
J
H
E
P
0
4
(
2
0
2
1
)
2
7
0

Published for SISSA by Springer

Received: December 10, 2020
Revised: April 4, 2021

Accepted: April 4, 2021
Published: April 28, 2021

T T̄ Deformation of stress-tensor correlators from
random geometry

Shinji Hirano,a,c Tatsuki Nakajimab and Masaki Shigemorib,c
aSchool of Physics and Mandelstam Institute for Theoretical Physics,
University of the Witwatersrand,
1 Jan Smuts Ave, Johannesburg 2000, South Africa

bDepartment of Physics, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

cCenter for Gravitational Physics,
Yukawa Institute for Theoretical Physics, Kyoto University,
Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
E-mail: shinji.hirano@wits.ac.za, nakajima@eken.phys.nagoya-u.ac.jp,
masaki.shigemori@nagoya-u.jp

Abstract: We study stress-tensor correlators in the T T̄ -deformed conformal field theo-
ries in two dimensions. Using the random geometry approach to the T T̄ deformation, we
develop a geometrical method to compute stress-tensor correlators. More specifically, we
derive the T T̄ deformation to the Polyakov-Liouville conformal anomaly action and calcu-
late three and four-point correlators to the first-order in the T T̄ deformation from the de-
formed Polyakov-Liouville action. The results are checked against the standard conformal
perturbation theory computation and we further check consistency with the T T̄ -deformed
operator product expansions of the stress tensor. A salient feature of the T T̄ -deformed
stress-tensor correlators is a logarithmic correction that is absent in two and three-point
functions but starts appearing in a four-point function.

Keywords: Conformal Field Theory, Anomalies in Field and String Theories, Integrable
Field Theories

ArXiv ePrint: 2012.03972

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2021)270

mailto:shinji.hirano@wits.ac.za
mailto:nakajima@eken.phys.nagoya-u.ac.jp
mailto:masaki.shigemori@nagoya-u.jp
https://arxiv.org/abs/2012.03972
https://doi.org/10.1007/JHEP04(2021)270


J
H
E
P
0
4
(
2
0
2
1
)
2
7
0

Contents

1 Introduction 2

2 T T̄ -deformed Polyakov-Liouville action 3
2.1 T T̄ -deformation as random geometry 3
2.2 Polyakov-Liouville action 6
2.3 T T̄ -deformed Polyakov-Liouville action 6
2.4 Conformal gauge and the flow equation 9
2.5 Flow of geometry 12

3 T ij correlators 13
3.1 Computing T ij correlators 13
3.2 Conformal gauge 14

4 3-point functions 15
4.1 Warm-up: CFT 2-point functions 16
4.2 T T̄ -deformation to 3-point functions 16

5 4-point functions 18
5.1 Warm-up: CFT 3-point functions 18
5.2 T T̄ -deformation to 4-point functions 19

6 T T̄ -deformed OPE 21

7 Discussions 23

A Conventions and formulas 24

B Explicit form of the compensating diffeomorphism 25

C 4-point functions from conformal perturbation theory 27

D Contour integral approach for the T T̄ deformation 28
D.1 T T̄ -deformed correlators in terms of contour integrals 28
D.2 Examples 31
D.3 Some formulas 32

– 1 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
0

1 Introduction

Conformal Field Theories (CFTs) describe universal behaviors of quantum field theories
(QFTs), independent of model details, at the endpoint(s) of renormalization group (RG)
flows and provide an important characterization of universality classes. In this paper, we
study a deformation of two dimensional CFTs by the T T̄ operator, a bilinear of the stress
tensor [1], which exists in any QFTs with a stress tensor and is a model-independent de-
formation. Since T T̄ -deformed CFTs are not sensitive to the detail of the UV theories
which flow to the parent IR CFTs, they may add new dimensions to the characterization
of universality classes. Despite the fact that the T T̄ deformation is power-counting non-
renormalizable and is an irrelevant deformation in the sense of the RG, quite remarkably,
T T̄ -deformed QFTs turned out to be UV-complete. Moreover, the T T̄ deformation pre-
serves integrability of the parent undeformed theory and the energy spectrum problem, for
example, can be solved exactly [2, 3].

In contrast to asymptotic safety [4, 5], however, the T T̄ -deformed theories do not flow
to UV fixed points and exhibit signs of non-locality [6, 7] and non-unitarity [8] at short
distances set by the scale µ of the T T̄ deformation. These peculiar features originate from
the fact that the T T̄ deformation, being an irrelevant operator, significantly alters the
UV behavior of the parent theory. Because of this nature, the study of the T T̄ -deformed
theories may provide a new perspective on the short-distance physics. This idea can be
further sharpened by a remarkable dual property of the T T̄ deformation: a T T̄ -deformed
QFT T [µ] on a 2d space X0 is equivalent to the undeformed QFT T [0] on a UV-deformed
2d space Xµ that is importantly state-dependent [7, 9–11].1 Furthermore, in relation to the
deformed UV property, there is evidence that the T T̄ deformation is related to 2d quantum
gravity and string theory [3, 6, 7, 16–18].

With these field theoretical backgrounds as our motivation as well as the aim to under-
stand dual gravitational implications in the AdS/CFT correspondence [19–21], we further
develop Cardy’s random geometry approach to the T T̄ deformation [22] building on our
previous work on the subject [21]. In this paper, we focus on stress-tensor correlators in the
T T̄ -deformed CFTs and develop a new geometrical method to compute stress-tensor cor-
relators. Earlier works studied stress-tensor two-point functions to the second order in the
T T̄ deformation [25] and three-point functions to the first order [25, 26]. The reference [25]
uses the T T̄ flow equation and the conformal perturbation theory, whereas the reference [26]
combines the random geometry approach with the Ward-Takahashi (WT) identity for the
stress tensor. Here we provide a new method that is purely based on the random ge-
ometry approach, generalizing the technique developed in our previous work [21] to the
stress-tensor correlators. More specifically, we derive the T T̄ deformation to the Polyakov-
Liouville conformal anomaly action [24] and calculate three and four point correlators to

1See [12] for a more recent discussion in the case of curved spaces and its relation to the gravity dual
description. This property is not specific to 2d relativistic theories but also present in 1d (non-)relativistic
analogues of the T T̄ deformation in which a rod picture of particles emerges [13, 14]. This dual property
has also been exploited to reveal underlying symmetries in the T T̄ - and JT -deformed theories [15].
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the first-order in the T T̄ deformation from the deformed Polyakov-Liouville action.2 As
we will see, one of the most interesting features of the T T̄ -deformed stress-tensor correla-
tors is a logarithmic correction that is absent in two- and three-point functions but starts
appearing in a four-point function.

The organization of the paper is as follows: in section 2, we first give a brief review
of Cardy’s random geometry approach [22] to the T T̄ deformation and generalize it to
curved background spaces. We then apply the result so obtained and compute the T T̄
deformation to the Polyakov-Liouville conformal anomaly action, setting up the compu-
tation of stress-tensor correlators. In section 3, we develop and detail the algorithm to
calculate T T̄ -deformed stress-tensor correlators. In section 4, as a concrete application,
we calculate the 3-point stress-tensor correlators to the first order in the T T̄ deformation
from the deformed Polyakov-Liouville action, reproducing the known results found by dif-
ferent methods in [25, 26]. In section 5, as a further advanced application, we compute
the 4-point stress-tensor correlators to the first order in the T T̄ deformation. The results
are checked against the standard conformal perturbation theory computation performed
in appendix C. In section 6 we discuss the T T̄ deformation to the stress tensor operator
product expansions (OPEs) and check its consistency with the 4-point function results. In
section 7, we comment on the translation of our results into the gravity dual [21] and give
discussions on future works. Appendix A summarizes conventions used in this paper, and
appendix B contains some details of the computations in the main text. In appendix D, we
discuss the contour integral approach, another approach to the T T̄ deformation, providing
further checks of the correlators in the main text.

2 T T̄ -deformed Polyakov-Liouville action

2.1 T T̄ -deformation as random geometry

We work with quantum field theory on a two-dimensional space with metric gij(x) of
Euclidean signature. We define the stress-energy tensor T ij(x) via the variation of the
Euclidean action as follows:3

δgS = 1
4π

∫
d2x
√
g T ijδgij . (2.1)

where i, j, · · · = 1, 2 and g = det gij . We define the “T T̄ operator” OT T̄ by

OT T̄ ≡ −
1
8εikεjlT

ijT kl, (2.2)

with ε12 = −ε21 = √g. In the special case of flat space gij = δij with complex coordinates4

z = x1 + ix2, z̄ = x1 − ix2, this becomes

OT T̄ = T T̄ −Θ2 = −1
4 detTij , (2.3)

2We often refer to the Polyakov-Liouville action as the Liouville action in short in the main text.
3The convention in the present paper is related to that in [21] by T ijhere = −4πT ijthere.
4Our convention for complex coordinates is summarized in appendix A.
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justifying the name of the operator, where

T = Tzz = 1
4(T11 − T22 − 2iT12), T̄ = Tz̄z̄ = 1

4(T11 − T22 + 2iT12),

Θ = Tzz̄ = 1
4(T11 + T22).

(2.4)

However, we will work with general curved spacetime below.
The T T̄ -deformed theory T [µ] of a CFT is characterized by a finite coupling µ of

length dimension two. The original, undeformed CFT can be denoted by T [0]. The T T̄
deformation is defined through the following incremental change in the action when we go
from T [µ] to T [µ+ δµ] with infinitesimal δµ:

S[µ+ δµ] = S[µ] + δµ

π2

∫
d2x
√
gOT T̄ ≡ S[µ] + δS . (2.5)

Here, the stress tensor Tij entering into the definition of the operator OT T̄ is that of the
deformed theory T [µ] rather than that of the undeformed theory T [0]. The deformed
theory T [µ] of a finite coupling µ can be constructed from the undeformed theory T [0] by
iteration of the infinitesimal deformation (2.5).

The idea of the random geometry approach [22] to the T T̄ deformation is to split the
T T̄ operator by a Hubbard-Stratonovich transformation

exp (−δS) ∝
∫

[dh] exp
[
− 1

8δµ

∫
d2x
√
g εikεjlhijhkl −

1
4π

∫
d2x
√
g hijT

ij
]
. (2.6)

In view of (2.1), the last term in the exponential has the effect of changing the background
metric from g to g + h. Therefore, the T T̄ deformation can be interpreted as putting
the original theory on randomly fluctuating geometries and averaging over them with a
Gaussian weight.5 The fluctuation part of the metric, h, is infinitesimal because the saddle
point is at

h∗ij = −δµ
π
εikεjlT

kl. (2.7)

We only have to keep track of up to O(δµ) quantities and can drop O(δµ2) terms, in the
δµ→ 0 limit we are working in.

So, in this formulation, quantities in the deformed theory T [δµ] with metric g can be
written in terms of random geometry as

〈. . .〉δµ,g = N
∫

[dh] exp
[
− 1

8δµ

∫
d2x
√
g εikεjlhijhkl

]
〈. . .〉0,g+h, (2.8)

5In other words, the T T̄ -deformed theories can be thought of as an ensemble of the T -deformed theories.
This is the viewpoint put forward in our previous work on the gravity dual in [21]. This is somewhat
reminiscent of an ensemble interpretation of near-conformal quantum mechanics dual to near-AdS2 JT
gravity [27] as suggested in a matrix model description [28]. The UV deformation is also common in both
cases. However, it is not clear whether there is any relation between the two at all.
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where “. . . ” represents general insertions,

N−1 =
∫

[dh] exp
[
− 1

8δµ

∫
d2x
√
g εikεjlhijhkl

]
(2.9)

is the normalization constant, and 〈. . .〉0,g+h means the path integral in the undeformed
theory T [0] with metric g + h.

