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1 Introduction

The three neutrino mass and mixing scheme has been established as the standard paradigm

to explain solar, atmospheric, long baseline and reactor experiment neutrino data. There

are however some anomalies that cannot be explained within this standard paradigm.

Arguably the most significant one is the LSND anomaly [1]. The canonical solution to

the LSND anomaly is the four neutrino mixing scheme that includes a sterile neutrino

with mass of order of 1 eV and a small mixing with νe and νµ. This solution suffers

from some drawbacks. Most importantly, within this scheme there is a tension between

appearance and disappearance experiments, see [2–4] for recent analyses. Moreover, a

sterile neutrino with mass and mixing parameters to solve the LSND anomaly is in tension

with cosmology [5–7].

In view of these tensions, quantum decoherence has been suggested in the literature

to explain LSND [8–10]. It is hypothesized that the evolution of quantum states receives

a correction relative to the prediction of standard quantum mechanics. Such effects could

arise in certain quantum gravity scenarios [11–13]. To explain the results of short baseline

neutrino experiments, a phenomenological approach is taken to determine the form and

magnitude of decoherence. Neutrino oscillation is a quantum interference effect over macro-

scopic distances, which can be sensitive to small corrections to quantum mechanics. The

idea of involving quantum decoherence to explain the LSND anomaly was first proposed

in [8, 9]. As discussed in [10], within the framework proposed in [8, 9], the decoherence

effects exceed the upper bound from the NuTeV experiment [14] in which neutrinos have

an average energy of 75 GeV.

Considering this observation, the so-called soft decoherence scenario was suggested

in [10] as a solution to the LSND anomaly. Within this scenario, the decoherence effects

rapidly decrease with neutrino energy, avoiding the NuTeV bound and leaving neutrino
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oscillations in experiments with GeV scale neutrino energies unaffected. Furthermore,

decoherence is restricted to the 1-3 sector, while the 1-2 sector is not modified. This

explanation does not suffer from the appearance-disappearance tension of sterile neutrino

models. On the other hand, with the power law energy dependence that was assumed

in [10], reactor neutrinos undergo quantum decoherence after propagating distances of

few cm. This implies that no oscillation due to ∆m2
31 would be possible along the distance

between near and far detectors of reactor experiments. For this reason, the soft decoherence

scenario of [10] is now excluded by the results of the Daya Bay [15, 16] and RENO [17, 18]

experiments.1 In the present paper, we revisit the decoherence scenario by modifying

the power law assumed in [10] to an exponential energy dependence of the decoherence

parameter, leading to an explanation of LSND consistent with all existing data.

The outline of the paper is as follows. In section 2 we review the decoherence scenario

and introduce the ansatz for the exponential energy dependence of the decoherence coef-

ficients. Section 3 contains the numerical results of our analysis of the relevant oscillation

data, showing that the scenario can explain LSND without being in conflict with other

data. In section 4 we discuss further implications of the scenario and predictions for future

experiments. In particular, we show that planned intermediate baseline (50 km) reactor

experiments can provide a crucial test of the framework. We conclude in section 5.

2 Quantum decoherence and the LSND anomaly

In the quantum decoherence framework, the evolution of the density matrix for neutrinos

can be described as

dρ

dt
= −i[H, ρ]−D[ρ] (2.1)

where H is the Hamiltonian and D[ρ] parameterizes the decoherence effects. Maintaining

complete positivity leads to the Lindblad form for D[ρ] [20, 21]

D[ρ] =
∑
m

[
{ρ,DmD

†
m} − 2DmρD

†
m

]
(2.2)

where Dm are general complex matrices. Unitarity then requires Dm to be Hermitian. If

we further impose conservation of average energy, we find [H,Dm] = 0. As a result, in the

neutrino mass basis, Dm and H can be simultaneously diagonalized

H = Diag[h1, h2, h3] , Dm = Diag[dm,1, dm,2, dm,3] , (2.3)

where hi = (p2 + m2
i )

1/2 (adopting the equal momentum approximation for the mass

states), and dm,i are unknown energy dependent real quantities with dimension of [mass]1/2.

Solving eq. (2.1), we find

ρ(t) =

 ρ11(0) ρ12(0)e−(γ12−i∆12)t ρ13(0)e−(γ13−i∆13)t

ρ21(0)e−(γ21−i∆21)t ρ22(0) ρ23(0)e−(γ23−i∆23)t

ρ31(0)e−(γ31−i∆31)t ρ32(0)e−(γ32−i∆32)t ρ33(0)

 (2.4)

1Note that the DoubleChooz experiment [19] does not (yet) exclude this scenario, since no data on

near-far comparison is available to date.
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in which

γij ≡
∑
m

(dm,i − dm,j)2 and ∆ji ≡ hj − hi ≈
∆m2

ji

2Eν
. (2.5)

Obviously, γij = γji and ∆ij = −∆ji. This means γij is symmetric under flipping i ↔ j.

In the following, we assume that only one term contributes in the sum and we drop the

index m. The flavor conversion probability can be written as

Pαβ = 〈νβ |ρ(α)(t)|νβ〉 =
∑
ij

U∗βiUβj ρ
(α)
ij (t) (2.6)

where Uαi are the elements of the PMNS matrix [22, 23]. The density matrix ρ
(α)
ij (t) is

given by eq. (2.4) and ρij(0) = ρ
(α)
ij (0) = UαiU

∗
αj . The flavor conversion probability for

antineutrinos, Pᾱβ̄ , will be given by a similar formula, replacing U with U∗.

