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1 Introduction

Phase transitions are present in a variety of particle-physics models. If they are first order they
could create an environment for the generation of baryon asymmetry [1–4] and production of
a stochastic gravitational wave background, which could be potentially observed with the
next generation of detectors [5–10]. Cosmological phase transitions are typically induced by
quantum tunnelling or thermal fluctuation of a scalar field between non-degenerate minima
of its potential and proceed via nucleation of bubbles of the energetically favourable phase.
Once the bubbles are nucleated, they start to grow, driven by the potential difference between
the different phases inside and outside the bubble. On the other hand, particles crossing the
bubble wall exert velocity-dependent friction on it. These two forces may balance each other,
leading to steady-state expansion with constant velocity. Otherwise, the bubble wall will
continue to accelerate and reach a velocity very close to the speed of light1 Correct distinction
between these two situations and accurate estimation of the bubble-wall velocity is crucial for
both predictions of baryon asymmetry production in theories of Electroweak Baryogenesis
and modelling of gravitational wave spectra produced in the transitions.

Backreaction coming from the particles interacting with the bubble wall was estimated by
solving the Boltzmann equation for all the species in the plasma together with the equation
of motion for the scalar field [15–26]. However, this method is quite challenging and the
non-equilibrium part of the friction in the equation of motion is instead often parameterized
with an effective phenomenological coefficient treated as a free parameter in hydrodynamical
simulations [27, 28]. Recently, it has been shown that purely equilibrium hydrodynamic
backreaction can inhibit the accelerating expansion [29–31] and a simple estimate that can

1In local thermal equilibrium the acceleration will only stop upon collision with other bubbles although in
realistic scenarios it is expected that out-of-equilibrium corrections can stop the acceleration first [11–14].
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be interpreted as the upper limit on bubble-wall velocity for a given model has been derived.
However, this approach, similarly to methods based on the Boltzmann equation, assumes
that the plasma profiles are at any time fully developed into steady-state solutions with a
given wall velocity [32]. The mechanism preventing the further acceleration of the wall is
connected with the heating of the plasma outside of the bubble and relies on this assumption
heavily. In this work, we verify this assumption using hydrodynamic simulations without
non-equilibrium friction.

As a benchmark model, we use a singlet scalar extension of the Standard Model, which is
a simple and well-known example of a theory in which electroweak symmetry breaking may
proceed as a first-order phase transition [33–46]. We use the temperature-dependent potential
to find the solution corresponding to the nucleating bubble and simulate its evolution to
observe as it develops into a self-similar solution. We compare the results with the bubble-wall
velocities and plasma profiles obtained with analytical methods. We have found that if a
steady state expanding slower than the Jouguet velocity is reached, the two methods agree
with very good accuracy. Such scenarios are, however, rare and fine-tuned. In the absence of
non-equilibrium friction typical bubble accelerates beyond the Jouguet velocity before heating
the plasma as the self-similar profile would suggest. As a result, most bubbles develop into
very fast detonations which in the absence of non-equilibrium friction continue to accelerate
corresponding to the so-called runaway solution. Thus, we find that velocity estimates
assuming steady-state evolution may not be valid in the majority of cases and predictions of
baryon asymmetry and gravitational wave emission based on them would be incorrect.

The paper is organised as follows. In section 2 basic parameters describing cosmological
phase transitions are defined, while in section 3 steady-state dynamics of the bubble expansion
presenting different expansion modes are discussed. We review recent estimates of velocity [31],
to which we refer further. In section 4 we introduce the singlet scalar extension of the Standard
Model and compute a high-temperature approximation of the effective potential of this theory.
Then, we perform a scan of the parameter space determining transition parameters for
different realisations of that model and estimate bubble-wall velocity from the matching
equations. Section 5 is devoted to the derivation of equations of motion adjusted to the
scalar singlet model used in real-time simulations. Finally, in section 6 we show the results
of the real-time simulations and compare them with the estimations mentioned above. We
summarize our results in section 7. Details of our code and numerical methods used in the
simulations are reviewed in the appendix A.

