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1 Introduction

The T T̄ deformation stems from the 2D integrable quantum field theory [1, 2]. This deforma-
tion turns out to preserve the integrability and is solvable on both classical and quantum
level. The deformed Lagrangian can be obtained by solving the flow equation [3]. The
deformed spectrum turns out to satisfy the inviscid Burgers equation. It is also known that
T T̄ deformation modifies the S-matrix of integrable field theory by multiplying a univer-
sal CDD factor. The exact partition function satisfies a differential equation [4, 5]. This
kind of deformation also attracts a lot of interests in string theory, 2D gravity as well as
holography [4–14], see [15] for a review.

On the holographic aspects, it was proposed that the T T̄ -deformed CFT2 corresponds to
the AdS3 gravity at finite radial cutoff [9]. The cutoff radial is related to the deformation
parameter. In this holographic description, the T T̄ -deformed finite-size spectrum can be
reproduced by calculating the quasi-local energy of the BTZ black hole. The T T̄ flow
equation coincides with the Hamilton-Jacobi equation governing the radial evolution of the
classical gravity action in AdS3. Another alternative holographic description is imposing
a mixed boundary condition at the asymptotic AdS3 boundary [14]. The AdS3 solutions
with mixed boundary condition can be obtained by performing a field-dependent coordinate
transformation [14]. This coordinate transformation was also found from the field theory [16,
17]. For the mixed boundary condition holographic description, the T T̄ -deformed spectrum,
Lagrangian and asymptotic asymmetries can also be reproduced in terms of Chern-Simons
formulation of AdS3 [18–22]. The other holographic studies about the T T̄ deformation can
be found in [23–36]. Very recently, there is also a glue-on AdS holography proposal for
the T T̄ -deformed CFTs [37, 38].

The studies about the T T̄ deformation exhibit the new intriguing UV behaviours related
to the non-locality [39]. The computations of the deformed correlation functions and entan-
glement entropy non-perturbatively become extremely difficult. The perturbation calculation
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can be found in [40–45]. It is also shown that it is more convenient to study the correlation
function in momentum space [46–49]. The early investigation about the non-perturbative
correlation function was performed by Cardy [11]. Recent developments about the correlation
functions and entanglement entropy are based on the holographic worldsheet techniques [50],
2D gravity description of T T̄ deformation [51] and integrability [52–55]. The holography also
provides a powerful tool to study the T T̄ -deformed CFTs from the gravity side. However,
most of the holographic studies are in the large c limit [56–59]. In this sense, it only dual to
the semi-classical limit of the AdS3 gravity. We cannot even reproduce the exact T T̄ -deformed
partition function from the gravity side, because the gravitational path integral is rather
difficult. In addition, although we have the holographic proposals, the holographic check
is only on the semi-classical level. To establish a complete holographic description of the
T T̄ deformation we have to consider the large c expansion on the quantum fields theory
and loop corrections of quantum gravity.

In this paper, we shall step further to study the holography under T T̄ deformation by
considering the quantum gravity partition functions at one-loop correction. We use the mixed
boundary condition proposal because it also holds when adding matter fields in the bulk. The
gravitational path integral can be calculated by sum over all the gravitational saddles [60–62].
The semi-classical contribution is given by the Euclidean action. The one-loop correction
can be obtained by considering the linear metric perturbation of the gravitational saddles.
In this case, the one-loop correction can be calculated using heat kernel method at some
gravitational saddles [63, 64], see also the early studies about the scalar perturbation [65, 66].
Recently, there is also a Wilson spool proposal for the one-loop partition function of scalar
field [67, 68] in terms of Chern-Simons formulation.

We start from the T T̄ -deformed BTZ black hole geometry, in which the field-dependent
coordinate transformation becomes solvable. The main finding is that the T T̄ -deformed
BTZ black hole is also a quotient of hyperbolic space. Since the deformed geometry is still
AdS3, the general techniques, such as heat kernel in AdS3 and Wilson spool proposal, can
be used. The heat kernel is still depends on the length of geodesics. We first consider the
scalar field perturbation and find the mainly difference is the length of geodesic becomes
a deformed one. The deformation of the length of geodesic leads to the fact that partition
functions deformed in a simple way, which is just a replacement of the modular parameter.
We then calculate the one-loop partition function of graviton. The result turns to be also
a simple replacement of the modular parameter

Z1-loop
graviton =

∞∏
n=2

1
|1− qn

λ |2
, qλ = q

1√
1−λτ2

which is exactly the O(c0) contribution of T T̄ -deformed CFT partition function [69]. These
results provide a check about correspondence between T T̄ -deformed CFT2 and AdS3 with
mixed boundary condition at one-loop level.

The rest of the paper is organized as follows. In section 2, we show the T T̄ -deformed
BTZ black hole geometry can be regarded as a quotient of hyperbolic space. In section 3, we
compute one-loop partition function of scalar field in T T̄ -deformed BTZ background using
both heat kernel method and Wilson spool proposal. In section 4, the one-loop graviton
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partition function in T T̄ -deformed BTZ background is obtained. The result turns out to be
the large c expansion of T T̄ -deformed CFT partition function. The conclusion and discussion
are given in section 5. In appendix A, we give a brief introduction about using the heat
kernel method to calculate the path integral in AdS3.

