
appear as an eigenvalue for the resulting equations in a generalized Stürm-Liouville problem.
By manipulating the perturbed Einstein-Maxwell equations we find, so long as γ(0) ̸= 1, that

δf
(0)
6 (x) = 2

[
2δf (0)

1 (x) + δf
(0)
2 (x)

]
. (3.8)

With some effort, we can reduce the full system of equations to two first-order equations
in δf (0)

1 and δf (0)
2 , along with three second-order equations for δf (0)

3 , δf (0)
4 , and δf (0)

5 . Perhaps
surprisingly, the resulting equations do indeed admit a general solution in terms of simple
functions. However, to see this remarkable solution, one has to redefine the functions in a
fairly nonobvious way, which we found via inspection. The result will be to exchange the five
remaining δf (0)

i — in terms of which the equations of motion have total order equal to eight
— for four functions vi, each of which will be required to satisfy a second-order equation.

Explicitly, the transformations relating the δf (0)
i to the vi (and the first derivatives of

the vi) are given as follows:

δf
(0)
1 (x)= v1(x)

2 + 1
1+(1−Z2)x2

[
Z2(1−x2)
2+Z2 v4(x)−(2−Z2)x(1−x2)v

′
1(x)
4

+(2+Z2)(1−Z2)(1−x2)2 v
′
2(x)
x

−Z4(2+Z2)(1−Z2)x(1−x2)v′3(x)
]

δf
(0)
2 (x)=−v1(x)

2 − 2
1+(1−Z2)x2

[
Z2(1−x2)
2+Z2 v4(x)−(2−Z2)x(1−x2)v

′
1(x)
4

+(2+Z2)(1−Z2)(1−x2)2 v
′
2(x)
x

−Z4(2+Z2)(1−Z2)x(1−x2)v′3(x)
]

δf
(0)
3 (x)= v1(x)

2 +v4(x)−Z2(2+Z2)(1−x2)v
′
2(x)
x

−Z2(2+Z2)(2−3Z2)xv′3(x)

δf
(0)
4 (x)= 1

γ(0)+1

[
2(1+x2)+λ(0)(1−x2)

2
v1(x)
2 +λ(0)(4−Z4)v2(x)+λ(0)Z4(2+Z2)v3(x)

+ Z2

2+Z2 (1+x
2)v4(x)−x(1−x2)v

′
1(x)
2 − Z2

2+Z2x(1−x
2)v′4(x)

]
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δf
(0)
5 (x)= 1

γ(0)+1

[
2(1+x2)+λ(0)(1−x2)

2
v1(x)
2 −λ(0)(2+Z2)2(1−Z2)v3(x)

− 2−3Z2

2+Z2 (1+x2)v4(x)
Z2 −x(1−x2)v

′
1(x)
2 +2−3Z2

2+Z2 x(1−x
2)v

′
4(x)
Z2

]

δf
(0)
6 (x)= v1(x) . (3.9)

Here, we defined λ(0) ≡ γ(0)(γ(0) + 1). One finds four decoupled second-order equations for
v1, v2, v3, and v4, which take the following rather simple form:[

(1− x2)2v′1

]′
+ (λ(0) − 2)(1− x2)v1 = 0[

(1− x2)2

x2 v′2

]′
+ λ(0) 1− x2

x2 v2 = 0[
(1− x2)v′3

]′
+ λ(0)v3 = 0[

(1− x2)2v′4

]′
+ (λ(0) − 2)(1− x2)v4 = 0 .

(3.10)

It is a tedious but straightforward exercise to show that deformations generated by v1, v2, v3,
and v4 are actually independent from each other. In fact, we have engineered the vi such that
they decouple, giving us the four equations of motion in eq. (3.10). Of course, each vi itself
corresponds to a particular superposition of metric and electromagnetic perturbations; this
is generically inevitable in a nonzero electromagnetic field, where the photon and graviton
kinetic terms mix. Furthermore, it is also possible to show that any smooth solution for
v1, v2, v3, and v4 provides a good solution for the δf (0)

i and vice versa. Note that we could
have expected to have four independent modes, since we expect two independent degrees of
freedom for the gravitational field and two degrees of freedom for the electromagnetic field.

One can solve for the v functions directly, and we label the modes as {γ(0)
1 ,γ

(0)
2 ,γ

(0)
3 ,γ

(0)
4 }.

They are given compactly by

v1(x) = P ′
ℓ1(x), γ

(0)
1 = ℓ1

v2(x) = x(ℓ2 + 1)ℓ2Pℓ2(x) + (1 + x2ℓ2)P ′
ℓ2(x), γ

(0)
2 = ℓ2 + 1

v3(x) = Pℓ3(x), γ
(0)
3 = ℓ3

v4(x) = P ′
ℓ4(x), γ

(0)
4 = ℓ4 ,

(3.11)

where Pℓ(x) is the Legendre polynomial of order ℓ. As we are considering a background
supported by an electric field, the sense of polar vs. axial perturbations labeling the parity
transformation properties of the modes match for the gravity and gauge degrees of freedom [41–
43] (unlike the magnetic case, cf. ref. [40]); specifically, v1,2,4 are axial (picking up a sign
(−1)ℓ+1 under parity inversion), while v3 is polar (picking up a sign (−1)ℓ under parity
inversion). We will now comment on the ranges of the several ℓ. Recall that modes with
γ(0) = 1 are excluded from this analysis, implying that ℓ1 = ℓ3 = ℓ4 = 1 and ℓ2 = 0 are
excluded and will be addressed in the next section. Furthermore, modes with ℓ1 = ℓ3 = ℓ4 = 0
vanish identically. We are thus left with the range ℓ1,3,4 ≥ 2 and ℓ2 ≥ 1.

– 13 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
2

The fact that the exponents γ(0)
i are all integers means that stationary, axisymmetric

perturbations of extreme Kerr-Newman remain smooth in Einstein-Maxwell theory. In
principle, the scaling exponents could have depended on the dimensionless ratio a/Q, but
we see that they do not.

Next we turn our attention to modes with γ(0) = 1, which turn out to be the most
relevant modes to us, as explained in the introduction.

3.2 Modes with γ(0) = 1

For modes with γ(0) = 1, one could be tempted to take eq. (3.6) and simply set γ(0) to 1. The
answer would be partially correct, but incomplete. In particular, for γ(0) = 1 there are other
deformations that do not fit the power law decomposition (3.6), but will play an important
role later on. These turn out to be proportional to ρ log ρ. For this sector of deformations, we
take a decomposition of the δf̂i(x, ρ) functions with ρ dependence organized into the form,

δf̂
(0)
1 (x, ρ) = δf

(0)
1 (x)ρ+ V (0)ρ log ρ

δf̂
(0)
2 (x, ρ) =

[
δf

(0)
2 (x)− V (0)

2

]
ρ− V (0)ρ log ρ

δf̂
(0)
3 (x, ρ) =

[
δf

(0)
3 (x) + V (0)

Z2

]
ρ+ V (0)ρ log ρ

δf̂
(0)
4 (x, ρ) = δf

(0)
4 (x)ρ+ V (0)ρ log ρ

δf̂
(0)
5 (x, ρ) =

[
δf

(0)
5 (x)− (2− Z2)(1− Z2)(1 + x2)

4Z4 V (0)
]
ρ+ V (0)ρ log ρ

δf̂
(0)
6 (x, ρ) =

[
δf

(0)
6 (x) + V (0)

]
ρ+ 2V (0)ρ log ρ ,

(3.12)

with V (0) constant. We will see that despite the presence of the low-differentiability term
ρ log ρ, the above mode generates no divergent tidal forces. In fact, this mode is already
present for extremal Kerr-Newman black holes, as we will see later, and arises since our
coordinates are not smooth on the horizon.

However, the subtleties with the γ(0) = 1 mode do not stop here. In particular, there is a
residual gauge symmetry, which we now comment upon. Under a coordinate transformation
of the form

x→ x− (1− x2)ρ δC ′(x)
ρ→ ρ+ ρ2δC(x),

(3.13)

– 14 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
2

where δC(x) is an arbitrary function of x, the metric and gauge field deformations transform as

∆δf (0)
1 (x) = δC(x)− (1− x2)F

(0)
1

′
(x)

F
(0)
1 (x)

δC ′(x)

∆δf (0)
2 (x) = −δC(x) + xδC ′(x)− (1− x2)F

(0)
2

′
(x)

F
(0)
2 (x)

δC ′(x)

∆δf (0)
3 (x) = δC(x) + xδC ′(x)− (1− x2)F

(0)
3

′
(x)

F
(0)
3 (x)

δC ′(x)

∆δf (0)
4 (x) = δC(x)

∆δf (0)
5 (x) = δC(x)

∆δf (0)
6 (x) = 2

[
δC(x)− xδC ′(x) + (1− x2)δC ′′(x)

]
.

(3.14)

We will use this freedom to set

δf
(0)
6 (x) = 2

[
2δf (0)

1 (x) + δf
(0)
2 (x)

]
, (3.15)

which specifies δC up to a constant, which we will fix later on. This is a particularly nice
choice of gauge because it allows us to discuss these modes on equal footing with those with
γ(0) ̸= 1, modulo the dependence on V (0). Naturally, this gauge choice is also consistent
with regularity at the poles x = ±1.

Just as in the case where γ(0) ̸= 1, we can take the δf (0)
i as in eq. (3.9) with λ(0) = 2

and γ(0) = 1. The resulting equations for the vi are exactly those given in eq. (3.10) with
λ(0) = 2, and the corresponding solutions are provided in eq. (3.11). Modes with ℓ2 = 0
vanish identically, leaving us with ℓ1 = ℓ4 = 1 as the only even parity modes. Furthermore, as
we show below, the ℓ1 = 1 mode is pure gauge and can be eliminated by using the constant
part of the gauge transformation δC appearing in eq. (3.14). We are thus left with a single
γ(0) = 1 mode with two unknown coefficients: V (0) (the constant parameterizing the ρ log ρ
term in eq. (3.12)) and the amplitude of the ℓ4 = 1 mode parameterized by v4(x) = A4,
with A4 being a constant.

Both of these coefficients are nonvanishing for extremal Kerr-Newman black holes if
we use the (ρ, x) coordinates used in eq. (3.3). To see this, consider the Kerr-Newman line
element and gauge field in eq. (2.11), under a coordinate transformation,

t = 4M(2− Z2)τ

ϕ = φ+
√
1− Z2

2− Z2
t

M

r = r+

[
1 + ρ

4 + ρ2G0 +G1ρ
2 log ρ+O(ρ3 log2 ρ)

]
cos θ = x+O(ρ2),

(3.16)

with G0 and G1 being constants. Expanding to leading order in ρ gives the near-horizon
geometry (2.22), while expanding to subleading order in ρ and setting

G0 = −1
2G1 = 1

16(2− Z2) (3.17)
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reveals that for an extremal Kerr-Newman black hole we have

V (0) = − 1
2(2− Z2) and A4 = (1− Z2)(2 + Z2)

4Z2(2− Z2)
(3.18)

in our chosen gauge. Note that G0 is related to the constant part of δC appearing in eq. (3.14).
If we had not introduced G0 in eq. (3.16), we would have obtained an ℓ1 = 1 mode as well and
a different amplitude for A4. The above procedure explicitly shows that the mode with ℓ1 = 1
is pure gauge. The mode described in this section, i.e., the physical mode with A4 ̸= 0 and
V (0) ̸= 0, is the mode that we would like to EFT-correct. However, in order to do this, we
first need to apply the EFT to the Kerr-Newman near-horizon geometry, which we do next.