In the soft decoherence scenario of [10], a power law energy dependence of the decoher-

ence coefficients has been assumed, di ∝ E−r (r ≥ 2), suppressing decoherence effects for

E & 100 MeV. However, as mentioned in the introduction, this leads to strong decoherence

effects at low energies and is by now excluded by Daya Bay and RENO results. In this

work, we therefore propose a modified energy dependence of the decoherence parameters

and we conjecture an exponential dependence on energy for di as follows:

di =
√
γ0 exp

[
−
(
E

Ei

)n]
, (2.7)

where γ0 is a constant parameter with dimension of mass, universal for all mass eigenstates.

Ei are also constant parameters with dimension of mass but can in principle take different

values for different mass eigenstates. The power n can take any arbitrary number. In line

with the idea of soft decoherence, we take a value for n and Ei for which at energies &
few×100 MeV, the decoherence parameters become suppressed rapidly enough not to have

any effects at experiments such as MINOS [24], T2K [25–27], atmospheric neutrinos [28, 29]

and etc. In the same way this predicts null-results for short-baseline experiments with

E & 200 MeV such as MiniBooNE [30–32] , CDHS [33], NOMAD [34], NuTeV [14] and etc.

We found that with Ei < 100 MeV and n ≥ 2, this requirement is fulfilled. Unless it is

stated otherwise, we take n = 2 for definiteness throughout this paper.

To avoid constraints from the long-baseline KamLAND reactor experiment [35], we

restrict the scenario to d1 ≈ d2 or equivalently to γ12 ≈ 0 [10]. In the limit |E1−E2| � E1

with taking n = 2 and E . E1, we find γ12 ' 4γ0 exp(−2E2/E2
1)E4(E2 − E1)2/E6

1 . To

avoid bounds from KamLAND, γ12 should be much smaller than ∼ (200 km)−1 at E ∼
few MeV which for E1 �MeV means |E2 − E1|/E1 � (800 km γ0)−1/2[E1/(few MeV)]2.

At first sight, it seems that from solar neutrino data, we can obtain strong bounds on γ12,

too. However, for long baselines, the interference effects are averaged out and as a result

the sensitivity to γij is lost. This happens for solar neutrinos even before reaching the

resonance region inside the Sun. From a theoretical point of view, it may be natural to

assume that di are functions of mass: di = f(mi). From m1 ' m2 6= m3, we then expect

d1 ' d2 6= d3.
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In the rest of this paper, we shall take

γ12 = 0 and γ ≡ γ13 = γ32 = γ0

(
exp

[
−
(
E

E3

)n]
− exp

[
−
(
E

E1

)n])2

, (2.8)

with n = 2. Notice that the combination in the parenthesis is less than or equal to 1 and

hence, γ ≤ γ0. For E � E1, E3, we have d1, d3 → 0 and γ will therefore exponentially

converge to zero. For E � E1, E3, γ will also be small and suppressed by [En(E−n1 −
E−n3 )]2. Only for E ∼ E1, E3, the value of γ can be sizable and decoherence effects can

be significant. Note that the suppression of decoherence at low energies works only for a

universal coefficient γ0. Hence, the assumption that γ0 is independent of the neutrino mass

is crucial for our scenario.

For ∆21L� 1, we can write

Pµ̄ē(γ, L) = Pµe(γ, L) = Peµ(γ, L) ' 2|Uµ3|2|Ue3|2
[
1− e−γL cos(∆31L)

]
(2.9)

Pēē(γ, L) = Pee(γ, L) ' 1− 2|Ue3|2(1− |Ue3|2)
[
1− e−γL cos(∆31L)

]
, (2.10)

Pµ̄µ̄(γ, L) = Pµµ(γ, L) ' 1− 2|Uµ3|2(1− |Uµ3|2)
[
1− e−γL cos(∆31L)

]
. (2.11)

For γL → 0 the quantum decoherence is turned off and the flavor conversion probability

becomes equal to that in the standard three neutrino oscillation scenario.

3 Analysis of short baseline and reactor neutrino data

In this section, we present the results from a numerical analysis of relevant data and

determine the allowed range of parameters which can account for the LSND anomaly

without being in conflict with any other experimental results.

3.1 Description of the used data and analysis details

In our analysis, we focus on the LSND electron antineutrino excess events in the energy

range from 20 MeV to 60 MeV [1]. We extract the data points as well as the background

from figure 24 of [1]. The data sample shown in that figure was obtained by applying the

analysis cut Rγ > 10, see section VII-C of [1] for the definition of the Rγ variable. To

predict the number of events in each bin within the decoherence scenario, we normalize

the total number of events for P (ν̄µ → ν̄e) = 1 to 33300 as indicated in table VIII of [1],

multiplied by 0.39 which is the efficiency of the Rγ > 10 cut (see table IX of [1]). The χ2

is defined as the sum of squares of the difference between prediction (signal+background)

and observed number of events per bin divided by the square of the uncertainty. The sum

is over bins with 20 MeV < E < 60 MeV (10 bins) and the uncertainties in each bin are

obtained from the error bars on the data points in figure 24 of [1], which account for both

systematic and statistical uncertainties. We have checked that our analysis reproduces the

allowed region for standard oscillations obtained in [1] with good accuracy.