2 T T̄ -deformed BTZ black hole as a quotient space

It was proposed that the T T̄ -deformed CFT2 is dual to the AdS3 gravity with mixed boundary
condition [14]. The AdS3 solution with mixed boundary condition can be obtained by a
field-dependent coordinate transformation, we prefer to call it T T̄ -deformed AdS3. In this
section, we start with a brief review of the BTZ black hole as a quotient of hyperbolic
space. We then show the T T̄ -deformed BTZ black hole can also be regarded as a quotient
of hyperbolic space but with a different modular parameter.

The most general AdS3 solution with Brown-Henneaux boundary condition in Fefferman-
Graham gauge [70, 71] is called Bañados geometry

ds2 = dr2

r2 + r2
(
dwdw̄ + 1

r2Ldw
2 + 1

r2 L̄dw̄
2 + 1

r4LL̄dwdw̄
)
. (2.1)

where L and L̄ are holomorphic and anti-holomorphic functions, respectively. For the
BTZ black hole, L and L̄ become a constant which related to the mass of the black hole
L = L̄ =M/2. The AdS3 should be locally the hyperbolic space H3 or a quotient of H3 by
some discrete group Γ [72]. In fact, one can perform the following coordinate transformation

y = 2i
√
Lr

r2 − L
e−2

√
Lit′ , (2.2)

ξ = r2 + L
r2 − L

e−2
√
L(θ′+it′), (2.3)

ξ̄ = r2 + L
r2 − L

e2
√
L(θ′−it′), (2.4)

where we have used w = θ′ + it′, w̄ = θ′ − it′. So that the metric becomes the Poincaré patch

ds2 = dy2 + dξdξ̄

y2 , (2.5)

where y > 0 and ξ is a complex coordinate. We should point out that the coordinate
transformation just holds for the region outside the horizon of BTZ black hole. The Poincaré
line element can be written into the line element on SL(2,C)

ds2 = 1
2Tr(g

−1dgg−1dg), g =
(
y + ξξ̄/y ξ/y

ξ̄/y 1/y

)
∈ SL(2,C) (2.6)

This line element has the following discrete group of isometry generated by γ

g → γgγ†, γ =
(
eiπτ 0
0 e−iπτ

)
∈ SL(2,C). (2.7)
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The discrete group of isometry implies the identifications of the coordinates

(y, ξ) ∼ (eiπ(τ−τ̄)y, e2iπτξ). (2.8)

For the BTZ black hole, the identifications become

θ′ ∼ θ + 2π, t′ ∼ t′ + β0, β0 = π√
M
. (2.9)

The modular parameter is defined as the ratio of these two periods1

− 1
τ0

= iβ0
2π . (2.10)

In [14], it turns out that the T T̄ -deformed CFT corresponds to the AdS3 with mixed
boundary condition. The T T̄ -deformed Bañados geometry can be constructed from the
original Bañados geometry through a field-dependent coordinate transformation, which reads

dw = 1
1− λ2LλL̄λ

(dz − λL̄λdz̄), dw̄ = 1
1− λ2LλL̄λ

(dz̄ − λLλdz), (2.11)

where λ is the deformation parameters and the Lλ, L̄λ are related to L, L̄ by

L = Lλ(1− λL̄λ)2

(1− λ2LλL̄λ)2 , L̄ = L̄λ(1− λLλ)2

(1− λ2LλL̄λ)2 . (2.12)

The T T̄ deformation from a point of view of field-dependent coordinate transformation was
also found in [16, 17]. The deformed parameters Lλ and L̄λ are not the conserved charges.
Following [21], we find the conserved charges are related to the T T̄ -deformed spectrum
and angular momentum

Q = Eλ + Jλ

2 = 1
2λ

[
1 + λ(L − L̄)−

√
1− 2λ(L+ L̄) + λ2(L − L̄)2

]
, (2.13)

Q̄ = Eλ − Jλ

2 = 1
2λ

[
1− λ(L − L̄)−

√
1− 2λ(L+ L̄) + λ2(L − L̄)2

]
. (2.14)

In addition, the coordinate transformation are written in a differential form and we are not
able to work out the specific form because of the coordinate dependence of two functions
L, L̄. For the BTZ black hole, in which we can deal with the deformed metric in more details,
the coordinate transformation becomes

w = (1− λQ)2

1− 2λQ z − λQ(1− λQ)
1− 2λQ z̄, (2.15)

w̄ = (1− λQ)2

1− 2λQ z̄ − λQ(1− λQ)
1− 2λQ z. (2.16)

where the deformed conserved charges are

Q = Q̄ = 1−
√
1− 2λM
2λ , Lλ = L̄λ = 1− λM −

√
1− 2λM

λ2M
. (2.17)

1Here the modular parameter is a pure imaginary number, since we just consider the non-rotating BTZ
black hole. If one consider the rotating BTZ black hole, there will be another period on θ direction which
leads to the real part of the modular parameter.
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After turning on the T T̄ deformation, we can also rewrite the T T̄ -deformed BTZ black hole
metric into Poincaré patch by employing

y = i2r
√
Q(1− λQ)

(1− λQ)r2 −Q
exp

(
−2
√
Q(1− λQ)
1− 2λQ it

)
, (2.18)

ξ = (1− λQ)r2 +Q

(1− λQ)r2 −Q
exp

(
−2
√
Q(1− λQ)θ − 2

√
Q(1− λQ)
1− 2λQ it

)
, (2.19)