2 Transition parameters

Cosmological first-order phase transitions proceed via nucleation of bubbles of the broken phase
from the background state of the symmetric, metastable phase. The probability of tunnelling
per unit time and volume at temperature T is given with the bubble nucleation rate [47–50]

Γ(T ) = A(T )e−S , (2.1)

where for finite temperatures the Euclidean action S = S3
T and A(T ) = T 4

(
S3

2πT

) 3
2 . Nucleation

temperature is defined as the value such that the probability of a true vacuum bubble forming
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within a horizon radius grows close to unity [51], i.e.

N(Tn) =
∫ Tc

Tn

dT

T

Γ(T )
H(T )4 ≈ 1, (2.2)

where Tc denotes the critical temperature in which both minima are equally deep. Assuming
that the transition is fast, one can neglect the change of the expansion rate of the Universe
(assume that Hubble parameter H(t) ≈ const). Then, eq. (2.2) reduces to

S3
Tn

≈ 4 log
(
Tn

H

)
, (2.3)

which for temperatures close to the electroweak scale gives S3/Tn ≈ 140 [6]. To quantify the
level of supercooling of the phase transition, we introduce the temperature ratio Tn/Tc.

An important parameter describing the strength of the transition is the amount of
latent heat released during the transition, typically normalised to the energy density of the
cosmological background, resulting in [9, 52]

α = 1
ρr

(
∆V − T

4 ∆
∂V

∂T

)
, (2.4)

where ∆ denotes the difference between symmetric and broken phases, and V is temperature-
dependent potential. For model-independent studies, one needs to define a generalized
transition strength based on the trace of the energy-momentum tensor θ [53]

αθ = ∆θ
3ws

, with θ = e− 3p (2.5)

where ws denotes enthalphy in the symmetric phase while e and p correspond to energy and
pressure. Taking into account that the speed of sound might be different from the standard
cs = 1/

√
3 and assuming only weak dependence on T , one can introduce pseudotrace θ̄ [54].

We then have a more accurate prescription for the transition strength

αθ̄ = ∆θ̄
3ws

, with θ̄ = e− p

c2
b

, (2.6)

where cb is the speed of sound in the broken phase.

3 Late-time expansion

Late-time evolution of the bubble walls was studied in [32] using a hydrodynamical approxi-
mation in which it is assumed that the cosmic plasma can be modelled as the relativistic
perfect fluid, therefore its energy-momentum tensor is given by

Tµν
fluid = wuµuν − gµνp, (3.1)

where uµ is the four-velocity of the plasma, while p and w are respectively the pressure and
the enthalpy. Conservation of energy-momentum projected onto direction uµ along the flow
and the perpendicular one ūµ = γ(v,v/v) gives the following equations

∂µ(uµw)− uµ∂
µp = 0, (3.2)

ūνuµw∂µuν − ūν∂µp = 0. (3.3)
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Deflagration: vw < cs Hybrid: cs < vw < cJ Detonation: cJ < vw

Figure 1. Schematic representation of three different types of expanding bubbles. Colour saturation
denotes the value of the plasma velocity, while black circles represent the position of the bubble wall.

with ūµu
µ = 0 and ū2 = −1. As the steady-state profile has no characteristic length scale,

the solution should depend only on the self-similar variable ξ = r/t, where r denotes the
distance from the centre of the bubble and t is the time since nucleation. Variable ξ can
be interpreted as the velocity of a given point in the profile, while the plasma at the point
described by ξ moves with velocity v(ξ). Under this assumptions, equations (3.2) and (3.3)
can be rewritten as

(ξ − v)∂ξe

w
= 2v

ξ
+ [1− γ2v(ξ − v)]∂ξv, (3.4)

