
J
H
E
P
0
4
(
2
0
2
1
)
2
0
3

Published for SISSA by Springer
Received: February 25, 2021

Accepted: March 24, 2021
Published: April 21, 2021

Thermal order in large N conformal gauge theories

Soumyadeep Chaudhuri,a Changha Choib,c,d and Eliezer Rabinovicia
aRacah Institute, The Hebrew University,
Jerusalem 9190401, Israel
bSimons Center for Geometry and Physics, SUNY,
Stony Brook, NY 11794, U.S.A.
cC.N. Yang Institute for Theoretical Physics, SUNY,
Stony Brook, NY 11794, U.S.A.
dKavli Institute for Theoretical Physics, University of California,
Santa Barbara, CA 93106, U.S.A.
E-mail: chaudhurisoumyadeep@gmail.com, changha.choi@stonybrook.edu,
eliezer@mail.huji.ac.il

Abstract: In this work we explore the possibility of spontaneous breaking of global sym-
metries at all nonzero temperatures for conformal field theories (CFTs) in D = 4 space-time
dimensions. We show that such a symmetry-breaking indeed occurs in certain families of
non-supersymmetric large N gauge theories at a planar limit. We also show that this
phenomenon is accompanied by the system remaining in a persistent Brout-Englert-Higgs
(BEH) phase at any temperature. These analyses are motivated by the work done in [1, 2]
where symmetry-breaking was observed in all thermal states for certain CFTs in fractional
dimensions.

In our case, the theories demonstrating the above features have gauge groups which
are specific products of SO(N) in one family and SU(N) in the other. Working in a
perturbative regime at the N →∞ limit, we show that the beta functions in these theories
yield circles of fixed points in the space of couplings. We explicitly check this structure
up to two loops and then present a proof of its survival under all loop corrections. We
show that under certain conditions, an interval on this circle of fixed points demonstrates
both the spontaneous breaking of a global symmetry as well as a persistent BEH phase
at all nonzero temperatures. The broken global symmetry is Z2 in one family of theories
and U(1) in the other. The corresponding order parameters are expectation values of
the determinants of bifundamental scalar fields in these theories. We characterize these
symmetries as baryon-like symmetries in the respective models.
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1 Introduction

The study of the patterns of spontaneous symmetry breaking (SSB) and their potential
restoration plays a key role in understanding the phase structures of matter. From the
onset of such investigations it was noted that SSB is a low temperature property. As
the temperature is increased, various symmetries that were spontanously broken get re-
stored [3–9]. The generality of this phenomenon was first challenged in [10], and later
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followed up by [11–18] as well as many explorations of interesting phenomenological impli-
cations for the physics of the early universe [19–25]. However, these works typically involved
either UV-incomplete theories or models with imaginary or random chemical potentials.
The former prevents investigating whether the symmetries are restored beyond a UV scale,
while the latter requires the identification of concrete unitary theories which reproduce the
results. Some holographic constructions also explored the issue of symmetry restoration at
finite temperatures [26–36]. In such setups, non-restoration of global symmetries in QFTs
translates to the violation of the no-hair theorem for black holes in the dual theories of
gravity. However, in all the examples that were studied, either the relevant symmetries
are restored at some critical temperature or a metastable symmetry-broken phase exists at
high temperatures. So, the feasibility of a symmetry-broken phase which corresponds to
the true thermal vacuum up to arbitrarily high temperatures for a unitary UV-complete
theory has remained unresolved for several decades.

Recently, in [1, 2] it was shown that there exist UV complete systems consisting of fun-
damental scalar fields in which global continuous symmetries remain consistently broken at
arbitrarily high temperatures. The models examined there are Wilson-Fisher-like conformal
field theories (CFTs) in (4− ε) dimensions1 symmetric under the group O(N1)×O(N2). In
the regime 0 < ε� 1 and N1, N2 � 1 with N1 6= N2, these models exhibit various patterns
of spontaneous breaking of the O(N1) and O(N2) symmetries in thermal states. Studying
CFTs enables one to extend results obtained for one temperature to all temperatures. The
reader is referred to [1] for a detailed exposition of the method and the results.

In this paper we venture to study this issue of persistent symmetry breaking in (3+1)-
dimensional large N gauge theories. This positions these theories nearer to realistic particle
physics systems than those considered in [1, 2]. Moreover, introducing gauge symmetries
allows for both asymptotically free theories as well as Banks-Zaks-like conformal field the-
ories [38–40]. In either of these cases, the UV completion of the theory is guaranteed. The
addition of the gauge particles also enriches the possible phase structures; in particular,
it allows the system to be in the Brout-Englert-Higgs (BEH) phase. We will discuss the
persistence of both the BEH phase and the associated spontaneous breaking of a global
symmetry in the N →∞ (planar/ Veneziano [41]) limit of these models. We will show that
these two phenomena go hand in hand in these theories. We recall that in the standard
model of cosmology the electroweak BEH phase is supposed to be modified above a certain
temperature [42]. It will turn out that for obtaining the persistent phase behavior, we need
to consider systems which are invariant under a gauge group G of the following form:

G =
2∏
i=1

(Gi ×Gi), (1.1)

where the Gi’s are either SO(Nci) or SU(Nci) with two general ranks Nc1 and Nc2. We will
call the model where Gi = SO(Nci) the real double bifundamental model, and the one where

1It was shown in [37] that some CFTs in fractional dimensions with finite number of degrees of freedom
contain operators of complex dimensions. This raises questions about the unitarity of such theories defined
in fractional dimensions.
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Gi = SU(Nci) the complex double bifundamental model. As we will show in section 4.1,
there is a perturbative equivalence between these two models in the planar limit.2

From the structure of the above-mentioned gauge group, we can see that there are
two sectors (labeled by i) in these models. All the fields belonging to one of these two
sectors are invariant under the gauge transformations in the other sector. The matter
content in each sector comprises of Nfi flavors of massless fermions transforming in the
fundamental representation of Gi, and N2

ci massless scalar fields Φi which transform in the
bifundamental representation of (Gi ×Gi). We will work in the Veneziano limit where the
ratios Nfi

Nci
and Nc2

Nc1
approach finite values as Nci, Nfi → ∞, and the different couplings in

the model also scale with appropriate powers of 1
Nc1

and 1
Nc2

. A more detailed description
of these models will be provided in section 2.2.

We will show that for each sector in these models, there is a global internal symmetry
which is Z2 for Gi = SO(Nci) and U(1) for Gi = SU(Nci). We will call this a baryon
symmetry in the model since the corresponding order parameter is the expectation value of
a gauge invariant composite operator made of Nci number of scalar fields. It is one of these
baryon symmetries that will be spontaneously broken at arbitrary nonzero temperatures
in some parameter regimes. Along with this symmetry breaking, we will find the system
to exist in the BEH phase in any thermal state.