We parametrize the deformation of the metric, hij , as

hij = ∇iαj +∇jαi + 2gijΦ, (2.10)

where ∇i is the covariant derivative with respect to the background metric g. This cor-
responds to the statement that, in two dimensions, any infinitesimal change in the metric
can be decomposed into an infinitesimal coordinate transformation xi → xi + αi and an
infinitesimal Weyl transformation ds2 → e2Φds2 ≈ (1 + 2Φ)ds2. We find it convenient to
shift Φ and define φ by

Φ = φ− 1
2∇kα

k, (2.11)

so that αi and φ represent the traceless and trace parts of hij , respectively. The Jacobian
Det(∂h/∂(α, φ)) in going from [dh] to [dα][dφ] does not depend on α, φ, although it depends
on the background metric g. Therefore, in computing the path integral (2.8), we can replace
[dh] by [dα][dφ] because the Jacobian factor cancels against that in the normalization factor.
So, (2.8) can also be written as

〈. . .〉δµ,g = N
∫

[dα][dφ] exp
[
− 1

8δµ

∫
d2x
√
g εikεjlhijhkl

]
〈. . .〉0,g+h, (2.12)

where h is given in terms of αi, φ by (2.10) and (2.11), and

N−1 =
∫

[dα][dφ] exp
[
− 1

8δµ

∫
d2x
√
g εikεjlhijhkl

]
. (2.13)

The expression for the h Gaussian action in (2.12) in terms of αi, φ is∫
d2x
√
g εikεjlhijhkl = 2

∫
d2x
√
g

[
αi

(
�v + R

2

)
αi + 4φ2

]
. (2.14)

Here, R is the scalar curvature for the background metric g, and �v is the vector Laplacian;
namely, �vα

i ≡ ∇j∇jαi for a quantity αi with a vector index i.
In the above, we discussed going from T [0] to T [δµ], but going from T [µ] to T [µ+ δµ]

is exactly the same. Quantities in theory T [µ+ δµ] are related to those in theory T [µ] as

〈. . .〉µ+δµ,g = N
∫

[dα][dφ] exp
[
− 1

8δµ

∫
d2x
√
g εikεjlhijhkl

]
〈. . .〉µ,g+h. (2.15)

This will give a differential equation (Burgers equation), upon solving which we can get
quantities in the finitely deformed theory T [µ].

– 5 –
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2.2 Polyakov-Liouville action

Conformal anomaly dictates that the partition function Z0[g] of a CFT on a two-dimensio-
nal curved manifold with metric gij is completely fixed by g and the central charge c
as [23, 24]

Z0[g] = e−S0[g]Z0[δ], (2.16)

where S0[g] is the so-called Liouville action,

S0[g] = c

96π

∫
d2x
√
g R�−1R, (2.17)

the operator � is the scalar Laplacian for the metric g, and Z0[δ] is the partition function
in flat space, gij = δij . In this paper, we will consider the case where Z0[δ] is the partition
function on R2 and set Z0[δ] = 1.

In two dimensions, we can always bring the metric into the conformal gauge,

gij(x) = e2Ω(x)δij , (2.18)

by an appropriate diffeomorphism. In the conformal gauge, in which R = −2e−2Ω�Ω,
eq. (2.17) reduces to

Z0[e2Ωδ] = e−S0 , S0 = − c

24π

∫
d2x δij∂iΩ ∂jΩ. (2.19)

We will also call (2.19) the Liouville action.
Because the Liouville action S0 contains complete information about the dependence

of the CFT partition on the metric, we can compute arbitrary correlators of the stress
tensor Tij by shifting the metric, g → g+h, in the partition function and differentiating it
with respect to hij . This is a straightforward, if tedious, procedure if one uses the covariant
form of the Liouville action (2.17). The same stress-tensor correlators can be computed
also from the conformal-gauge Liouville action (2.19), which contains the same information
as the covariant one (2.17). However, the procedure is slightly more nontrivial, because
the shift g → g+ h must be accompanied by a diffeomorphism to bring the metric back to
the conformal gauge. We will discuss this procedure in more detail in section 3.

2.3 T T̄ -deformed Polyakov-Liouville action

The goal here is to apply the general formula (2.12) to the Liouville action S0[g] in (2.17)
to obtain a T T̄ -deformed Liouville action. The partition function for the deformed theory
T [δµ] is, from the general formula (2.12),

Zδµ[g] ≡ e−Sδµ[g] = N−1
∫

[dα][dφ] exp
[
− 1

8δµ

∫
d2x
√
g εikεjlhijhkl − S0[g + h]

]
, (2.20)

where h is given in terms of α, φ as in (2.10). One way to carry this out is to expand S0[g+h]
in h by expanding the quantities appearing in it, such as R and �, up to quadratic order
in h, and perform the Gaussian integral. Here we take a different — although equivalent

– 6 –
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— approach. In two dimensions, we can bring the shifted metric g + h into the original
metric g by a diffeomorphism up to a Weyl transformation, even for finite h. Namely,

(gij(x) + hij(x)) dxidxj = e2Ψ(x̃)gij(x̃) dx̃idx̃j , (2.21)

where

x̃i = xi +Ai(x) (2.22)

for some Ai,Ψ. As mentioned before, at linear order in h, these are given by Ai = αi,Ψ = Φ.
The higher order expressions for Ai,Ψ can be obtained by expanding Ai,Φ in powers of h as

Ai(x) = αi(x) +Ai(2)(x) +Ai(3)(x) + · · · ,

Ψ(x̃) = Φ(x̃) + Ψ(2)(x̃) + Ψ(3)(x̃) + · · · .
(2.23)

By substituting this expansion into (2.21) and comparing terms order by order, we can find
Ai(n),Ψ(n) to any order in principle. The explicit form of the second-order terms Ai(2),Ψ(2) is
presented in appendix B. An important thing to note is that the function gij(x̃) appearing
on the right-hand side of (2.21) is the same function as the original metric function gij(x);
we are only plugging x̃ into it instead of x. Namely, it is not the transformed metric
function g̃ij defined by ∂x̃i

∂xk
∂x̃j

∂xl
g̃ij(x̃) = gkl(x).

The Liouville action for the new metric g′ij(x̃) ≡ e2Ψ(x̃)gij(x̃) can be found by using
the well-known formulas in two dimensions,√

g′(x̃) = e2Ψ(x̃)
√
g(x̃), Rg′(x̃) = e−2Ψ(x̃)(Rg(x̃)− 2�̃gΨ(x̃)),

�̃g′ = e−2Ψ(x̃)�̃g, �̃−1
g′ = �̃−1

g e2Ψ(x̃),
(2.24)

where Rg(x̃) is the scalar curvature for the metric g(x̃) and �̃g is the Laplacian for the
metric g(x̃). They are identical with Rg(x) and �g; we just replace x in them with x̃. The
Liouville action S0[g + h] can be evaluated as

S0[g(x) + h(x)] = S0[g′(x̃)]

= c

96π

∫
d2x̃

√
g′(x̃)Rg′(x̃) �̃−1

g′ Rg′(x̃)

= c

96π

∫
d2x̃

√
g(x̃)

(
Rg(x̃)− 2�̃gΨ(x̃)

)
�̃−1
g

(
Rg(x̃)− 2�̃gΨ(x̃)

)
= c

96π

∫
d2x

√
g(x) (Rg(x)− 2�gΨ(x))�−1

g (Rg(x)− 2�gΨ(x))

= c

96π

∫
d2x
√
g
(
R�−1R− 4RΨ + 4Ψ�Ψ

)
, (2.25)

where in the fourth equality we replaced x̃ by x because it is a dummy integration variable.
To get to the last line, we integrated by parts, assuming that the relevant fields vanish at
infinity sufficiently fast. We will always assume this and freely use integration by parts.
Also, we simply wrote Rg → R, �g → � and omitted the argument x. Therefore, the
change in the Liouville action due to the T T̄ deformation,

δS[g] ≡ Sδµ[g]− S0[g], (2.26)

– 7 –
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is given by

e−δS[g] = N−1
∫

[dα][dφ] exp
[
− 1

4δµ

∫
d2x
√
g

(
αi

(
�v + R

2

)
αi + 4φ2

)
− c

24π

∫
d2x
√
g
(
−RΦ + Φ�Φ−RΨ(2)

)]
. (2.27)

Here, we kept terms that are up to quadratic order in α, φ, which are relevant in the
δµ→ 0 limit.

To carry out the integral, let us write the exponent in (2.27) as∫ √
g(−X†MX+b†X+X†b) =

∫ √
g
[
−(X†−b†M−1)M(X−M−1b)+b†M−1b

]
, (2.28)

where M † = M with

X =
(
αi

φ

)
, X† =

(
αi φ

)
, M = M0 +M1, b = c

96π

(
∇iR
2R

)
. (2.29)

We have split the matrix M into the leading term, M0 ∝ (δµ)−1, and the subleading term,
M1 ∝ c(δµ)0. The leading term M0 comes from the first line of (2.27) and is given by

(M0)IJ = 1
δµ

1
4 (�v +R/2) δij 0

0 1

 . (2.30)

The subleading term M1 comes from the last two terms in (2.27) and is given by

(M1)IJ = c

24π

(
∂i�∇j ∂i�
�∇j −�

)
+ (M ′1)IJ , (2.31)

where M ′1 is the contribution from the last (−RΨ(2)) term in (2.27). In the δµ → 0
limit, the saddle-point value of the integral is determined solely by M0. Explicitly, the
saddle-point action is given by

exp
[∫

d2x
√
g b†M−1

0 b

]
= exp

[(
c

48π

)2
δµ

∫
d2x
√
g R

(
1−∇k 1

�v +R/2∇k
)
R

]
(2.32)

and the saddle point is at X = M−1
0 b, namely at

αi = c δµ

24π
1

�v +R/2∇
iR, φ = c δµ

48πR, (2.33)

dropping irrelevant O(δµ2) terms.
The subleading term M1 is important in evaluating the Gaussian fluctuation about

the saddle point. Combined with the contribution from the normalization constant N−1,
the Gaussian fluctuation gives the extra factor√

DetM0
Det(M0 +M1) = e−

1
2 Tr log(1+M−1

0 M1) = e−
1
2 Tr(M−1

0 M1) ≡ e−δSfluct[g], (2.34)

– 8 –
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where we dropped O(δµ2) quantities. This fluctuation term contains divergence of the form

Tr[f ] =
∫
d2x

√
g(x)〈x|f |x〉 = f(x) δ2(0) (2.35)

and requires regularization and renormalization. However, we can argue that it must be
renormalized to zero as follows. Note that δSfluc ∼ M−1

0 M1 ∼ O(c δµ), in contrast to
δSsaddle ∼ b†M−1

0 b ∼ O(c2δµ). Conformal perturbation theory indicates that the first-
order corrections are always of order O(c2δµ), which excludes the contributions of order
O(c δµ) and thus δSfluc must be renormalized away: δSfluc = 0.

To summarize, the T T̄ -deformed Liouville action at O(δµ) is

δS[g] = δSsaddle[g], (2.36)

where the saddle-point action is given by

δSsaddle[g] = −
(

c

48π

)2
δµ

∫
d2x
√
g R

(
1−∇k 1

�v +R/2∇k
)
R. (2.37)

The fluctuation term δSfluct[g] that can in principle be present vanishes after renormaliza-
tion and do not contribute to δS[g] at order δµ.

2.4 Conformal gauge and the flow equation

In the above, we presented in (2.37) the T T̄ -deformed Liouville action for a generic metric g.
Here we discuss the T T̄ -deformed action in the conformal gauge (2.18) in which the metric
is given, in complex coordinates, by

ds2 = e2Ωdz dz̄. (2.38)

For this purpose, one could, of course, simply plug the conformal gauge metric (2.38) into
the covariant formula (2.37), but here we will run the procedure of integrating out the h
field again, as in the previous subsection. The reason is that, because of the simplicity of
the conformal gauge, we can derive not only the first-order deformed action but also a flow
equation that, in principle, determines the deformed action at a finite coupling µ. The
first-order result can then be obtained by the leading order solution to the flow equation.