ξ̄ = (1− λQ)r2 +Q

(1− λQ)r2 −Q
exp

(
2
√
Q(1− λQ)θ − 2

√
Q(1− λQ)
1− 2λQ it

)
. (2.20)

where z = θ + it, z̄ = θ − it. The complete deformed metric can be found in other references,
such as [14, 31]. The deformed metric can also be written in the form of (2.6) with the
SL(2,C) group element

g = i

2r
√
Q(1− λQ)

 (Q− r2(1− λQ)
)
e
− 2it

√
Q(1−λQ)

1−2λQ
(
r2(λQ− 1)−Q

)
e−2θ

√
Q(1−λQ)(

r2(λQ− 1)−Q
)
e2θ

√
Q(1−λQ) (

Q− r2(1− λQ)
)
e

2it
√

Q(1−λQ)
1−2λQ

 .
(2.21)

Then the discrete group of isometry implies the identifications

θ ∼ θ + 2π, t ∼ t+ β, β = π(1− 2λQ)√
Q(1− λQ)

. (2.22)

In principle, the period of the θ can be arbitrary. We assume it still has the 2π period because
the T T̄ deformation preserves the density of states and the field-dependent coordinate
transformation does not change the black hole entropy [14]. The modular parameter becomes

−1
τ
= iβ

2π . (2.23)

These identifications imply the T T̄ -deformed BTZ black hole can also be regarded as a
quotient of hyperbolic space H3. The difference is that period on t direction or the modular
parameter becomes λ-dependent. The later of this paper is based on this result. We will
consider the quantum effects of perturbation in T T̄ -deformed BTZ black hole background
and compute the one-loop partition functions.

3 One-loop partition function of scalar field

In this section, we consider the massive scalar field propagating in the T T̄ -deformed BTZ
black hole background. The total action becomes

S = − 1
16πG

∫
M
d3x

√
g(R+ 2) + 1

2

∫
M
d3x

√
gϕ(−∆+m2)ϕ+B (3.1)

where B is the boundary term depended on the boundary conditions. Then the partition
function can be written in the path integral form

Z =
∫
[Dgµν ]e−IEH[gµν ]Zscalar[gµν ], (3.2)
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where

Zscalar[gµν ] =
∫
[Dϕ]e−Sm[gµν ,ϕ]. (3.3)

We can not be able to work out the gravitational path integral exactly.
In the semi-classical limit G→ 0, only the Einstein-Hilbert action and the boundary term

contribute to the partition function. Under the saddle point approximation, the partition
function can be calculated by sum over all the gravitational saddles. The on-shell Euclidean
action becomes the energy of AdS3 times the euclidean time [73]. For the BTZ black hole,
the leading semi-classical approximation to the partition function is

Z0 = ekMβ0 = |q|−2k, k = 1
4G. (3.4)

For the T T̄ -deformed BTZ black hole saddles, We can obtain the similar result. In this case,
the Euclidean action with boundary term would give the T T̄ -deformed spectrum [20]. So
that the leading semi-classical approximation to the T T̄ -deformed partition function is

Z0 = ekQβ = e
kβ
2λ

(
1− β√

β2+4π2λ

)
, (3.5)

which is agree with the result in [37].
The one-loop correction of partition function can be obtained by taking into account

the scalar field contribution on some gravitational saddles. Usually, the BTZ black holes
and thermal AdS3 saddles are considered [63, 64]. The path integral for a fixed background
can be calculated using the heat kernel method and the recently proposed Wilson spool
method [67, 68]. These considerations can also be taken for the T T̄ -deformed AdS3. In what
follows, we focus on the T T̄ -deformed BTZ black hole saddles. We will calculate the one-loop
correction using both heat kernel method and Wilson spool method.

3.1 Heat kernel method

The heat kernel method is a powerful technique to calculate the path integral. In terms of
the heat kernel, we can write the determinant as an integral

logZ1-loop
scalar = 1

2

∫ ∞

0

ds

s

∫
M
d3x

√
gK(s,x,x), (3.6)

where the heat kernel should satisfy the differential equation

(∂s −∆+m2)K(s,x,y) = 0, (3.7)

with the initial condition

K(0,x,y) = δ(x,y). (3.8)

For more details about the heat kernel method see [63, 64]. One can also turn to appendix A
for a brief introduction to heat kernel in AdS3. The key point is to obtain the heat kernel
then work out the integral to get the one-loop partition function.
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The information about the manifold is encoded in the Laplace operator ∆ as well as
the heat kernel. For the hyperbolic space H3, which is the maximally symmetric space, we
expect the heat kernel KH3(s,x,x′) depends on x and x′ only through the length of geodesics.
Then the heat kernel for hyperbolic space H3 should be

KH3(s,x,x′) = KH3(s, σ(x,x′)) = e−(m2+1)s−σ2
4s

(4πs)3/2
σ

sinh σ , (3.9)

where the length of geodesics can be calculated by

σ(x,x′) = cosh−1(1 + u(x,x′)), (3.10)

u(x,x′) = (y − y′)2 + |ξ − ξ′|2

2yy′ . (3.11)

Now we are working in the T T̄ -deformed BTZ black hole, which turns out to be a quotient
of hyperbolic space H3/Z in section 2. The heat kernel for H3/Z can be constructed from
the one for H3 by the method of images [63, 64]. The result turns out to be

KdBTZ(s,x,x′) =
∞∑

n=−∞
KH3

(
s, σ(x, γn(x′))

)
, (3.12)

where the γ is the generators of discrete group of isometry which act on the space leads
to the shift of coordinates

γn(r, θ, t) = (r, θ + 2πn, t+ nβ). (3.13)

Therefore, the heat kernel on H3/Z is sum over all the geodesics winding arbitrary times
around the quotient space.