We will analyze this persistent symmetry breaking and the associated BEH phase by
first determining the fixed points in the RG flow of the ’t Hooft couplings in the double
bifundamental models. For this, we will compute the 2-loop beta functions of the different
couplings in the limit Nci →∞. Searching for the corresponding fixed points will yield the
following result: in addition to discrete fixed points, there is a fixed circle in the space of
couplings for these 2-loop beta functions. We will also show that this fixed circle in fact
survives in the planar limit even when all higher loop corrections to the beta functions are
taken into account.3

Such fixed circles in large N theories were explored by the authors of [49]. Their
proof for the existence of exactly marginal interactions between two CFTs was based on
the structure of 1-loop beta functions of the corresponding couplings. Since the double
bifundamental models fall exactly in the class of systems that they considered, it is expected
that there would be a fixed circle for the 1-loop beta functions of the couplings. Here, we
take a step further and prove that the fixed circles in these models survive under all loop
corrections to the beta functions at the planar limit. To the best of our knowledge, such
a result has not been proved earlier for any four dimensional non-supersymmetric large N
gauge theory. Moreover, the proof does not rely on any connection to supersymmetric or
holographic setups.4

2In this paper, we use the term ‘planar limit’ to denote the strictly N =∞ limit. This limit of QFT has
been explored in many other contexts (see e.g. [43–45]) which enjoy various interesting physical properties
that otherwise cannot be continuously obtained from a finite but arbitrarily large N .

3The RG flow of the different couplings will depend on the renormalization scheme [46–48]. In this
paper, we work with dimensional regularization and the modified minimal subtraction (MS) scheme. We
expect the existence of the conformal manifolds (with the topology of a circle) in the double bifundamental
models to persist under all sensible changes in the renormalization scheme.

4We refer the reader to the discussion in [50] for the status of the search for conformal manifolds in
non-SUSY theories anchored in SUSY ones.
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To study the possibility of spontaneous breaking of the baryon symmetry and the
persistent BEH phase for points lying on this fixed circle, we will consider the thermal
effective potential of the scalar fields. We will first show that this effective potential is
bounded from below for all points on the fixed circle. Next, we will determine the parameter
regime in which the effective potential can have a minimum away from the origin in the
field space for a subset of points on the fixed circle. Such a minimum of the potential at a
nonzero field configuration implies both that the system is in a BEH phase and that the
thermal expectation value of the baryon operator does not vanish. The latter leads to the
spontaneous breaking of the baryon symmetry. Assuming Nc2 < Nc1, we will show that
there is an upper bound on the ratio r ≡ lim

Nc1,Nc2→∞
Nc2
Nc1

for spontaneous breaking of the
baryon symmetry to be even possible at any point on the fixed circle. For each value of r
below this bound, we will identify the fixed points which demonstrate a symmetry-broken
phase at nonzero temperatures.

Before moving on, let us pause here to take a short detour. Enlarging the scope of the
theories under investigation to include gauge theories indeed adds more structure. It also
brings along with it a large number of subtleties and a considerable amount of small print.
Moreover, although our work deals with the spontaneous breaking of global symmetries in
gauge theories without gravity, there is evidence that a theory of quantum gravity cannot
have any global symmetry [51]. Thus, it is useful to summarize the nuances that arise in
the study of phases due to gauge symmetries. We will now discuss some of these nuances
and explain the terminology we will be using in this work.

Compact gauge symmetries are known to express themselves in several possible phases.
The Coulomb phase, the Brout-Englert-Higgs (BEH) phase and the confinement phase
manifest themselves in nature and are the building blocks of the present standard model.
The oblique confinement phase may have manifested itself in interesting condensed matter
systems and the conformal phase will also hopefully find its place in nature. There are order
parameters which distinguish each of them, but the language used to characterize phase
transitions corresponding to spontaneous breaking of global symmetries is not strictly ap-
propriate for the phases associated with gauge symmetries. There is no SSB of a gauge
symmetry [52]. Furthermore, it was shown [53, 54] that in a class of theories containing
bosons or fermions in a representation of the gauge group which is not trivial under the
center of the gauge group, there are no phase transitions. The quantitative properties of
the system may cross over from one appropriate effective description to another as param-
eters are changed, but there is no phase transition involved in the process.5 These cases
include the standard model with its bosons and its quarks, each being in the fundamental
representation of the relevant group. Moreover, it was shown [53] that this also implies
that in the presence of temperature there is no phase transition, only a crossover. So
far, indeed, no experimental evidence has been found for such a transition. The predicted
crossover behavior could be validated in future experiments [55].

5Had there been a deconfinement phase transition, the order parameter for that transition would not
have been of the zero form type.
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We return now to explain how this pertains to the type of models we discuss in this
work which contain bifundamental scalars and fundamental fermions. The constraints on
the phase diagram imposed by the presence of matter in the fundamental representation do
not prevent a priori a transition characterized by the spontaneous breaking of some global
symmetry. As we will see, this is indeed the case in the main examples we construct. An
additional feature is that we are considering fixed points in the RG flow of these models
at the planar limit. Thus, at this limit, the theories of our interest are conformal. The
lack of any intrinsic scale in such conformal theories guarantees that there will not be
any phase transition or crossover in them at any nonzero temperature. However, this
does not preclude the possibility of a transition (or a crossover) when one switches on the
temperature. Beyond this initial possible phase transition, the system persistently remains
in a single phase as the temperature is increased to arbitrarily high values.