(1− vξ)∂ξp

w
= γ2(ξ − v)∂ξv (3.5)

and using the definition of the speed of sound in the plasma cs ≡ dp
dT /

de
dT , they can be

combined into the single hydrodynamic equation describing plasma velocity profile v(ξ) in
the frame of the bubble centre

2v
ξ
= γ2(1− vξ)

[
µ2

c2
s

− 1
]
∂ξv, (3.6)

with µ = ξ−v
1−ξv denoting the Lorentz-transformed fluid velocity. To proceed further, one has

to define the equation of state for the plasma. The most popular choice is the so-called bag
model [32, 55], where the speed of sound in both phases is constant and equal c2

s = 1/3,
however, more complex options were recently considered [30, 31].

Solutions of equation (3.6) with the bag-model equation of state depend only on the
transition strength α and bubble-wall velocity in the stationary state ξw. Possible types
of solutions are subsonic deflagrations or supersonic detonations and hybrids schematically
depicted in figure 1. The velocity at which the shell around the bubble disappears and the
solution shifts from hybrid to detonation is given by the Chapman-Jouguet value [31]:

cJ =
1 +

√
3αθ̄(1− c2

s + c2
sαθ̄)

1/cs + 3csαθ̄

. (3.7)

For a detailed discussion of bag model solutions see [32].
In order to estimate bubble-wall velocity, it is necessary to estimate the total force

exerted on a bubble wall from the plasma surrounding the bubble and compare it with a
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driving force coming from the pressure difference between the false and true vacuum. The
equation of motion of a scalar field reads

□ϕ+ ∂Veff
∂ϕ

+
∑

i

dm2
i (ϕ)

dϕ

∫ d3p

(2π)32Ei
δfi(p, x) = 0, (3.8)

where the index i runs over all the species in the plasma and δfi is the non-equilibrium
part of the particle distribution function as the equilibrium part is already included in the
effective potential [30]. Assuming a planar wall expanding with a constant velocity in z

direction, the equation above can be written as∫
dzdϕ

dz

(
□ϕ+ ∂Veff

∂ϕ
+
∑

i

dm2
i (ϕ)

dϕ

∫ d3p

(2π)32Ei
δfi(p, x)

)
= 0 (3.9)

and integrated leading to

∆Veff =
∫

dz ∂Veff
∂T

dT
dz −

∑
i

∫
dϕdm2

i (ϕ)
dϕ

∫ d3p

(2π)32Ei
δfi(p, x). (3.10)

The left-hand side can be interpreted as the pressure difference between the true vacuum
inside the bubble and the false vacuum outside. The right-hand side is the backreaction force
and can be separated into the equilibrium part coming from heated plasma at the bubble
front (first term) and typically subdominant [25] non-equilibrium friction (second term).

Steady-state bubble-wall velocity can be determined by solving the equation of motion for
the scalar field (3.8) together with the Boltzmann equations for all the particle species in the
plasma. This approach is computationally demanding and typically the so-called fluid ansatz
is used and solutions are found by looking for the configuration for which equation of motion
has two vanishing moments (see [19, 22, 24, 25, 56] for more details). Full computations
of the bubble-wall velocity including out-of-equilibrium friction are challenging, therefore
to simplify the problem, it is often assumed that δfi = 0, which is called the local thermal
equilibrium (LTE) scenario.

It was recently shown that assuming the LTE approximation and using the conservation of
entropy it is possible to determine the bubble wall velocity in a steady state in a much simpler
way. The first attempt based on the bag equation of state [30], has been already generalized
to a more broad class of the equations of state and beyond the planar wall limit [31]. It has
been also shown, that the bubble-wall velocity can be estimated based on a few parameters
evaluated at the nucleation temperature: enthalpy ratio between phases ψN = ωb

ωs
, transition

strength αθ̄ and speed of sound in both phases cs and cb [31]. Nevertheless, both non-
equilibrium Boltzmann methods as well as simplified equilibrium approximations are based
on the assumption, that stationary hydrodynamical behaviour sets in just after nucleation
and do not take into account the early evolution of the system, as all the calculations are
performed for stationary profiles.