Let us denote by Sµ[e2Ωδ] the deformed action in the conformal gauge at a finite
coupling µ. As in the previous subsection, we can go from µ to µ + δµ by considering
deformations to the metric, g → g + h, and integrating over h, where g is the conformal-
gauge metric (2.38). The formula that determines the deformed action at µ + δµ is given
by (2.15). In the conformal gauge, the Hubbard-Stratonovich field h can be parametrized as

hij = ∇iαj +∇jαi + 2e2ΩδijΦ, Φ = φ− 1
2∇kα

k = φ− e−2Ω(∂ᾱ+ ∂̄α), (2.39)

where ∂ ≡ ∂z, ∂̄ ≡ ∂z̄, α ≡ αz, ᾱ ≡ αz̄. As before, after a compensating diffeomor-
phism x̃i = xi + Ai(x), we can bring the deformed metric (gij + hij)dxidxj back into the
original (conformal) form up to a Weyl rescaling, as e2Ψ(z̃,¯̃z)e2Ω(z̃,¯̃z)dz̃ d¯̃z, where Ψ ≈ Φ
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at linear order in h. Therefore, the change in the action appearing in “〈. . .〉µ,g+h” in the
formula (2.15) is

∆Sµ ≡ Sµ[e2(Ω+Φ)δ]− Sµ[e2Ωδ] =
∫
d2x

δSµ
δΩ Φ =

∫
d2x

δSµ
δΩ (φ− e−2Ω(∂ᾱ+ ∂̄α)). (2.40)

We also need to find the expression for the Hubbard-Stratonovich action (2.14) in the
conformal gauge. In the (z, z̄)-basis, i.e. for i, j = z, z̄, we have

�vδi
j = 4e−2Ω

(
∂∂̄ − 2(∂Ω)∂̄ − (∂∂̄Ω)

∂∂̄ − 2(∂̄Ω)∂ − (∂∂̄Ω)

)
. (2.41)

Because R = −8e−2Ω∂∂̄Ω, this means that

(�v +R/2)δi j = 4e−2Ω
(
∂∂̄ − 2(∂Ω)∂̄ − 2(∂∂̄Ω)

∂∂̄ − 2(∂̄Ω)∂ − 2(∂∂̄Ω)

)

= 4e−2Ω
(
∂̄e2Ω∂

∂e2Ω∂̄

)
e−2Ω. (2.42)

Therefore, the Hubbard-Stratonovich action is

SHS = 1
4δµ

∫
d2x
√
g

(
αi

(
�v + R

2

)
αi + 4φ2

)
= 2
δµ

∫
d2x

(
ᾱe−2Ω∂̄e2Ω∂e−2Ωα+ αe−2Ω∂e2Ω∂̄e−2Ωᾱ+ 1

2e
2Ωφ2

)
. (2.43)

Combining (2.40) and (2.43), the path integral appearing in the formula (2.15) can be
written as∫

[dα][dφ] e−SHS−∆Sµ =
∫

[dα][dφ] exp
[∫

d2x(−X†MX + b†X +X†b)
]
, (2.44)

where

X =

αᾱ
φ

 , X† =
(
ᾱ α φ

)
, b = 1

2


∂(e−2Ω(δSµ/δΩ))

∂̄(e−2Ω(δSµ/δΩ))

δSµ/δΩ

 ,

M = 1
δµ

2e−2Ω∂̄e2Ω∂e−2Ω

2e−2Ω∂e2Ω∂̄e−2Ω

e2Ω

 .
(2.45)

Here we ignored O(δµ) terms, which are irrelevant for computing the saddle-point value.
As in the previous subsection, the result of the path integral (2.44) consists of the

saddle-point part δSsaddle
µ = −

∫
d2x b†M−1b and the fluctuation part δSfluct

µ . We will
assume that δSfluct

µ vanishes, which is correct at linear order in µ as we argued in the
previous subsection. For a finite µ, whether this assumption is valid or not must be
independently checked, but for large c this is certainly true because δSfluct

µ is parametrically
smaller than δSsaddle

µ .
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Under the assumption of the vanishing fluctuation part, we can read off the change in
the effective action δSµ[e2Ωδ] as follows:

δSµ ≡ δSsaddle
µ = δµ

16

∫
d2z

δSµ
δΩ e−2Ω

(
∂̄e2Ω 1

∂
e−2Ω 1

∂̄
e2Ω∂e−2Ω

+ ∂e2Ω 1
∂̄
e−2Ω 1

∂
e2Ω∂̄e−2Ω − 2

)
δSµ
δΩ . (2.46)

This can be rewritten as a differential equation governing the flow of the effective action
Sµ[e2Ωδ] as follows:

∂

∂µ
Sµ = 1

16

∫
d2z

δSµ
δΩ e−2Ω

(
∂̄e2Ω 1

∂
e−2Ω 1

∂̄
e2Ω∂e−2Ω

+ ∂e2Ω 1
∂̄
e−2Ω 1

∂
e2Ω∂̄e−2Ω − 2

)
δSµ
δΩ . (2.47)

If we expand Sµ[e2Ωδ] in powers of µ as Sµ =
∑
n
µn

n! Sn, this equation can be recast into a
recursive relation:

Sn+1 = 1
16

n∑
k=0

(
n

k

)∫
d2z

δSn−k
δΩ e−2Ω

(
∂̄e2Ω 1

∂
e−2Ω 1

∂̄
e2Ω∂e−2Ω

+ ∂e2Ω 1
∂̄
e−2Ω 1

∂
e2Ω∂̄e−2Ω − 2

)
δSk
δΩ . (2.48)

We can find the deformed action at linear order in µ → δµ by starting with the
conformal-gauge Liouville action (2.19) and its Ω-derivative:

S0[e2Ωδ] = c

6π

∫
d2xΩ ∂∂̄Ω, δS0[e2Ωδ]

δΩ = c

3π∂∂̄Ω . (2.49)

By substituting these into (2.48), we immediately find the T T̄ -deformed Liouville action
at linear order,

S1[e2Ωδ] = − c2

72π2

∫
d2zΩ∂∂̄

×
[
1− 1

2e
−2Ω

(
∂̄e2Ω 1

∂
e−2Ω 1

∂̄
e2Ω∂ + ∂e2Ω 1

∂̄
e−2Ω 1

∂
e2Ω∂̄

)]
e−2Ω∂∂̄Ω . (2.50)

One can check that this is the same as what one obtains by plugging the conformal met-
ric (2.38) into the covariant formula (2.37).

By integration by parts, we can further rewrite (2.50) in a form that does not contain
nonlocal inverse operators ∂−1 and ∂̄−1. As the result, the final expression for the first-order
deformation to the Polyakov-Liouville action is given by

δSL[e2Ωδ] ≡ δµS1[e2Ωδ] = c2 δµ

72π2

∫
d2z e−2Ω

[
−2(∂Ω)(∂̄Ω)(∂∂̄Ω) + (∂Ω)2(∂̄Ω)2

]
. (2.51)

This is one of the key results in this paper and will be applied to the computation of the
deformed stress tensor correlators in sections 4 and 5.

– 11 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
0

2.5 Flow of geometry

It has been observed [7, 9–11] that the T T̄ -deformed theory can be regarded as the unde-
formed theory living in a deformed geometry. In the random geometry approach, where
observables in the deformed theory with metric g is related to ones in the undeformed
theory with metric g + h via (2.12), such flow of geometry is manifest. We parametrized
the change in the metric in terms of a diffeomorphism parametrized by αi and a Weyl
transformation parametrized by φ as in (2.10), and their saddle point values (2.33) in a
curved space can be written in the conformal gauge, gij = e2ωδij , as

αz = c δµ

6π
1
∂̄

[
e−2ω((∂̄ω)2 − ∂̄2ω)

]
, φ = −c δµ6π e−2ω∂∂̄ω. (2.52)

If we recall the value of the stress tensor in the conformal gauge,6

Θ = c

6∂∂̄ω, T = c

6
(
(∂ω)2 − ∂2ω

)
, T̄ = c

6
(
(∂̄ω)2 − ∂̄2ω

)
, (2.53)

the diffeomorphism can be written as

αz = δµ

π

1
∂̄

(e−2ωT̄ ) = δµ

π

∫ z̄

X̄
dz̄′e−2ω(z′)T̄ (z̄′) , (2.54)

which agrees with the result in [12] derived from a 2d topological gravity [29] and the holo-
graphic gravity dual. This is an alternative derivation of the known result [7, 10, 11] and
generalizes it to curved spaces [12]. It should, however, be noted that the aforementioned
known result is derived in a different “gauge”. Namely, specializing to the flat space back-
ground, the metric deformation is parametrized by hij = ∂iαj + ∂jαi as opposed to (2.39)
without introducing the Weyl scalar φ. Then from (2.7), for a finite µ, it is easy to find
the coordinate transformation z 7→ Z(µ) ≡ z + αz with

αz = 1
π

∫ µ

0
dµ′

[∫ z̄

X̄
dz̄′T̄ (µ′)(z′, z̄′)−

∫ z

X
dz′Θ(µ′)(z′, z̄′)

]
, (2.55)

where the deformed stress tensors are given by

T̄ (µ)(z, z̄) =
(
∂Z̄(µ)

∂z̄

)2

T̄ (Z̄(µ)) + c

12{Z̄
(µ), z̄}, Θ(µ)(z, z̄) = −µ

π

(
T (µ)T̄ (µ) − (Θ(µ))2

)
.

(2.56)

The appearance of the stress tensor trace Θ in the coordinate shift αz reflects the differ-
ence in “gauges”. Note also that this is a formal expression and requires point-splitting
regularizations as composite operators.

6The first equation is the standard conformal anomaly, while T and T̄ can be obtained by the conservation
law, ∇iTij = 0. Note that they are the Schwarzian derivatives with ω(z, z̄) = 1

2 ln
(
f ′(z)f̄ ′(z̄)

)
. This also

means that our analysis of the flowing geometry here is restricted to the vacuum state.

– 12 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
0

3 T ij correlators

3.1 Computing T ij correlators

The correlators of the stress-energy tensor T ij in quantum field theory on a space with
metric gij can be computed from the generating function

〈
e−

1
4π

∫
d2x
√
g hijT

ij
〉
g

= 〈1〉g −
1

4π

∫
d2x
√
g hij〈T ij〉g

+ 1
2(4π)2

∫∫
d2x
√
g d2x′

√
g′ hij h

′
kl〈T ijT ′kl〉g + · · ·

= Z[g + h], (3.1)

where ′ means that the argument is x′. In the last line, we used the fact that, by the very
definition of the stress tensor, this is equal to the partition function of the same theory in
the background metric g + h.7

Now assume that the effective action for the theory in the background metric g + h is
known, namely,

Z[g + h] = e−Seff [g+h]. (3.2)

Then, by comparing this to (3.1), we find that

Seff [g + h]− Seff [g] = 1
4π

∫
d2x
√
g hij〈T ij〉g,c

− 1
2(4π)2

∫∫
d2x
√
g d2x′

√
g′ hij h

′
kl〈T ijT ′kl〉g,c + · · · , (3.3)

where 〈. . .〉g,c ≡ 〈. . .〉g,connected part/〈1〉g. If we know the explicit form of the effective action
Seff [g], we can use this relation to compute n-point functions of T ij for any n. For CFT,
the effective action is given by the Liouville action S0[g] in (2.17). For the T T̄ -deformed
theory T [δµ], the correction to the effective action is (2.36).