Before relating the above general feature of CFTs to the large N fixed points of our
models, let us contrast this feature with the non-persistent behaviors of theories without
conformal symmetry. For instance, in an asymptotically free theory with adjoint scalars,
if the system is in a BEH phase at zero temperature, its non-persistent behavior (under
increase in temperature) could be to first pass through a phase transition to a confinement
phase and then to deconfine. It is also possible to study a non-persistent behavior by
deforming a CFT. For example, consider N = 4 SUSY Yang Mills theory with a non-
abelian compact gauge group of rank Nc in 4 dimensions. At the planar limit, one can
infer the structure of this CFT from AdS/CFT correspondence. If the world volume is R4,
then at T = 0 there is an exact flat potential. This makes it possible to spontaneously break
the scale invariance by choosing an appropriate vacuum. For all the vacua of the theory
at T = 0, we expect a phase transition from the system having O(1) degrees of freedom to
O(N2

c ) degrees of freedom as soon as a temperature is turned on.6 Now, the above CFT
can be deformed by taking the world volume to be S3×S1. Then the flat direction is lifted
and the extra scale introduces the dimensionless parameter TR where R is the radius of
the sphere. From AdS/CFT correspondence, we know that this allows a transition from
O(1) to O(N2

c ) degrees of freedom at a finite nonzero temperature determined by TR [56].
Let us now come back to the discussion of the phases of the large N fixed points in our

models. For all these fixed points, we will see that there is no flat direction of the potential
at T = 0. This prevents the possibility of spontaneously breaking the scale invariance at
zero temperature. Moreover, the ground state does not demonstrate the breaking of the
afore-mentioned baryon symmetries in the model. However, for a subset of these large N
fixed points in certain parameter regimes, the system undergoes a transition to a phase
where one of the baryon symmetries is spontaneously broken as soon as a temperature is
switched on. This phase then survives up to arbitrarily high temperatures. This persistent
symmetry breaking is accompanied by the Higgsing of a subset of the gauge bosons. Thus,
the system can be qualitatively characterized to be in a BEH-like phase at all nonzero
temperatures. It will be called in this work “being in a persistent BEH phase” or simply
“being in the BEH phase”. We may lapse into less rigorous terminology but we trust the
reader will not be misled.

6We expect this transition to happen even for large but finite Nc.
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Organization of the paper. As a precursor to all the analyses mentioned above, in sec-
tion 2 we begin by discussing some familiar examples of conformal QCDs and show explicitly
that they fail to exhibit spontaneous breaking of some global symmetries at nonzero temper-
atures. These examples help us to introduce the analytic techniques necessary for studying
the possibility of SSB in a thermal state. Moreover, they create the grounds for introducing
the double bifundamental models as their natural extensions later in the same section.

In section 3, we first determine the perturbative fixed points of the planar beta func-
tions in the real double bifundamental model. We demonstrate that up to the 2-loop
contributions to these beta functions, there is a conformal manifold in the space of cou-
plings which has the topology of a circle. We then show that the thermal effective potential
of the scalar fields is stable at all points on this fixed circle. Later, we go on to identify
the conditions under which a subset of points on this fixed circle can show spontaneous
breaking of a baryon symmetry at any nonzero temperature. Moreover, we demonstrate
that such a symmetry breaking is always associated with the Higgsing of a subset of gauge
bosons in the model. This implies a persistent BEH phase for these fixed points.

In section 4, we study the complex double bifundamental model. We demonstrate a
planar equivalence between this model and the real double bifundamental model. This
allows us to extend most of the results of section 3 to this model. In particular, we find
that there is a fixed circle for the 2-loop planar beta functions of this theory. Just as
before, under certain conditions, a subset of points on this fixed circle demonstrates both
spontaneous breaking of a baryon symmetry as well as a persistent BEH phase at all
nonzero temperatures.

In section 5, we present a diagrammatic argument for the survival of the fixed circle
under all loop corrections to the beta functions in the planar limit. In the process, we also
prove an important feature of these planar beta functions, i.e., they are independent of the
ratio r = Nc2

Nc1
.

In section 6, we conclude by summarizing our results and commenting on the possibility
of the survival of the fixed points under finite N corrections to the beta functions.

In appendix A, we show that the Lagrangian of the bifundamental scalar QCD intro-
duced in section 2 is indeed invariant under the Z2 transformation that we characterize as
the baryon symmetry in the model. We also show that this symmetry can be interpreted as
an automorphism of the set of classes of gauge-equivalent field configurations in the theory.
The analysis presented in this appendix can be generalized to show similar properties of
the baryon symmetries in the double bifundamental models.

In appendix B, we present a detailed review of the two-loop beta functions in a general
QCD with special emphasis on the case where the gauge group is semi-simple. We also
use these general expressions to compute the beta functions of the theories that serve as
precursors to the double bifundamental models.

In appendix C, we derive the two-loop beta functions of the real double bifundamental
model using the techniques reviewed in the previous appendix.

In appendix D, we analyze some constraints on the unitary fixed points of the planar
beta functions in the real double bifundamental model. During this analysis, we restrict our
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attention to the 2-loop beta functions of the gauge couplings and the 1-loop beta functions
of the quartic scalar couplings.

In appendix E, we determine the minima of the thermal effective potential of the scalar
fields in the real double bifundamental model for the fixed points where a baryon symmetry
is broken.

In appendix F, we discuss the scaling of different planar diagrams in the double bifun-
damental models at the large N limit.

In appendix G, we derive some general expressions for the planar beta functions of the
double trace couplings in the double bifundamental models. These expressions relate these
beta functions to the corresponding wave function and vertex renormlizations.

In appendix H, we study the finite N corrections to the fixed points in the real double
bifundamental model by considering double expansions of the beta functions in powers of
1
N and the ’t Hooft couplings.

2 Survey of gauge theories

In this section, we will first examine two simple variants of QCDs which contain scalars
along with fermions. The gauge groups in these two models are SO(Nc) and SO(Nc) ×
SO(Nc) respectively. The corresponding scalar fields transform in the fundamental and
the bifundamental representations of the gauge groups.7 We will study the Banks-Zaks
fixed points of these models in the following subsection. There we will explicitly show that
for each of these fixed points, the minimum of the thermal effective potential of the scalar
fields lies at the origin of the field space. This implies a lack of thermal order in these
CFTs. Experience in working out these models will then guide us on how to extend them
to get theories with the dual phenomena of spontaneous breaking of a global symmetry
and the persistent BEH phase at all temperatures. We will discuss these extensions, viz.,
the double bifundamental models, in section 2.2.

2.1 Warm-up: QCD with fundamental scalars/bifundamental scalar QCD

2.1.1 QCD with fundamental scalars

Let us begin by considering a QCD with the gauge group8 SO(Nc). The matter content in
this theory consists of Nf flavors of Majorana fermions (ψ(q)

a ), and Ns flavors of scalar fields
(φ(p)
a ),9 each of which transforms in the fundamental representation of the gauge group.

The scalar fields interact with each other via quartic interactions as given later in (2.1).
To tame the UV divergences in the theory, we need to specify a scheme for regular-

ization and renormalization. For all the models we introduce in this paper including the
one that we are currently discussing, we choose to work in the dimensional regularization

7For similar models with SU(Nc) gauge symmetry, the Banks-Zaks fixed points were qualitatively argued
to not exhibit symmetry-breaking at nonzero temperatures in [1].

8The actual gauge group in this model is Spin(Nc) which is a universal cover of SO(Nc). We neglect
this technicality from now on to simplify the presentation.