4 Benchmark model: SM + real scalar singlet

Probably the simplest and most studied model in which a strong first-order electroweak
phase transition can be realized is the real scalar singlet extension of the Standard Model [33–
46], where in addition to the Standard Model Higgs doublet, the scalar sector includes the
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Z2−symmetric scalar field s. The tree-level scalar potential of this theory in a unitary
gauge is given by

V0(h, s) =
1
2µ

2
hh

2 + 1
4λhh

4 + 1
4λhsh

2s2 + 1
2µ

2
ss

2 + 1
4λss

4. (4.1)

The mass term for the Higgs µh and the quartic coupling λh are fixed in such a way, that
in the electroweak vacuum is (h, s) = (υ, 0) with υ = 246.2GeV and the physical mass of
the Higgs is mh = 125.09GeV, which leads to

λh = m2
h

2v2 and µ2
h = −λhυ

2,

leaving scalar singlet mass ms, its quartic coupling λs and the portal coupling between the
Higgs and the scalar singlet λhs as three free parameters of the model. To study the phase
transition, thermal corrections to the potential need to be included:

Veff(h, s, T ) = V0(h, s) +
∑

i

niT
4

2π2 Jb/f

(
mi(h, s)

T

)
, (4.2)

where the sum runs over all particle species of the model, and for all species ni is the
number of degrees of freedom, mi(h, s) is its field-dependent mass, and Jb/f is the thermal
function given by

Jb/f (x) = ±
∫ ∞

0
dyy2 log

(
1∓ exp

(
−
√
y2 + x2

))
, (4.3)

where the upper (lower) sign is for bosons (fermions). Expanding the thermal function in
the relativistic regime (T ≫ m) gives

Jb(x) ≈− π4

45 + π2

12x
2 +O(x3) Jf (x) ≈− 7

8
π4

45 + π2

24x
2 +O(x4 log x2) . (4.4)

Therefore, the high temperature expansion (4.4) yields the well-known result

Veff(h, s, T ) ≈ V0(h, s)−
g∗π

2

90 T 4 +
∑

i

cini

24 m
2
i (h, s)T 2 (4.5)

with ci = 1/2 for fermions, ci = 1 for bosons and g∗ denoting the effective number of
relativistic degrees of freedom, namely

g∗(T ) =
∑

i∈bosons
gi

(
Ti

T

)4
+

∑
i∈fermions

7
8gi

(
Ti

T

)4
. (4.6)

Finally, the whole effective potential of the model can be written in compact form as the
tree-level potential (4.1) with temperature-dependent mass terms

µ2
h(T ) := µ2

h + c2
hT

2 and µ2
s(T ) := µ2

s + c2
sT

2, (4.7)

with

c2
h = 1

48
(
9g2 + 3g′2 + 12y2

t + 24λh + 2λhs

)
and c2

s = 1
12 (2λhs + 3λs) , (4.8)
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Figure 2. Bubble-wall velocities for the scalar singlet model in local thermal equilibrium determined
using the matching method derived in [31] which assumes a steady state solution at all times.
Deflagrations and hybrids are represented by blue dots with the shade depicting the wall velocity,
while runaways are marked with red. No stationary detonations were found which gives rise to the
gray gap in velocities.

where g and g′ are electroweak couplings and yt is the Yukawa coupling for the top quark.
This leads to the high-temperature approximation of the effective potential in a compact form

Veff(h, s, T ) = − g∗π
2

90 T 4 + 1
2(µ

2
h + c2

hT
2)h2 + 1

4λhh
4 + 1

4λhsh
2s2+

+ 1
2(µ

2
s + c2

sT
2)s2 + 1

4λss
4 .