We also take into account the results of the KARMEN experiment [36], which observes

15 events in the energy range from 16 MeV to 52 MeV with a predicted background of

15.8± 0.5 events. Any explanation of the LSND anomaly has to address the null-result of
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KARMEN, taking into account the very similar experimental configuration, with the main

difference being the somewhat shorter baseline of KARMEN. Again we perform a fit to

the binned energy spectrum (9 bins) and we can reproduce the official results in terms of

sterile neutrino oscillations to good accuracy. For short baseline experiments such as LSND

and KARMEN, ∆31L� 1, so we can use eq. (2.9) to write the conversion probability for

neutrinos and antineutrinos as follows:

Pµ̄ē(γ, L) = Pµe(γ, L) = 2|Uµ3|2|Ue3|2
(
1− e−γL

)
≈ |Ue3|2

(
1− e−γL

)
. (3.1)

As discussed before, the data from Daya Bay and RENO, being consistent with the

standard three neutrino oscillation scheme, can put bounds on the decoherence parameters

E1 and E3. To derive the bounds, we analyze the energy spectrum of the ν̄e flux at the near

and far detectors of Daya Bay shown in figure 2 of [15]. We read the data points for near

detectors (EH1 and EH2) and far detector (EH3) from the upper panel in pairs of panels

shown in figure 2 of [15], 75 data points in total. We read the background for each detector

from the inset panels in this figure. Finally, having extracted the data and background,

to calculate the number of events per bin without oscillation (i.e., for P (ν̄e → ν̄e) = 1),

we use the data points displayed in the lower panels [(data-background)/predictions] of

figure 2 of [15]. To calculate the number of events within the decoherence scenario, we

then multiply this number with the probability in eq. (2.10), averaged over cross section,

flux, and energy resolution. To compute the χ2, we equate uncertainties for each bin to

the root of number of events per bin (i.e., the statistical uncertainty). The overall flux

normalization is taken to be a free parameter to be fixed by the combined near and far

detector fit. The distances between the various reactor and detector sites of the Daya Bay

experiment are taken from table 2 of [16].

We also include the spectrum of fifty thousand inverse beta-decay candidate events

of the far detector of the RENO experiment [17] and compare it with the prediction.

Data points are taken from the right panel of figure 4 of [18] (26 data points), where the

background is already subtracted. To compute the prediction of the decoherence scenario

for each bin we multiply the oscillation prediction shown in figure 4 of [18] by the averaged

survival probability in eq. (2.10) and divide by the oscillation probability with sin2 2θ13 =

0.094 and |∆m2
31| = 2.32× 10−3 eV2 as stated in figure 4 of [18]. These mass and mixing

parameters are the best fit values that ref. [18] derives by using a MC simulation to fit

both near and far detector data. For values of E1 and E3 of interest for solving the LSND

anomaly (E1 ∼ E3 ∼ few 10 MeV), decoherence at the near detector is negligible (γL� 1)

and eq. (2.10) converges to the standard oscillation formula. Hence, using the far detector

prediction based on the near detector data (as done for figure 4 of [18]) should be a good

approximation. Notice, however, that including the RENO results does not much change

the overall results for the decoherence fit, which is dominated by Daya Bay data.

3.2 Results of our fit

Remember that Pµ̄ē at LSND should be of order few×10−3 to account for the observed

excess. For |Ue3|2 ' 0.02, the value of γL for LSND should be of order of 0.1 to explain

– 5 –



J
H
E
P
0
5
(
2
0
1
5
)
0
0
7

100 101 102 103
10−6

10−4

10−2

100

102

104

E (MeV)

γ 
× 

L

 

 
12000 km
300 km
50 km
500 m
30 m

100 101 102 103
10−6

10−4

10−2

100

102

104

E (MeV)

γ 
× 

L

 

 

12000 km
300 km
50 km
500 m
30 m

Figure 1. Dependence of γL on energy for different baselines corresponding approximately to

LSND, MiniBooNE, medium baseline reactor, long baseline accelerator and atmospheric neutrino

experiments. We have taken n = 2, γ0 = 0.01 m−1 for both panels, and E1 = E2 = 20 MeV,

E3 = 55 MeV (E1 = E2 = 60 MeV, E3 = 200 MeV) for the left (right) panel.

the anomaly. From γ < γ0 and L = 30 m, we find that γ0 has to be of order of 0.01 m−1

or larger. Larger values of γ0 require E1 ' E3 to cause partial cancelation, see eq. (2.8).

To explain the LSND anomaly, we demand that γ ∼ γ0 ∼ 0.01 m−1 at E ∼ 30 MeV and to

avoid the bounds from reactor experiment as well as from higher energy experiments, we

require γ � γ0 for both E � 30 MeV and E ∼ few MeV. That means E1 and E3 should be

of order of 10 MeV. Figure 1 shows γL versus energy taking typical values for decoherence

parameters. The left panel of that figure corresponds to a parameter choice close to the

best fit value of our model. As seen from figure 1 (left), at γ0 = 0.01 m−1, the effect of

decoherence is negligible for energies above 200 MeV. Thus, the bounds from short-baseline

experiments such as NOMAD, CDHS, or NuTeV are satisfied. In other words, like in the

soft decoherence scenario, the tension between appearance and disappearance experiments

plaguing the 3+1 sterile oscillations is solved. Furthermore, the standard oscillation results

for experiments with O(1 GeV) neutrinos such as MINOS, T2K, or atmospheric neutrinos

are not affected. For Ei > 200 MeV (see right panel of figure 1), decoherence effects can

potentially show up in the low energy bins of T2K as well as in the sub-GeV atmospheric

neutrino data.

Our main focus is on a range of parameters for which reactor and T2K experiments

are unaffected. As a result, a reanalysis of Daya Bay and T2K will approximately yield the

same value for θ13 as in the standard oscillation case. We fix the values of the standard

neutrino parameters (including θ13) to the best fit value of the global analysis from [37]. We

find that within this scenario with n = 2, LSND data can be explained with a satisfactory

p-value of 68 % with three unknown parameters fitted to γ0 = 0.01 m−1, E1 = E2 = 18 MeV

and E3 = 63 MeV. The spectrum of events at LSND for these values is shown in figure 2.

The figure demonstrates that data and prediction of the decoherence scenario are in good

agreement. In the following analysis we will fix γ0 to the LSND best fit value of 0.01 m−1.