9The superscripts in ψ
(q)
a and φ(p)

a are the indices corresponding to the flavors of the fermion and the
scalar respectively. The subscripts denote the color indices.

– 7 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
3

and the MS scheme. In this scheme, we take the renormalized masses of all the fields to
be zero.10

The renormalized Lagrangian11 of this model in the above-mentioned scheme is

LVector =− 1
4F

A
µνF

µνA + i

2ψ
(p)
a ( /Dψ(p))a + 1

2
(
Dµφ

(p)
)
a

(
Dµφ(p)

)
a

− h̃φ(p)
a φ

(p)
b φ

(q)
b φ(q)

a − f̃φ(p)
a φ(p)

a φ
(q)
b φ

(q)
b .

(2.1)

Here FAµν is the coefficient of the generator TA in the expansion of the field strength. We take
these generators to be normalized such that the second Dynkin index of the fundamental
representation of SO(Nc) is 1

2 , i.e., Tr
[
TATB

]
= 1

2δAB.
The quartic terms in the potential of the above Lagrangian can be expressed in terms

of symmetric couplings λ(pqrs)
abcd as follows:

λ
(pqrs)
abcd

4! φ(p)
a φ

(q)
b φ(r)

c φ
(s)
d = h̃φ(p)

a φ
(p)
b φ

(q)
b φ(q)

a + f̃φ(p)
a φ(p)

a φ
(q)
b φ

(q)
b , (2.2)

where

λ
(pqrs)
abcd = 4h̃

[
δpqδrs(δacδbd + δadδbc) + δprδqs(δabδcd + δadδbc) + δpsδqr(δabδcd + δacδbd)

]

+ 8f̃
[
δpqδrsδabδcd + δprδqsδacδbd + δpsδqrδadδbc

]
.

(2.3)

Note that this model has a global O(Ns) symmetry which mixes the different flavors
of scalars. We will show that this flavor symmetry is unbroken at nonzero temperatures
for the fixed points in the RG flow of the model. We will also see that associated with this
is the absence of the BEH phase in all thermal states. To demonstrate these, let us work
in the Veneziano limit where Nc, Nf , Ns → ∞, while the ratios Nf,s/Nc are kept fixed at
finite values xf,s. In this limit, the couplings in the model scale with Nc and Ns as follows:

g2 = 16π2λ

Nc
, h̃ = 16π2h

Nc
, f̃ = 16π2f

NcNs
, (2.4)

where g is the gauge coupling, and λ, h and f are the ’t Hooft couplings. The beta functions
of these couplings are derived in appendix B.3. Here we provide the forms of the two-loop
beta function of the gauge coupling and the one-loop beta functions of the quartic couplings
in the Veneziano limit:

βλ = −22− 4xf − xs
6 λ2 + 13xf + 4xs − 34

6 λ3,

βh = 8(1 + xs)h2 − 3hλ+ 3λ2

32 ,

βf = 8f2 + 16(1 + xs)fh− 3fλ+ 24h2xs + 3λ2xs
32 .

(2.5)

10Setting the renormalized masses to zero at any energy scale in the MS scheme ensures that they remain
zero at all energy scales.

11We will suppress the gauge-fixing and ghost terms in the Lagrangians of the different models that will
be introduced in this paper.
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To obtain the fixed points corresponding to these beta functions, let us first set βλ = 0
which gives us

λ = 22− 4xf − xs
13xf + 4xs − 34 . (2.6)

For the validity of the perturbation theory at the fixed point, one must have

xf = 22− xs
4 − ε, (2.7)

where ε is a small positive number.
Solving βh = βf = 0, we get the following values of the quartic couplings at the fixed

points:

h = λ

(
3− σ1

√
6− 3xs

16(1 + xs)

)
,

f =
√

3σ1
16(1 + xs)

λ

[
√

2− xs(1 + xs) + σ2

√
2− (13− 6σ1

√
6− 3xs)xs + x2

s − 2x3
s

]
,

(2.8)

where σ1 and σ2 can take the values 1 and −1. Note that for each of these fixed points, the
coupling h and f are real12 only if xs is below a certain value xmax

s . These upper bounds
on xs for the different fixed points are as follows:13

xmax
s ≈

{
0.84 when σ1 = 1 ,
0.073 when σ1 = −1 .

(2.9)

Note that these upper bounds on xs are all less than 1. Therefore, for the unitary fixed
points in this theory, Ns < Nc. In such a situation, as shown in several papers (see
e.g. [59]14), the flavor symmetry is guaranteed to be preserved under certain conditions
even if the scalar fields get thermal expectation values. The pattern of such expectation
values would always result in a BEH phase with a residual SO(Nc −Ns) gauge symmetry
and no surviving Nambu-Goldstone bosons. These conditions are obeyed in the cases we
discuss and anyhow, as we will show below, the scalar fields actually have zero expectation
value in any thermal state. Hence, the flavor symmetry is preserved without the Higgsing
of any of the gauge fields.

To demonstrate this, we will look at the quadratic terms in the thermal effective
potential of the scalar fields at the temperature 1

βth
. These terms take the following form:

Vquadratic

( 1
βth

)
= 1

2
(
M2

)(pq)

ab
φ(p)
a φ

(q)
b , (2.10)

12The reality of the couplings is necessary for the corresponding theory to be unitary.
13Here, let us remark that identical bounds on xs were already obtained for a model of QCD with

fundamental scalar equipped with the SU(Nc) gauge group in [57] (see also [58] for similar bounds in models
where Nc is finite). The similarity of these bounds in the model considered in [57] and the model that we
are presently discussing is a direct consequence of a planar equivalence between them. This perturbative
equivalence between the two models in the planar limit is similar to the one we discuss in section 4.1.