(4.9)

In this simplified treatment we neglect the presence of the Coleman-Weinberg corrections
to the effective potential.

To prepare a sample for our study we performed a scan over the scalar singlet mass
ms and portal coupling λhs fixing the quartic coupling to λs = 1 with the use of the
CosmoTransitions package [57]. We determine the critical and nucleation temperatures as
well as the transition strength for each point.

Next, using approximation derived in [31], we determine the bubble-wall velocities under
the assumption of preserving local thermal equilibrium, finding a variety of deflagration
and hybrid solutions, as well as runaway scenarios for the strongest transitions from the
investigated sample. The results are presented in figure 2, where the shades of blue indicate
the wall velocity while the red points mark the runaway solutions.

5 Real-time dynamics of the system

In hydrodynamical treatment, we describe the plasma as a perfect fluid with temperature
T , characterized by the internal energy density e, pressure p and enthalpy density w. As
the effective potential Veff(h, s, T ) can be interpreted as the free energy density F of the
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system, we can define2

p(h, s, T ) = −Veff(h, s, T ), (5.1)

e(h, s, T ) = Veff(h, s, T )− T
dVeff(h, s, T )

dT , (5.2)

w(h, s, T ) = −T dVeff(h, s, T )
dT . (5.3)

The total energy-momentum tensor of the system is a sum of energy-momentum tensors
for the fields:3

Tµν
fields = ∂µh∂νh+ ∂µs∂νs− gµν

(1
2∂αh∂

αh+ 1
2∂αs∂

αs

)
, (5.4)

and the one of the fluid given by (3.1).
The energy-momentum tensor of the system is conserved (∇µT

µν = 0), however, both
contributions are not conserved separately:

∇µT
µν
fields =

∂Veff
∂h

∂νh+ ∂Veff
∂s

∂νs = −∇µT
µν
fluid. (5.5)

Note that as we are interested in the local thermal equilibrium scenario, here the energy
transfer between the scalar field and the plasma is possible only through the temperature-
dependent effective potential, and there is no additional effective friction typically added to
capture non-equilibrium effects [58]. The left equality of (5.5) is satisfied if fields h and s

follow standard wave equations which in spherical coordinates take the form

−∂2
t h+ 1

r2∂r(r2∂rh)−
∂Veff
∂h

= 0, (5.6a)

−∂2
t s+

1
r2∂r(r2∂rs)−

∂Veff
∂s

= 0. (5.6b)

Due to the spherical symmetry of our problem, we assume that the four-velocity of the perfect
fluid is of the form u = (γ, γv, 0, 0)T with γ := (1− v2)−1/2. We will determine the equations
governing the evolution of two parameters v and p considering temporal (ν = 0) and radial
component (ν = 1) of eq. (5.5). Introducing new variables Z := wγ2v and τ := wγ2−p we get

∇µT
µ0
fluid = ∂tτ +

1
r2∂r(r2(τ + p)v) = ∂Veff

∂h
∂th+ ∂Veff

∂s
∂ts, (5.7a)

∇µT
µ1
fluid = ∂tZ + 1

r2∂r

(
r2Zv

)
+ ∂rp = −∂Veff

∂h
∂rh− ∂Veff

∂s
∂rs. (5.7b)

The system of equations for the fields (5.6) and for the plasma (5.7), together with the
equations of state (5.1) and (5.2) define the dynamics of the growing bubble and was solved
numerically on the lattice. For details of numerical treatment, see appendix A.

2Note that in contrast to the previous papers, the contributions from relativistic degrees of freedom are
already included in the definition of the effective potential (4.9) and do not need to be added separately.

3Note that in our convention the vacuum energy is a part of the fluid energy-momentum tensor (3.1) and
is not present here.
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Figure 3. Two possible scenarios for the growing bubble in local thermal equilibrium approximation:
rapid expansion beyond Chapman-Jouguet velocity leading to a runaway scenario (left panel) and
evolution toward a stationary state predicted by matching conditions (right panel). Solid blue curves
represent the results of the real-time simulations, where darker shades correspond to later times. Red,
dashed curves denote predictions of the equilibrium methods.