For the T T̄ -deformed BTZ, in terms of (r, θ, t) coordinates, the length of geodesic
σn = σ(x, γn(x)) can be obtained by (3.10)–(3.11) and the coordinate transformations (2.18)–
(2.20). The result shows

cosh σn = 1 +
(
1 + r2(1− λQ)

2Q + Q

2r2(1− λQ)

)
sinh2

(
2nπ2√

β2 + 4π2λ

)
, (3.14)

where we have used ∆t = nβ,∆θ = 2nπ, which means we consider the geodesics winding
n times around the background. We find the length of this geodesic is only related to the
radial coordinate r. So that we can change the r coordinate into the length of geodesic σn.
Since the radial coordinate r > 0, the range of σn should be

σ0
n ≤ σn < +∞, σ0

n = 4nπ2√
β2 + 4π2λ

. (3.15)

Then the integral measure of the T T̄ -deformed BTZ black hole metric becomes

d3x
√
g = Q(1− λQ)

1− 2λQ

[
sinh2

(
2nπ2√

β2 + 4π2λ

)]−1

sinh σndσndθdt. (3.16)

– 7 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
7

We find the integral measure only depends on the variable σn. Note that the r-dependence
in the integral measure is cancelled by the Jacobian. In terms of the length of geodesics, we
then can integrate the heat kernel over the spacetime.

For n = 0, the heat kernel reduce to

KH3(s,x,x) = KH3(s, 0) = e−(1+m2)s

(4πs)3/2 , (3.17)

then the integral of heat kernel reads∫ ∞

0

ds

s

∫
d3x

√
gKH3(s, 0) = (m2 + 1)3/2

6π VoL(dBTZ). (3.18)

The spacetime integral gives the volume of T T̄ -deformed BTZ black hole. The integral of
s is divergent because of the singular behaviour of the heat kernel for s → 0, which can
be regularized by introducing a cut-off ϵ then taking ϵ → 0. The regularized result give a
prefactor in (3.18). This divergence appears for general hyperbolic space H3 and H3/Z. As
argued in [63, 64], this term can be always cancelled by a local counterterm, so that we can
drop it in the later of this paper. We should note that the volume of T T̄ -deformed BTZ black
hole is different from the underformed one and the deformed counterterm is needed.

For n ̸= 0, the heat kernel is given by

KH3(s, σn) =
e−(1+m2)s−σ2

n
4s

(4πs)3/2
σn

sinh σn
. (3.19)

The integral of heat kernel becomes∫
d3x

√
gKH3(s, σn)

=
∫ ∞

σ0
n

dσn

∫ 2π

0
dθ

∫ β

0
dt
σne

−(1+m2)s−σ2
4s

(4πs)3/2
Q(1− λQ)
1− 2λQ

[
sinh2

(
2nπ2√

β2 + 4π2λ

)]−1

= e−(1+m2)s−(σ0
n)2

4s

4π3/2√s
2π3√

β2 + 4π2λ

[
sinh2

(
2nπ2√

β2 + 4π2λ

)]−1

. (3.20)

In the last step, we have used (2.22) to transform the charge Q into the inverse of tem-
perature β.

Finally, the one-loop partition function of scalar field in T T̄ -deformed BTZ is

logZ1-loop
scalar = 1

2

∫ ∞

0

ds

s

∫
d3x

√
gKH3(s, 0) + 1

2
∑
n ̸=0

∫ ∞

0

ds

s

∫
d3x

√
gKH3(s, σn)

= (m2 + 1)3/2

12π VoL(dBTZ) +
∞∑

n=1

[
4n sinh2

(
2nπ2√

β2 + 4π2λ

)]−1

exp
(
−4nπ2√1 +m2√

β2 + 4π2λ

)
.

(3.21)

The first term can be dropped as we argued before. The final result can be simplified to

Z1-loop
scalar = exp

( ∞∑
n=1

|qλ|2nj

n
∣∣1− qn

λ

∣∣2
)

=
∞∏

l,l′=0

(
1− ql+j

λ q̄l′+j
λ

)−1
, (3.22)
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where j is the conformal dimension related to the mass of scalar field

j = 1
2
(
1 +

√
1 +m2

)
. (3.23)

We also have used the notation

qλ = exp
(

4π2√
β2 + 4π2λ

)
= q

β√
β2+4π2λ , q = e2πiτ . (3.24)

which was first introduced in the T T̄ -deformed modular forms [74]. This result is the same
to the undeformed result in [63], except for the replacement

β →
√
β2 + 4π2λ or q → qλ, (3.25)

which agrees with the conclusion in [69].
The following comments about this result are in order. Firstly, the T T̄ -deformed BTZ

black hole is still a quotient of hyperbolic space, which allows us to calculate the one-loop
partition function using the heat kernel and method of image. The heat kernel still depends on
the length of geodesics. Different from the undeformed case, the length of geodesics becomes
dependent on the modular parameter in (3.14). Secondly, we calculate spacetime integral of
the heat kernel by substituting the radial coordinate r in terms of the length of geodesics σn.
The integral range of σn and spacetime integral measure are also changed. Finally, the only
differences from the undeformed case are the integral range of σn and integral measure, which
lead to the result deformed in a simple way. The final result shows that the T T̄ deformation
in one-loop order is just corresponds to a replacement of modular parameter. In the next
section, we will see this feature is also preserved for the graviton perturbation.