14The theories considered in this work were defined in (2 + 1) dimensions. Since the scalar fields, by
definition, are in the trivial representation of the spacetime symmetry, the arguments are equally applicable
to (3 + 1)-dimensional theories.
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where M2 is the thermal mass matrix of the scalar fields at the temperature 1
βth

. The
contribution of 1-loop diagrams to this matrix was evaluated for general (3+1)-dimensional
gauge theories with scalar fields in [10]. For the model that we are considering currently,
the form of this 1-loop thermal mass matrix is

(
M2

)(pq)

ab
= β−2

th
24

[
λ

(pqrr)
abcc + 6g2

2
(
T

(r)
cd (S)

)(p)

ae

(
T

(r)
cd (S)

)(q)

eb

]
, (2.11)

where T (r)
cd (S) are the generators of SO(Nc) in the representation of the rth flavor of scalar

fields. The components of these generators are(
T

(r)
cd (S)

)(p)

ab
= − i2δ

rp(δacδbd − δadδbc). (2.12)

Substituting the expression of the symmetric coupling λ(pqrs)
abcd given in (2.3) and the values

of the generators given above, we get the following expression of the thermal mass matrix:(
M2

)(pq)

ab
= m2

thδ
pqδab, (2.13)

where m2
th is the thermal mass (squared) of the scalar fields, whose value is given by

m2
th = 2π2β−2

th
3

[
8
{(

xs + 1 + 1
Nc

)
h+

(
1 + 2

NcNs

)
f

}
+ 3λ

2

(
1− 1

Nc

)]
. (2.14)

In the Nc, Ns →∞ limit it reduces to

m2
th = 2π2β−2

th
3

[
8(xs + 1)h+ 8f + 3λ

2

]
. (2.15)

If m2
th is positive, then the effective potential of the scalar fields must have a minimum

at the origin of the field space. In that case the expectation of the scalar fields would be
zero and the flavor symmetry of the scalar fields would be preserved in a thermal state.
This would also mean that the SO(Nc) gauge symmetry remains unbroken in any thermal
state, and consequently, the system is never in the BEH phase. To determine whether
this is indeed the case, we need to check whether m2

th is positive at the fixed points for all
xs ≤ xmax

s . For this range of xs, the values of m2
th at the different fixed points are shown

in figure 1.
From these graphs, we can see that indeed m2

th > 0 at each of the fixed points for
any value of xs ≤ xmax

s . Hence, we can conclude that the flavor symmetry is not sponta-
neously broken and the system is not in a BEH-like phase for these fixed points at nonzero
temperatures.

2.1.2 Bifundamental scalar QCD

In the preceding analysis of the model of QCD with fundamental scalars, we found that
unitary fixed points could exist only when Ns < xmax

s Nc where xmax
s < 1. We also men-

tioned that in such a scenario, even if the scalar fields had nonzero thermal expectation
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Figure 1. Plots of 3β2
thm

2
th

2π2λ vs. xs for the different fixed points.

values (which they do not), the flavor symmetry would have been preserved along with the
Higgsing of some of the gauge fields. It is then natural to wonder whether this bound on Ns

can be somehow lifted. Here we will show that it is indeed possible to lift the bound by first
gauging the SO(Ns) part of the flavor symmetry and then taking Ns = Nc.15 In this case,
a Z2 transformation remains as a global symmetry. Unfortunately, we will find that this
symmetry remains unbroken in a thermal state for the Banks-Zaks-like fixed points of the
model. However, the discussion of this model will serve as a prelude to the double bifun-
damental scalar QCDs that will be introduced in the following subsection. As we will see,
some of the large N fixed points in such double bifundamental models indeed demonstrate
symmetry breaking at nonzero temperatures along with a persistent BEH phase.

With this motivation, let us now introduce the bifundamental scalar QCD model as
a generalization of the model of QCD with fundamental scalars that we discussed earlier.
When the SO(Ns) part of the flavor symmetry in this model is gauged and Ns is set equal
to Nc, we end up with a theory whose gauge group is SO(Nc) × SO(Nc). Now, there is
an Nc × Nc matrix of massless real scalar fields which we will collectively denote by Φ.
The components of the matrix Φ will be denoted by φai. These scalar fields transform
in the bifundamental representation of the gauge group, thus justifying the name given
to the model. In addition to the scalar fields, for each of the two SO(Nc)’s there are Nf

flavors of massless Majorana fermions which transform in the fundamental representation
of that SO(Nc) and are singlets under the other SO(Nc). We will represent these two sets
of Majorana fermions by ψ(p)

a and χ
(p)
i .16 The renormalized Lagrangian of this model is

15We also add a set of Majorana fermions which transform in the fundamental representation of
this SO(Nc).

16As before, the superscripts denote the flavor indices and subscripts denote the color indices.
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given by

LBifund = −1
4

2∑
α=1

(Fα)Aµν(Fα)µνA + i

2ψ
(p)
a ( /Dψ(p))a + i

2χ
(p)
i ( /Dχ(p))i + 1

2Tr
[(
DµΦ

)T
DµΦ

]

− h̃Tr
[
ΦTΦΦTΦ

]
− f̃Tr

[
ΦTΦ

]
Tr
[
ΦTΦ

]
. (2.16)

Here (F1)abµν and (F2)ijµν are the field strengths of the gauge fields (V1)abµ and (V2)ijµ which
correspond to the two SO(Nc)’s. These gauge fields are anti-symmetric under the exchange
of color indices, i.e., (V1)abµ = −(V1)baµ and (V2)ijµ = −(V2)jiµ . Thus, while summing over the
components of (Fα)abµν , as in the first term of the above Lagrangian, one should introduce
a factor of 1

2 to count only the independent components. We take the gauge couplings for
the two gauge fields to be the same (say, g).17 The quartic terms involving the scalar fields
in the potential can be expressed in terms of symmetric couplings λai,bj,ck,dl as follows:

λai,bj,ck,dl
4! φaiφbjφckφdl = h̃Tr

[
ΦTΦΦTΦ

]
+ f̃Tr

[
ΦTΦ

]
Tr
[
ΦTΦ

]
, (2.17)

where

λai,bj,ck,dl ≡ 4h̃
[
δijδkl(δacδbd + δadδbc) + δikδjl(δabδcd + δadδbc) + δilδjk(δabδcd + δacδbd)

]

+ 8f̃
[
δijδklδabδcd + δikδjlδacδbd + δilδjkδadδbc

]
. (2.18)

In this model there is a U(Nf ) flavor symmetry for each of the two sets of fermions,
ψ and χ. There is also a Z2 symmetry which exchanges the gauge fields corresponding to
the two SO(Nc)’s, along with a ψ(p) ↔ χ(p) exchange and a transformation Φ → ΦT of
the scalar fields. In addition, there is another Z2 symmetry that transforms the fields as
follows:18

φai → −φai ∀ i ∈ {1, · · ·Nc},

ψ(p)
a → −ψ(p)

a ∀ p ∈ {1, · · ·Nf},
(V1)abµ → −(V1)abµ , (V1)baµ → −(V1)baµ ∀ b 6= a,

(2.19)

for a fixed value of a.19 In appendix A, we have shown that the Lagrangian in (2.16)
is indeed invariant under these transformations. Note that such transformations for the

17The equality of these two couplings is guaranteed to be preserved under RG flow due to the exchange
symmetry discussed below.