In particular, consider the flat space, gij = δij , as the background. From (2.10)
and (2.11) the metric deformation hij is given by

hij = ∂iαj + ∂jαi + 2δijΦ, Φ = φ− 1
2∂kα

k, (3.4)

or, in complex coordinates,

hzz = 2∂α, hz̄z̄ = 2∂̄ᾱ, hzz̄ = φ, Φ = φ− (∂̄α+ ∂ᾱ), (3.5)

7Note that the meaning of hij here is different from that of hij introduced in the previous section.
Here, hij is introduced so that we can obtain T ij correlators by expanding the generating function Z[g+h]
in powers of it. We have to keep up to the hn terms if we want to compute n-point functions of T ij . On
the other hand, hij in the previous section represents random geometries to be averaged over to produce
a T T̄ -deformed action. Only up to h2 terms contribute for the Gaussian integral and higher order terms
are irrelevant.
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where we introduced a shorthand notation:

∂ ≡ ∂z, ∂̄ ≡ ∂z̄, α ≡ αz, ᾱ ≡ αz̄. (3.6)

In this case, (3.3) gives

Seff [δ+h] = 2
π

∫
d2x

〈
∂αT̄+∂̄ᾱT+φΘ

〉
c

(3.7)

− 1
2

( 2
π

)2 ∫∫
d2xd2x′

〈
(∂αT̄+∂̄ᾱT+φΘ)(∂′α′ T̄ ′+∂̄′ᾱ′T ′+φ′Θ′)

〉
c
+· · · ,

where 〈. . .〉c ≡ 〈. . .〉δ,c. Therefore, from the coefficients of ∂̄ᾱ, ∂α, and φ, we can read off
the correction functions for T , T̄ , and Θ, respectively.

3.2 Conformal gauge

The above procedure is applicable if we know the effective action for Seff [g] for the gen-
eral metric g. However, in two dimensions, any metric can be brought into confor-
mal gauge, (2.18). Therefore, knowing the effective action for the conformal-gauge met-
ric, Seff [e2Ωδ], is sufficient for computing T ij correlators in any background metric. For
example, for CFT, the conformal-gauge Liouville action (2.19) is sufficient. Here, let us dis-
cuss in detail how to use such a conformal-gauge effective action to compute T ij correlators.

The procedure to compute the T ij correlator in a given background metric g using a
conformal-gauge effective action Seff [e2Ωδ] is as follows:

(i) Rewrite the background metric g in the conformal gauge as gij = e2ωδij .

(ii) Given the metric shift hij = ∇iαj + ∇jαi + 2e2ωδijΦ, find the diffeomorphism
x̃i = xi +Ai(x) which brings the shifted metric g+ h back into the conformal gauge.
Namely, (e2ωδij + hij)dxidxj = e2Ψ(x̃)δijdx̃

idx̃j .

(iii) Compute the change in the effective action, ∆Seff = Seff [g+h]−Seff [g]. This is possible
because in steps (i) and (ii) we have written both g and g+h in the conformal gauge.

(iv) From the expansion of ∆Seff in h (or α,Φ), read off the T ij correlators.

The most non-trivial is step (ii). However, in section 2.3, when we discussed the random-
geometry formulation of the T T̄ deformation, we have already discussed how to rewrite a
metric g+h as a Weyl transformation of the original metric g, after a diffeomorphism. So,
we can simply use the results there to find the necessary diffeomorphism.8

To be specific, let us focus on the correlators in the flat background metric, gij = δij ,
i.e. ω = 0. In complex coordinates, ds2 = dz dz̄. This is in the conformal gauge, so step (i)
is already done. The deformation of the metric, h, can be written in terms of α,Φ as

8In section 2.3, we only had to keep up to quadratic order terms in the diffeomorphism and Weyl
transformation, because higher order terms are irrelevant in the random geometry approach. However,
here, we are interested in higher order terms as well, in principle. See footnote 7.
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in (3.4). For step (ii), we need a diffeomorphism x̃i = xi + Ai(x) for which the following
equation is satisfied:

dz dz̄ + 2
[
∂α(x) dz2 + ∂̄ᾱ(x) dz̄2 + φ(x) dz dz̄

]
= e2Ψ(x̃)dz̃ d˜̄z. (3.8)

The functions Ai,Ψ can be worked out using power expansion (2.23). In appendix B,
the explicit expressions for Ai(n),Ψ(n) up to n = 2 are given in (B.11)–(B.13), for the
conformal-gauge background metric (B.10). For flat background, by setting ω = 0 in those
expressions, we obtain

A(1) = α, Ā(1) = ᾱ, Ψ(1) = Φ = φ− (∂ᾱ+ ∂̄α), (3.9a)

A(2) = − 2
∂

(
(φ− ∂̄α)∂α

)
, Ā(2) = − 2

∂̄

(
(φ− ∂ᾱ)∂̄ᾱ

)
, (3.9b)

Ψ(2) = −φ2 − 2(α∂̄φ+ ᾱ∂φ) + (∂̄α)2 + 2α∂̄2α+ (∂ᾱ)2 + 2ᾱ∂2ᾱ

+ 2α∂∂̄ᾱ+ 2ᾱ∂∂̄α− 2∂α∂̄ᾱ+ 2∂
∂̄

(
(φ− ∂ᾱ)∂̄ᾱ

)
+ 2 ∂̄

∂

(
(φ− ∂̄α)∂α

)
. (3.9c)

where we defined

A(n) ≡ A(n)z, Ā(n) ≡ A(n)z̄. (3.10)

Now that the metric being in the conformal gauge in the (z̃, ˜̄z) coordinates, we can
plug it into the conformal gauge effective action and evaluate Seff [g + h] (step (iii)). As a
concrete example of the conformal gauge effective action, take the Liouville action (2.19).
Evaluated on the metric (3.8), it gives

S0[e2Ψ(x̃)δ] = − c

24π

∫
d2x̃ δij ∂̃iΨ(x̃) ∂̃jΨ(x̃), (3.11)

where ∂̃i ≡ ∂/∂x̃i. To read off correlators from this, we must rewrite this in terms of x,
because what we want to compute is the correlator of T ij(x) and not T ij(x̃). So,

S0[e2Ψ(x̃)δ] = − c

24π

∫
d2x

(
det ∂x̃

∂x

)
δij
∂xk

∂x̃i
∂xl

∂x̃j
∂kΨ(x+A(x)) ∂lΨ(x+A(x)). (3.12)

Plugging the expansions for Ai,Ψ into this expression, computing the coefficients of
∂̄ᾱ, ∂α, φ, and using the relation (3.7), we can compute the CFT n-point correlators for
T, T̄ ,Θ for any n (step (iv)).

We will demonstrate this method for CFT and the T T̄ -deformed theory in the
next sections.

4 3-point functions

Having established a general framework for computing correlation functions of the stress
tensor in the T T̄ -deformed theory, we are now going to apply it to the computation of
3- and 4-point functions of T , T̄ , and Θ to the first order in the T T̄ deformation.9

9The stress tensor 2-point functions receive no correction to the first order in the T T̄ deformation [25, 26].
This fact can be seen more explicitly in our formalism in section 4.2.
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4.1 Warm-up: CFT 2-point functions

As a warm-up, we first illustrate how this formalism works in the simplest example, namely,
the stress tensor two point functions of the undeformed CFT. In this application, we only
need to consider the Liouville action S0[δ + h] in the conformal gauge in (3.12) to the
second order in φ, α, and ᾱ:

S0 = − c

24π

∫
d2x ∂kΦ(x) ∂kΦ(x) with Φ(x) = φ(x)− 1

2∂kα
k , (4.1)

since x̃ = x, A(x) = 0, and Ψ(x) = Φ(x) to the lowest order in (2.22) and (2.23). In the
complex coordinates z = x1 + ix2, the lowest-order Liouville action is expressed as

S0 =− c

12π

∫
d2z ∂

(
φ−∂ᾱ−∂̄α

)
∂̄
(
φ−∂ᾱ−∂̄α

)
(4.2)

=− c

12π

∫
d2z

(
−φ∂∂̄φ+2φ∂2(∂̄ᾱ)+2φ∂̄2(∂α)−2(∂̄ᾱ)∂∂̄(∂α)+ᾱ∂3(∂̄ᾱ)+α∂̄3(∂α)

)
,

where
∫
d2x = 1

2
∫
d2z (see appendix A for our convention).

From (3.7) the variations of the Liouville action yield, for example,

〈T (z, z̄)T (0)〉=− π2δ2S0

δ∂̄ᾱ(z)δ∂̄ᾱ(0)
= c

2z2 ,
〈
T̄ (z, z̄)T̄ (0)

〉
=− π2δ2S0

δ∂α(z)δ∂α(0) = c

2z̄2 . (4.3)

This correctly reproduces the standard results. A simple but important technical note is
that one needs to use the identities

α(z, z̄) = 1
∂

(∂α) = 1
2π

∫
d2z′

∂′α(z′, z̄′)
z̄−z̄′

, ᾱ(z, z̄) = 1
∂̄

(∂̄ᾱ) = 1
2π

∫
d2z′

∂̄′ᾱ(z′, z̄′)
z−z′

(4.4)

and integration by parts to compute the variations of the action. These identities fol-
low from

∂̄
1
z

= ∂
1
z̄

= 2πδ2(z), δ2(z) = 1
2δ(x

1)δ(x2) (4.5)

(see appendix A for our convention).
To be complete, we can similarly calculate all the other two point functions of the

stress tensor which are only contact terms:

〈Θ(z, z̄)Θ(0)〉 = −πc6 ∂∂̄δ
2(z) ,

〈
T (z, z̄)T̄ (0)

〉
= −πc6 ∂∂̄δ

2(z) , (4.6)

〈Θ(z, z̄)T (0)〉 = πc

6 ∂
2δ2(z) ,

〈
Θ(z, z̄)T̄ (0)

〉
= πc

6 ∂̄
2δ2(z) . (4.7)

4.2 T T̄ -deformation to 3-point functions

The stress tensor 3-point functions have been computed in [25, 26] to the first order in the
T T̄ deformation. The first paper [25] uses the T T̄ flow equation and the conformal per-
turbation theory, and the second paper [26] combines the random geometry approach with
the Ward-Takahashi (WT) identity for the stress tensor. Here we provide an alternative
method that is purely based on the random geometry approach, generalizing the technique
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developed in our previous work [21] to the stress-tensor correlators. The advantage of our
method is that it becomes straightforward to compute higher-point functions of the stress
tensor.

In this subsection, we demonstrate how our formalism can be applied to the stress
tensor 3-point functions in the T T̄ -deformed theory and reproduce the results of [25, 26].
This serves as a nontrivial check of our method, and it also illustrates how it can be applied
to the computation of higher-point functions, as we will discuss further in the next section.

As shown in (3.7), all stress-tensor correlators can be computed from the effective
action Seff [g] which is the T T̄ -deformed Liouville action given by

Seff [g] = S0[g] + δSsaddle[g] + δSfluc[g] with gij = δij + hij (4.8)

where S0 is the undeformed Liouville action and δSsaddle + δSfluc is the first-order T T̄ cor-
rection, and their forms are given in (3.12), (2.37), and (2.34), respectively. As commented
in section 2.3, the fluctuation action δSfluc about the saddle point, although superficially
divergent as illustrated in (2.35), is renormalized to zero, δSfluc = 0, as conformal pertur-
bation theory indicates.