3.2 Wilson spool method

It is well-known that 3D general relativity has no local degrees of freedom, which is purely
topological and can be formulated as a Chern-Simons theory [75]. In the case of AdS3 gravity,
the relevant isometry group is SO(2, 2) ≃ SL(2,R)× SL(2,R). Then Einstein-Hilbert action
can be written as the difference of two copies SL(2,R) Chern-Simons theories

IEH[e, ω] = ICS [A]− ICS [Ā], (3.26)

where the Chern-Simons action is

ICS [A] =
k

4π

∫
M

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
, k = 1

4G. (3.27)

The gauge fields A and Ā are valued in sl(2,R), which are the linear combination of gravi-
tational vielbein and spin connection

A = (ωa + ea)La, Ā = (ωa − ea)La. (3.28)

The La are sl(2,R) generators, they satisfy the commutation relations

[La, Lb] = (a− b)La+b, a, b ∈ {0,±1}. (3.29)
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The non-zero components of non-degenerate bilinear form are given by

Tr(L0L0) =
1
2 , Tr(L−1L1) = Tr(L1L−1) = −1. (3.30)

Variation of the action leads to the equations of motion

F ≡ dA+A ∧A = 0, F̄ ≡ dĀ+ Ā ∧ Ā = 0, (3.31)

which are equivalent to the gravitational field equation and torsion free equation. The AdS3
metric can also be recovered from the gauge fields

gij = 1
2Tr

[
(Ai − Āi)(Aj − Āj)

]
. (3.32)

Recently, it was proposed that the partition function of massive scalar field in AdS3
is described by the Wilson spool in Chern-Simons formulation, which is a collection of
Wilson loops winding around closed paths of the background [67, 68]. In terms of the
Chern-Simons formulation, the one-loop partition function of AdS3 can be obtained using
the Wilson spool proposal

Z1-loop
scalar [gµν ] = exp

(1
4Wj [A, Ā]

)
, (3.33)

where the Wilson spool is defined as

Wj [A, Ā] = i

∫
C

dα
α

cosα/2
sinα/2TrRj

(
Pe

α
2π

∮
A
)
TrRj

(
Pe−

α
2π

∮
Ā
)
. (3.34)

Here j labels a lowest-weight representation of sl(2,R) related to the mass of the bulk scalar
field by (3.23). The contour of integral for AdS3 is given by C = 2C+ with C+ running
upwards along the imaginary α axis to the right of zero.2 This contour integral becomes
a sum over poles implements a sum over Wilson loops with arbitrary windings. Then the
Wilson spool gives the partition function of scalar fields coupling with Chern-Simons theory.
This proposal has been verified in AdS3 and dS3 [67, 68].

We now turn to the T T̄ -deformed BTZ black hole, which can be obtained from the BTZ
black hole through a coordinate transformation. The AdS3 gravity with mixed boundary
condition can also described by two copies of SL(2,R) Chern-Simons theory but with a
non-trivial boundary term [19, 20]. In Chern-Simons formulation, the deformed gauge
connection reads

Ar = 1
r
L0, Aθ = r(1− λQ)L1 −

1
r
QL−1, At = K

(
r(1− λQ)L1 −

1
r
QL−1

)
, (3.35)

−Ār = 1
r
L0, Āθ = 1

r
QL1 − r(1− λQ)L−1, Āt = K̄

(1
r
QL1 − r(1− λQ)L−1

)
, (3.36)

where

K = −K̄ = 1
1− 2λQ. (3.37)

2Since the T T̄ -deformed BTZ black hole is still AdS3 solution, we choose the contour for AdS3 in this paper.
However, the contour of integral for dS3 is given by C = C− ∪ C+, which is the union of contours running
upwards along the imaginary α axis both to the left and right of zero.
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Since the T T̄ -deformed BTZ black hole geometry is filled in r − t plane, the t-cycle is bulk
contractible while the θ-cycle is not. Therefore, we choose the holonomies of the background
connections (A, Ā) around θ-cycle. The Wilson loops can be calculated by diagonalizing
the gauge connection

P exp
(∮

γθ

A

)
= u−1e2πhL0u, (3.38)

P exp
(∮

γθ

Ā

)
= ū−1e2πh̄L0 ū, (3.39)

where

h = −h̄ = 2
√
Q(1− λQ) = 2π

β2 +
√
4π2λ

. (3.40)

So that the Wilson spool becomes

Wj [aL, aR] = i

∫
C

dα
α

cosα/2
sinα/2χj

(
α

2πh
)
χj

(
− α

2π h̄
)
, (3.41)

where the characters are given by

χj(z) = TrRj

(
e2πzL0

)
= eπz(2j−1)

2 sinh(−πz) . (3.42)

The integral in the Wilson spools can be calculated by taking the residues of the poles.
We deform the contour to the right and pick the residues of the poles at α = 2nπ, n ∈ Z+

for each C+. The result shows

Wj [aL, aR] =
∞∑

n=1

1
n
χj(nπh)χj(−nπh̄)

=
∞∑

n=1

[
n sinh2

(
2nπ2√

β2 + 4π2λ

)]−1

exp
(
−4nπ2(2j − 1)√

β2 + 4π2λ

)

= 4 log
∞∏

l,l′=0

(
1− ql+j

λ q̄l′+j
λ

)−1
, (3.43)

We then have

Z1-loop
scalar [gµν ] = exp

(1
4Wj [A, Ā]

)
=

∞∏
l,l′=0

(
1− ql+j

λ q̄l′+j
λ

)−1
. (3.44)

This is the same result we have obtained using the heat kernel method. Therefore, the Wilson
spool proposal still holds for the T T̄ -deformed AdS3.