18The form of these transformations as given in (2.19) would change under a gauge transformation. As
shown in appendix A, the proper way to interpret this Z2 symmetry is to think of it as an automorphism
of a set of different equivalence classes of field configurations. The configurations in each class are related
by gauge transformations, whereas those belonging to different classes are gauge-inequivalent. Note that
the above interpretation is consistent with the existence of the gauge-invariant order parameter 〈[det Φ]〉
for this symmetry.

19One could equivalently consider reflection of the elements in a column of Φ along with similar reflections
of the components of χ(p) and (V2)µ. But such transformations are related to the reflection of the elements
in a row by the afore-mentioned exchange of the two SO(Nc)’s.
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different values of a are all related by global SO(Nc) gauge transformations, and hence only
one of them should be considered as an independent global Z2 symmetry. For specificity,
we can take this symmetry to be the Z2 transformation corresponding to a = 1. It is
this Z2 symmetry whose spontaneous breaking at nonzero temperatures (or the lack of it)
is of interest to us. One can consider the gauge invariant quantity 〈[det Φ]〉 as an order
parameter for this symmetry.20 Since this order parameter is the expectation value of a
baryonic operator (the renormalized determinant of Φ), we will call this symmetry the
baryon symmetry. The above-mentioned order parameter for this symmetry is related to
the determinant of the expectation values of the scalar fields as follows:

〈[det Φ]〉 = det〈Φ〉+ quantum corrections . (2.20)

These quantum corrections are suppressed compared to the classical result det〈Φ〉 due to
the smallness of the couplings in the perturbative regime. Now, if 〈Φ〉 6= 0, then it can be
brought to the following diagonal form by an appropriate gauge transformation:21

〈Φ〉 ∝ diag{±1, 1, 1, · · · , 1}.

As a consequence, det〈Φ〉 6= 0 when 〈Φ〉 6= 0. Hence, a nonzero expectation value of the field
Φ indicates a spontaneous breaking of the Z2 symmetry. Another important consequence
of such an expectation value is that the SO(Nc)×SO(Nc) gauge symmetry would be broken
down to a smaller subgroup leading to the Higgsing of some of the gauge bosons and the
system existing in a BEH phase.

To explore the possibility of this dual phenomena for the fixed points in the model, let
us first study the RG flow of the couplings. For this, let us work in the Nc →∞ limit. In
this limit, we take the couplings in the model to scale with Nc as follows:

g2 = 16π2λ

Nc
, h̃ = 16π2h

Nc
, f̃ = 16π2f

N2
c

, (2.21)

where λ, h and f are the ’t Hooft couplings.
The beta functions of these couplings in the planar limit are given by (see B.3)

βλ = −21− 4xf
6 λ2 + 26xf − 54

12 λ3,

βh = 16h2 − 6hλ+ 3λ2

16 ,

βf = 8f2 + 32fh+ 24h2 − 6fλ+ 9λ2

16 .

(2.22)

20Note that det Φ is a composite operator, and hence it has to be regulated and renormalized appropri-
ately. One can work with dimensional regularization and the MS scheme to preserve the gauge invariance
of the operator. We put square brackets on the two sides of det Φ to indicate that we are talking about
such a renormalized operator.

21The argument for this is analogous to the one presented for the real double bifundamental model in
appendix E.
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Repeating the steps that were followed in case of the model of QCD with fundamental
scalars, first let us set βλ = 0 which gives us

λ = 21− 4xf
13xf − 27 . (2.23)

To ensure the validity of perturbation theory, we will work in the regime where xf → 21
4 −ε

with 0 < ε� 1. There are two unitary fixed points where the quartic couplings are given by

h = 3−
√

6
16 λ, f =

2
√

6 + σ
√

18
√

6− 39
16 λ (2.24)

with σ = ±1.
To determine whether the Z2 symmetry is broken or not, we can again compute the

1-loop thermal mass matrix of the scalar fields at a temperature 1
βth

. It is given by

(
M2

)
ai,bj

= β−2
th
24

[
λai,bj,ck,ck + 6g2

2∑
β=1

(
T βA(S)

)
ai,eu

(
T βA(S)

)
eu,bj

]
, (2.25)

where λai,bj,ck,dl are the symmetric couplings introduced in equations (2.18), and T 1
A(S)

and T 2
A(S) are the generators of the two SO(Nc)’s in the representations corresponding to

the scalar fields. The components of these generators are given by(
T 1
cd(S)

)
ai,bj

= − i2δij(δacδbd − δadδbc),
(
T 2
kl(S)

)
ai,bj

= − i2δab(δikδjl − δilδjk). (2.26)

Substituting the values of the symmetric couplings and the generators, we get(
M2

)
ai,bj

= m2
thδijδab (2.27)

where
m2

th = 16π2β−2
th

[2
3

(
1 + 1

2Nc

)
h+ 1

3

(
1 + 2

N2
c

)
f + 1

8

(
1− 1

Nc

)
λ

]
. (2.28)

In the Nc →∞ limit, m2
th reduces to

m2
th = 16π2β−2

th

[2
3h+ 1

3f+ 1
8λ
]

= π2β−2
th λ

3

(
12+σ

√
18
√

6−39
)
≈ π2β−2

th λ

3

(
12+2.25σ

)
.

(2.29)
From the above expression it is clear that m2

th > 0. Consequently, the thermal expectation
value of the scalar field Φ is zero for both the fixed points. Therefore, the baryon symmetry
remains unbroken and the persistent BEH phase is absent at all temperatures for these
fixed points.

2.2 Double bifundamental models

In the previous subsection we discussed the fixed points of the RG flows of two models,
viz., QCDs with additional fundamental and bifundamental scalars, where we saw that the
global symmetries remain unbroken and the gauge bosons do not get Higgsed at nonzero

– 14 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
3

temperatures. Now, we will consider two natural extensions22 of these models which in-
terestingly lead to fixed points in the large N limit where certain global symmetries are
spontaneously broken and the system is in a persistent BEH phase at all nonzero temper-
atures. The first extension will involve taking two copies of the bifundamental scalar QCD
model and introducing a quartic coupling between the scalar fields in the two copies. We
will call this model the real double bifundamental model. The second extension will be to
modify the gauge group by promoting the orthogonal groups to unitary groups. More-
over, the Majorana fermions will be promoted to Dirac fermions, and the real scalar fields
will be promoted to complex scalar fields. We will call this model the complex double
bifundamental model. Let us now discuss these models in more detail.