Figure 3 shows the constraints from short baseline and reactor neutrino experiments

on E1 and E3 at 90 % C.L., fixing n = 2 and γ0 = 0.01 m−1. As expected the bounds

– 6 –
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Figure 2. Decoherence prediction for LSND for γ0 = 0.01 m−1, E1 = E2 = 18 MeV and E3 =

63 MeV compared with data.

are symmetric under E1 ↔ E3. Due to the exponential dependence on the distance L,

the difference in the baselines for LSND and KARMEN (30 m versus 18 m) leads to a

better consistency of the two results than in the case of oscillations. Figure 3 shows that

at 90% C.L. KARMEN only marginally constrains the LSND allowed region, compare thin

magenta (LSND) and dotted black (KARMEN) curves. For Ei . 8 MeV, the bound from

the reactor neutrino experiments becomes stringent and practically only the narrow region

with E1 ' E3 is allowed. But for E1, E3 > 15 MeV, the bounds from reactor experiments

are relaxed. The thick red curves in the plot show the globally allowed region. The best fit

is marked by a cross in the plot and it is located at E1 = 20 MeV and E3 = 56 MeV. We

have clipped the figure at E1, E3 = 200 MeV because for larger values T2K and atmospheric

neutrinos will also be affected, as visible from the right panel of figure 1.

Table 1 shows χ2
min per degrees of freedom and goodness of fit (GOF or p-value) for

various short baseline and reactor neutrino experiments. Notice that the p-value for LSND

given in the table (i.e., for the case that γ0 is fixed and E1 and E3 are treated as free

parameters) is better than the aforementioned p-value that we obtain when we treat γ0

as a free parameter along with E1 and E3. This reflects the fact that for γ0 > 0.01 m−1,

the minimum value of χ2 over the E1 and E3 plane does not change much by varying the

value of γ0. Let us comment on the somewhat large p-value of 93% for the reactor analysis.

If Daya Bay and RENO are analyzed separately we find χ2
min/DOF values of 55/72 and

23/24, respectively. Hence, the too good fit comes from the Daya Bay analysis. This might

be related to the accuracy of reading data from the plot. Note however, that our results are

based on ∆χ2 values, which are insensitive to the absolute value of the χ2. Furthermore,

we can reproduce the standard θ13 result of Daya Bay with good accuracy.

Consistency of the combination of various experiments is quantified by the so-called

Parameter Goodness of fit (PG) [38, 39] defined as

χ2
PG = χ2

tot,min −
∑
i

χ2
i,min , (3.2)

– 7 –
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Figure 3. Constrains on the parameters E1,3 from short baseline and reactor experiments at

90% C.L. taking n = 2 and γ0 = 0.01 m−1. The region below and to the left of the dotted curves

is allowed by KARMEN, the region between the dark-blue solid curves is allowed by Daya Bay and

RENO, the thin magenta curves delimit the regions allowed by LSND. The regions consistent with

all data are inside the thick red curves, with the cross indicating the best fit point.

Data χ2
min/DOF GOF χ2

PG/DOF PG

LSND 4.8/8 77%

KARMEN 7.0/7 43%

Daya Bay and RENO 78/98 93%

LSND+KARMEN 14/17 66% 2.3/2 32%

LSND+KARMEN+Reactor 93/118 96% 3.2/4 52%

Table 1. χ2
min/DOF and goodness of fit (GOF) for different combinations of short baseline and

reactor neutrino data. The last two columns quantify the consistency of different experiments, see

eq. (3.2) for the definition. E1 = E2 and E3 are taken as free parameters to fit the data and the

rest are fixed to γ0 = 0.01 m−1, n = 2 and sin2 2θ13 = 0.085.

where χ2
tot,min is the global minimum, the sum over i runs over the different experiments,

and χ2
i,min are the minima of the experiments separately. As seen from the third and fourth

columns of table 1, the KARMEN and LSND data are in good agreement with each other

under the decoherence hypothesis, thanks to the exponential dependence of the transition

probability on L. Furthermore, the short-baseline experiments LSND and KARMEN are

also in very good agreement with the Daya Bay and RENO reactor experiments.

From figure 1, it is clear that decoherence effects are strongly suppressed for the

MiniBooNE baseline of around 500 m and neutrino energies above 200 MeV. Thus, our

scenario is consistent with a null-result in MiniBooNE, as observed in the energy range

E > 475 MeV [30, 31]. The low-energy event excess between 200 and 475 MeV [40] is not

explained since the transition probability is already highly suppressed in that regime. It

– 8 –
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is necessary to be consistent with T2K and atmospheric neutrino data, which requires us

to restrict E1,3 to values sufficiently low such that not to affect the standard oscillation

behavior seen there. Hence the low-energy MiniBooNE excess has to find an alternative

explanation.

4 Predictions for future experiments and possible experimental tests

First we mention that the so-called reactor [41–43] and Gallium [44] anomalies cannot be

explained in the decoherence framework proposed here. At reactor energies and below, the

decoherence effects are suppressed so we predict neither a reduced reactor neutrino flux at

short baselines, nor a reduced neutrino rate in source experiments at Gallium detectors.

Those anomalies (which are at the level of 3σ) should find another explanation in the

scenario discussed here. Planned experiments at reactors with very short baselines as well

as radioactive source experiments should lead to null-results.

Let us now comment on future accelerator-based experiments. Long-baseline oscillation

experiments such as NOvA [45] or LBNF [46, 47] use neutrino beams with Eν & 1 GeV.