From the calculation we find the Wilson spool is more convenient since we do not need
to treat more details about the length of geodesics and the periodicity of θ and t directions.
These information is encoded in the Wilson loops winding around the background. The
method of image is becomes sum over all the Wilson loops which exactly corresponds to
the Wilson spool proposal. Moreover, the Wilson spool also gives the character expansion
of the one-loop partition function.
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4 One-loop partition function of graviton

We now consider the graviton perturbation of the T T̄ -deformed BTZ black hole. Since the
T T̄ -deformed AdS3 metric still satisfy the Einstein equation with a negative cosmological
constant, we can use the same technique in AdS3. We should consider the perturbation

gµν → gµν + hµν , (4.1)

and find the action for the metric hµν . We assume the perturbation hµν is the order of
O(

√
G), so it would contribute the one-loop correction. The kinetic term for hµν depends

on the choice of gauge. Under the gauge of [76], the result shows the perturbative action
can be separated into trace part and traceless part, which is described by the scalar field
and the traceless symmetric tensor field, defined as

ϕ = hρ
ρ, ϕµν = hµν − 1

3gµνh
ρ
ρ. (4.2)

In addition, the gauge-fixing procedure also introduces a Fadeev-Popov ghost field, which
in this case is a complex valued vector field ϕµ. Including the graviton perturbation, we
therefore have the action

S = IEH[gµν ] + Strace[ϕ] + Straceless[ϕµν ] + Sghost[ϕµ], (4.3)

where

Strace = − 1
32πG

∫
d3x

√
g

[ 1
12ϕ (−∆+ 4)ϕ

]
,

Straceless = − 1
32πG

∫
d3x

√
g

[1
2ϕµν (gµρgνσ∆+ 2Rµρνσ)ϕρσ

]
,

Sghost =
1

32πG

∫
d3x

√
gϕ∗µ (−gµν∆−Rµν)ϕν . (4.4)

Then the one-loop partition function contains three parts

logZ1-loop
graviton = −1

2 log det∆(2) + log det∆(1) − 1
2 log det∆(0), (4.5)

where

∆(0) = −∆+ 4, (4.6)

∆(1) = (∆+ 2)δν
µ, (4.7)

∆(2) = (∆+ 2) δρ
µδ

σ
ν . (4.8)

The determinate can also be calculated by the heat kernel method in quotient space

− log det∆(0) =
∞∑

n=−∞

∫ ∞

0

ds

s

∫
d3x

√
gKH3(s, σn), (4.9)

− log det∆(1) =
∞∑

n=−∞

∫ ∞

0

ds

s

∫
d3x

√
gĝµν′

KH3
µν′(s, σn), (4.10)

− log det∆(2) =
∞∑

n=−∞

∫ ∞

0

ds

s

∫
d3x

√
gĝµµ′

ĝνν′
KH3

µν,µ′ν′(s, σn), (4.11)
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where the metric is defined as

ĝµν′ ≡ gµρ(x)∂(γ
nx)ν′

∂xρ
. (4.12)

In our case, the action of γ is just a translation of the coordinates, so the ĝ is the same with
g. The heat kernel for each operators should satisfy

∂sKµν′(s,x,x′) +
(
∆(1)

)ν

µ
Kνν′(s,x,x′) = 0, (4.13)

∂sKµν,µ′ν′(s,x,x′) +
(
∆(2)

)ρσ

µν
Kρσ,µ′ν′(s,x,x′) = 0. (4.14)

While the operator ∆(0) is the same as scalar field case with the mass m2 = 4. For the
hyperbolic space, the heat kernel only depends on the length of geodesics, so that the heat
kernel can be obtained exactly. The expressions for the heat kernels are rather complicated,
which can be found in [63, 64].

Note that one of the important features is that the determinant only depends on the
trace of heat kernel, which is diffeomorphism invariant. Therefore, the trace of the heat
kernel for T T̄ -deformed BTZ black hole is the same as the one for BTZ black hole except for
the length of geodesics σn. Similar to the scalar field case, the length of geodesics becomes a
deformed one, which would lead to a change of spacetime integral measure and the range
of σn. After taking into account the change of geodesics, we can obtain the integral of
the trace of heat kernel over the spacetime. The one-loop determinant for the traceless
symmetric tensor field turns to be∫

d3x
√
gĝµµ′

ĝνν′
KH3

µν,µ′ν′(s, σn)

= e−
(σ0

n)2

4s

2π
3
2
√
s

(
e−s + e−4s + e−5s

2

)
2π3√

β2 + 4π2λ

[
sinh2

(
2nπ2√

β2 + 4π2λ

)]−1

. (4.15)

The contribution from the vector ghost can be obtained analogously∫
d3x

√
gĝµν′

KH3
µν′(s, σn)