Here, we focus on the first-order T T̄ correction δSsaddle[g] to the 3-point functions and
relegate the computation of undeformed CFT 3-point functions to the next section. It is
most convenient to work in the conformal gauge (3.8). In order to compute the stress-
tensor correlators, we expand the saddle point action δSsaddle[g] in φ, α, and ᾱ. As we
have seen in the previous section, the quadratic order is absent, which implies that there
is no first-order T T̄ correction to the 2-point functions, and the saddle point action starts
from the cubic order O(Ψ3) in the conformal factor Ψ(x). This means that it suffices to
consider the leading order x̃ = x, A(x) = 0, and Ψ(x) = Φ(x) for the expansions (2.22)
and (2.23). The first-order T T̄ correction was computed in (2.51),

δSsaddle[g] = δSL[e2Ψ(x̃)δ] = c2 δµ

36π2

∫
d2x̃ e−2Ψ

[
−2(∂̃Ψ)( ¯̃∂Ψ)(∂̃ ¯̃∂Ψ) + (∂̃Ψ)2( ¯̃∂Ψ)2

]
(4.9)

which reduces to

δS
(3)
L [e2Ψ(x̃)δ] = − c

2δµ

36π2

∫
d2z ∂∂̄Φ ∂Φ ∂̄Φ with Φ(x) = φ(x)− 1

2∂kα
k (4.10)

to the third order in φ, α, and ᾱ. We note once again that
∫
d2x = 1

2
∫
d2z.

It is now straightforward to calculate the first-order T T̄ correction to the stress tensor
3-point functions. As done in the computation of the undeformed CFT 2-point functions,
we use the identities (4.4) and integration by parts. The non-contact terms are then
found to be〈

Θ(z1)T (z2)T̄ (z3)
〉

= π3δ3(δSL)
δφ(z1)δ∂̄ᾱ(z2)δ∂α(z3)

= −c
2δµ

4π
1

z4
12z̄

4
13

(4.11)

〈
T (z1)T̄ (z2)T̄ (z3)

〉
= π3δ3(δSL)
δ∂̄ᾱ(z1)δ∂α(z2)δ∂α(z3)

= −c
2δµ

3π
1

z3
12z̄

5
23

+ (z2 ↔ z3) (4.12)

where zij ≡ zi − zj and z̄ij ≡ z̄i − z̄j . These precisely agree with the results in [25] with
the identification δµhere = π2λthere.
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5 4-point functions

To the best of our knowledge, the stress tensor 4-point functions in the T T̄ -deformed theory
have never been computed. Here, as an application of our method, we calculate the 4-point
functions to the first order in the T T̄ deformation. As we will see, the most interesting
result may be the logarithmic correction that appears in one of the 4-point functions:〈

T (z1)T (z2)T̄ (z3)T̄ (z4)
〉

= 4c2δµ

πz5
12z̄

5
34

ln
∣∣∣∣z13z24
z14z23

∣∣∣∣2 + · · · . (5.1)

Note that the argument in the logarithm is a cross-ratio.
One of the most subtle points in our formalism is to carefully take into account the

effect of the coordinate transformation, xi 7→ x̃i, to conformal gauge (3.8). In other words,
it is very important to include all the corrections discussed in (2.22), (2.23), and (3.9). For
the undeformed CFT 2-point functions and the first-order T T̄ correction to the 3-point
functions in section 4, it was rather special and simpler, and the effect of the coordinate
transformation, xi 7→ x̃i, was absent to the relevant order. For the computation of the
4-point functions and the undeformed CFT 3-point function, however, it is essential to
take into account the contributions that come from this subtle effect.

5.1 Warm-up: CFT 3-point functions

In order to illustrate the aforementioned subtlety, we first compute the undeformed CFT
3-point functions as a warm-up exercise. The Liouville action in the conformal gauge is
given in (3.12). In the absence of the effect of the coordinate transformation, xi 7→ x̃i, the
Liouville action is only of quadratic order O(Φ2) in the conformal factor Φ and thus in φ,
α, and ᾱ. This would have meant vanishing 3-point functions, but it obviously cannot be
true. Indeed, all the contributions to the undeformed CFT 3-point functions come from
the subtle effect of the coordinate transformation, xi 7→ x̃i. In order to make this point
more explicit and demonstrate how it works, using (2.22), (2.23), and (3.9), we expand the
Liouville action (3.12) in the conformal gauge (3.8)

S0 = c

6π

∫
d2z(∂̄ᾱ)

[
∂2(∂ᾱ)2 − ∂2(ᾱ∂2ᾱ)− ∂3 (ᾱ∂ᾱ)− ∂2(∂ᾱ)2 + ∂3Ā(2) + · · ·

]
(5.2)

to the third order in φ, α, and ᾱ, where the explicit form of Ā(2) is given by

Ā(2)(z, z̄) = − 1
π

∫
d2z′

1
z − z′

(φ(z′)− ∂′ᾱ(z′))∂̄′ᾱ(z′) . (5.3)

What is explicitly shown in (5.2) are only the terms of order O(ᾱ3) relevant to the holo-
morphic 3-point function 〈TTT 〉, and we omitted the quadratic terms (4.2). In addition
to these terms, there are also the complex conjugate terms of order O(α3) relevant to the
anti-holomorphic 3-point function 〈T̄ T̄ T̄ 〉 as well as the terms that yield the contact terms.
Once again, using

ᾱ(z, z̄) = 1
∂̄

(∂̄ᾱ) = 1
2π

∫
d2z′

∂̄′ᾱ(z′, z̄′)
z − z′

(5.4)
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and integration by parts, it is straightforward to find

〈T (z1)T (z2)T (z3)〉 = π3δ3S0

δ∂̄ᾱ(z1)δ∂̄ᾱ(z2)δ∂̄ᾱ(z3)
= c

z2
12z

2
23z

2
13
. (5.5)

This correctly reproduces the standard CFT 3-point function of the stress tensor.

5.2 T T̄ -deformation to 4-point functions

We now apply our method to compute the first-order T T̄ -correction to the 4-point stress-
tensor correlators. Here, we only focus on the non-contact terms. All the contributions
come from the saddle point action δSsaddle[g] = δSL[e2Ψ(x̃)δ], but there are two distinct
types of contributions:

δSL[e2Ψ(x̃)δ] ⊃ δS
(4)
L [e2Ψ(x̃)δ] = SΦ4 + SΦ3 . (5.6)

The first term in (5.6) is the quartic action of order O(Φ4) without the subtle effect of the
coordinate transformation, xi 7→ x̃i, to conformal gauge. On the other hand, the second
term in (5.6) is the cubic action of order O(Φ3) with nontrivial contributions from the
coordinate transformation. By expanding the saddle point action (4.9) in Φ, we obtain the
quartic action

SΦ4 = c2δµ

72π2

∫
d2z

[
4Φ ∂Φ ∂̄Φ ∂∂̄Φ + (∂Φ)2(∂̄Φ)2

]
= − c

2δµ

36π2

∫
d2z

[
−2Φ ∂Φ ∂̄Φ ∂∂̄Φ +

(
∂Φ ∂∂̄Φ 1

∂∂̄

(
∂̄Φ ∂∂̄Φ

)
+ c.c.

)] (5.7)

where in the second line we rewrote the action in a non-local form in terms of 2d Green’s
function,

1
∂∂̄
f(z, z̄) = 1

2π

∫
d2z′ ln |z − z′|2f(z′, z̄′) . (5.8)

The second expression manifests the aforementioned logarithmic correction in (5.1). Mean-
while, using (2.22), (2.23), and (3.9), the cubic action to the fourth order in φ, α, and ᾱ
can be found as

SΦ3 = − c2δµ

36π2

∫
d2z̃ ∂̃ ¯̃∂Ψ ∂̃Ψ ¯̃∂Ψ (5.9)

= − c2δµ

36π2

∫
d2z

[
−2α ∂̄Φ ∂2Φ ∂̄2Φ + 2α ∂̄Φ(∂∂̄Φ)2︸ ︷︷ ︸

contact

+c.c.+ δΦ ∂2Φ ∂̄2Φ− δΦ(∂∂̄Φ)2︸ ︷︷ ︸
contact

]

where we defined

δΦ ≡ Ψ(2) + αk∂kΦ = −
[
φ2 − (∂ᾱ)2 − (∂̄α)2 + 2∂α ∂̄ᾱ+ ∂Ā(2) + ∂̄A(2)

]
, (5.10)

where the explicit expression for Ā(2) is given in (5.3) and A(2) is its complex conjugate.
We note that in the last line of (5.9), the first three terms, including the complex conjugate
terms denoted by c.c., are the quartic action induced by the Jacobian of the coordinate
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transformation xi 7→ x̃i to conformal gauge, whereas the last two terms are induced by the
second-order correction to the Weyl factor δΦ.

Since we are only interested in non-contact terms in correlators, we can disregard the
terms in the action that can only yield contact terms. For 4-point functions, the non-
contact terms can only arise from the terms in the action which involve four integrals.
This means that since there is one common z-integral, the only relevant terms are those
for which it is mandatory to use the identities (4.4) at least three times in order to mold
∂α or ∂̄ᾱ from α or ᾱ by introducing 1/∂ or 1/∂̄. Since Φ = φ− ∂̄α− ∂ᾱ, the factor ∂∂̄Φ
does not necessitate the use of the identities (4.4). Thus the terms indicated as “contact”
in (5.7) and (5.9) only involve at most three integrals and can only yield contact terms.

The computation is tedious but straightforward. As stressed several times before, the
only point to note is that we make repeated use of the identities (4.4) and integration by
parts whenever necessary. As it turns out, there are three types of 4-point correlators which
receive the first-order non-contact term corrections. As the computation is straightforward,
we will not show the detail. The final results are given as follows:

〈T (z1)T (z2)T̄ (z3)Θ(z4)〉=− π4δ4(δSL)
δ∂̄ᾱ(z1)δ∂̄ᾱ(z2)δ∂α(z3)δφ(z4)

=−c
2δµ

2π
1

z2
41z

2
42z

2
12z̄

4
34
, (5.11)

where the minus sign in the variation of the saddle point action comes from the expan-
sion (3.7). For the remaining two correlators, we will not write down the form of the
variations as it should be clear by now. One of the other two is found to be

〈T (z1)T (z2)T (z3)T̄ (z4)〉 = c2δµ

6π

[
1

z2
12z

3
13z

2
23

+ 1
z3

12z
2
13z

2
23

]
1
z̄3

14
+ perm(z1, z2, z3) , (5.12)

where ‘perm(z1, z2, z3)’ denotes five more terms obtained by permutations. The most
interesting of the three may be the correlator that involves two T s and T̄ s:

〈T (z1)T (z2)T̄ (z3)T̄ (z4)〉 = 2c2δµ

πz5
12z̄

5
34

[
z12
z31

+ z̄34
z̄13

+ 2 ln |z13|2
]

+ (z1 ↔ z2, z3 ↔ z4). (5.13)

where ‘(z1 ↔ z2, z3 ↔ z4)’ denotes three more terms obtained by exchanging zi.
As advertized at the beginning of this section, the most notable feature is the logarith-
mic correction. Note that a similar logarithmic correction appears in matter correla-
tors [11, 21, 25].

In appendix C and D, as a check, we reproduce (5.12) and (5.13) from conformal
perturbation theory.10 It is a straightforward exercise, which turns out to be easier than the
computation from the deformed Liouville action. However, we hasten to say that this does
not mean that the random geometry approach is less useful than conformal perturbation
theory; although conformal perturbation theory is useful in concrete computations, the
random geometry approach has advantage in formal operations. For example, it allowed
us to derive all-order recursion equations, (2.47) and (2.48). Also, if we can regulate the
fluctuation part, the random geometry approach will allow us to go straightforwardly to

10The 4-point function (5.11) can be reproduced by using the flow equation Θ = − δµ
π
T T̄ .
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higher orders in a covariant way, which is presumably not so straightforward in conformal
perturbation theory. Moreover, it was shown in [21] that the random geometry approach is a
useful language to understand the gravity dual of the T T̄ -deformed CFTs in the framework
of AdS/CFT. Appendix D also provides a novel use of the contour integral representation
of the T T̄ -deformation [11] in conformal perturbation theory.