6 Results of the simulations

We use our code [58] to perform real-time simulations of the bubble-wall expansion for all
the points shown in figure 2. Each simulation was initialized with fields profiles correspond-
ing to the nucleated critical bubble, while plasma velocity and temperature were fixed as
spatially uniform, v(r) = 0 and T (r) = Tn respectively. This gives a good approximation
of homogeneous plasma in which nucleation takes place and allows us to carefully follow
the early stages of the evolution of the bubbles and formation of the fluid profiles. This is
not possible with different methods of determining bubble-wall velocities, which look for
the stationary states only.

Figure 4 highlights the difference between our results in the left panel and the matching
method of [31] in the right. For majority of points where the matching method predicts
deflagrations and hybrids, we observe a very different behaviour. The bubble walls accelerate
beyond the Jouguet velocity before the heated fluid shell in front of the bubble is formed.
The corresponding evolution for a benchmark is shown in the left panel of the figure 3. This
phenomenon is easy to understand as the bubble growth in local thermal equilibrium is very
rapid. During the early stages of the evolution, the amplitude of plasma profiles is much
smaller, and profiles are less sharp than the ones predicted by the steady-state solutions.
This leads to a significantly lower backreaction force (see eq. (3.10)), which allows the bubble
wall to accelerate further. If the profile accelerates above the Jouguet velocity before the
steady state profile is reached, the stationary state will not be achieved and the bubble will
continue to grow in the runaway regime. This occurs for the vast majority of the points from
the scan where the matching method can be used to compute the wall velocity.

For moderately strong transitions which at the same time are not supercooled, the
temperature of the plasma around the bubble front reaches more quickly the critical tem-
perature Tc. This stops further acceleration of the bubble wall, as larger wall velocity (up
to Chapman-Jouguet velocity) would demand higher temperature in the peak exceeding
Tc which would locally tend to reverse the ongoing transition. This mechanism is called
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Figure 4. Results for the bubble wall velocity in LTE from the hydrodynamical simulations (left
panel) and from analytical calculations [31] (right panel). The stationary states are shown in shades
of blue corresponding to the wall velocity in both panels while runaway scenarios are shown in red. In
most of the parameter space where matching equations predict a deflagration or hybrid solution the
simulation results in a runaway. In those cases, the simulated bubble accelerates beyond the Jouguet
velocity before the heated fluid shell around the bubble is formed while analytical methods assume a
steady state at all times where the shell is heated enough to cease the acceleration.
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Figure 5. Comparison of the bubble wall velocity from matching method estimates vmatch
w [31] vs

those measured in hydrodynamic simulation vsim
w . The lower panel shows the difference between these

two values ∆vw = vsim
w − vmatch

w . The low number of points results from the fact that the two methods
agree on the final steady state solution in a very small part of the parameter space where Tn/Tc and
αθ̄ are tuned. The result of the simulation is much more often a runaway (see figure 4).

the hydrodynamical obstruction [55] and has already been demonstrated in hydrodynamical
simulations [58] leading to velocity gaps within possible expansion modes. From this moment
the bubble starts to asymptote to a constant velocity and the plasma profiles evolve towards
stationary states predicted by the matching conditions. The evolution of the plasma velocity
profile towards a stationary state compared with the analytically predicted profile for a
benchmark transition is shown in the right panel of figure 3. While this is the case only in
a very small part of the parameter space, it is worth noting that bubble-wall velocities as
well as plasma profiles obtained in the simulations are in very good agreement with those
found with the matching method of [31] wherever they both find non-runaway behaviour.
We show a direct comparison of the predictions for this set of points in figure 5 finding the
difference to be of the order of a few per cent at most.
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Ref. [59] used a similar setup and solved the equations of motion for the very early stages
of evolution (tmax ≈ 0.6GeV−1, compared with tmax ≃ 100GeV−1 in this work.). It was shown
the profiles began to form, however, the dynamical range was not large enough to verify if
they reached steady-state solutions. It is also important to point out that the authors focused
on a single benchmark with Tn/Tc ≈ 0.994 and observed the impact of hydrodynamical
obstruction, which is consistent with our results. Ref. [60] also observed relaxation of the
fluid to form a shell, although, in that work, the code used a fixed value for the wall velocity
and the formation of a steady-state profile was only the result of this prior assumption.