As clear from figure 1 we predict no decoherence effects at those energies and hence such

experiments should obtain results consistent with standard three-flavour oscillations. The

nuSTORM short baseline neutrino experiment with an average energy of 3 GeV and a

baseline of 2 km is proposed to test the 3+1 oscillation hypothesis [48]. From figure 1, we

observe again that the decoherence effects for this setup are too small so we predict a null

signal for such an experiment. If nuSTORM finds no signal for appearance, the 3+1 solution

will be ruled out but the decoherence solution will still survive, while the observation of

an appearance signal at nuSTORM would exclude the decoherence solution proposed here.

The situation is similar also for other short baseline neutrino experiment proposals with

neutrino energies & few × 100 MeV, see e.g., [49, 50]. For the ESS superbeam [51, 52],

with a peak energy of E ' 200 MeV some decoherence effects may start to show up if the

E1,3 parameters are not too small. We do predict an appearance signal in LSND-like short

baseline experiments with energies around 30 MeV; see e.g., [53].

A crucial test of our scenario might be possible with reactor experiments with baselines

of around 50 km, such as the JUNO [54, 55] and RENO-50 [18] projects. Using the

formalism of section 2 we obtain for the three-flavour ν̄e survival probability

Pēē = 1− sin2 2θ12 sin2 ∆21L

2
− 1

2
sin2 2θ13

+
1

2
sin2 2θ13 e

−γL [cos2 θ12 cos(∆31L) + sin2 θ12 cos(∆32L)
]
.

(4.1)

The main goal of those experiments is to observe the small “wiggles” in the energy spectrum

induced by the term in the second line of eq. (4.1). We see that for γL & 1 those features

will be suppressed due to decoherence. Figure 1 (left) shows that for baselines of 50 km,

γL becomes of order one for Eν & 4 MeV, and hence, the fast oscillations in the survival

probability may become suppressed.

We perform a numerical study of this effect by simulating the JUNO experiment,

using information from [55]. We normalize the number of events such that for the default
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Figure 4. Left: event spectrum at JUNO for an exposure of 4320 kt GW yr. The red solid

curve corresponds to standard oscillations with ∆m2
31 > 0, whereas the blue dashed curve shows

the spectrum with decoherence parameters E1 = E2 = 20 MeV, E3 = 55 MeV, γ0 = 0.01 m−1,

n = 2. The shaded band indicates the statistical error per 0.02 MeV bin. Right: in the shaded

regions, JUNO can distinguish the decoherence scenario from standard oscillations at more than

3σ (∆χ2 = 9). The red curves show the 90% C.L. allowed regions from the combined analysis of

LSND, KARMEN, Daya Bay and RENO, with the cross indicating the best fit point (same as in

figure 3).

exposure of 20 kt detector mass × 36 GW reactor power × 6 yr exposure (4320 kt GW yr

in total) we obtain 105 events. The energy resolution is assumed to be 3%
√

1 MeV/Eν .

We perform a χ2 analysis using 350 bins for the energy spectrum. Several systematic

uncertainties are included as well as the smearing induced by the baseline distribution of

12 relevant reactor cores. Further details of our analysis can be found in [56].

In figure 4 (left) we compare the expected spectra for standard oscillations (red solid)

to the decoherence scenario with parameters close to the best fit point (blue dashed). We

clearly observe that the θ13-induced modulation of the spectrum (second line in eq. (4.1))

becomes suppressed in the case of decoherence for neutrino energies above 4 MeV. Thanks

to the huge number of events this difference is highly significant: the ∆χ2 between those

two curves is 33, which means that the no-decoherence hypothesis would be excluded at

more than 5σ (1 DOF, i.e., for fixed parameters). The right panel of figure 4 shows the

regions in the (E1, E3) plane, where JUNO will be able to distinguish the decoherence

scenario from standard oscillations at more than 3σ (∆χ2 = 9). We observe that for values

of E1, E3 & 30 MeV, JUNO loses sensitivity, since the decoherence effects will be shifted to

higher energies and the reactor neutrino spectrum would be very little modified. We note

however, that for such large values of Ei, decoherence effects may show up in long-baseline

or atmospheric neutrino experiments.

Hence, if JUNO does not find any deviation of the energy spectrum from standard

oscillations, our scenario would be highly constrained. A dedicated investigation of future

data from reactor, long-baseline, and atmospheric neutrino experiments would be required

to determine whether an allowed region survives or not. In our analysis we have fixed the

exponent in eq. (2.8) to n = 2. If JUNO would obain results consistent with standard

oscillations, one might also test values n > 2. Increasing n, the decoherence for E <
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E1, E3 becomes more strongly suppressed which in turn leads to a faster weakening of

the sensitivity of JUNO to the parameter range allowed by LSND. Such investigations are

beyond the scope of the present work. Note also that we have fixed γ0 = 0.01 m−1. Smaller

values of γ0 would not allow to fit LSND, as discussed in the previous section. For larger

values of γ0 decoherence effects will become larger at JUNO, increasing the sensitivity.

Finally let us mention that the scenario presented here predicts also large modifications

for supernova neutrinos, since the energy range of supernova neutrinos (tens of MeV) is

close to the LSND energy range, where decoherence effects are important. A discussion of

decoherence effects for supernova neutrinos can be found in [10].

5 Conclusions

We have revisited the idea of quantum decoherence as a solution to the LSND anomaly

proposed in [10] taking into account the recent results from the Daya Bay and RENO reac-

tor experiments. We assume an exponential dependence of the decoherence parameters on

neutrino energy as shown in eq. (2.7). For a suitable choice of parameters the decoherence

effects can become suppressed for neutrino energies both below and above LSND energies,

restricting deviations from the standard three-flavour oscillation scenario to the 20-50 MeV

energy range. In this way neither standard oscillations of MeV neutrinos from the Sun

and from reactors are modified, nor the results for neutrinos with energies greater than

200 MeV are affected, as relevant for short and long baseline accelerator experiments and

atmospheric neutrinos. Moreover the scenario becomes free from the famous appearance-

disappearance tension that plagues the 3+1 sterile neutrino solution for the LSND anomaly.