2.2.1 Introduction to the real double bifundamental model

The bifundamental scalar QCD that we introduced in the previous subsection was symmet-
ric under the gauge group SO(Nc)× SO(Nc). The matter content in that model consisted
of Nf flavors of two sets of Majorana fermions, each being a singlet under one of the
SO(Nc)’s and transforming in the fundamental representation of the other, and real scalar
fields which transformed in the bifundamental representation of the gauge group. Now, let
us consider two copies of this model. The gauge group is then

G =
2∏
i=1

(
SO(Nci)× SO(Nci)

)
(2.30)

where the two ranks Nc1 and Nc2 are possibly unequal. For each of the two sectors (labeled
by i), the matter content is the same as before, viz., two sets of Majorana fermions (each
with Nfi flavors), (ψ(p)

i )ai and (χ(p)
i )ji , transforming in the fundamental representation

of one of the SO(Nci)’s, and an (Nci × Nci) matrix of scalar fields denoted by Φi which
transforms in the bifundamental representation of SO(Nci)×SO(Nci). All the fields in any
one sector are invariant under the gauge transformations in the other sector.

Apart from the interactions between the matter fields within each sector that were
already present in the bifundamental scalar model, let us now introduce a double trace
interaction which couples the scalar fields in the two sectors. A schematic diagram for the
matter content of this theory and the interaction between the two sectors is provided in
figure 2. The renormalized Lagrangian of the model is given by

LRDB =−1
4

2∑
i=1

2∑
α=1

(Fiα)Aµν(Fiα)µνA+ i

2

2∑
i=1

(
ψ

(p)
i

)
ai

(
/D(ψ(p)

i )
)
ai

+ i

2

2∑
i=1

(
χ

(p)
i

)
ji

(
/D(χ(p)

i )
)
ji

+ 1
2

2∑
i=1

Tr
[(
DµΦi

)T
DµΦi

]
−

2∑
i=1

h̃iTr
[
ΦT
i ΦiΦT

i Φi

]
−

2∑
i=1

f̃iTr
[
ΦT
i Φi

]
Tr
[
ΦT
i Φi

]
−2ζ̃Tr

[
ΦT

1 Φ1
]
Tr
[
ΦT

2 Φ2
]
. (2.31)

where (Fiα)µν is the field strength corresponding to the gauge field (Viα)µ.
22These extensions are partly motivated by the work [60].
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Figure 2. A schematic diagram of the field content of the double bifundamental models.

We will be studying this model in the Veneziano limit (Nc1,Nc2→∞) where Nfi
Nci
→xfi,

Nc2
Nc1
→ r, and the different couplings scale as follows:

g2
i = 16π2λi

Nci
, h̃i = 16π2hi

Nci
, f̃i = 16π2fi

N2
ci

, ζ̃ = 16π2ζ

Nc1Nc2
. (2.32)

Here gi is the gauge coupling of the ith sector and λi, hi, fi and ζ are the ’t Hooft couplings.
The symmetries in the model are essentially the same as those for the bifundamental

model, except now we have one set of symmetries for each sector. We will be interested
mainly in the Z2 baryon symmetries for the two sectors. The action of the baryon symmetry
in the ith sector on the fields in that sector is as follows:23

Φi → TiΦi,

ψ
(p)
i → Tiψ

(p)
i ∀ p ∈ {1, · · · , Nfi},

(Vi1)µ → Ti(Vi1)µT −1
i ,

(2.33)

where Ti is an Nci ×Nci diagonal matrix of the following form:

Ti ≡ diag{−1, 1, · · · , 1}. (2.34)

Here, the transformation has a nontrivial action only on the first row of the scalar field Φi,
the first component of the fermion ψ(p)

i for each flavor p, and the first row and first column
of the gauge field (Vi1)µ. For each individual sector, this is just the transformation given
in (2.19) for the bifundamental scalar QCD with a = 1. As earlier, we can choose 〈[det Φi]〉
to be an order parameter for this symmetry. A nonzero thermal expectation value of Φi

would imply that this order parameter is nonzero and consequently, the baryon symmetry
is broken in a thermal state. As earlier, this would also mean that some of the gauge bosons
in the ith sector are Higgsed leading to the system being in a persistent BEH phase.

23Just as in case of the bifundamental scalar QCD, this Z2 symmetry can be interpreted as an automor-
phism of a set of classes of gauge-equivalent configurations.
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In section 3, we will undertake a study of the fixed points in this model to see whether
these dual phenomena actually occur in a thermal state. There we will find that this model
has two very interesting properties in the Veneziano limit:

1. Considering up to two loop contributions to the planar beta functions, there is a
conformal manifold. It is topologically a circle in the space of the double trace
couplings. Later in section 5, we will show that this conformal manifold survives
even when all higher loop corrections to the planar beta functions are taken into
account.

2. When the ratio of the ranks Nc1 and Nc2 is sufficiently away from 1, the baryon
symmetry corresponding to the sector with the smaller rank is spontaneously broken
in a thermal state for a subset of points on this conformal manifold. Moreover, at
these fixed points, the gauge symmetry in this sector is broken down from SO(Nci)×
SO(Nci) to just SO(Nci) in any thermal state. This leads to Higgsing of half of the
gauge bosons in this sector, and thus the system is in a persistent BEH phase.

We will defer further discussion of these features to section 3, and next introduce a
closely related model which shares many of the properties mentioned above.

2.2.2 Introduction to the complex double bifundamental model

In the preceding introduction to the real double bifundamental model we saw that the
gauge group in that model has the following structure:

G =
2∑
i=1

Gi ×Gi, (2.35)

where Gi = SO(Nci). In addition, there is a discrete (Z2) global symmetry for each sector
which we claimed to be spontaneously broken in a thermal state at a subset of fixed points.
This should naturally lead to the following question: Is there any model where a continuous
global symmetry is similary broken at arbitrarily high temperatures?

To address this question, we will now extend the above-mentioned model by taking the
group Gi to be the special unitary group SU(Nci). We will further promote the Majorana
fermions to Dirac fermions transforming in the fundamental representation of SU(Nci), and
the real scalar fields to complex scalar fields transforming in the bifundamtal representation
of SU(Nci) × SU(Nci).24 The schematic diagram for the matter content in this model is
still the one shown in figure 2. The renormalized Lagrangian of the model is given by

LCDB = −1
4

2∑
i=1

2∑
α=1

(Fiα)Aµν(Fiα)µνA + i
2∑
i=1

(
ψ

(p)
i

)
ai

(
/D(ψ(p)

i )
)
ai

+ i
2∑
i=1

(
χ

(p)
i

)
ji

(
/D(χ(p)

i )
)
ji

+
2∑
i=1

Tr
[(
DµΦi

)†
DµΦi

]
−

2∑
i=1

h̃iTr
[
Φ†iΦiΦ†iΦi

]
−

2∑
i=1

f̃iTr
[
Φ†iΦi

]
Tr
[
Φ†iΦi

]
− 2ζ̃Tr

[
Φ†1Φ1

]
Tr
[
Φ†2Φ2

]
. (2.36)

24In this representation, the scalar fields tranform as Φi → UiΦiW †i where Ui×Wi ∈ SU(Nci)×SU(Nci).
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The components (Fiα)Aµν are the coefficients of the generators of SU(Nci) in the expansion
of the field strength (Fiα)µν corresponding to the gauge fields (Viα)µ. As before, these
generators are normalised such that the corresponding second Dynkin index is 1

2 .
Analogous to the previous model, we take the gauge couplings for the two SU(Nci)’s

in the ith sector to be the same (say, gi). Therefore, there is a Z2 symmetry for each sector
(labeled by i) which exchanges the two sets of gauge fields in that sector, along with the
exchange of the ψ(p)

i and χ(p)
i fields, and the transformation Φi → Φ†i of the scalar fields.