4 EFT-corrected near-horizon geometries of extremal Kerr-Newman black
holes

We begin our investigation of EFT corrections to Kerr-Newman black holes by considering
the near-horizon geometry. All EFT-corrected near-horizon geometries take the same general
form. In particular, they exhibit O(2, 1) × U(1) symmetry, and we can choose an angular
coordinate x ∈ [−1, 1] so that

ds2
NH = 2M2 [F1(x)]2

[
− ρ2dτ2 + dρ2

ρ2 + Γ2
NHdx2

1− x2 + [F2(x)]2
(
1− x2

)
(dφ+ ρωNH dτ)2

]
ANH =

√
2M
κ

[
QNH ρ dτ + (1− x2)F2(x)F3(x) (dφ+ ρωNH dτ)

]
,

(4.1)
where

Fi(x) = F
(0)
i (x)

[
1 +

8∑
K=1

dK

M2 δF
(K)
i (x)

]
, i = 1, 2, 3

ΓNH = 1 +
8∑

K=1

dK

M2 δΓ
(K)
NH

ωNH = ω
(0)
NH

(
1 +

8∑
K=1

dK

M2 δω
(K)
NH

)

QNH = Q
(0)
NH

(
1 +

8∑
K=1

dK

M2 δQ
(K)
NH

)
,

(4.2)

and dK are the rescaled Wilsonian coefficients (2.5). The extremal horizon is located at the
null hypersurface ρ = 0, and it has spatial cross sections with S2 topology. The coordinate
x parameterizes the deformed S2, with x = ±1 being the poles. Finally, the constant ΓNH
parameterizes the proper length from the north to the south pole of the squashed two-sphere
of the EFT-corrected horizon along a constant-φ slice. For a Kerr-Newman black hole, this
is simply 2M E

(
Z2 − 1

)
, where E is a complete elliptic integral.

We then solve the equations of motion (2.8) perturbatively in the corresponding dK . The
explicit expressions for δF (K)

i (x) are not very illuminating, and we will refrain from presenting
them in the main text. However, the resulting equations of motion can be explicitly integrated
in full generality, and there are a few general results that we now outline.

– 16 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
2

The equations of motion yield three linear coupled ordinary differential equations for
{δF (K)

1 , δF
(K)
2 , δF

(K)
3 }, which depend on up to first derivatives with respect to δF (K)

1 and up
to second derivatives with respect to {δF (K)

2 , δF
(K)
3 }. Naturally, these equations also depend

on δΓ(K)
NH and δω

(K)
NH as well as on δQ

(K)
NH . After integrating, for each K the full solutions

depend on eight arbitrary constants: five integration constants, along with δω
(K)
NH , δΓ(K)

NH ,
and δQ

(K)
NH . At this stage, we impose regularity at the poles (i.e., at x = ±1) and require

that φ have period 2π, that is to say,

|F2(±1)| = |ΓNH| =⇒ δF
(K)
2 (±1) = δΓ(K)

NH (4.3)

to linear order in dK . These conditions fix all of the integration constants as well as δΓ(K)
NH .

However, both δQ(K)
NH and δω(K)

NH are left arbitrary. In principle, we could determine δQ(K)
NH and

δω
(K)
NH by gluing our near-horizon geometries to an asymptotically flat end and constructing

the full extremal black hole solution. We will see in the next section that the shifts in scaling
exponents δγ are independent of these two constants.

We find that the δΓ(K)
NH take the following simple form:

δΓ(1)
NH = 0

δΓ(2)
NH = 3Z2

(2− Z2)1/2

(
1− Z2

)
δΓ(3)

NH = 12Z2

(2− Z2)1/2

(
1− Z2

)
δΓ(4)

NH = 0

δΓ(5)
NH = Z2

(2− Z2)3/2

(
3Z4 − 8Z2 + 3

)
δΓ(6)

NH = Z2

(2− Z2)7/2

(
6Z8 − 40Z6 + 94Z4 − 85Z2 + 21

)
δΓ(7)

NH = 2Z4

(2− Z2)11/2

(
3Z10 − 31Z8 + 128Z6 − 268Z4 + 267Z2 − 107

)
δΓ(8)

NH = Z4

2(2− Z2)11/2

(
9Z10 − 93Z8 + 384Z6 − 796Z4 + 811Z2 − 331

)
.

(4.4)

We note the useful relation 2(FabF
ab)2 + (FabF̃

ab)2 = 4FabF
bcFcdF

da [3], so for geometries
where FabF̃

ab vanishes — e.g., the static and purely electrically charged (or purely magnetically
charged) black hole — one expects a simple factor-of-two relation between the higher-derivative
corrections generated by d7 and d8 [2]. However, in the stationary case with nonzero spin
(with either electric and/or magnetic charge), this simplification does not hold. Indeed, no
such simple relation exists between δΓ(7)

NH and δΓ(8)
NH.

5 Scaling dimensions for EFT-corrected extremal Kerr-Newman
near-horizon geometries

After identifying the EFT-corrected near-horizon geometries, we aim to understand the rate
at which deformations, preserving ∂/∂τ and ∂/∂φ, are permitted to decay as we approach
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these near-horizon configurations. Once again, modes with γ(0) ̸= 1 and modes with γ(0) = 1
will receive EFT corrections computed through different methods. Our primary focus will
be in EFT-correcting modes with γ(0) = 1, as these are present in the full asymptotically
flat solution and may induce significant tidal deformations.

We first consider an ansatz similar to eq. (3.3), but with the f (0)
i (x, ρ) replaced by fi(x, ρ),

ds2 = 2M2 f1(x, ρ)2
[
− ρ2dτ2 + dρ2

ρ2 + dx2

f6(x, ρ) (1− x2)

+ f2(x, ρ)2
(
1− x2

)
(dφ+ ρ f4(x, ρ) dτ)2

]
,

(5.1)

and take instead the following form for the deformations to the fi(x, ρ) around the background
near-horizon solution,

fi(x, ρ) = Fi(x)
[
1 + δf̂i(x, ρ)

]
, i = 1, 2, 3

f4(x, ρ) = ωNH
[
1 + δf̂4(x, ρ)

]
f5(x, ρ) = QNH

[
1 + δf̂5(x, ρ)

]
f6(x, ρ) =

1
Γ2

NH

[
1 + δf̂6(x, ρ)

]
,

(5.2)

with the Fi(x) matching those appearing in eq. (4.1). Once again, we consider the δf̂i(x, ρ) to
be perturbative, anticipating that the EFT corrections have not destabilized the near-horizon
geometry of the extremal Kerr-Newman black hole.

Since the EFT-corrected near-horizon geometries still enjoy O(2, 1) symmetry, we can
decompose the δf̂i(x, ρ) into harmonics of O(2, 1). As before, these harmonics will each
be labeled by a real number γ, the scaling exponent, and again we must consider γ ̸= 1
and γ = 1 differently.

5.1 Modes with γ ̸= 1

Using O(2, 1) symmetry and the fact that the δf̂i(x, ρ) are perturbatively small, we set

δf̂i(x, ρ) = ργδfi(x) . (5.3)

We then expand the equations of motion (2.8) to linear order in δf̂i(x, ρ) and use the
decomposition above, finding a rather complicated system of equations for the δfi(x) that
strongly depend on γ. Indeed, these equations depend on higher derivatives of the δfi(x),
but nevertheless can be seen as a generalized eigenvalue problem for eigenvalues γ and
eigenfunctions δfi(x). So far we have not done any expansion in the Wilson coefficients
dK . To progress, one sets

δfi(x) = δf
(0)
i (x) +

8∑
K=1

dK

M2 δf
(K)
i (x) , (5.4)

together with

γ = γ(0) +
8∑

K=1

dK

M2 δγ
(K) , (5.5)
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as well as eq. (4.1). Since we are taking the dK to be perturbative, we are left with equations
for the δf (K)

i (x) that do not explicitly depend on dK . Indeed, these equations take the
following schematic form,

(0)∆ijδf
(K)
j = T

(K)
i , (5.6)

with (0)∆ij being the same operator as in eq. (3.7), T (K)
i are some complicated source terms

that depend on the δf (0)
i and their first derivatives,6 along with δω

(K)
NH , δQ(K)

NH , and δγ(K).
One can manipulate these differential equations to find that

δf
(K)
6 (x) = 2

[
2δf (K)

1 (x) + δf
(K)
2 (x)

]
+ WK(δf (0)

i , δf
(0)
i

′
, x) dK

M2 , (5.7)

where WK(δf (0)
i , δf

(0)
i

′
, x) is a complicated function of the δf (0)

i , their first derivatives, and
x, and are nonzero for K = 1, . . . , 6 only. This relation is the EFT equivalent of eq. (3.8).
One then writes δf (K)

i in terms of new functions v(K)
i , just as in eq. (3.9), to determine the

corresponding equations for the v(K)
i . These take the same form as in eq. (3.10) with vi

replaced by v(K)
i and having on the right-hand side a complicated source term as in eq. (5.6).

These equations can also be solved for v(K)
i once a particular value of γ(0) is given.

For a given value of γ(0), one can have more than one mode. For instance, if we fix
γ(0) = 2, we can have the following modes: ℓ1 = 2, ℓ2 = 1, ℓ3 = 2, and ℓ4 = 2. Modes
with different parity properties decouple from each other. However, within a given parity
sector, one must start with a general linear combination of modes that share the same value
of λ(0), in line with standard degenerate perturbation theory. The relative contribution of
each mode is then found via solving the corresponding equations of motion for the δf (K)

i (x)
after imposing regularity at the poles x = ±1.

For instance, let us consider parity-even deformations with γ(0) = 2, which remain
invariant under sending x → −x. Recalling that modes v1,2,4 are axial and v3 is polar,
there are two such modes with this property: ℓ2 = 1 and ℓ3 = 2. This means that for
δf

(0)
i (x) we should take

δf
(0)
1 (x) = (1− x2)2

1 + (1− Z2)x2A2 +
2Zx2(1− x2)
1 + (1− Z2)x2A3

δf
(0)
2 (x) = − 2(1− x2)2

1 + (1− Z2)x2A2 −
4Zx2(1− x2)
1 + (1− Z2)x2A3

δf
(0)
3 (x) = −Z

2(1− x2)
1− Z2 A2 +

2(2− 3Z2)x2

Z(1− Z2) A3

δf
(0)
4 (x) = 1

3
(2− Z2)(1 + 3x2)

1− Z2 A2 +
2Z
3

1− 3x2

1− Z2 A3

δf
(0)
5 (x) = −2(2 + Z2)(1− 3x2)

3Z3 A3

δf
(0)
6 (x) = 0 ,

(5.8)

with A2 and A3 being constant. Solving for the corresponding δf
(K)
i (x) and imposing

regularity at the poles determines both δγ(K) and r(K) ≡ A2/A3. Since we have a twofold
6Higher-order derivatives can be eliminated by using the equations for δf

(0)
i .
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degeneracy within the same symmetry class, we are expecting to find two possible values for
{δγ(K), r(K)}, which we label as {δγ(K)

± , r
(K)
± }. These corrections can be found by solving

an eigenvalue problem that takes the following form,
8∑

K=1
dK

(
L(K) − δγ(K)I

)
·
[
A2
A3

]
= 0 , (5.9)

where I is a 2 × 2 identity matrix and L(K) are symmetric 2 × 2 matrices whose explicit
expressions can be found in appendix A.