We have studied the parameter space in which the LSND anomaly can be explained and

constraints from various reactor and short baseline neutrino experiments can be avoided.

Results are shown in figure 3. We have found a remarkable agreement between KARMEN

and LSND data within this scenario. The decoherence solution to LSND predicts no effect

in MiniBooNE and is hence consistent with the MiniBooNE null-result for Eν > 475 MeV.

However, one should seek another resolution for the low energy excess observed in Mini-

BooNE between 200 and 475 MeV as well as for the reactor and Gallium anomalies.

The scenario predicts results consistent with standard three-flavour oscillations for

most of the upcoming long and short-baseline neutrino oscillation experiments. However,

reactor experiments at baselines of around 50 km such as the JUNO or RENO-50 projects

will provide a crucial test of the scenario for large part of the parameter space.

Acknowledgments

The authors acknowledge partial support from the European Union FP7 ITN INVISIBLES

(Marie Curie Actions, PITN- GA-2011- 289442). P.B. is grateful to the Oskar Klein Centre

and the CoPS group at Stockholm University for kind hospitality.

– 11 –



J
H
E
P
0
5
(
2
0
1
5
)
0
0
7

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the

observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev.

D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

[2] J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev.

Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].

[3] J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The

Global Picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].

[4] C. Giunti, M. Laveder, Y.F. Li and H.W. Long, Pragmatic View of Short-Baseline Neutrino

Oscillations, Phys. Rev. D 88 (2013) 073008 [arXiv:1308.5288] [INSPIRE].

[5] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological

parameters, arXiv:1502.01589 [INSPIRE].

[6] J. Bergström, M.C. Gonzalez-Garcia, V. Niro and J. Salvado, Statistical tests of sterile

neutrinos using cosmology and short-baseline data, JHEP 10 (2014) 104 [arXiv:1407.3806]

[INSPIRE].

[7] S. Gariazzo, C. Giunti and M. Laveder, Light Sterile Neutrinos in Cosmology and

Short-Baseline Oscillation Experiments, JHEP 11 (2013) 211 [arXiv:1309.3192] [INSPIRE].

[8] G. Barenboim and N.E. Mavromatos, CPT violating decoherence and LSND: A possible

window to Planck scale physics, JHEP 01 (2005) 034 [hep-ph/0404014] [INSPIRE].

[9] G. Barenboim, N.E. Mavromatos, S. Sarkar and A. Waldron-Lauda, Quantum decoherence

and neutrino data, Nucl. Phys. B 758 (2006) 90 [hep-ph/0603028] [INSPIRE].

[10] Y. Farzan, T. Schwetz and A.Y. Smirnov, Reconciling results of LSND, MiniBooNE and

other experiments with soft decoherence, JHEP 07 (2008) 067 [arXiv:0805.2098] [INSPIRE].

[11] J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos and M. Srednicki, Search for Violations of

Quantum Mechanics, Nucl. Phys. B 241 (1984) 381 [INSPIRE].

[12] S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling

Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].

[13] N.E. Mavromatos and S. Sarkar, Probing Models of Quantum Decoherence in Particle

Physics and Cosmology, hep-ph/0612193 [INSPIRE].

[14] NuTeV collaboration, S. Avvakumov et al., A search for νµ → νe and ν̄mu→ ν̄e oscillations

at NuTeV, Phys. Rev. Lett. 89 (2002) 011804 [hep-ex/0203018] [INSPIRE].

[15] Daya Bay collaboration, F.P. An et al., Spectral measurement of electron antineutrino

oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801

[arXiv:1310.6732] [INSPIRE].

[16] Daya Bay collaboration, F.P. An et al., Improved Measurement of Electron Antineutrino

Disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].

– 12 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevD.64.112007
http://dx.doi.org/10.1103/PhysRevD.64.112007
http://arxiv.org/abs/hep-ex/0104049
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0104049
http://dx.doi.org/10.1103/PhysRevLett.107.091801
http://dx.doi.org/10.1103/PhysRevLett.107.091801
http://arxiv.org/abs/1103.4570
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4570
http://dx.doi.org/10.1007/JHEP05(2013)050
http://arxiv.org/abs/1303.3011
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.3011
http://dx.doi.org/10.1103/PhysRevD.88.073008
http://arxiv.org/abs/1308.5288
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.5288
http://arxiv.org/abs/1502.01589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01589
http://dx.doi.org/10.1007/JHEP10(2014)104
http://arxiv.org/abs/1407.3806
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3806
http://dx.doi.org/10.1007/JHEP11(2013)211
http://arxiv.org/abs/1309.3192
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3192
http://dx.doi.org/10.1088/1126-6708/2005/01/034
http://arxiv.org/abs/hep-ph/0404014
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404014
http://dx.doi.org/10.1016/j.nuclphysb.2006.09.012
http://arxiv.org/abs/hep-ph/0603028
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603028
http://dx.doi.org/10.1088/1126-6708/2008/07/067
http://arxiv.org/abs/0805.2098
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.2098
http://dx.doi.org/10.1016/0550-3213(84)90053-1
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B241,381
http://dx.doi.org/10.1016/0550-3213(88)90109-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B307,854
http://arxiv.org/abs/hep-ph/0612193
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0612193
http://dx.doi.org/10.1103/PhysRevLett.89.011804
http://arxiv.org/abs/hep-ex/0203018
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0203018
http://dx.doi.org/10.1103/PhysRevLett.112.061801
http://arxiv.org/abs/1310.6732
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6732
http://dx.doi.org/10.1088/1674-1137/37/1/011001
http://arxiv.org/abs/1210.6327
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6327


J
H
E
P
0
5
(
2
0
1
5
)
0
0
7

[17] RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino

Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802

[arXiv:1204.0626] [INSPIRE].