= −e
− (σ0

n)2
4s

2π
3
2
√
s

(
2e−4s + e−5s

) 2π3√
β2 + 4π2λ

[
sinh2

(
2nπ2√

β2 + 4π2λ

)]−1

. (4.16)

The contribution from the traceless part is just the scalar field case with mass m2 = 4

∫
d3x

√
gKH3(s, σn) =

e−
(σ0

n)2

4s
−5s

4π
3
2
√
s

2π3√
β2 + 4π2λ

[
sinh2

(
2nπ2√

β2 + 4π2λ

)]−1

. (4.17)

We also have to integrate the parameter s. Similarly to the scalar field case, the integral
of s is divergent for n = 0 and can be always cancelled by a conuterterm. The effective
contribution comes from the n ̸= 0 case.
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The final result turns out to be

logZ1-loop
graviton =

∞∑
n=1

∫ ∞

0

ds

s

e−
(σ0

n)2

4s

4π
3
2
√
s

(
e−s − e−4s

) 2π3√
β2 + 4π2λ

[
sinh2

(
2nπ2√

β2 + 4π2λ

)]−1

=
∞∑

n=1

2
n

(
|qλ|2n∣∣1− qn

λ

∣∣2 − |qλ|3n∣∣1− qn
λ

∣∣2
)

(4.18)

= −
∞∑

n=2
log |1− qn

λ |2 (4.19)

Therefore we have

Z1-loop
graviton =

∞∏
n=2

1
|1− qn

λ |2
, (4.20)

which precisely match the result in [69]. In [69], the authors consider large c expansion of
the T T̄ -deformed CFT partition function by taking the double scaling limit

c→ ∞, λ→ 0, cλ = fixed. (4.21)

The O(c0) contribution strikingly turns out to be of the same form as the undeformed case
except for the change of modular parameter.

The full partition function is therefore given by multiplying the tree level contribu-
tion (3.5), which reads

Zgravity = |qλ|−2kλ

∞∏
n=2

1
|1− qn

λ |2
, kλ = βk

2π2λ

(√
β2 + 4π2λ− β

)
. (4.22)

This result has the same formula with the undeformed case, except for the replacements
k → kλ and q → qλ. Similar to the undeformed case, it can be interpreted as

Zgravity = TrqL0
λ q̄L̄0

λ , (4.23)

where the representation of Virasoro algebra contains a ground state L0|0⟩ = −kλ|0⟩ and its
Virasoro descendants [62]. For the undeformed case, the result comes from the observation of
that the asymptotic symmetry group of AdS3 with Brown-Henneaux boundary condition is the
Virasoro algebra [70]. While the T T̄ -deformed case can be interpreted as that the asymptotic
symmetry group associated with the mixed boundary condition is a state-dependent Virasoro
algebra [14, 21]

5 Conclusion and discussion

In this work, we consider the AdS3 with mixed boundary condition, whose solution can be
obtained by a field-dependent coordinate transformation. We found the T T̄ -deformed BTZ
black hole can be regarded as a quotient of hyperbolic space. Based on this fact, we studied the
scalar field propagating in T T̄ -deformed BTZ black hole background. The one-loop partition
function for scalar field in T T̄ -deformed BTZ black hole was calculated using the heat kernel
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method and Wilson spool method. We also computed the one-loop partition function for
graviton by considering the tensor perturbation of T T̄ -deformed BTZ black hole. We found
the one-loop partition function is deformed in a simple way, which is just a replacement of
the modular parameter. These result coincide with the T T̄ -deformed CFT partition function
in a special double scaling limit of large central charge and small deformation parameter.
Including the tree level contribution, the full T T̄ -deformed gravity partition function also
have a similar form with the undeformed one, which agree with the asymptotic symmetry
group associated with the mixed boundary condition is a state-dependent Virasoro algebra.

For the scalar one-loop partition function, we found the Wilson spool proposal is more
convenient. However, for the gravity one-loop partition function, we only used the heat
kernel method since we do not have the Wilson spool proposal for the U(1) gauge field and
traceless symmetric tensor field. From the heat kernel calculations we found the Wilson
spool proposal [67] may be generalized to the gauge field by considering an appropriate
representation of SL(2,R). It would be interesting to generalize the Wilson spool proposal
to the higher spin fields in AdS3.

It is worth noting that the one-loop partition function is not modular invariant since
we just consider the T T̄ -deformed BTZ black hole saddle. To obtain the full modular
invariant partition function we have to sum over all the saddles including BTZ black hole,
thermal AdS and BTZ black hole with conical singularity. In present, we do not know
how to obtain the deformed thermal AdS and the deformed BTZ black hole with conical
singularity. For the undeformed case, the thermal AdS partition function can be obtained
by the modular transformation. For the T T̄ -deformed case, the modular invariant turns to
be related to the transformation of the deformation parameter [77, 78]. Using the modular
transformation with associated transformation of deformation parameter, we can obtain
contributions from other saddles.