7 Conclusions

We have studied the growth of cosmological bubbles nucleated during first-order phase
transitions using real-time hydrodynamic simulations. Focusing on the bubble-wall velocity
in the local thermal equilibrium, we have confirmed that pure equilibrium backreaction
can lead to a steady-state solution. If this is the case and the stationary state is realised
in our simulation, the final velocity agrees very well with recent predictions based on the
matching equations [31]. Such scenarios are however very rare and demand fine-tuning of
nucleation temperature as the stationary expansion is the outcome only in the absence of
any supercooling (Tn/Tc ≈ 1).

We have found that generically without a non-equilibrium friction bubbles expand as
runaways. In the very early stages of their evolution, the nucleated bubbles accelerate quickly
as the heated fluid shell around them is just beginning to form. Typically the walls accelerate
past the Jouguet velocity and start to develop into detonations before the fluid around them
forms into a familiar steady state profile. Once this occurs the bubble will behave as a
runaway despite the fact that a solution exists for which the steady-state profile would match
the vacuum pressure and cease the acceleration at a lower velocity.

We have focused on a very simple extension of the Standard Model with a neutral singlet
to illustrate the prevalence of the early runaway scenario. We have found that nearly the entire
parameter space of the model predicting a first-order transition would result in a runaway if
one neglects the non-equilibrium friction. The only exceptions are tuned scenarios where the
transition is relatively strong yet nucleation occurs extremely close to the critical temperature.

We have shown that the early stages of the evolution of bubbles in cosmological phase
transitions can have a crucial impact on the resulting phenomenology. In particular, assuming
a local thermal equilibrium at those early times generically leads to a runaway solution
even in cases where analytical methods using fully developed steady-state profiles suggest a
small terminal velocity. This would have serious consequences for the predictions of models
concerning the possible production of baryon asymmetry in electroweak baryogenesis, as well
as on the gravitational wave signals generated in first-order phase transitions.
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A Numerical treatment

Equations (5.6) and (5.7) describing the dynamics of the model under consideration are
highly nonlinear and the exact solution of the system is not known. In order to get a detailed
understanding of the evolution of bubbles described by the set of equations we solve the
system numerically extending the code used in our previous studies [58] to the case of two
scalar fields. The extension is straight forward and to keep this manuscript self-contained
we will now only briefly describe used methods.

Equations (5.6) and (5.7) have to be supplemented by the proper boundary conditions.
We chose Neumann boundary conditions for both scalar fields at the centre of the bubble
which correspond to r = 0. In general, the Dirichlet boundary conditions corresponding
to the false vacuum expectation values should be imposed at an infinite distance r = ∞
from the nucleation site. In order to treat the problem numerically, we had to limit our
computational domain to be a finite interval [0, R] with R large enough to be outside the
light cone of the nucleated bubble, so imposing boundary conditions at r = R is physically
equivalent to r = ∞ for a finite period of time simulated in our code.

The initial conditions for our simulations are critical bubble profiles calculated using
CosmoTransitions code [57]. The critical bubble which is at the boundary between collapsing
and expanding bubbles is an unstable static solution of equations of motion. Due to numerical
imperfections, the approximate profile may collapse instead of growing and a minimal
stretching of the initial profile is necessary to guarantee the expansion of the bubble. The
conserved variables Z and τ describing the state of the plasma are initialized to the values
corresponding to the plasma with temperature T equal to nucleation temperature, staying
at rest v = 0 with respect to the nucleation site.