[18] S.-B. Kim, New results from RENO and prospects with RENO-50, arXiv:1412.2199

[INSPIRE].

[19] Double CHOOZ collaboration, Y. Abe et al., Improved measurements of the neutrino

mixing angle θ13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum ibid.

1502 (2015) 074] [arXiv:1406.7763] [INSPIRE].

[20] G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys.

48 (1976) 119 [INSPIRE].

[21] T. Banks, L. Susskind and M.E. Peskin, Difficulties for the Evolution of Pure States Into

Mixed States, Nucl. Phys. B 244 (1984) 125 [INSPIRE].

[22] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles,

Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

[23] B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge,

Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

[24] MINOS collaboration, P. Adamson et al., Combined analysis of νµ disappearance and

νµ → νe appearance in MINOS using accelerator and atmospheric neutrinos, Phys. Rev. Lett.

112 (2014) 191801 [arXiv:1403.0867] [INSPIRE].

[25] T2K collaboration, K. Abe et al., Observation of Electron Neutrino Appearance in a Muon

Neutrino Beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].

[26] T2K collaboration, K. Abe et al., Precise Measurement of the Neutrino Mixing Parameter

θ23 from Muon Neutrino Disappearance in an Off-Axis Beam, Phys. Rev. Lett. 112 (2014)

181801 [arXiv:1403.1532] [INSPIRE].

[27] T2K collaboration, K. Abe et al., Measurements of neutrino oscillation in appearance and

disappearance channels by the T2K experiment with 6.6E20 protons on target,

arXiv:1502.01550 [INSPIRE].

[28] Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in

atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034]

[INSPIRE].

[29] Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation

analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010)

092004 [arXiv:1002.3471] [INSPIRE].

[30] MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., A search for electron neutrino

appearance at the ∆m2 ∼ 1 eV2 scale, Phys. Rev. Lett. 98 (2007) 231801 [arXiv:0704.1500]

[INSPIRE].

[31] MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved Search for ν̄µ → ν̄e
Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110 (2013) 161801

[arXiv:1207.4809] [INSPIRE].

[32] SciBooNE and MiniBooNE collaborations, K.B.M. Mahn et al., Dual baseline search for

muon neutrino disappearance at 0.5 eV 2 < ∆m2 < 40 eV 2, Phys. Rev. D 85 (2012) 032007

[arXiv:1106.5685] [INSPIRE].

– 13 –

http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://arxiv.org/abs/1204.0626
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0626
http://arxiv.org/abs/1412.2199
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.2199
http://dx.doi.org/10.1007/JHEP10(2014)086
http://arxiv.org/abs/1406.7763
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.7763
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,48,119
http://dx.doi.org/10.1016/0550-3213(84)90184-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B244,125
http://dx.doi.org/10.1143/PTP.28.870
http://inspirehep.net/search?p=find+J+Prog.Theor.Phys.,28,870
http://inspirehep.net/search?p=find+J+Sov.Phys.JETP,26,984
http://dx.doi.org/10.1103/PhysRevLett.112.191801
http://dx.doi.org/10.1103/PhysRevLett.112.191801
http://arxiv.org/abs/1403.0867
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0867
http://dx.doi.org/10.1103/PhysRevLett.112.061802
http://arxiv.org/abs/1311.4750
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4750
http://dx.doi.org/10.1103/PhysRevLett.112.181801
http://dx.doi.org/10.1103/PhysRevLett.112.181801
http://arxiv.org/abs/1403.1532
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1532
http://arxiv.org/abs/1502.01550
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01550
http://dx.doi.org/10.1103/PhysRevLett.93.101801
http://arxiv.org/abs/hep-ex/0404034
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0404034
http://dx.doi.org/10.1103/PhysRevD.81.092004
http://dx.doi.org/10.1103/PhysRevD.81.092004
http://arxiv.org/abs/1002.3471
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.3471
http://dx.doi.org/10.1103/PhysRevLett.98.231801
http://arxiv.org/abs/0704.1500
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.1500
http://dx.doi.org/10.1103/PhysRevLett.110.161801
http://arxiv.org/abs/1207.4809
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4809
http://dx.doi.org/10.1103/PhysRevD.85.032007
http://arxiv.org/abs/1106.5685
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.5685


J
H
E
P
0
5
(
2
0
1
5
)
0
0
7

[33] F. Dydak et al., A Search for νµ Oscillations in the ∆m2 Range 0.3–90 eV2, Phys. Lett. B

134 (1984) 281 [INSPIRE].

[34] NOMAD collaboration, P. Astier et al., Search for νµ → νe oscillations in the NOMAD

experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].

[35] KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with

KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801

[hep-ex/0406035] [INSPIRE].

[36] KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations

ν̄µ → ν̄e from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021]

[INSPIRE].

[37] M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing:

status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].

[38] M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Ruling out four neutrino oscillation

interpretations of the LSND anomaly?, Nucl. Phys. B 643 (2002) 321 [hep-ph/0207157]

[INSPIRE].

[39] M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets,

Phys. Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].

[40] MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Unexplained Excess of Electron-Like

Events From a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102 (2009) 101802

[arXiv:0812.2243] [INSPIRE].

[41] T. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83

(2011) 054615 [arXiv:1101.2663] [INSPIRE].

[42] P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C

84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].

[43] G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006

[arXiv:1101.2755] [INSPIRE].