At this stage we note one of the most stringent tests of our calculation. Namely, it is a
simple exercise to check, using the explicit expressions given in appendix A, that eq. (5.9)
is invariant under field redefinitions and that

δγ(1) = δγ(4) = 0

δγ(2) = δγ(5) = 4 δγ(8) − δγ(7) = 1
4δγ

(3) .
(5.10)

In particular, using the above relations, we can write eq. (5.9) in terms of the field redefinition
invariant basis {d0, d6, d9},

[
d0
(
L̃(0) − δγ̃(0)I

)
+ d6

(
L̃(6) − δγ̃(6)I

)
+ d9

(
L̃(9) − δγ̃(9)I

)]
·
[
A2
A3

]
= 0 , (5.11)

where L̃(0), L̃(6), and L̃(9) are given in appendix A and

δγ̃(0) = 1
4δγ

(7)

δγ̃(6) = δγ(6) + 3
4δγ

(7) − 2 δγ(8)

δγ̃(9) = δγ(8) − 1
2δγ

(7) .

(5.12)

One might wonder why d3 plays no role, but we remind the reader that the Gauss-Bonnet
term is topological in four spacetime dimensions, a fact that we can use to show that the
dependence on d3 must drop out from any calculation that stems from the classical equations
of motion. From the calculation above, it is clear that we can use δγ

(K)
± for K = 6, 7, 8

as a basis for the scaling exponents.
In figure 1, we plot δγ(K) for K = 6, 7, 8 as a function of Z. Note that since the L̃(K) are

2 × 2, we expect δγ(K) to take two values for fixed K. We label these by δγ
(K)
± and chose

δγ
(K)
− ≤ δγ

(K)
+ . There are several features to note about these corrections to the scaling

exponents: (1) The δγ(K)
± remain real as we vary Z, as a consequence of the fact that the

L(K) are real symmetric matrices. (2) The δγ(K)
± are not monotonic in Z and do not have

a definite sign. (3) While δγ(6)
± vanishes at Z = 1, the same is not true for δγ(7)

± and δγ
(8)
± .

This last point might seem to contradict the results in ref. [1], but it is important to note
that ref. [1] only analyzed the scalar sector of perturbations, whereas when Z → 1 the modes
we are investigating here approach two vector-type deformations in the decomposition used
in ref. [1]. We will see that the effect of this shift in the scaling exponents on the tidal forces
is suppressed in the Reissner-Nordström limit by a factor proportional to 1 − Z2.
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Figure 1. The change in the scaling dimensions δγ(K)
± for the two even-parity modes with γ(0) = 2,

as a function of Z = Q/M . The label K = 6, 7, 8 corresponds to the three higher-derivative corrections
shown in eq. (1.1).

5.2 Modes with γ = 1

Modes with γ = 1 are more subtle, but are also the most interesting ones since they have
the potential to cause large tidal forces. We know that these modes, even for extremal
Kerr-Newman black holes, are coupled to ρ log ρ modes. For this reason, we can envisage
that such a ρ log ρ term will appear in the EFT-corrected modes. To EFT-correct modes
with γ(0) = 1, we take

δf̂1(x,ρ)=ργ

[
δf

(0)
1 (x)+

8∑
K=1

dK

M2 δf
(K)
1 (x)

]
+ρ logρ

(
V (0)+

8∑
K=1

dK

M2V
(K)+

8∑
K=1

b
(K)
1 (x)

)

δf̂2(x,ρ)=ργ

[
δf

(0)
2 (x)−V (0)

2 +
8∑

K=1

dK

M2 δf
(K)
2 (x)

]
−ρ logρ

(
V (0)+

8∑
K=1

dK

M2V
(K)−

8∑
K=1

b
(K)
2 (x)

)
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δf̂3(x,ρ)=ργ

[
δf

(0)
3 (x)+V (0)

Z2 +
8∑

K=1

dK

M2 δf
(K)
2 (x)

]

+ρ logρ
(
V (0)+

8∑
K=1

dK

M2V
(K)+

8∑
K=1

b
(K)
3 (x)

)
(5.13)

δf̂4(x,ρ)=ργ

[
δf

(0)
4 (x)+

8∑
K=1

dK

M2 δf
(K)
4 (x)

]
+ρ logρ

(
V (0)+

8∑
K=1

dK

M2V
(K)+

8∑
K=1

b
(K)
4 (x)

)

δf̂5(x,ρ)=ργ

[
δf

(0)
5 (x)− (2−Z2)(1−Z2)(1+x2)

4Z4 V (0)+
8∑

K=1

dK

M2 δf
(K)
5 (x)

]

+ρ logρ
(
V (0)+

8∑
K=1

dK

M2V
(K)+

8∑
K=1

b
(K)
5 (x)

)

δf̂6(x,ρ)=ργ

[
δf

(0)
2 (x)+V (0)+

8∑
K=1

dK

M2 δf
(K)
6 (x)

]

+ρ logρ
(
2V (0)+2

8∑
K=1

dK

M2V
(K)+

8∑
K=1

b
(K)
6 (x)

)
, (5.14)

together with

γ = 1 +
8∑

K=1

dK

M2 δγ
(K) . (5.15)

Let us unpack the above expression. First, we note that if we set dK = 0 and b
(K)
i = 0, we

recover the mode with γ(0) = 1 given in eq. (3.12). This makes sense, as this is the mode
whose EFT expansion we want to determine. Next, we comment on the terms proportional
to ρ log ρ. The new terms proportional to dK are natural, since we add a mode just like the
one for Kerr-Newman, except perhaps with a different amplitude. The terms proportional
to b(K)

i (x) are a little less obvious. They arise because corrections to γ induce another set
of ρ log ρ terms in the equations of motion. We would like these ρ log ρ terms to be absent
altogether, since we want to reduce the calculation to finding the δf (K)

i (x), which depend
on x only. Requiring the ρ log ρ terms to cancel determine the b(K)

i (x) to be

b
(K)
1 (x) = b

(K)
4 (x) = 0 , b

(K)
2 (x) = V (0)δγ(K)

2 , b
(K)
3 (x) = −V

(0)δγ(K)

Z2 ,

b
(K)
5 (x) = (2− Z2)(1− Z2)

4Z4 (1 + x2)V (0)δγ(K) , b
(K)
6 (x) = −V (0)δγ(K) .

(5.16)

At this stage, we restrict to parity-even deformations since these are the ones generated
by adding the asymptotically flat region. We are left with a single mode, which is an ℓ4 = 1
mode with amplitude A4. (Recall that the other mode in this symmetry class, ℓ1 = 1, is
pure gauge.) We are thus left with a coupled set of linear ordinary differential equations
for δf (K)

i (x) that can be schematically written as
(0)∆̃ijδf

(K)
j (x) = J (K) , (5.17)

where J (K) is a complicated, but known, source term that depends on δγ(K), V (0), A4, V (K),
ω

(K)
NH , Q(K)

NH , and x, and (0)∆̃ij is the same operator that governs the γ(0) = 1 deformations
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for an extremal Kerr-Newman black hole. This operator has a nontrivial kernel due to the
gauge freedom (3.14). Indeed, this gauge freedom can be generalized mutatis mutandis even
for nonzero dK , with the functions F (0)

i replaced by the corresponding Fi(x). We fix this
freedom by choosing δf (K)

6 to satisfy the same relation as in eq. (5.7). Note, however, that
for γ ̸= 1 this relation was a consequence of the equations of motion, whereas here it is a
gauge choice. Just like for the extreme Kerr-Newman black hole, the gauge is fixed up to
a constant term. This constant term will play no role in what follows but could have been
used to eliminate the ℓ1 = 1 mode in δf

(K)
i (x).

Once the dust settles, we find two first-order differential equations for δf (K)
1 (x) and

δf
(K)
2 (x) and three second-order equations for δf (K)

3 (x), δf (K)
4 (x), and δf

(K)
5 (x). These

equations can be solved in terms of dilogarithmic functions Li2 and other elementary functions
such as arcsin and arctan via the map in eq. (3.9). The vi variables are now replaced by
v

(K)
i , and the corresponding equations can again be found for each of these variables, with

source terms that depend on J (K). Once the equations are integrated in full generality, and
regularity at the poles is imposed, one determines V (K) and δγ(K) in terms of V (0) and A4.
These expressions are rather lengthy at this stage. However, we note that we know what V (0)

and A4 are for an extremal Kerr-Newman black hole (see eq. (3.18)), and as such, we find an
expression for δγ(K) that depends on Z only. It is convenient to write the result in terms of7

a ≡ a

r+
, (5.18)

with the result,

δγ(6) = 3(a2 − 1)
10a4(a2 + 1)4

(
15 + 25a2 − 201a4 + 89a6 − 187a8 + 195a10 + 245a12 + 75a14

)
+ 9(a2 − 1)2(a2 + 1)(1− 2a2 + 5a4)

2a5 arctan a

δγ(7) = δγ(6) + 16(a2 − 1)
5(a2 + 1)6 (149− 522a2 + 436a4 − 166a6 + 7a8)

δγ(8) = 3
4δγ

(6) + 4(a2 − 1)
5(a2 + 1)6 (167− 558a2 + 316a4 − 226a6 + 13a8) ,

(5.19)
together with

δγ(1) = δγ(4) = 0 , δγ(2) = δγ(5) = 1
4δγ

(3) and δγ(5) = 4δγ(8) − δγ(7) . (5.20)

The algebraic relations ensure that
∑8

K=1 dKδγ
(K) remains field redefinition invariant.

Indeed, it is straightforward to demonstrate that it can be expressed solely in terms of the
basis that is invariant under field redefinitions, namely {d0, d6, d9}, as

8∑
K=1

dKδγ
(K) = 1

4δγ
(7)d0 +

(
δγ(6) + 3

4δγ
(7) − 2 δγ(8)

)
d6 +

(
δγ(8) − 1

2δγ
(7)
)
d9 . (5.21)

7We define a in terms of r+, since this will be useful in section 6 when we discuss nonextremal solutions.
In the extremal limit considered here, a =

√
1 − Z2.
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Figure 2. The change in the scaling dimension, δγ(K), for the even-parity mode with γ(0) = 1, as a
function of Z = Q/M . The label K = 6, 7, 8 corresponds to the three higher derivative corrections
shown in eq. (1.1). The right hand plot is a blow-up of a region on the left.

The above relation also shows that we can use δγ(K) with K = 6, 7, 8 as a basis to understand
the EFT corrections to the (parity-even) γ(0) = 1 mode.

The most important outcome is that δγ(K) ̸= 0 for the (even parity) γ(0) = 1 mode, and
as such we expect divergent tidal forces scaling as 1/ρ as we approach the extremal horizon.
In figure 2, we plot δγ(K) for K = 6, 7, 8 (with the right panel being a zoomed-in version of
the left near Z ∼ 0), and we see that these are not monotonic in Z and additionally change
sign as we vary Z (but not all at the same value of Z).