6 T T̄ -deformed OPE

The deformation of the 3-point correlators (4.11) and (4.12) can be interpreted as the T T̄ -
deformed operator product expansions (OPE) of the stress tensor. It will provide us with a
better perspective on the nature of the T T̄ deformation as well as a better understanding of
the form of the 4-point correlators in section 5.2. In this section, we read off the deformed
OPE from the deformed 3-point functions and discuss consistency of the deformed 4-point
functions with the OPE.

Let us recall the first-order T T̄ -correction to the 3-point functions in (4.11) and (4.12):

〈
Θ(z1)T (z2)T̄ (z3)

〉
= −c

2δµ

4π
1

z4
12z̄

4
13
, (6.1)

〈
T (z1)T̄ (z2)T̄ (z3)

〉
= −c

2δµ

3π
1

z3
12z̄

5
23

+ (z2 ↔ z3) . (6.2)

The first 3-point function (6.1) suggests that

Θ(z)T (w) ∼ −c δµ2π
T̄ (z)

(z − w)4 + · · · , Θ(z)T̄ (w) ∼ −c δµ2π
T (z)

(z̄ − w̄)4 + · · · (6.3)

which, together with T (ζ)T (w) ∼ c/(2(ζ−w)4)+· · · (or its complex conjugate), reproduces
the deformed 3-point function (6.1).

Next, we may infer from the second 3-point function (6.2) that11

T̄ (z)T̄ (w) ∼ −c δµ
π2

1
(z̄ − w̄)5

∫
d2z′ ln(z − z′)∂̄′T (z′) + (z ↔ w) + · · · , (6.4)

where we dropped the zeroth-order CFT part of the OPE. The T (z)T (w) OPE is given
by a complex conjugate of this form. To elaborate on it, assuming the OPE (6.4), one can
check that the 3-point function 〈T T̄ T̄ 〉 reads

〈T (z1) T̄ (z2)T̄ (z3)︸ ︷︷ ︸
OPE

〉 ∼ −c δµ
π2

1
z̄5

23

∫
d2z′ ln(z2 − z′)∂̄′〈T (z1)T (z′)〉+ (z2 ↔ z3)

= −c
2δµ

2π2
1
z̄5

23

∫
d2z′ ln(z2 − z′)∂̄′

1
(z1 − z′)4 + (z2 ↔ z3)

= −c
2δµ

3π
1

z̄5
23z

3
12

+ (z2 ↔ z3)

(6.5)

11Since ∂̄∂
∫
d2z′ ln(z−z′)∂̄′T (z′) = 2π∂̄T (z), we can express

∫
d2z′ ln(z−z′)∂̄′T (z′) by a contour integral

2π
∫ z

dz′T (z′).
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where we used ∂̄′ 1
(z−z′)4 = −π

3∂
′3δ2(z − z′) and integration by parts. This precisely agrees

with the deformed 3-point function (6.2). In particular, the T̄ (z2)T̄ (z3) OPE correctly re-
produces the z̄23 = 0 singularity of the 3-point function as required. It is worth commenting
on an ambiguity in the form of the OPE: the 3-point function could have been correctly
reproduced even if ln(z2 − z′) was replaced by ln |z2 − z′|2. However, as we will see below,
the consistency with the 4-point function (5.13) fixes the form to be the one in (6.4).

Furthermore, the second 3-point function (6.2) also indicates that

T (z)T̄ (w) ∼ c δµ

6π
∂̄T̄ (w)

(z − w)3 −
c δµ

6π
∂T (z)

(z̄ − w̄)3 + · · · . (6.6)

Assuming this OPE, we calculate the 3-point function 〈T T̄ T̄ 〉:〈
T (z1)T̄ (z2)T̄ (z3)

〉
= 〈T (z1)T̄ (z2)︸ ︷︷ ︸

OPE

T̄ (z3)〉 ∼ c δµ

6πz3
12
∂̄2
〈
T̄ (z̄2)T̄ (z̄3)

〉
= − c2δµ

3πz3
12z̄

5
23
. (6.7)

This correctly reproduces the z12 = 0 singularity of the 3-point function (6.2) as z1 → z2.
Since the OPE (6.6) only captures the singularity as z → w, it suffices for the T (z1)T̄ (z2)
OPE to reproduce z12 = 0 singularity of the 3-point function. The fact that the z2 ↔ z3
exchange term is missing is not a bug but a feature since the singular part of the T (z1)T̄ (z2)
OPE cannot account for the z13 = 0 singularity.

We now discuss the consistency of the deformed 4-point functions with the deformed
OPEs. Using the OPE (6.3), we can calculate the 4-point function (5.11) as

〈T (z1)T (z2) Θ(z4)T̄ (z3)︸ ︷︷ ︸
OPE

〉 ∼ −c δµ2π
〈T (z1)T (z2)T (z4)〉

z̄4
34

= −c
2δµ

2π
1

z2
12z

2
14z

2
24z̄

4
34
. (6.8)

This precisely agrees with the r.h.s. of (5.11). In particular, the Θ(z4)T̄ (z3) OPE correctly
reproduces the z̄34 = 0 singularity of the 4-point function as required.

Next, using the OPE (6.6), the z̄34 = 0 singularity of the 4-point function (5.12) can
be calculated as

〈T (z1)T (z2)T (z3)T̄ (z4)︸ ︷︷ ︸
OPE

〉 ∼ − c δµ

6πz̄3
34
∂3〈T (z1)T (z2)T (z3)〉 = − c2δµ

3πz̄3
34z

2
12

[ 1
z3

13z
2
23

+ 1
z2

13z
3
23

]
.

(6.9)

This indeed precisely reproduces the z̄34 = 0 singularity of the 4-point function (5.12).
Finally, we check the consistency of the 4-point function (5.13) with the T̄ (z3)T̄ (z4)

OPE (6.4). On top of the δµ-deformation of the OPE, the zeroth-order CFT part must
be taken into account. The z̄34 = 0 singularity of the 4-point function 〈TT T̄ T̄ 〉 can be
calculated as

〈T (z1)T (z2) T̄ (z3)T̄ (z4)︸ ︷︷ ︸
OPE

〉∼ 2
z̄2

34
〈T (z1)T (z2)T̄ (z4)〉+ 1

z̄34
∂̄4〈T (z1)T (z2)T̄ (z4)〉

− cδµ

π2z̄5
34

∫
d2z′ ln(z3−z′)∂̄′〈T (z1)T (z2)T (z′)〉+(z3↔ z4) (6.10)

=− c2δµ

3πz5
12

[ 2
z̄3

41z̄
2
34
− 3
z̄4

41z̄34

]
+ 2c2δµ

πz5
12z̄

5
34

[
−z12z34
z31z41

+2ln z31
z41

]
+(z1↔z2)

– 22 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
0

where we dropped the zeroth-order term c2

4z4
12z̄

4
34
. In performing the integration, we used

∂̄′ 1
(z−z′)2 = −2π∂′δ2(z − z′) and integration by parts. This is to be compared to (5.13):

〈T (z1)T (z2)T̄ (z3)T̄ (z4)〉= 2c2δµ

πz5
12z̄

5
34

[
z̄34
z̄13

+ z̄34
z̄14
− z12z34
z31z41

+2ln
∣∣∣∣z13
z14

∣∣∣∣2
]

+(z1↔ z2)

∼ 2c2δµ

πz5
12z̄

5
34

[
− z̄3

34
3z̄3

41
+ z̄4

34
2z̄4

41
− z12z34
z31z41

+2ln z13
z14

]
+(z1↔ z2)

(6.11)

where we expanded z̄31 = z̄41 + z̄34 for a small z̄34. Indeed, the two precisely agree.
As a final remark in this section, we note that the deformed OPE (6.4) contains a

manifestly non-local operator via the logarithmic correction in contrast to the OPEs of
local field theory. This might be a sign of nonlocality of the T T̄ -deformed theory.

7 Discussions

In this paper, we investigated the stress-energy sector of general T T̄ -deformed theories
using the random geometry approach, and developed technique to compute stress-energy
correlation functions. More specifically, we considered the Polyakov-Liouville conformal
anomaly action of CFT and computed its T T̄ deformation to first order in the deformation
parameter. It is remarkable that we obtained the deformed action in a closed, nonlocal
form, as written down in (2.37). Using this deformed action, one can compute arbitrary
stress-energy correlators as we have explicitly demonstrated with concrete examples. In
the conformal gauge, as in (2.51), the deformed action can be written in a “local” form in
the conformal factor exponent Ω in the sense that the inverse of derivative operators do
not explicitly appear.

An obvious but important problem is to generalize our geometrical method to higher
orders in the T T̄ coupling δµ. One idea is to iterate the Hubbard-Stratonovich transfor-
mation, using (2.8) or (2.12). Another idea is trying to find a partial differential equation
similar to the one obtained for the matter correlators [11, 21]. For the partition function,
it is not difficult to write down such an equation as we found in section 2.4. Instead, one
may want to find an equation which directly gives the flow of correlation functions. In
particular, it is of great interest to compute the 2-point function GΘ(|z12|) ≡ 〈Θ(z1)Θ(z2)〉
to all orders in the T T̄ deformation parameter µ. It is expected that this 2-point func-
tion is positive, GΘ(|z12|) > 0, at long distances |z12| �

√
|µ| but becomes negative,

GΘ(|z12|) < 0, at short distances |z12| �
√
|µ|, signaling an appearance of a negative norm

and indicating a violation of unitarity at short distances [8]. Since this is a very basic
property (or pathology) of the T T̄ -deformed theories, it is clearly very important to better
understand it.

In the random geometry approach, the deformed action involves the saddle point part
and, in addition, the fluctuation part which is divergent and must be renormalized. At first
order in δµ, the fluctuation part actually vanishes after renormalization, as the conformal
perturbation theory and the contour integral approach suggest. However, at higher order,
this might no longer be the case and we might have to confront the task of properly defining
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the divergent trace. For that, it will presumably be useful to look more carefully at the
first-order expression and see why it is renormalized to zero. Note, however, for large c,
the fluctuation part is parametrically smaller than the saddle point part and can be safely
dropped, even at higher order. This means that, as far as the dual classical gravity is
concerned, the fluctuation part can be always dropped.