[44] C. Giunti and M. Laveder, Statistical Significance of the Gallium Anomaly, Phys. Rev. C 83

(2011) 065504 [arXiv:1006.3244] [INSPIRE].

[45] NOvA collaboration, R.B. Patterson, The NOvA Experiment: Status and Outlook, Nucl.

Phys. Proc. Suppl. 235-236 (2013) 151 [arXiv:1209.0716] [INSPIRE].

[46] LBNE collaboration, C. Adams et al., The Long-Baseline Neutrino Experiment: Exploring

Fundamental Symmetries of the Universe, arXiv:1307.7335 [INSPIRE].

[47] The Long Baseline Neutrino Facillity (LBNF),

https://web.fnal.gov/project/LBNF/SitePages/Home.aspx.

[48] nuSTORM collaboration, D. Adey et al., Light sterile neutrino sensitivity at the nuSTORM

facility, Phys. Rev. D 89 (2014) 071301 [arXiv:1402.5250] [INSPIRE].

[49] MicroBooNE, LAr1-ND and ICARUS-WA104 collaborations, M. Antonello et al., A

Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab

Booster Neutrino Beam, arXiv:1503.01520 [INSPIRE].

[50] A. Anokhina et al., Prospects for the measurement of muon-neutrino disappearance at the

FNAL-Booster, arXiv:1404.2521 [INSPIRE].

– 14 –

http://dx.doi.org/10.1016/0370-2693(84)90688-9
http://dx.doi.org/10.1016/0370-2693(84)90688-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B134,281
http://dx.doi.org/10.1016/j.physletb.2003.07.029
http://arxiv.org/abs/hep-ex/0306037
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0306037
http://dx.doi.org/10.1103/PhysRevLett.94.081801
http://arxiv.org/abs/hep-ex/0406035
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0406035
http://dx.doi.org/10.1103/PhysRevD.65.112001
http://arxiv.org/abs/hep-ex/0203021
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0203021
http://dx.doi.org/10.1007/JHEP11(2014)052
http://arxiv.org/abs/1409.5439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5439
http://dx.doi.org/10.1016/S0550-3213(02)00747-2
http://arxiv.org/abs/hep-ph/0207157
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207157
http://dx.doi.org/10.1103/PhysRevD.68.033020
http://arxiv.org/abs/hep-ph/0304176
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0304176
http://dx.doi.org/10.1103/PhysRevLett.102.101802
http://arxiv.org/abs/0812.2243
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.2243
http://dx.doi.org/10.1103/PhysRevC.83.054615
http://dx.doi.org/10.1103/PhysRevC.83.054615
http://arxiv.org/abs/1101.2663
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2663
http://dx.doi.org/10.1103/PhysRevC.85.029901
http://dx.doi.org/10.1103/PhysRevC.85.029901
http://arxiv.org/abs/1106.0687
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0687
http://dx.doi.org/10.1103/PhysRevD.83.073006
http://arxiv.org/abs/1101.2755
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2755
http://dx.doi.org/10.1103/PhysRevC.83.065504
http://dx.doi.org/10.1103/PhysRevC.83.065504
http://arxiv.org/abs/1006.3244
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.3244
http://dx.doi.org/10.1016/j.nuclphysBPS.2013.04.005
http://dx.doi.org/10.1016/j.nuclphysBPS.2013.04.005
http://arxiv.org/abs/1209.0716
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0716
http://arxiv.org/abs/1307.7335
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7335
https://web.fnal.gov/project/LBNF/SitePages/Home.aspx
http://dx.doi.org/10.1103/PhysRevD.89.071301
http://arxiv.org/abs/1402.5250
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5250
http://arxiv.org/abs/1503.01520
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01520
http://arxiv.org/abs/1404.2521
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2521


J
H
E
P
0
5
(
2
0
1
5
)
0
0
7

[51] ESSnuSB collaboration, E. Baussan et al., A very intense neutrino super beam experiment

for leptonic CP-violation discovery based on the European spallation source linac, Nucl.

Phys. B 885 (2014) 127 [arXiv:1309.7022] [INSPIRE].

[52] M. Blennow, P. Coloma and E. Fernandez-Martinez, Searching for sterile neutrinos at the

ESSνSB, JHEP 12 (2014) 120 [arXiv:1407.1317] [INSPIRE].

[53] OscSNS collaboration, M. Elnimr et al., The OscSNS White Paper, arXiv:1307.7097

[INSPIRE].

[54] JUNO collaboration, M. He, Jiangmen Underground Neutrino Observatory,

arXiv:1412.4195 [INSPIRE].

[55] Y.-F. Li, J. Cao, Y. Wang and L. Zhan, Unambiguous Determination of the Neutrino Mass

Hierarchy Using Reactor Neutrinos, Phys. Rev. D 88 (2013) 013008 [arXiv:1303.6733]

[INSPIRE].

[56] M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation

experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822]

[INSPIRE].

– 15 –

http://dx.doi.org/10.1016/j.nuclphysb.2014.05.016
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.016
http://arxiv.org/abs/1309.7022
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7022
http://dx.doi.org/10.1007/JHEP12(2014)120
http://arxiv.org/abs/1407.1317
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.1317
http://arxiv.org/abs/1307.7097
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7097
http://arxiv.org/abs/1412.4195
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.4195
http://dx.doi.org/10.1103/PhysRevD.88.013008
http://arxiv.org/abs/1303.6733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6733
http://dx.doi.org/10.1007/JHEP03(2014)028
http://arxiv.org/abs/1311.1822
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1822

	Introduction
	Quantum decoherence and the LSND anomaly
	Analysis of short baseline and reactor neutrino data
	Description of the used data and analysis details
	Results of our fit

	Predictions for future experiments and possible experimental tests
	Conclusions