The one-loop partition is also related to the correlation functions in the context of
AdS3/CFT2 [79]. The one-loop partition function can be written into a summation of
correlation functions. The one-loop partition function formula provides us with a result to
infer the two-point function and higher point function in T T̄ -deformed CFTs.
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A Heat kernel method

The heat kernel method is used to calculate the path integral. Here we give a brief introduction
about this method. We start from the massive free field theory, whose action is given by

S(ϕ) = 1
2

∫
M
d3x

√
gϕ(∆ +m2)ϕ. (A.1)
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Then the partition function can be written as a path integral form

Z =
∫
[Dϕ]e−S(ϕ). (A.2)

This is a Gaussian integral, which can be written as

logZ = −1
2 log det(∆ +m2) = −1

2
∑

n

log λn, (A.3)

where the λn is the eigenvalue of operator. The most straightforward procedure is to find
a complete basis of orthogonal normalized eigenfunctions

∑
n

ψn(x)ψn(x) = δ3(x,y),
∫
M
d3x

√
gψn(x)ψm(x) = δnm, (A.4)

which obeys (∆ +m2)ψn = λnψn. The heat kernel is constructed by

K(s,x,y) =
∑

n

e−λnsψn(x)ψn(y). (A.5)

One can verify the heat kernel satisfies the differential equation

(∂s +∆x +m2)K(s,x,y) = 0, (A.6)

with the initial condition

K(0,x,y) = δ(x,y). (A.7)

In practice, we may obtain the heat kernel as the unique solution to the differential equation
with initial condition. In terms of the heat kernel, the sum over the eigenvalues of Laplace
operator can be written as a integral

logZscalar =
1
2

∫ ∞

0

ds

s

∫
M
d3x

√
gK(s,x,x). (A.8)

This method can also be used for the spinors, vector fields and symmetric traceless tensor
fields, etc.

For the U(1) gauge field, the heat kernel is a bi-tensor Kµν′(s,x,x′), which satisfies
the differential equation

∂sKµν′(s,x,x′) + (∆(1))ν
µKνν′(s,x,x′) = 0

with the initial condition

Kµν′(0,x,x′) = gµν′(x)δ3(x,x′). (A.9)

The partition function for gauge field can be calculated as

logZgauge =
1
2

∫ ∞

0

ds

s

∫
M
d3x

√
ggµν′

Kµν′(s,x,x′). (A.10)
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For the traceless symmetric tensor field, the heat kernel is Kµν,µ′ν′(s,x,x′), which
satisfies the differential equation

∂sKµν,µ′ν′(s,x,x′) + (∆(2))ρσ
µνKρσ,µ′ν′(t,x,x′) = 0

with the initial condition

Kµν,µ′ν′(0,x,x′) = 1
2

(
gµµ′gνν′ + gµν′gνµ′ − 2

3gµνgµ′ν′

)
δ3(x,x′). (A.11)

Since the field is traceless, the heat kernel should be traceless as well

gµνKµν,µ′ν′(s,x,x′) = gµ′ν′
Kµν,µ′ν′(s,x,x′) = 0 (A.12)

The partition function for gauge field can be calculated as

logZtraceless =
1
2

∫ ∞

0

ds

s

∫
M
d3x

√
ggµµ′

gνν′
Kµν,µ′ν′(s,x,x′) (A.13)

In this method, the key point is to find the heat kernel in various manifold. We then show
two examples of the manifold M, which is helpful in this paper.

Hyperbolic space. We use the following metric on Hyperbolic Space H3

ds2 = dy2 + dξdξ̄

y2 , (A.14)

where y > 0 and ξ is a complex coordinate. Since the hyperbolic space is maximally
symmetric, we expect the heat kernel K(s,x,x′) just depends on x and x′ only through
the length of geodesics

σ(x,x′) = cosh−1(1 + u(x,x′)), (A.15)

u(x,x′) = (y − y′)2 + |ξ − ξ′|2

2yy′ . (A.16)

In terms of the length of geodesic, the Laplace operator becomes

∆ = ∂2
σ + 2 coth σ∂σ. (A.17)

In this case, it is straightforward to solve the differential equation (A.6) and obtain the
heat kernel

KH3(s, σ) = e−(m2+1)s−σ2
4s

(4πs)3/2
σ

sinh σ . (A.18)

The heat kernel for the U(1) gauge field and the traceless symmetric tensor field in
H3 also depends on the length of geodesics. The complete expression for the heat kernel
is rather complicated, we prefer to write down the trace of these two heat kernels. For
the U(1) gauge field, we have

gµν′
KH3

µν′(s, σ) = −3
(
F (t, σ) + 1

sinh σ∂σS(t, σ)
)

(A.19)
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where

F (s, σ) = − e−
σ2
4s

(4πs)3/2
σ

sinh σ , (A.20)

S(s, σ) = 4
(4π)3/2

e−
σ2
4s

sinh σ
√
s

∫ 1

0
dξe−s(1−ξ)2 sinh σξ. (A.21)

For the traceless symmetric tensor field, the heat kernel becomes more complicated, which
can be found in the literatures [63, 64]. We do not write down the concrete expression here.

BTZ black hole. The BTZ black hole is described by the quotient space geometry of
hyperbolic space H3/Z. The quotient space can be obtained by the identification

γn
0 (ρ, θ, t) → (ρ, θ + 2πn, t+ nβ0). (A.22)

where the γ0 is the generators of discrete group of isometry. We also expect the heat kernel
K(s,x,x′) just depends on the length of geodesics between x and x′. The heat kernel on
H3/Z can be obtained from the one on H3 by the method of images

KH3/Z(s,x,x′) =
∞∑

n=−∞
KH3 (s, σn) , σn ≡ σ(x, γn

0 (x′)) (A.23)

Therefore, the heat kernel on H3/Z is sum over all the geodesics winding arbitrary times
around the quotient space. This method can also be used for the heat kernel for gauge
field and traceless symmetric tensor field.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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