As discussed in [21], the random geometry description of the T T̄ -deformed CFTs can
be straightforwardly translated into the AdS/CFT framework. The gravity dual is an en-
semble of AdS3 with a “Gaussian” average over boundary metrics. (This, we believe, is
equivalent to the nonlinear mixed boundary proposal of Guica and Monten [20] but differs
from the cutoff AdS proposal of McGough, Mezei and Verlinde [19].12) In our gravity dual
description, since the conformal anomaly can be derived via holographic renormalization in
AdS/CFT [30, 31], by averaging over the boundary metric with the Hubbard-Stratonovich
“Gaussian” weight, we can obtain, holographically, the deformed Liouville action. Thus
taking variations of the deformed anomaly action so obtained with respect to the bound-
ary background metric, we can calculate the T T̄ -deformed stress-tensor correlators in the
gravity dual and will find exactly the same answer as we found in the field theory. The
word “random geometry” might sound vacuous, because at first order in δµ the contribu-
tion from the fluctuation vanishes and the saddle point gives the exact answer. However,
as already mentioned above, this will no longer be the case at higher order and random
fluctuations of geometry will be important.
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A Conventions and formulas

Our convention for the complex coordinates z = x1 + ix2, z̄ = x1 − ix2 is

d2z = 2dx1dx2, δ2(z) = 1
2δ(x

1)δ(x2), (A.1)

so that ∫
d2z δ2(z) = 1. (A.2)

12In a similar way to [20], by reinterpreting the gravity dual of the T T̄ -deformed BTZ black holes obtained
in [21], we can explicitly show that a “cutoff” surface emerges as a kind of mirage. In this sense, there is a
relation between our gravity dual and the cutoff AdS. However, it is hard to regard this surface as a real
rigid cutoff in a literal sense.
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Also,

∂
1
z̄

= ∂̄
1
z

= 2πδ2(z). (A.3)

The Riemann tensor Rijmn, the Ricci tensor Rij , and the scalar curvature R are
defined as

Rijmn = ∂mΓinj − ∂nΓimj + ΓimkΓknj − ΓinkΓkmj , (A.4a)

[∇m,∇n]V i1i2... = Ri1jmnV
ji2... +Ri2jmnV

i1ji3... + · · · , (A.4b)

Rij = Rkikj , R = Rii. (A.4c)

In two dimensions, the following identities hold:

Rij = 1
2gijR, Rijkl = 1

2(gikgjl − gilgjk)R. (A.5a)

B Explicit form of the compensating diffeomorphism

As discussed in section 2.3, in two dimensions, we can bring the varied metric g + h into
the original metric g by a diffeomorphism up to a Weyl transformation, even for finite h.
Namely, we can choose Ai(x),Ψ(x̃) appropriately so that

(gij(x) + hij(x)) dxidxj = e2Ψ(x̃)gij(x̃) dx̃idx̃j (B.1)

holds, where x̃i ≡ xi + Ai(x). We parametrize h by α,Φ (or α, φ) as in (2.10) and (2.11),
and find Ai,Ψ by expanding them in powers of α,Φ as

Ai(x) =
∞∑
n=1

Ai(n)(x), Ψ(x̃) =
∞∑
n=1

Ψ(n)(x̃). (B.2)

At linear order, we clearly have

Ai(1) = αi, Ψ(1) = Φ. (B.3)

The equation to determine the quadratic order quantities Ai(2),Ψ(2) is

2Ψ(2)gkl +∇kA
(2)
l +∇lA

(2)
k + Ykl = 0, (B.4)

where

Ykl = 2Φ2gkl + 2(αi∂iΦ)gkl + 2Φ(∇kαl +∇lαk)

+ gij∂kα
i∂lα

j + αp(∂pgki ∂lαi + ∂pgli ∂kα
i) + 1

2α
pαq∂p∂qgkl (B.5a)

= 2Φ2gkl + 2(αi∂iΦ)gkl + 2Φ(∇kαl +∇lαk)

+∇kαi∇lαi + (Γlpi∇kαi + Γkpi∇lαi)αp

+ 1
4
[
gki
(
∂mΓinl − ΓimjΓjnl + (m↔ n)

)
+ gli

(
∂mΓink − ΓimjΓjnk + (m↔ n)

)]
αmαn. (B.5b)
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To solve eq. (B.4), let us introduce φ(2) by

Ψ(2) ≡ φ(2) −
1
2∇pA

p
(2). (B.6)

First, by looking at the trace part of (B.4), we find

φ(2) = −1
4Y, Y ≡ gklYkl. (B.7)

If we plug this back into (B.4), we find

∇kA
(2)
l +∇lA

(2)
k −∇pA

p
(2)gkl + Ỹkl = 0, Ỹkl ≡ Ykl −

1
2Y gkl. (B.8)

If we act with ∇k on (B.8) and use the relations (A.4b), (A.5a), we find(
�v + R

2
)
A

(2)
l +∇kỸkl = 0, therefore A

(2)
l = − 1

�v +R/2∇
kỸkl. (B.9)

In particular, if the background metric g is in conformal gauge,

ds2 = gij(x)dxidxj = e2ω(x)dzdz̄, (B.10)

Eqs. (B.7) and (B.9) give

φ(2) = −e−2ωYzz̄, (B.11a)

A(2)
z = −1

2e
2ω 1
∂

(e−2ωYzz), A
(2)
z̄ = −1

2e
2ω 1
∂̄

(e−2ωYz̄z̄), (B.11b)

Ψ(2) = −e−2ωYzz̄ + 1
2 ∂̄e

2ω 1
∂

(e−2ωYzz) + 1
2∂e

2ω 1
∂̄

(e−2ωYz̄z̄), (B.11c)

where

Yzz = 4(e2ωΦ + ∂ᾱ+ 2∂̄ω α) ∂(e−2ωα), (B.12a)

Yzz̄ = Φ2e2ω + 2
[
∂(Φᾱ) + ∂̄(Φα)

]
+ 2e−2ω

{[
2
(
∂̄ω ∂̄α− ∂ω ∂̄ᾱ

)
α+

(
∂̄2ω − 2(∂̄ω)2

)
α2
]

+ c.c.

+ 2
(
2∂ω∂̄ω + ∂∂̄ω

)
αᾱ+ ∂α∂̄ᾱ+ ∂̄α∂ᾱ

}
(B.12b)

Or, in terms of φ, α, ᾱ,

Yzz = 4e2ω
(
φ− ∂̄(e−2ωα)

)
∂(e−2ωα), (B.13a)

Yzz̄ = e2ωφ2 + 2(∂̄φ α+ ∂φ ᾱ)

+ e−2ω
{[

2
(
−2(∂̄ω)2 + ∂̄2ω

)
α2 + (8∂̄α ∂̄ω − 2∂̄2α)α

− (∂̄α)2 − 2
(
∂∂̄ᾱ− 2∂̄ω ∂ᾱ+ 2∂ω ∂̄ᾱ

)
α
]

+ c.c.

+ 4
(
2∂ω ∂̄ω + ∂∂̄ω

)
αᾱ+ 2∂α ∂̄ᾱ

}
. (B.13b)
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C 4-point functions from conformal perturbation theory

As a check of the results in section 5.2, we reproduce (5.12) and (5.13) from conformal
perturbation theory.

To the first order in conformal perturbation theory, bringing down the T T̄ -operator
from the exponent in e−δS , the 4-point function 〈TTT T̄ 〉δµ reads

〈T (z1)T (z2)T (z3)T̄ (z4)〉δµ = − δµ

2π2

∫
d2z〈T (z)T (z1)T (z2)T (z3)T̄ (z)T̄ (z4)〉 , (C.1)

where we adopt a notation that 〈· · · 〉δµ is the vev in the T T̄ -deformed CFT and 〈· · · 〉
without subscript is that in CFT. Since the vev on the r.h.s. is the one in CFT, we have

〈T (z)T (z1)T (z2)T (z3)T̄ (z)T̄ (z4)〉 = 〈T (z)T (z1)T (z2)T (z3)〉〈T̄ (z)T̄ (z4)〉

= −〈T (z)T (z1)T (z2)T (z3)〉∂̄ c

6(z̄ − z̄4)3

' c

6(z̄ − z̄4)3 ∂̄〈T (z)T (z1)T (z2)T (z3)〉 , (C.2)

where the last line is an equality up to a total derivative term. Using an explicit expression
for the CFT stress tensor 4-point function,

〈T (z)T (z1)T (z2)T (z3)〉CFT = 2c
(z−z1)2z2

12(z−z3)2z2
23
− 2c

(z−z1)(z−z2)2z12(z−z3)z2
13z23

,

we find that

〈T (z1)T (z2)T (z3)T̄ (z4)〉δµ

= −c
2δµ

3π

∫
d2z

1
(z̄ − z̄4)3

[
−
(
∂δ2(z − z1)
(z − z3)2 + ∂δ2(z − z3)

(z − z1)2

)
1

z2
12z

2
23

−
(

δ2(z − z1)
(z − z2)2(z − z3) + δ2(z − z3)

(z − z2)2(z − z1) −
∂δ2(z − z2)

(z − z1)(z − z3)

)
1

z12z2
13z23

]

= −c
2δµ

3π

[
−
( 2
z3

13z̄
3
14

+ 2
z3

31z̄
3
34

) 1
z2

12z
2
23

−
( 1
z2

12z13z̄3
14

+ 1
z2

23z31z̄3
34

+ 1
z̄3

24
∂2

1
z21z23

) 1
z12z2

13z23

]

= c2δµ

6π

( 1
z2

12z
3
13

+ 1
z3

12z
2
13

) 1
z2

23z̄
3
14

+ perm(z1, z2, z3) . (C.3)

This indeed reproduces the result (5.12) computed from the deformed Liouville action.
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Similarly, the 4-point function 〈TT T̄ T̄ 〉δµ can be computed, up to contact terms, as

〈T (z1)T (z2)T̄ (z3)T̄ (z4)〉δµ

= − δµ

2π2

∫
d2z〈T (z)T (z1)T (z2)〉〈T̄ (z)T̄ (z3)T̄ (z4)〉

= −c
2δµ

2π2

∫
d2z

1
(z − z1)2(z − z2)2z2

12

1
(z̄ − z̄3)2(z̄ − z̄4)2z̄2

34

= c2δµ

2π2z4
12z̄

2
34

∫
d2z

(z̄ − z̄3)2(z̄ − z̄4)2∂

 1
z − z1

+ 1
z − z2

+
2 ln

∣∣ z1−z
z2−z

∣∣2
z12


= − c2δµ

2π2z4
12z̄

2
34

∫
d2z∂

1
(z̄ − z̄3)2(z̄ − z̄4)2

 1
z − z1

+ 1
z − z2

+
ln
∣∣ z1−z
z2−z

∣∣4
z12


= c2δµ

πz4
12z̄

2
34

∫
d2z

 1
z − z1

+ 1
z − z2

+
ln
∣∣ z1−z
z2−z

∣∣4
z12

[ ∂̄δ2(z − z3)
(z̄ − z̄4)2 + ∂̄δ2(z − z4)

(z̄ − z̄3)2

]

= 2c2δµ

πz5
12z̄

5
34

[
z12z43
z31z41

+ z12z43
z32z42

+ z̄34z̄21
z̄13z̄23

+ z̄34z̄21
z̄14z̄24

+ 2 ln
∣∣∣∣z13z24
z14z23

∣∣∣∣2
]
. (C.4)

This precisely agrees with the result (5.13) computed from the deformed Liouville action.
Note that we made a choice of an integration constant in the third line:

∂

( 1
z − z1

+ 1
z − z2

)
+

2 ln
∣∣ z1−z
z2−z

∣∣2
z12

 = ∂

( 1
z − z1

+ 1
z − z2

)
+

ln
( z1−z
z2−z

)2
z12

 . (C.5)

This choice was made to avoid a branch cut in order to justify dropping the boundary
contribution at infinity when integration by parts is used.

D Contour integral approach for the T T̄ deformation

Here we discuss another approach to the T T̄ deformation, by rewriting the T T̄ perturbation
in terms of a contour integral. This approach was developed by Cardy [11] for finite
deformation parameter µ, but here we apply the idea to the first-order perturbation in δµ,
for which we can use the CFT operators T (z), T̄ (z̄). This clarifies some issues in Cardy’s
original discussion [11], as well as provides checks of correlation functions computed in the
main text using different approaches.

D.1 T T̄ -deformed correlators in terms of contour integrals

At first order in δµ, the T T̄ deformation can be written in terms of the CFT stress energy
tensor T (z), T̄ (z̄), as a contour integral, as

δS = δµ

2π2

∫
R
d2z T (z)T̄ (z̄) = i δµ

2π2

∫
R
dz ∧ dz̄ T (z)T̄ (z̄)

= i δµ

2π2

∫
R
d
[
−aT (z)χ̄(z̄)dz + (1− a)χ(z)T̄ (z̄)dz̄

]
= i δµ

2π2

∫
∂R

[
−aT (z)χ̄(z̄)dz + (1− a)χ(z)T̄ (z̄)dz̄

]
, (D.1)
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z1

w1
z2

X

∂R

. . .

. . .