Since we now have the EFT-corrected near-horizon geometry together with the leading
deviations coming from the asymptotically flat region, we can compute the tidal forces and
verify the above expectation. We first change to Bondi-Sachs coordinates, where the metric
should take the simple form,

ds2
BS = e2β(−V dv2+2dvdρ)+e2χhIJ(dyI +U Idv)(dyJ +UJdv) with I = {x, ψ}. (5.22)

We do this by setting

t = v + 1
ρ

and φ = ψ + ωNH log ρ− λ(ρ, x) (5.23)

and imposing

∂λ

∂ρ
= ωNH − f4(ρ, x)

ρ
. (5.24)

With the above choice, we find

β = χ = log(
√
2Mf1) and V = ρ2 , (5.25)
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along with

hIJ =


Γ2

NH
(1− x2)f6

+ f2
2

(
∂λ

∂x

)2
−f2

2

(
∂λ

∂x

)

−f2
2

(
∂λ

∂x

)
f2

2


U I =

[
0 ρ f4

]
.

(5.26)

Since V = ρ2, in Bondi-Sachs coordinates, the future extremal event horizon is the null
hypersurface ρ = 0.

It is now a simple exercise to show that, to linear order in dK , the Weyl tensor satisfies

CρIρJ = 1− Z2

4ρ


− 1
2− Z2 −

√
1− Z2 x

1 + (1− Z2)x2

−
√
1− Z2 x

1 + (1− Z2)x2
(2− Z2)(1− x2)
[1 + (1− Z2)x2]2


8∑

K=1
dKδγ

(K), (5.27)

demonstrating that it indeed diverges like 1/ρ as expected. Note that CρIρJ is still proportional
to δγ(K), despite the presence of the ρ log ρ terms. However, there is an overall factor of (1−Z2)
in front, showing that there are no tidal force singularities for the extreme Reisner-Nordström
black hole, in accordance with ref. [1], even though δγ(K) is nonzero in that limit.8

6 Constructing EFT-corrected Kerr-Newman black holes at finite
temperature

Having analytically found the EFT corrections to the extremal Kerr-Newman black hole in the
near-horizon limit, let us now turn to the challenging but more physically realistic question
of constructing these solutions away from extremality, at finite black hole temperature. Here,
we will find that a combination of numerical and analytical methods are necessary.

All of our results will automatically be field redefinition invariant, and therefore expressible
in the manifestly invariant basis d0,3,6,9 discussed previously. We have seen this explicitly
in section 5, where we found algebraic relations among the scaling dimension contributions
δγ(K) generated by all eight terms in the action (2.1), which allowed us to express the
field redefinition invariant scaling dimension in eq. (5.21). While this exercise was a useful
consistency check of our computations, as discussed previously we could instead have initially
applied field redefinitions at the level of the action. Doing so allows us to absorb any terms
containing the Ricci tensor or scalar into gauge fields via eq. (2.4). The Riemann-squared
operator, meanwhile, can be combined with other curvature-squared combinations to give
the topological Gauss-Bonnet term, which as noted above cannot contribute to any physical
bulk phenomena. As a result, without loss of generality we can henceforth reduce to only

8An analogous calculation of the Maxwell component FρI yields a log ρ divergence for either sign of δγ.
But this is just a result of working to first order in the Wilson coefficients, since AI ∼ ρ1+ϵ = ρ(1 + ϵ log ρ) to
first order.
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the terms d6,7,8 as in eq. (1.1)—the Riemann-F 2 term and the two F 4 terms — with the
understanding that these Wilson coefficients are now the new ones obtained after field
redefining away the others.

The solutions we seek are stationary and axisymmetric, i.e., they possess two commuting
Killing vector fields k and m generating time translations and rotations. We can introduce
coordinates (t, ϕ, x1, x2) such that k = ∂/∂t and m ≡ ∂/∂ϕ, where ϕ ∼ ϕ + 2π. We
assume that the solutions enjoy the so-called t-ϕ symmetry, i.e., they are invariant under
the simultaneous reflection symmetry (t, ϕ) → −(t, ϕ). We choose the coordinates (x1, x2)
so that the metric on surfaces of constant (t, ϕ) is manifestly conformally flat. All told, we
are assuming that the metric and Maxwell potential can be written as

ds2 = GIJ(x1, x2)dyIdyJ +Φ(x1, x2)(dx2
1 + dx2

2)
A = ÃI(x1, x2) dyI

(6.1)

with yI = (t, ϕ) .
Recall the metric for an electrically charged Kerr-Newman black hole [29] written in

Boyer-Lindquist coordinates [44] given in eq. (2.11). Since at finite temperature we will
ultimately be using different coordinates than those of sections 2 through 5 once we introduce
the EFT deformation of the metric, in order to disambiguate the notation let us replace the
angular coordinate x = cos θ with X. The background is given by

ds2
KN =− ∆(r)

Σ(r,X)
[
dt− ā(1−X2)dϕ

]2
+ 1−X2

Σ(r,X)
[
ā dt− (r2 + ā2)dϕ

]2
+Σ(r,X)

[
dr2

∆(r) +
dX2

1−X2

] (6.2)

and

AKN = −
√
2 Q̄ r

κΣ(r,X)
[
dt− ā (1−X2) dϕ

]
, (6.3)

where

∆(r) = r2 + ā2 + Q̄2 − 2M̄r , Σ(r,X) = r2 + ā2X2 , and X ∈ [−1, 1] . (6.4)

We use bars to distinguish the mass, angular momentum, and charge of the Kerr-Newman
solution from those of the EFT-corrected solution. The event horizon is the null hypersurface
r = r+ with r± = M̄±

√
M̄2 − ā2 − Q̄2. The event horizon becomes degenerate in the extremal

limit, when M̄ =
√
ā2 + Q̄2. One can bring eq. (6.2) to the form in eq. (6.1) by defining

x1 =
∫ r

r+

dr̃√
∆(r̃)

and x2 =
∫ 1

X

dX̃√
1− X̃2

. (6.5)

Now consider the EFT-corrected black hole, which we assume is nonextremal through-
out this section. We start with a metric in the form of eq. (6.1), apply the coordinate
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transformation in eq. (6.5), and parameterize GIJ , Φ, and ÃI as follows,

ds2 =− ∆(r)
Σ(r,X)F1(r,X)

[
dt− (1−X2)F4(r,X)dϕ

]2
+ 1−X2

Σ(r,X)F3(r,X)
[
F4(r,X) dt− (r2 + a2)dϕ

]2
+Σ(r,X)F2(r,X)

[
dr2

∆(r) +
dX2

1−X2

]

A =−
√
2 r F5(r,X)
κΣ(r,X)

[
dt− F4(r,X) (1−X2) dϕ

]
−

√
2 (1−X2)F6(r,X)

κΣ(r,X)
[
F4(r,X) dt− (r2 + a2)dϕ

]
,

(6.6)

where Fi, i = 1, . . . , 6, are functions of r and X to be determined below.
We are working to first order in the higher-derivative corrections, so we can write

Fi(r,X) = 1 +
8∑

K=6

dK

M2 f
(K)
i (r,X), i = 1, 2, 3

F4(r,X) = ā+
(
1− r+

r

) 8∑
K=6

dK

M2 f
(K)
4 (r,X)

F5(r,X) = Q̄+
(
1− r+

r

) 8∑
K=6

dK

M2 f
(K)
5 (r,X)

F6(r,X) =
8∑

K=6

dK

M2 f
(K)
6 (r,X) ,

(6.7)

where M is the mass of the corrected solution; since we are working to first order, it does
not matter whether we write M or M̄ above. The factors of (1 − r+/r) were introduced
to ensure that the EFT-corrected solutions have the same angular velocity and chemical
potential as the background Kerr-Newman black hole.

The procedure is now clear. We input the ansatz (6.6) into the equations of motion
derived from the action in eq. (2.1) and linearize in {c6, c7, c8} to find the equations for
f

(K)
i (r,X). For each K, we obtain eight nontrivial components and thus eight partial

differential equations in f
(K)
i (r,X). However, we only have six f

(K)
i (r,X). This is to be

expected, since we have fixed the gauge, and so some of the equations must be redundant
after a suitable choice of boundary conditions for f (K)

i (r,X).
Let us denote the linearization of the Einstein and Maxwell equation in the absence of

higher-derivative terms by δGab and δZa, respectively. For each K, the Einstein-Maxwell
equations reduce to an inhomogeneous linear system of partial differential equations of the form

δEab
(K) ≡ δGab − δT ab

(K) = 0 and δP a
(K) ≡ δZa − δJa

(K) = 0 , (6.8)

where the source terms δT ab
(K) and δJa

(K) are obtained by varying the higher-derivative terms
in the action and evaluating the result on the Kerr-Newman metric.
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For the six equations that we will solve numerically, we choose

E
(K)
1 ≡ δEtt

(K) , E
(K)
2 ≡ δEtϕ

(K) , E
(K)
3 ≡ δEϕϕ

(K) , E
(K)
4 ≡ δErr

(K) grr + δEXX
(K) gXX , (6.9)

where in the last equation grr and gXX are computed using the Kerr-Newman metric, together
with the two nontrivial components of the Maxwell equation,

E
(K)
5 ≡ δP t

(K) and E
(K)
6 ≡ δP ϕ

(K) . (6.10)

We write the remaining two equations as

C
(K)
1 ≡

√
∆
√
1−X2

2 C̃
(K)
1 and C

(K)
2 ≡ (1−X2)C̃(K)

2 , (6.11)

where

C̃
(K)
1 ≡ Σ(r,X)

(
δErr

(K) grr − δEXX
(K) gXX

)
and C̃

(K)
2 = Σ(r,X) gXX δErx

(K). (6.12)

It is then a simple exercise to use the Bianchi identities to show that√
1−X2 ∂XC

(K)
1 −

√
∆ ∂rC

(K)
2 = 0

√
∆ ∂rC

(K)
1 +

√
1−X2 ∂XC

(K)
2 = 0 .

(6.13)

We can use the equations above, along with commutation of partial derivatives, to show that

(2)∆C(K)
1 = 0 and (2)∆C(K)

2 = 0 , (6.14)

where (2)∆ is the Laplacian computed with the two-dimensional metric,

ds2
(2) ≡

(2)gǐǰdz
ǐdzǰ = dr2

∆ + dX2

1−X2 , (6.15)

where ǐ ∈ {1, 2} and z ǐ = {r,X}.
We will now show that C(K)

1 and C(K)
2 will vanish everywhere in our integration domain

so long as they vanish at the boundary of the domain. In order to do this, we will look
at the quantity, ∫

I
d2z

√
(2)g (2)∇ǐC

(K)
1

(2)∇ǐC
(K)
1 =

∫
∂I

dΣǐC
(K)
1 ∇ǐC

(K)
1 , (6.16)

where I = [−1, 1] ∪ [r+,+∞] is the domain of integration. So long as the integrand on the
right vanishes on each segment of the boundary ∂I, the right-hand side vanishes.9 This
means the left-hand side must also vanish, and since it is positive, we must have C(K)

1 = 0
everywhere in I. The same applies for C(K)

2 . As a check on our numerics, once we solve for
the f (K)

i (r,X), we can a posteriori check that C(K)
1 and C(K)

2 do indeed approach zero in the
continuum limit. Note that from eq. (6.13) it is also easy to see that when one of the C(K)

i

vanishes on the integration domain, the other is forced to be a constant. Thus, we only need
9For the component of the boundary at r = ∞, by “vanishing” we mean that the integrand should decay

sufficiently rapidly as r → ∞.
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to impose that one of the constraints vanishes on all boundaries while the other only needs
to be imposed (at least) at a single point in the integration domain [45].