We used the Galerkin discontinuous method to discretize equations (5.6) and (5.7)
in space. We used the so-called mixed formulation of the equations of motion for the
fields (5.6) (which are nonlinear wave equations), so the gradients of the fields and their
values are discretized as independent variables. Both field values and quantities Z and
τ describing plasma are interpolated using piecewise constant functions. Piecewise linear
functions are used for gradients of fields. The integrals in weak forms of discretized equations
are approximated by numerical quadratures which are exact for elements of the base of
space of interpolation functions. The numerical fluxes were chosen such that the obtained
method is the generalization of the central finite difference scheme (for planar bubble walls
described in Cartesian coordinates the method would recover the central finite difference
scheme of second order).

Wave equations (5.6) describing the evolution of scalar fields were discretized using a
well-known position version of Stömer-Verlet scheme. It can be formulated as the right-
discontinuous Galerkin method in time. This formulation was used in our previous paper [58]
to derive in a self-consistent manner the discretization of effective friction terms which,
however, are not used in the current study (they violate the LTE assumption).
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Figure 6. Convergence analysis: velocity profile evolution on different lattices for typical deflagration
(upper row) and runaway (lower row). Three different grids are compared: fine grid, the default one
used in this work and thick grid. Shape of the profile does not depend on the choice of the grid. For
ultra-relativistic bubble-wall, numerical oscillations coming from the Gibbs effect are more visible,
however they do not impact the overall result.

The discretization in time of (5.7) is more involved, and no extension with respect
to the code used in ref. [58] needs to be done. Equations (5.7) are first-order hyperbolic
equations which are challenging for numerical methods due to the formation of discontinuities
(shocks, etc.) in a finite time period of time from smooth initial conditions. Many various
numerical methods dealing with this problem were proposed in the past. We chose to use
flux-corrected transport to keep second-order precision in smooth regions of the profile and
avoid numerical artefacts (Gibbs effect) around discontinuities. In this approach, we have
two schemes, called high and low order, merged in such a way as to keep the solution in the
range of physically correct values according to maximum principle [61, 62]. The second-order
scheme (the high-order one) was integrated in time using the midpoint rule (which is by
itself second order). The low order scheme was obtained by algebraic upwinding [63–66]
which produces the local extrema diminishing scheme, and was integrated in time using
backward (implicit) Euler method. Differences in fluxes computed in the two schemes are
called antidiffusive fluxes and are used (after proper limiting) to correct the low-order scheme
result. The aim of the limiting procedure is to suppress antidiffusive fluxes in regions where
high-order scheme breaks down due to discontinuities. We used Zalesak’s peak preserving
limiter [67] corrected by the idea inspired by [68] to restrict distances from which the conserved
quantity values should be considered to limit antidiffusive fluxes. Details of the construction
of the limiter can be found in [58].

Finally, the conversion from conserved variables τ , Z to primitive ones T , v was done
analogously as described in [58]. Equations of state (5.1) and (5.3) can be combined to form

τ + p(h, s, T )− 1
2

(
w(h, s, T ) +

√
w(h, s, T )2 + 4Z2

)
= 0. (A.1)

For given values of τ , Z (and h, s) equation (A.1) can be numerically solved (we used
Raphson-Newton method) with respect to T . The velocity of the plasma can be recovered
from the definition of Z = wγ2v and (5.3) for a given temperature T .
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We demonstrate the convergence of our numerical methods on two benchmarks from
our scans in figure 6. The columns correspond to finer lattice spacings which we see have
no impact on the results. The upper row shows a point with Tn/Tc ≈ 1 in which the wall
reaches a finite velocity and a steady state profile forms. The lower row represents a point
where the wall passes the Jouguet velocity in its early evolution and runs away.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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