Figure 1. The contour ∂R.

where we defined χ, χ̄ by

∂χ(z) = T (z), ∂̄χ̄(z̄) = T̄ (z̄) (D.2)

and used the holomorphicity (anti-holomorphicity) of T (z), χ(z) (T̄ (z̄), χ̄(z̄)). The domain
of integration R is R2 with possible singularities excluded, while a is an arbitrary number
which any final result must be independent of.

Let us use the above expression to evaluate the first-order perturbation in the
correlator,

I(zi, wi) ≡
〈∏
i

T (zi)
∏
j

T̄ (w̄j)
〉
δµ

= − δµ

2π2

〈∫
R
d2z T (z)T̄ (z̄)

∏
i

T (zi)
∏
j

T̄ (w̄j)
〉
. (D.3)

Using (D.1), this can be rewritten as a contour integral as

I = δµ

2π2 [aI ′ + (1− a)I ′′], (D.4a)

I ′ = i

∫
∂R
dz
〈
T (z)

∏
i

T (zi)
〉〈
χ̄(z̄)

∏
j

T̄ (w̄j)
〉
, (D.4b)

I ′′ = −i
∫
∂R
dz̄
〈
χ(z)

∏
i

T (zi)
〉〈
T̄ (z̄)

∏
j

T̄ (w̄j)
〉
. (D.4c)

Because χ, χ̄ are not single-valued (χ is not single-valued around T insertions, while χ̄ is
not single-valued around T̄ insertions), we must consider cuts and take the boundary ∂R
to go around the cuts. If we take the cuts to be the paths connecting zi, wi with some
reference point X, the contour ∂R can be taken as in figure 1.

Let us take the part of the contour ∂R that connects X and z1 (call it ∂Rz1), and
study its contribution to I ′ and I ′′.

First, in I ′, because χ̄ is single-valued around T (z1), there actually is no cut for I ′

along ∂Rz1 . So, the relevant contour is just a small circle going around z = z1. So, the
contribution to I ′ from the contour ∂Rz1 is

I ′z1 =−i
∮
z1
dz
〈
T (z)T (z1)

∏
i 6=1

T (zi)
〉〈
χ(z̄)

∏
j

T̄ (w̄j)
〉

(D.5)

=−i
∮
z1
dz
〈( c

2(z−z1)4 + 2T (z1)
(z−z1)2 + ∂T (z1)

z−z1
+(regular)

)∏
i 6=1

T (zi)
〉〈
χ̄(z̄)

∏
j

T̄ (w̄j)
〉
.
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Here
∮
z1

is the counter-clockwise contour integral around z = z1 (and not clockwise as ∂R
in figure 1). As we will show later (section D.3), after regularization, a z-contour integral
involving both z and z̄ can be evaluated as∮

z=α

dz

(z − α)n f̄(z̄) = 2πi f̄(ᾱ) δn,1 (D.6)

where f̄(z̄) is an arbitrary anti-holomorphic function regular at z̄ = ᾱ. This means that
only the third term in (D.5) contributes, giving

I ′z1 = 2π
〈
∂T (z1)

∏
i 6=1

T (zi)
〉〈
χ̄(z̄1)

∏
j

T̄ (w̄j)
〉
. (D.7)

Although χ̄(z̄) is single-valued around z = z1 because there is no T̄ insertion there, it is
multi-valued globally and we really have to specify the path along which we integrate T̄ (z̄)
to get χ̄(z̄1). By taking the path to be one going from the reference point X to z1 (note
that χ̄ is single-valued along this path), we can write the above result as

I ′z1 = 2π
〈
∂T (z1)

∏
i 6=1

T (zi)
〉 ∫ z̄1

X̄
dz̄
〈
T̄ (z̄)

∏
j

T̄ (w̄j)
〉
. (D.8)

Let us turn to the contribution to I ′′ from ∂Rz1 . In the presence of T (z1), χ(z) is not
single-valued around z = z1. We can split the contour into (i) the piece that connects X
and z1, and (ii) a small circle going around z1 as follows:

z1

∂Rz1

=

(i)

+

(ii)

(D.9)

The contribution from part (i) comes from the discontinuity of χ(z) across the cut. Namely,

I ′′z1,(i) = −i
∫

(i)
dz̄
〈
χ(z)T (z1)

∏
i 6=1

T (zi)
〉〈
T̄ (z̄)

∏
j

T̄ (w̄j)
〉

= −i
∫ z̄1

X̄
dz̄
〈[
χ(z)|below − χ(z)|above

]
T (z1)

∏
i 6=1

T (zi)
〉〈
T̄ (z̄)

∏
j

T̄ (w̄j)
〉
. (D.10)

If we recall T (z)T (z1) ⊃ ∂T (z1)
z−z1 and thus χ(z)T (z1) ⊃ ∂T (z1) log(z − z1), we see that what

this discontinuity does is [χ(z)|below − χ(z)|above]T (z1)→ 2πi∂T (z1). Therefore,

I ′′z1,(i) = 2π
∫ z̄1

X̄
dz̄
〈
∂T (z1)

∏
i 6=1

T (zi)
〉〈
T̄ (z̄)

∏
j

T̄ (w̄j)
〉

= I ′z1 . (D.11)

One can show that the contribution from part (ii) vanishes after regularization, namely,
I ′′z1,(ii) = 0; see the discussion around (D.20).

Substituting the above results (D.8), (D.11) into (D.4), we see that the contribution
from ∂Rz1 to I is independent of the parameter a. The contribution from ∂Rzi , i 6= 1 are
similar. Furthermore, the result being independent of a means that the contribution from
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∂Rwj that goes around T̄ insertions at z = wj is obtained by taking the complex conjugate
of this result. So, summing up all contributions, we find

I =
∑
i

Izi +
∑
j

Iwj ,

Izi = −δµ
π

〈
∂T (zi)

∏
i′ 6=i

T (z′i)
〉 ∫ z̄i

X̄
dz̄
〈
T̄ (z̄)

∏
j

T̄ (w̄j)
〉
,

Iwj = −δµ
π

〈
∂̄T̄ (w̄j)

∏
j′ 6=j

T̄ (w̄′j)
〉 ∫ wj

X
dz
〈
T (z)

∏
i

T (zi)
〉
.

(D.12)

Here 〈. . .〉 is the connected part that is proportional to c. So, the correction I is always
O(c2δµ), which implies that the fluctuation part δSfluc of the deformed Liouville action
must be renormalized away as argued in section 2.3. Eq. (D.12) implies that the operator
T (z) gets deformed as13

T (z)→ T (z) + δT (z), δT (z) = −δµ
π
∂T (z)

∫ z̄

X̄
dz̄′ T̄ (z̄′). (D.13)

Based on this, we can derive the deformed OPEs derived in the main text.

D.2 Examples

Here we apply the general formula (D.12) and reproduce some T T̄ -deformed correlators
computed in the main text.

For example, the 3-point function 〈T T̄ T̄ 〉 is

〈T1T̄2T̄3〉δµ = δµ

π

[
〈∂T1〉︸ ︷︷ ︸

=0

∫ z̄1

X̄
dz 〈T̄ T̄2T̄3〉+

〈
∂̄T̄2T̄3

〉∫ z2

X
dz 〈TT1〉+

〈
T̄2∂̄T̄3

〉
︸ ︷︷ ︸
=−〈∂̄T̄2T̄3〉

∫ z3

X
dz 〈TT1〉

]

=−δµ
π

〈
∂̄T̄2T̄3

〉∫ z3

z2
dz 〈TT1〉

=−δµ
π
∂̄2
( c

2z̄4
23

)∫ z3

z2
dz

c

2(z−z1)4 = c2δµ

3π
1
z̄5

23

(
− 1
z3

12
+ 1
z3

13

)
. (D.14)

This correctly reproduces (4.12). Note that the dependence on the reference point X

13The deformation in (D.12) is twice as large as what one would get from eq. (3.28) of [11] at O(δµ),
because that paper only took account of I ′′ and missed the contribution from I ′ (a = 1/2 there). Eq. (3.28)
of [11] seems to agree with eq. (3.6) there, but the latter equation also contains an error and must be
multiplied by 2.

– 31 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
0

canceled out. Likewise, the 4-point function 〈TT T̄ T̄ 〉 can be computed as:

〈T1T2T̄3T̄4〉δµ = δµ

π

[
〈∂T1T2〉

∫ z̄1

X̄
dz̄ 〈T̄ T̄3T̄4〉+ 〈T1∂T2〉︸ ︷︷ ︸

=−〈∂T1T2〉

∫ z̄2

X̄
dz̄ 〈T̄ T̄3T̄4〉+ (12↔ 34)

]

= −δµ
π
〈∂T1T2〉

∫ z̄2

z̄1
dz̄ 〈T̄ T̄3T̄4〉+ (12↔ 34)

= −δµ
π
∂1

(
c

2z4
12

)∫ z̄2

z̄1
dz̄

c

(z̄ − z̄3)2(z̄ − z̄4)2z̄2
34

+ (12↔ 34)

= 2c2δµ

π

(
1

z5
12z̄

4
34

(
− 1
z̄23

+ 1
z̄13
− 1
z̄24

+ 1
z̄14

)

+ 1
z4

12z̄
5
34

( 1
z14
− 1
z13

+ 1
z24
− 1
z23

)
+ 2
z5

12z̄
5
34

log
∣∣∣∣z24z13
z23z14

∣∣∣∣2
)
. (D.15)

This reproduces (5.13). Other correlators can be computed in a similar way. In the
contour integral approach, the issue of avoiding branch cuts we saw in the conformal
perturbation theory in appendix C has already been taken care of, and computations are
quite straightforward. There is no problem in computing higher-point functions; it only
gets more cumbersome.

D.3 Some formulas

Let us close some loose ends by showing relations that we used above.
First, let us show (D.6). Because f̄(z̄) is assumed to be regular at z = α, we can

expand the left-hand side as∮
z=α

dz

(z − α)n f̄(z̄) =
∑
m≥0

cm

∮
dy

yn
ȳm, (D.16)

where we set z−α =: y and expanded f̄(z̄) in powers of ȳ. If we set y = εeiθ with small ε,

i
∑
m≥0

cmε
1−n+m

∫ 2π

0
ei(1−n−m)θdθ = 2πiε2(1−n)c1−n (D.17)

where the only surviving term has m = 1− n. Because m ≥ 0, this means that 1− n ≥ 0,
namely n = 0, 1. On the other hand, for (D.17) to be non-vanishing in the ε→ 0 limit, we
need 1− n ≤ 0, namely n ≥ 1. Therefore, the only non-vanishing case is n = 1, and∮

z=α

dz

z − α
f̄(z̄) = 2πic0 = 2πif̄(z̄ = ᾱ). (D.18)

This completes the proof of (D.6).
By completely analogous computations, we can show the following formulas:∮

z=α

dz̄

(z − α)n f̄(z̄) = 0,
∮
z=α

dz̄ f̄(z̄) log(z − α) = 0. (D.19)

where f̄(z̄) is regular at z̄ = ᾱ.
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Finally, we want to prove that the contribution from the circular part of the contour
∂Rz1 does not contribute to I ′′z1 , as mentioned below (D.11). So, we are interested in

I ′′z1,(ii) = −i
∫

(ii)
dz̄

〈
χ(z)T (z1)

∏
i 6=1

T (zi)
〉〈

T̄ (z̄)
∏
j

T̄ (w̄j)
〉
. (D.20)

where the contour is the second term in the figure (D.9). As z → z1, the OPE

T (z)T (z1) = c

2(z − z1)4 + 2T (z1)
(z − z1)2 + ∂T (z1)

z − z1
+ (regular) (D.21)

implies the behavior

χ(z)T (z1) = − c

6(z − z1)3 −
2T (z1)
z − z1

+ ∂T (z1) log(z − z1) + (regular). (D.22)

In the ε→ 0 limit, the z̄ integral vanishes because of (D.19). This completes the proof.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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