Before discussing the boundary conditions, we note that r is not a useful coordinate to
implement in a numerical grid, since r is noncompact. We thus define

r ≡ r+
1− Y

, (6.17)

with Y ∈ [0, 1]. Spatial infinity is now located at Y = 1 and the event horizon at Y = 0. This
coordinate transformation also needs to be applied to the constraints C(K)

1 and C
(K)
2 . In

particular, for the asymptotic boundary now located at Y = 1, the spatial infinity component
of the integrand on the right-hand side of eq. (6.16) scales as

C̃
(K)
1 ∂Y C̃

(K)
1

1− Y
+ C̃

(K)
1

2

(1− Y )2 , (6.18)

and we need both terms to vanish asymptotically. A similar expansion holds for C̃(K)
2 .

We now turn our attention to the choice of boundary conditions. At the axis, located
at X = 1, we demand

f
(K)
2 (1, Y ) = f

(K)
3 (1, Y ) , (6.19)

while for the remaining variables we get a set of rather complicated Robin boundary conditions.
The latter conditions arise from evaluating the equations of motion at X = 1, using the
fact that regularity on the axis implies that the f

(K)
i are finite at X = 1. The former

condition, in eq. (6.19), in turn ensures that ϕ has period 2π despite the inclusion of the
higher-derivative corrections. This choice of boundary conditions is such that both C̃1

(K)and
C̃2

(K) vanish linearly at X = 1, leading to a vanishing integrand of the left-hand side of
eq. (6.16) along this boundary.

Since the solution we seek preserves parity with respect to the reflection symmetry
X → −X, we reduce our integration domain so that X ∈ [0, 1], with pure Neumann boundary
conditions for all f (K)

i at X = 0. These boundary conditions are enough to ensure that C̃(K)
1

has a vanishing derivative at X = 0, while C̃(K)
2 vanishes linearly there.

Smoothness at the nonextremal horizon, together with the equations of motion, demands
that all the f (K)

i obey Robin boundary conditions so that both C̃1
(K) and C̃2

(K) are finite
at Y = 0. Note, however, that this implies that the integrand on the right-hand side of
eq. (6.16) vanishes at the horizon (see the definition of C(K)

1 in terms of C̃(K)
1 in eq. (6.11)

and take into account the measure dΣǐ).
At spatial infinity, we expand the functions as

f
(K)
i (X,Y ) =

+∞∑
p=0

(1− Y )pf̃
(p,K)
i (X) . (6.20)

We then choose

f̃
(0,K)
1 (X) = f̃

(0,K)
3 (X) = f̃

(0,K)
6 (X) = 0 , (6.21)
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with the third condition imposing the absence of magnetic charges and the first two preserving
asymptotic flatness. At each p-order in (1− Y ), one finds a system of sourced second-order
ordinary differential equations for f̃p,K

i (X), which can be readily solved.
For instance, at first order in (1 − Y ), one finds

f̃
(0,K)
2 (X) = τK

0

f̃
(0,K)
4 (X) = ωK

0

f̃
(0,K)
5 (X) = ρK

0

f̃
(1,K)
1 (X) = −f̃ (1,K)

3 (X) = αK
0

f̃
(1,K)
2 (X) = −αK

0 + βK
0
√
1−X2 +X γK

0

f̃
(1,K)
4 (X) = 1

1 + a2 + q2

[
ωK

0 (1 + q2) + 3ωK
0 a2 − qµK

0 − aµK
0

]
f̃

(1,K)
5 (X) = ρK

0 + q

2α
K
0

f̃
(1,K)
6 (X) = µK

0

f̃
(2,K)
3 (X) = −2ωK

0 aX2 + χK
0 ,

(6.22)

where we have defined the parameters

a = ā

r+
, q = Q̄

r+
, (6.23)

and αK
0 , βK

0 , γK
0 , λK

0 , ωK
0 , and τK

0 are constants of integration. In deriving eq. (6.22) we
assumed finiteness of the f (1,K)

i (X) at X = ±1. Using the boundary conditions at X = 1,
one then finds

τK
0 = βK

0 = γK
0 = 0. (6.24)

The last two conditions can be readily summarized in the boundary condition for f (K)
2 (X,Y )

at Y = 1,

∂f
(K)
2
∂Y

+ ∂f
(K)
1
∂Y

∣∣∣∣∣
Y =1

= 0 , (6.25)

which we directly impose on the grid. With this choice of boundary conditions, C̃(K)
1 vanishes

quadratically at Y = 1, while C̃(K)
2 vanishes linearly there. This means that the right-hand

side of the integrand in eq. (6.16) vanishes on all four boundaries for C(K)
1 . For C(K)

2 this
need not be the case, since the second term in eq. (6.18) does not necessarily vanish at
Y = 1. At spatial infinity, we thus require

f
(K)
1 (X, 1) = f

(K)
3 (X, 1) = f

(K)
6 (X, 1) = 0

∂f
(K)
4 (X,Y )
∂Y

+ 1 + q2 + 3a2 − 2X2a2

1 + a2 + q2 f
(K)
4 (X,Y )

−a

2
1

1 + a2 + q2
∂2f

(K)
3 (X,Y )
∂Y 2 + q

1 + a2 + q2
∂f

(K)
6 (X,Y )
∂Y

∣∣∣∣∣
Y =1

= 0

∂f
(K)
5 (X,Y )
∂Y

− q

2
∂f

(K)
1 (X,Y )
∂Y

+ f
(K)
5 (X,Y )

∣∣∣∣∣
Y =1

= 0 ,

(6.26)

together with eq. (6.25).
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Our boundary conditions are such that C(K)
1 vanishes or has zero derivative on all

boundary segments of our integration domain, and as such, remains zero in the whole
integration domain. Furthermore, C(K)

2 is vanishing on several of the boundaries. We thus
conclude that our boundary conditions enforce C(K)

1 and C
(K)
2 to vanish everywhere. We

have explicitly checked that this is the case for all of the solutions reported in this paper.
There is one final technical complication. We want to investigate solutions that are very

close to extremality. These solutions develop large gradients close to the horizon. To deal
with this final hurdle, we use multiple Chebyshev-Gauss-Lobatto grids, which connect at
interfaces (see ref. [46] for more details on how to deal with patching procedures).

6.1 Thermodynamics

Once we have found the solutions, we proceed to determine their thermodynamic properties.
This is instructive, since we can compare our results with the analytic expressions reported in
refs. [17, 18]. To compute the energy, angular momentum, and electric charge of our solutions,
we use Komar integrals evaluated at spatial infinity. These charges are defined just as in
eq. (2.13), despite the presence of the higher-derivative terms.

We note that, from our ansatz, the chemical potential and angular velocity of the
corrected solutions read

µ = Q̄

r2
+ + ā2 and Ω = ā

r2
+ + ā2 , (6.27)

showing that, as promised, our boundary conditions ensure that the EFT-corrected solution
has the same chemical potential and angular velocity as the background Kerr-Newman black
hole. The constants a ≡ ā/r+ and q ≡ Q̄/r+ defined previously serve as the parameters that
move along the moduli space of solutions. Note that the electric charge of the corrected
Kerr-Newman black hole will no longer be simply given by Q̄. For these solutions, Q̄ is
just a dial to change the chemical potential.

Expanding our equations of motion for the finite-temperature solutions near spatial
infinity and using our boundary conditions in eq. (6.21) yields

∂f
(K)
2
∂Y

∣∣∣∣∣
Y =1

= ∂f
(K)
3
∂Y

∣∣∣∣∣
Y =1

=− ∂f
(K)
1
∂Y

∣∣∣∣∣
Y =1

=αK
0 , f

(K)
4 (X, 1) = ωK

0 , and f
(K)
5 (X, 1) = ρK

0 . (6.28)

Inputting these asymptotic expansions into eq. (2.13) yields the energy, angular momentum,
and electric charge of the nonextremal solutions,

E = Ē − 4π
κ2 r+

8∑
K=1

αK
0 dK

J = J̄ + 4π
κ2

8∑
K=1

[
ωK

0 (1 + a2 + q2)− 2aαK
0

]
dK

Qe = 4π
√
2

κ2

[
Q̄+ 1

r+

8∑
K=1

ρK
0 dK

]
.

(6.29)
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To compute the temperature of the nonextremal solutions, we simply evaluate the surface
gravity at r = r+ and find

T = 1− a2 − q2

4πr+(1 + a2)

(
1 + 1

2

8∑
K=6

λK dK

r2
+

)
, (6.30)

with
λK ≡ f

(K)
1 (X, 0)− f

(K)
2 (X, 0) , (6.31)

We note that λK is independent of X by virtue of one of the constraint equations, and thus
that T is independent of X, as demanded by the rigidity theorems [47–49].

Finally, we need to determine the entropy. For this task, we use the Wald entropy [31],
which accounts for the effect of the higher-derivative corrections. As noted earlier, terms
generated by d7 and d8 will not explicitly modify the entropy functional, since there is
no explicit dependence on the Riemann tensor, though they will modify the value of the
entropy by changing the horizon size, via the modifications to the equations of motion. For
terms proportional to d6, the Wald formula generates explicit corrections to the entropy
functional itself. Indeed, we find

S = 8π2

κ2 (1 + a2)r2
+

{
1 + 1

4r2
+

8∑
K=6

∫ 1

−1
dX

[
f

(K)
2 (X, 0) + f

(K)
3 (X, 0)

]
dK

− 2q2

3r2
+

[
9 + 4a2 + 3a4

(1 + a2)3 + 3arctan a
a

]
d6

}
,

(6.32)

where the last term comes from the Wald entropy shift induced by d6.
In ref. [18], the entropy difference between the EFT-corrected Kerr-Newman black hole

and a Kerr-Newman black hole with the same electric charge, mass, and angular momentum
was computed using the on-shell action methods of ref. [50]. This turns out to be given by10

∆S(a, q) = 16π2(a2 − 3)(3a2 − 1)[1− ξ − a2(1 + ξ)]2

15κ2ξ(1 + ξ)(1 + a2)4 (d0 + d6 − d9)

+ π2 [1−ξ−a2(1+ξ)
]2 [a(3+2a2+3a4)+3(a2−1)

(
1+a2)2 arctan a]

2κ2ξ(1 + ξ)a5 (d0 + d6 + d9)

+ 64π2

κ2 d3 +
32π2[1− ξ − a2(1 + ξ)][a2(3 + 4ξ)− 1− 4ξ]

5κ2ξ(1 + ξ)(1 + a2)2 d6 ,

(6.33)

with ξ an extremality parameter,

ξ =

√
M̄2 − ā2 − Q̄2

M̄
= 1− a2 − q2

1 + a2 + q2 = κ2

4πM̄
T̄ S̄ , (6.34)

where T̄ and S̄ are the temperature and entropy of the uncorrected Kerr-Newman black
hole.11 Note that ∆S diverges in the extremal limit ξ → 0, but this is simply a consequence

10It turns out that eq. (11) in ref. [18] has a small typo, namely, their general expression for ∆S should be
multiplied by an overall factor of (1 + a2).

11As shown in ref. [18], there is also an explicit contribution to the entropy going like d3, i.e., sensitive to
the Gauss-Bonnet term. This is not inconsistent, since the black hole horizon is a boundary of the exterior
spacetime, on which topological terms can have support. However, this term cannot affect any physical
observable. In any case, its contribution to ∆S is subdominant in the extremal limit, and furthermore d3 is
small compared to d6,7,8 in realistic completions, so we drop it as before.
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Figure 3. The thermodynamic predictions of ref. [18], represented as the solid lines, against the
numerical data, represented as the colored disks. These figures were all generated for the parameter
choice a = q, where a and q are defined in eq. (6.23).

of comparing black holes at the same mass, and the fact that the extremal mass changes
when we include EFT corrections [50]. If we compared black holes at the same temperature,
∆S does not diverge. In figure 3, we plot ∆S for several different EFT terms for fixed
a = q. The solid curves represent the analytic predictions of ref. [18], while the colored disks
represent our numerical solutions for EFT corrections proportional to d6, d7, and d8. The
agreement between the numerical data and the analytic curves provides one of the most
stringent tests of our numerical solutions.

6.2 Tidal forces

Let us now turn to the physical question of the tidal forces on ingoing light rays in the
EFT-corrected spacetime. There are several approaches to computing tidal forces associated
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with ingoing null geodesics. One could (numerically) switch to Bondi-Sachs-type coordinates
and compute the associated tidal forces there, or compute ingoing null geodesics in our
numerically determined spacetimes. Our approach will be based on the latter technique, but
we will restrict ourselves to certain totally geodesic submanifolds to make our calculation
more tractable. In particular, it is a simple exercise to show that any geodesic that starts
at X = 0 (i.e., θ = π/2) with a tangent vector in the equatorial plane will remain within
this plane. In what follows, we will therefore consider ingoing null geodesics restricted to
the equatorial plane.

We start with the Lagrangian for null geodesics,

L = ẋaẋbgab , (6.35)

with ẋa = {ṫ(λ), ṙ(λ), Ẋ(λ), ϕ̇(λ)}a and λ an affine parameter. Next, we again note that
∂/∂t and ∂/∂ϕ are commuting Killing vector fields in our spacetime. As such, we have
two conserved quantities,

En ≡ −1
2
∂L

∂ṫ
and Ln ≡ 1

2
∂L

∂ϕ̇
. (6.36)

Note that λ is only defined up to affine reparameterizations, so that En and Ln have no
physical meaning, but their ratio Ln/En is invariant under affine transformations and can
be interpreted as the impact parameter of the ingoing geodesic.

Next, we focus on geodesics with Ln = 0 and adjust the affine parameter so that, without
loss of generality, En = 1. Furthermore, we take X(λ) = 0, which we can show is consistent
with the geodesic equation, as expected. From the definition of En we can read off ṫ, and
from Ln = 0 (for a null geodesic) we determine ṙ up to an overall sign. To decide which
sign to take, we introduce coordinates in which our line element and gauge potential (6.6)
are regular on the horizon, namely,

dt = dv − dr
∆(r)(r

2
+ + ā2)

(
1− 1

2r2
+

8∑
K=6

λKdK

)
,

dϕ = dφ− ā
dr

∆(r)

(
1− 1

2r2
+

8∑
K=6

λKdK

)
.

(6.37)

Since constant-v hypersurfaces require dr/dt < 0, the above are ingoing coordinates. It
is in these coordinates that we want the ingoing geodesics to be regular. This fixes the
overall sign of ṙ, and one finds

ẋa = Θ(r)



(ā2+r2)2
f3(r,0)−∆(r)f1(r,0)f4(r,0)2

ā2+r2−f4(r,0)2

−∆(r)
√

f1(r,0)f3(r,0)
√

(ā2+r2)2f3(r,0)−∆(r)f1(r,0)f4(r,0)2

r2
√

f2(r,0)

0

(ā2+r2)f3(r,0)−∆(r)f1(r,0)
ā2+r2−f4(r,0)2 f4(r, 0)



a

, (6.38)
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where
Θ(r) ≡ r2

∆(r)f1(r, 0)f3(r, 0) [r2 + ā2 − f4(r, 0)2] . (6.39)

Note also that our choice of En = 1 makes ẋa future-directed.
With the above expressions, we can compute the quantity

Cφφ ≡ ẋaẋbCφaφb (6.40)

on the EFT-corrected black hole horizon, as a measure of the tidal forces experienced by an
ingoing congruence of null geodesics as it crosses the future event horizon. From eq. (5.27),
we expect the tidal forces to be largest at X = 0 (the black hole equatorial plane). As
such, we will monitor Cφφ evaluated on the black hole event horizon and at X = 0. We
will be interested in comparing the tidal forces experienced by an ingoing congruence of
null geodesics crossing an EFT-corrected Kerr-Newman black hole with those crossing a
standard Kerr-Newman black hole with the same temperature, electric charge, and angular
momentum. We thus define

δC(K) ≡ Q2

dK

CH
φφ − C̄H

φφ

C̄H
φφ

, (6.41)

where the superscript H denotes evaluation on the horizon and at X = 0, and C̄H
φφ is computed

for a standard Kerr-Newman black hole (with the same temperature, electric charge, and
angular momentum as the EFT-corrected one). The superscript (K) reminds us that we
should compute CH

φφ for each of the EFT terms under consideration.
To present our results, we choose a one parameter family of black holes that approach

extremality. In figure 4, we plot δC(K) against TQ for a = q. (Other choices produce similar
results.) Note that for fixed TQ there are two Kerr-Newman black holes (for instance, both
Schwarzchild and extreme Kerr-Newmman black holes have TQ = 0). We are interested
in the family of solutions for which TQ → 0 because T → 0, and in figure 4 we only plot
this family. The fact that TQδC(K) approaches a constant value at low temperatures shows
that the tidal forces are diverging as 1/T . This behavior is consistent with the near-horizon
analysis in eq. (5.27), since the scaling symmetry of the near-horizon geometry allows one
to relate scaling with ρ in the extremal solution to scaling with T in the near-extremal
solution [27]. We can also confirm the prediction made in eq. (5.27) directly, by constructing
the EFT-corrected black hole at extremality. We discuss this calculation in the next section.

7 Extremal solutions

Much of the numerical construction of section 6 goes through to the extremal case, but there
are a few important differences that we now outline.

We generalize our metric ansatz to

ds2 =− ∆(r)
Σ(r,X)F1(r,X)

[
dt− (1−X2)F4(r,X)dϕ

]2
+ 1−X2

Σ(r,X)F3(r,X)Ξ(r)
[
F4(r,X) dt− (r2 + ā2)dϕ

]2
+Σ(r,X)F2(r,X)

[
dr2

∆(r) + Ξ(r) dX2

1−X2

]
,

(7.1)
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Figure 4. The (rescaled) change in the tidal force δC(K) defined in eq. (6.41), as a function of TQ
and plotted for the parameter choice a = q. For a given value of TQ, there are two Kerr-Newman
black holes, and we only show the family for which TQ→ 0 because T → 0 (not Q→ 0). Other ways
to approach extremality exhibit qualitatively similar behavior. Our numerical results are given by the
filled points, with the thin curves present to guide the eye. The right-hand panel shows TQδC(K),
which approaches a constant as T → 0, confirming the predicted 1/T scaling.

with ā =
√
M̄2 − Q̄2. Note that we have added a function Ξ(r) with respect to eq. (6.6).

We choose

Ξ(r) = 1 +
8∑

K=6

r4
+
r4

dK

M2a
(K) , (7.2)

with a(K) being real numbers to be determined in what follows. The function Ξ(r) is chosen
so that at asymptotic infinity r → ∞, we have Ξ → 1. As in the nonextremal case, we write

Fi(r,X) = 1 +
8∑

K=6

dK

M2 f
(K)
i (r,X) , i = 1, 2, 3

F4(r,X) = ā+
(
1− r+

r

) 8∑
K=6

dK

M2 f
(K)
4 (r,X)

F5(r,X) = Q̄+
(
1− r+

r

) 8∑
K=6

dK

M2 f
(K)
5 (r,X)

F6(r,X) =
8∑

K=6

dK

M2 f
(K)
6 (r,X) .

(7.3)

As before, the factors of (1− r+/r) in the definitions of F4(r,X) and F5(r,X) ensure that
the solutions we find have the same angular velocity and chemical potential as the extremal
Kerr-Newman black hole. Again, we work with a compact coordinate Y , defined as

r = r+
1− Y 2 , (7.4)
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with Y = 0 being the extremal horizon and Y = 1 asymptotic infinity. Note that this is
slightly different from the coordinate choice defined in eq. (6.17).

The boundary conditions at the axis of symmetry, located at X = ±1, and asymptotic
infinity are unchanged. In particular, at asymptotic infinity the angular momentum and
total charge are not fixed. We now come to the issue of boundary conditions at the extremal
horizon. A careful Frobenius analysis reveals that

∂f
(K)
i

∂Y

∣∣∣∣∣
Y =0

= 0 . (7.5)

None of the boundary conditions so far has enforced C
(K)
2 = 0. It turns out for the extremal

case it is paramount to impose this condition on the event horizon (since we cannot fix the
energy or angular momentum at infinity when we are trying to fix the temperature and
the horizon location). This in turn imposes

f
(K)
4 (X, 0) = Ω(K)

0 , f
(K)
5 (X, 0) = 2q(2− q2)√

1− q2 [1 + (1− q2)X2]
Ω(K)

0 + µ
(K)
0 , (7.6)

and
f

(K)
1 (X, 0) = A(K) + f

(K)
2 (X, 0) , (7.7)

with A(K), Ω(K)
0 , and µ

(K)
0 being constants. In particular, we need to determine A(K) to be

able to give a Dirichlet-type boundary condition for f (K)
1 (X, 0), as well as all the a(K).

On the horizon, we find three ordinary differential equations in f
(K)
2 (X, 0), f (K)

3 (X, 0),
and f

(K)
6 (X, 0). These take a fairly complicated form, which we refrain from presenting

here. However, if we further change variables via f (K)
2 (X, 0) = α

(K)
1 + α

(K)
2 and f (K)

3 (X, 0) =
α

(K)
1 − α

(K)
2 , the equation for α(K)

1 takes a rather beautiful form,

d
dX

[
(1−X2)3/2dα

(K)
1 (X)
dX

]
= SK(X; a(K)) , (7.8)

where the source SK(X; a(K)) depends explicitly on which higher-derivative correction we
are considering. Smooth solutions of eq. (7.8) will only exist if∫ 1

−1
dX S(X; a(K)) = 0 , (7.9)

since we can integrate either side of eq. (7.8), and the left-hand side is zero so long as the
α(K)(X) are finite at X = ±1. This in turn determines all of the a(K) to be

a(6) = 2q2

(2− q2)7/2

(
6q8 − 40q6 + 94q4 − 85q2 + 21

)
a(7) = 4q4

(2− q2)11/2

(
3q10 − 31q8 + 128q6 − 268q4 + 267q2 − 107

)
a(8) = q4

(2− q2)11/2

(
9q10 − 93q8 + 384q6 − 796q4 + 811q2 − 331

)
.

(7.10)
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To determine A(K), we need to solve the equations on the extremal horizon. Remarkably,
we were able to analytically solve for α(K)

1 (X), α(K)
2 (X), and f (K)

6 (X, 0) for all of the higher-
derivative corrections. The expressions for A(K) are not particularly illuminating, so we
will not present them here. Once the dust settles, the new near-horizon geometries become
functions of Ω(K)

0 and µ
(K)
0 , which one can show control the perturbed angular momentum

and charge of the corresponding solution.
The main advantage of constructing the extremal solutions numerically is that we can

try to test the predictions of section 5.2 in great detail. However, in order to accomplish
this task, we have to overcome one last hurdle. In particular, we would like to see how
the change in the scaling δγ(K) enters the near-horizon behavior of our metric functions
f

(K)
i . In order to do this, we have to change from the coordinates used in section 5.2 to

those used here. It turns out to be a lot easier to transform from (ρ, x) to (r,X) rather
than the other way around. One sets

ρ = κ1(r − r+) + κ2(X)(r − r+)2 + κ̃2(X)(r − r+)2 log(r − r+) + o[(r − r+)2]
x = X + λ1(X)(r − r+) + λ2(X)(r − r+)2 + o[(r − r+)2]

(7.11)

and demands that the metric ansatz (5.1) with δfi(ρ, x) given in eq. (5.13) match the line
element (7.1) to linear order in dK and to order r− r+ away from the extremal horizon. This
procedure is rather tedious, but determines κ2(X), κ̃2(X), λ1(X), and λ2(X) as functions
of κ1, V (0), and Z. It also reveals that a(K) = 2δΓ(K)

NH , which one can check by equating
eq. (4.4) with eq. (7.10) (note that, at extremality, q = Z). It also shows that f (K)

3 (r,X)
admits the following expansion near the extremal horizon,

f
(K))
3 (r,X) = z

(K)
0 (X)+ z(K)

1 (X)(r− r+)+ q
(K)
1 (X)(r− r+) log(r− r+)+ o[(r− r+)] , (7.12)

with
q

(K)
1 (X) = − 2(1− q2)(1−X2)

(2− q2)r3
+ [1 + (1− q2)X2]

δγ(K) . (7.13)

In terms of our Y variables, we can use the above expansion to read off δγ(K),

δγ(K) = lim
Y →0

δγ̃(K)(Y ) , (7.14)

where we have defined

δγ̃(K)(Y ) ≡ − (2− q2)
8(1− q2)Y

∂3f3
∂Y 3

∣∣∣∣∣
X=0

. (7.15)

The above quantity can be computed from our numerically determined solutions. If our
near-horizon analysis is correct, δγ̃(K)(Y ) should approach the values given in eq. (5.19). In
figure 5, we plot δγ̃(K)(Y ) for q = 0.2 for all three Wilson coefficients under consideration.
The blue inverted triangles are the predictions based on our near-horizon analysis given in
eq. (5.19). The green disks, red squares, and orange diamonds show δγ̃(K)(Y ) computed
for K = 6, 7, 8, respectively. The agreement between δγ̃(K)(0) and δγ(K) given in eq. (5.19)
shows that our near-horizon analysis indeed captures the shift in the scaling dimensions
of the full asymptotically flat solution.
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Figure 5. The quantity δγ̃(K)(Y ) defined in eq. (7.15) as a function of the radial coordinate Y ,
plotted for q = 0.2. The blue inverted triangles are the predictions based on our near-horizon analysis
in eq. (5.19). The agreement at Y = 0 shows that the near-horizon analysis correctly captures the
change in the scaling dimensions of the full extremal solution.

We were also able to compute the tidal forces directly at extremality and observe the
expected divergence when ρ ∼ 0. We first note that if we use eq. (7.11) together with
eqs. (7.4) and (5.27), we expect the tidal forces to diverge as Y −2 near Y = 0. One can
repeat the same steps as in section 6.2 to compute the relevant future-directed ingoing null
geodesics. In fact, the expression for ẋa is almost the same as the one given in eq. (6.38),
but with Ξ(r) also playing a role, namely,

ẋa = Θ(r)



(ā2+r2)2Ξ(r)f3(r,0)−∆(r)f1(r,0)f4(r,0)2

ā2+r2−f4(r,0)2

−
∆(r)Ξ(r)

√
f1(r,0)f3(r,0)

√
(ā2+r2)2f3(r,0)−∆(r)f1(r,0)f4(r,0)2

Ξ(r)

r2
√

f2(r,0)

0

(ā2+r2)Ξ(r)f3(r,0)−∆(r)f1(r,0)
ā2+r2−f4(r,0)2 f4(r, 0)



a

, (7.16)

where
Θ(r) ≡ r2

Ξ(r)∆(r)f1(r, 0)f3(r, 0) [r2 + ā2 − f4(r, 0)2] . (7.17)

Given the null geodesics, we can define Cφφ ≡ ẋaẋbCφaφb as before.
To measure the expected divergent behavior in the tidal forces, we define

δC̃(K) ≡ κ2J

8πdK

CX=0
φφ − C̄X=0

φφ

C̄X=0
φφ

, (7.18)

where C̄X=0
φφ is computed for a standard Kerr-Newman black hole with the same temperature

(i.e., both the corrected and uncorrected black holes are at zero temperature), electric charge,
and angular momentum as the EFT-corrected black hole. Note that δC̃(K) is defined almost
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Figure 6. Left panel: the change in the tidal force δC̃(K) defined in eq. (7.18), as a function of the
radial coordinate Y . The linear behavior in this log-log plot shows that it diverges at the extremal
horizon Y = 0. Right panel: the quantity Y 2δC̃(K) as a function of Y . The fact that it approaches a
constant confirms the near-horizon result (5.27). Both panels were generated with q = 0.2.

identically to eq. (6.41), except that now we do not evaluate the tidal forces on the extremal
horizon (but we still restrict to the equatorial plane, X = 0) and use a different overall
normalization.

In figure 6, the left panel shows δC̃(K) as a function of Y in a log-log plot. The inverse
power law behavior in Y is clearly evident from the straight-line trend observed near Y = 0.
To confirm this expectation, in the right panel we plot Y 2δC̃(K) as a function of Y . This
quantity clearly approaches a constant value as Y → 0+, showing that δC̃(K) diverges as
Y −2 ∝ ρ−1 as we approach the horizon of the EFT-corrected extremal black hole. Both plots
were generated with q = 0.2, but we found qualitatively similar behavior for other values of q.

Though the tidal forces diverge, we expect all curvature scalar invariants to remain
small at the extremal horizon. This is essentially a consequence of the O(2, 1) symmetry
of the near-horizon geometry and the fact that the equations of motion are given in terms
of a second-rank tensor [51]. This expectation is validated by our numerical data. To see
this, we define the following auxiliary quantity,

δR(K) ≡ κ2J

8πdK

RX=0 − R̄X=0

R̄X=0 with R = RabcdR
abcd and R̄ = R̄abcdR̄

abcd, (7.19)

where R̄abcd is computed as before for a standard Kerr-Newman black hole with the same
(zero) temperature, electric charge, and angular momentum as the black hole with EFT
corrections. In figure 7, we plot δR(K) for K = 6, 7, 8 as a function of the radial coordinate Y
and find that it remains finite at the extremal horizon, as expected. This figure was generated
for q = 0.2, but we have checked that similar behavior occurs for other values of q.

8 Numerical estimates for astrophysical black holes

With the numerical solutions from section 6 in hand for nonextremal black holes, we can
ask whether there is an astrophysical scenario where these quantum corrections — that is,
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Figure 7. The change in the square of the Riemann tensor δR(K) defined in eq. (7.19), as a function
of the radial coordinate Y , for q = 0.2. Note that this quantity and all other scalar invariants remain
finite at the horizon.

higher-derivative terms in the Einstein-Maxwell action — become important for realistic
black holes. The rough estimates in section 1.1 indicate that such a scenario may be rare in
nature. While numerical analysis bears this conclusion out, we will find hints that, under
optimistic assumptions, detection of the enhanced near-horizon effects near extremality
may be conceivable.

Taking the a parameter to range from 0.9 (the typical scale of observed high-spin black
holes) to 0.998 (the limit predicted by Thorne [52], where spin-up from a hot accretion disk
is balanced by torque from thermal radiation), our numerical results give

δĈ(K) ≡ κ2J

8πdK

CH
φφ − C̄H

φφ

C̄H
φφ

∼ (5 to 300)× q4 , (8.1)

for K = 7, 8, which we checked for q = 10−2 and 10−1; see figure 8 for an illustration. Here,
δĈ(K) is defined as the difference in tidal force — with and without the EFT corrections —
for black holes with the angular momentum, charge, and mass held fixed, not the temperature,
distinguishing it from δC(K) in eq. (6.41) and δC̃(K) in eq. (7.18). (We do not include K = 6,
since the effect of the d6 term is suppressed in the standard model by additional factors of the
electron charge-to-mass ratio per eq. (2.2).) That is, one-loop effects from the standard model
in the d7,8 terms yield a fractional deviation from the naive tidal force at the horizon going like

CH
φφ − C̄H

φφ

C̄H
φφ

∼ (105 to 107)×
(10M⊙

M

)2
× q4. (8.2)

In order to find the best-case scenario for an observable effect, we must now ask what the
largest realistic astrophysical charge can be.

The estimate in eq. (1.6) above from ref. [11] for the charge induced on a black hole
in a magnetic field from the Wald effect — which in fact represents an upper limit on the
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accreted charge [53]—used typical pulsar parameters: a magnetic field of B ∼ 1012 G and a
neutron star about to merge with the horizon a 10M⊙ black hole. Assuming a 10 km radius
for our neutron star and taking a slightly lighter black hole of the same size M ≈ 7M⊙, we
find that the deviation from general relativity that goes like

CH
φφ − C̄H

φφ

C̄H
φφ

∼ (10−8 to 10−6)× (B/1016 G)4. (8.3)

Magnetars are known to sustain magnetic fields in the range of 1015 G [54], and field strengths
as high as 1016 G are believed possible in certain extreme scenarios [55]. In this case, the
induced charge-to-mass ratio of the black hole is on the order of 10−4, and the electric
field at the horizon is ∼ 1019 V/m. Of course, in this case the electric field is above the
Schwinger limit at which the electrovacuum breaks down, and the magnetic field dramatically
exceeds it (i.e., both are larger than m2

e), though this may be somewhat ameliorated by
loop factors.12 In any case, we see that even in physically realizable situations in which the
vacuum is ionized, the relative deviation of the tidal force compared to general relativity
remains small, unless the spin of the black hole is taken unphysically large, above the Thorne
limit. It would be interesting to see if such small effects could be observable with LIGO
or future gravitational wave detectors.

However, we can also investigate electromagnetic effects of the singular extremal limit,
though the observable consequences in astrophysical scenarios may be less immediately clear.
In particular, our numerical analysis yields

δF̂ (K) ≡ κ2J

8πdK

F − F̄
F̄

∼ (2 to 50)× q2 , (8.4)

as shown in figure 8, for spin parameters a ∈ (0.9, 0.998) for K = 7, 8, where F ≡ ẋaFaφ, and
as in eq. (8.1) we are comparing two black holes with all of the same asymptotic charges
(mass, angular momentum, and electric charge). That is, for the same parameters as above,
we find percent-level deviations from the expected Kerr-Newman background,

F − F̄
F̄

≳ few percent. (8.5)

More moderate choices of the external magnetic field will still yield appreciable results, due
to the weaker q-scaling of δF̂ (K) compared to δĈ(K). Importantly, the observed effect as
a → 1 is larger than what one would expect from power counting alone. The equations of
motion (2.8) go like ∇F ∼ 8cK∇F̄3, so we expect differences from the Coulomb-like solution
going like F − F̄ ∼ 8cK F̄

3, which for O(1) values of a and a background solution going like
Qe/4πr2 gives us δF (K) ∼ 16q2 at the horizon. While this is the same order of magnitude as
seen in eq. (8.4), the upward trajectory as a increases — apparent in figure 8—is indicative
of the singularity in the a → 1 limit (and even at the Thorne-limited value of a = 0.998,
δF (K) is already a factor of a few above EFT expectations).

12Strictly speaking, only the electric field ionizes the vacuum. In purely magnetic backgrounds, as long
as ∇B/B ≪ me so that the magnetic field is effectively constant, the full one-loop Euler-Heisenberg La-
grangian [56] can be resummed at all orders in F ; see, e.g., appendix C of ref. [19].
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Figure 8. Parameters δĈ(K) and δF̂ (K) defined in eqs. (8.1) and (8.4) measuring the change in
tidal force and gauge field strength between the EFT-corrected black hole and a Kerr-Newman black
hole of the same mass, charge, and angular momentum. The EFT corrections clearly increase near
extremality. The numerical results shown here were computed for a charge parameter q = 0.01.

9 Discussion

We have seen that the leading effective field theory corrections to the Einstein-Maxwell
equations produce tidal force singularities on the horizon of extreme Kerr-Newman black
holes. These singularities are stronger than the ones that were found earlier for extreme Kerr.

At first sight, the fact that the leading EFT corrections produce singularities suggests
that the derivative expansion in our classical calculation must be breaking down, and that
terms of yet higher order in derivatives will be important to the black hole solution. However,
this is not the case. Our singularities have the property that all scalar curvature invariants
remain small. The curvature only becomes large along the null horizon. Intuitively, the
correction δg to the Kerr-Newman metric scales like ργ where γ is slightly different from
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one. Two ρ derivatives produce a curvature that diverges like ργ−2, and one might think
that more ρ derivatives from higher-derivative terms will produce stronger singularities. But
the equation of motion is a second-rank tensor, so all but two ρ derivatives will have to
be contracted with gρρ ∼ ρ2 and not produce a faster divergence. Since higher-derivative
terms in the EFT appear with smaller coefficients, they will only produce small corrections
to the singular solution we have found. In other words, both the spacetime Lagrangian
density and classical equation of motion have derivative expansions that remain under control,
the singularity notwithstanding.

However, despite this classical control in the equation of motion and bulk Lagrangian,
the singularity does indeed signal that the EFT is breaking down. We can see this, for
example, in the worldline effective action of an infalling observer, the timelike analogue
of eq. (6.35). In the point-particle limit, the worldline action is just the proper time, but
finite-size effects associated with tidal forces (the so-called Love numbers) are parameterized
by higher-derivative corrections to this action in the form of Lorentz scalars involving the
Weyl tensor [57], where components can be dotted into the observer’s four-velocity (e.g., the
square of eq. (6.40) or (1.5)), which can diverge. Terms of yet higher order in derivatives
in the worldline EFT, e.g., higher powers of these divergent operators, will diverge more
strongly, and the derivative expansion in the worldline EFT will break down, even though
that of the bulk Lagrangian does not. That is, any time an observable diverges, there is some
operator in the EFT of some observer that also diverges, and hence some observer whose
worldline EFT is breaking, even if the bulk action is healthy. This accords with the definition
of a Wilsonian EFT within quantum field theory, in which the only modes within the Hilbert
space of the EFT are those field configurations with significant support in Fourier space
only below the cutoff. While our classical calculation itself is robust under adding classical
terms of yet higher order in derivatives than we have included, it remains the case that, in
a quantum field theoretic sense, and for the classical predictions of the worldline effective
action for an infalling observer, the EFT is indeed breaking down.

For near-extremal black holes with tidal forces large compared to the uncorrected solution
but small compared to the Planck (or string) scale, the EFT should be replaced with an
ultraviolet complete theory of the matter. When the tidal forces become larger than the
string or Planck scale, a full theory of quantum gravity might be needed. We can already
see that strings might see a big effect. The large tidal forces could cause infalling strings to
become highly excited. The following rough estimate indicates that this might be the case.
Starting in an unexcited state, the string will follow an ingoing null geodesic. Suppose we
can approximate the spacetime seen by the string by taking a Penrose limit [58]. The result
will be a plane wave, and near the horizon it will take the form,13

ds2 = −dρ dv + dxi dxi + ργ−2hijx
ixjdρ2 (9.1)

for some constant hij . There is no particle (or string) production in plane waves, but strings
can get excited. Strings in singular plane waves have been extensively studied, with the
result that if γ ≤ 1, ⟨M2⟩ diverges, while for γ > 1 it remains finite [59]. We saw in section 5

13This form is required to match the curvature since for a plane wave in these Brinkman coordinates,
Rρiρj ∼ ∂i∂jgρρ.
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that both of these options arise for certain Kerr-Newman black holes. We leave further
exploration of this effect for future investigation.

In another direction, we know that black holes are sometimes immersed in magnetic
fields. Wald [9] used a test magnetic field in a Kerr background to estimate the amount of
charge a black hole might carry. However exact solutions are known for a Kerr-Newman
black hole in a magnetic field [60]. One might wonder how the magnetic field affects the
singularities on the extremal horizon. With no charge, the magnetic field does not change
the near-horizon geometry [36], so EFT corrections will produce singularities analogous to
Kerr. When charge is added, we expect the singularities will be similar to those described
here. In other words, treating the magnetic field exactly is unlikely to qualitatively change
the nature of the singularity.

We have seen that the tidal forces become large at black hole temperatures of order
1/M3 (see eq. (1.10)). This corresponds to a timescale of order M3, which is the black hole
evaporation time. When a near-extremal black hole evaporates, quantum superradiance
causes it to evolve away from extremality. One might thus wonder whether superradiance
(which we have not included) might affect our results. Fortunately, the answer is no, since
there is a large prefactor multiplying 1/M3, so the corresponding timescale is many orders
of magnitude shorter than the evaporation time.
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A The L(K) matrices

In this appendix, we give explicit expressions for the L(K) matrices that appear in eq. (5.9).
We first note the following relations,

L(1) = 0

L(3) = 4L(2)

L(4) = 0

L(5) = L(2) .

(A.1)

For the remaining L(K), K = 2, 6, 7, 8, we will give the independent components of the 2× 2
matrices in terms of a, which at extremality is equal to

√
1− Z2 for charge-to-mass ratio Z.

We first note that the L̃ matrices appearing in eq. (5.11) are given by

L̃(0) = 1
4L

(7) , L̃(6) = L(6) + 3
4L

(7) − 2L(8) , and L̃(9) = L(8) − 1
2L

(7) . (A.2)
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The components of L(2) are

L
(2)
11 = 3Z4 [a (105−35a2+39a4−45a6)− 3

(
35+6a4−8a6+15a8) arctan a]

16a7

L
(2)
12 = −3Z3 [a (105+25a2−17a4+15a6)− 3

(
35+20a2−6a4+4a6−5a8) arctan a]

8a7

L
(2)
22 = 3Z2 [a (105+85a2+17a4−15a6)− 3

(
35+40a2+12a4−4a6+5a8) arctan a]

4a7 .

(A.3)

The components of L(6) are

L
(6)
11 = − 3Z2

40a7 (1 + a2)

[
a
(
2835 + 3855a2 + 842a4 + 50a6 + 195a8 − 225a10

)
− 15

(
1 + a2

)2 (
189− 58a2 + 52a4 − 38a6 + 15a8

)
arctan a

]
L

(6)
12 = 3Z

20a7 (1 + a2)2

[
a
(
2835 + 3750a2 + 37a4 − 636a6 − 35a8 − 10a10 + 75a12

)
− 15

(
1 + a2

)2 (
189− 65a2 + 10a4 − 10a6 + 9a8 − 5a10

)
arctan a

]
L

(6)
22 = − 3

10a7 (1 + a2)4

[
a
(
2835 + 6480a2 + 1302a4 − 4460a6 + 368a8 + 5096a10

+ 1010a12 − 140a14 − 75a16)− 15
(
189− 261a2 + 124a4

+ 16a6 − 9a8 + 5a10) (1 + a2
)4

arctan a
]
.

(A.4)

The components of L(7) are

L
(7)
11 = Z4

40a7 (1 + a2)4

[
a
(
30375 + 111375a2 + 148095a4 + 82511a6 + 7453a8

− 2235a10 − 2115a12 − 675a14)
− 45

(
1 + a2

)4 (
675 + 6a4 − 8a6 + 15a8

)
arctan a

]
L

(7)
12 = − Z3

20a7 (1 + a2)5

[
a
(
30375 + 139770a2 + 249690a4 + 210706a6 + 78808a8

− 3186a10 + 1350a12 + 870a14 + 225a16)
− 45

(
1 + a2

)5 (
675− 44a2 − 6a4 + 4a6 − 5a8

)
arctan a

]
L

(7)
22 = Z2

10a7 (1 + a2)6

[
a
(
30375 + 168165a2 + 379050a4 + 438746a6 + 256656a8

+ 92380a10 − 26010a12 + 1350a14 − 1095a16 − 225a18)
− 45

(
1 + a2

)6 (
675− 88a2 + 12a4 − 4a6 + 5a8

)
arctan a

]
.

(A.5)
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Finally, the components of L(8) are

L
(8)
11 = Z4

160a7 (1 + a2)4

[
a
(
33525 + 122925a2 + 163965a4 + 92141a6 + 8023a8

− 6705a10 − 6345a12 − 2025a14)
− 45

(
1 + a2

)4 (
745 + 18a4 − 24a6 + 45a8

)
arctan a

]
L

(8)
12 = − Z3

80a7 (1 + a2)5

[
a
(
33525 + 156270a2 + 284430a4 + 247606a6 + 99208a8

+ 3114a10 + 4050a12 + 2610a14 + 675a16)
− 45

(
1 + a2

)5 (
745− 4a2 − 18a4 + 12a6 − 15a8

)
arctan a

]
L

(8)
22 = Z2

40a7 (1 + a2)6

[
a
(
33525 + 189615a2 + 442110a4 + 542606a6 + 359856a8

+ 152980a10 − 8910a12 + 210a14 − 3285a16 − 675a18)
− 45

(
1 + a2

)6 (
745− 8a2 + 36a4 − 12a6 + 15a8

)
arctan a

]
.

(A.6)
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