In addition, due to the absence of mass terms of the fermions and Yukawa interactions
coupling the scalars to the fermions, there is a chiral symmetry of this Lagrangian. This
chiral symmetry leads to an SU(Nfi)L × SU(Nfi)R ×U(1)V flavor symmetry for each kind
of fermion in the ith sector. Moreover, there is a symmetry under charge conjugation of
each of these fermions. But the symmetries that we will mainly be interested in are two
U(1) baryon symmetries, one for each sector, which transform the fields in the respective
sectors as follows:25

Φi → (Ti)θΦi,

ψ
(p)
i → (Ti)θψ(p)

i ∀ p ∈ {1, · · · , Nfi},
(Vi1)µ → (Ti)θ(Vi1)µ(Ti)−1

θ ,

(2.37)

where, for each θ ∈ [0, 2π), (Ti)θ is an Nci ×Nci diagonal matrix of the following form:

(Ti)θ ≡ diag{eiθ, 1, · · · , 1}. (2.38)

This transformation leaves the remaining fields in the ith sector, as well as all the fields
in the other sector, unchanged. We can again take 〈[det Φi]〉 to be an order parameter for
the baryon symmetry in the ith sector. As before, a nonzero expectation value of Φi in a
thermal states implies a nonzero value of this order parameter resulting in the spontaneous
breaking of the corresponding baryon symmetry and a persistent BEH phase.

To study the possibility of the above phenomena, we will look at the fixed points of this
model in the Veneziano limit. As mentioned earlier, in this limit Nc1, Nc2 →∞, NfiNci

→ xfi
and Nc2

Nc1
→ r, while the quartic couplings scale exactly as given in (2.32).

The analysis of this model will be simplified by the fact that it is dual to the real
double bifundamental model in the Veneziano limit. We will discuss this planar equivalence
between the two models in section 4.1. As a consequence of this equivalence, there will be
a conformal manifold (a fixed circle) for this model in the planar limit. Moreover, when
the two ranks Nc1 and Nc2 are sufficiently different, we will see that the baryon symmetry

25Let us note here that the transformations given in (2.37) can be reduced to the following simpler form
by an appropriate global gauge transformation:

Φi → eiθ/Nci Φi, ψ(p)
i → eiθ/Nciψ

(p)
i ∀ p ∈ {1, · · · , Nfi}.

Furthermore, the above transformation of the fermionic fields can be undone by a corresponding U(1)V
transformation. This would leave us with a U(1)/Nci transformation acting just on the scalar fields. We
choose to work with the transformation given in (2.37) rather than this simpler transformation to keep the
U(1) symmetry manifest in the Nci → ∞ limit. As earlier, this U(1) symmetry can also be interpreted as
an automorphism of the set of classes of gauge-equivalent field configurations.
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corresponding to the smaller sector is spontaneously broken in a thermal state for some
of the fixed points on the manifold. For these fixed points, the gauge symmetry in the
smaller sector is broken down from SU(Nci) × SU(Nci) to SU(Nci) in any thermal state,
which leads to the Higgsing of half of the gauge bosons in this sector. Thus the system
remains in a persistent BEH phase at all temperatures for these fixed points. In section 4,
we will discuss these features of the complex double bifundamental model in detail.

3 Real double bifundamental model

In this section we will restrict our attention to the real double bifundamental model. First,
in the following subsection, we will determine the weakly coupled fixed points in this model
by employing perturbation theory in the planar (Veneziano) limit that was mentioned in
the previous section. We will find that in this limit, the beta functions of the different
couplings yield nontrivial fixed points which are analogous to the Banks-Zaks fixed points
in more familiar QCDs.

We will show that the planar 2-loop beta functions of the gauge couplings do not de-
pend on the quartic ’t Hooft couplings. Hence, the values of the gauge couplings at the fixed
points can be determined independently. We will work in a regime where these gauge cou-
plings are small. For this, we will see that the ratios xfi ≡ Nfi

Nci
need to be tuned as follows:

xfi →
21
4 − εi, (3.1)

where 0 < εi � 1. Choosing the gauge couplings to be small, in turn, will allow us to de-
termine the fixed points of the beta functions of the quartic couplings perturbatively. By
studying the 1-loop contributions to these beta functions, we will find that instead of a dis-
crete set of fixed points, there is a conformal manifold (topologically, a circle) in the space of
couplings. Moreover, we will demonstrate that this degeneracy in the fixed points survives
even after the contributions of 2-loop diagrams to the beta functions are taken into account.

Later, in subsection 3.2, we will analyze the thermal effective potential of the scalar
fields at the above-mentioned large N fixed points. We will demonstrate that this effective
potential is stable at all points on the fixed circle. We will also show that when the ratio r ≡
Nc2
Nc1

is below a certain bound, some of the points on the fixed circle demonstrate spontaneous
breaking of the baryon symmetry in the second sector at all nonzero temperatures. Along
with this, we will see that at these fixed points, the gauge symmetry in the second sector
gets broken down to SO(Nc2) in any thermal state, and the system exists in a persistent
BEH phase.

3.1 Fixed points in the planar limit

The beta functions of the couplings in the real double bifundamental model are determined
up to the contributions of 2-loop diagrams in the appendix C. Here, we provide their
expressions at the leading order in the planar limit.

• Beta functions of the gauge couplings (up to 2-loops):

βλi = −
(21− 4xfi

6

)
λ2
i +

(−27 + 13xfi
6

)
λ3
i . (3.2)

– 19 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
3

• 1-loop beta functions of the quartic couplings:

β1-loophi
= 16h2

i − 6hiλi + 3
16λ

2
i ,

β1-loopfi
= 8f2

i + 32fihi − 6fiλi + 24h2
i + 9

16λ
2
i + 8ζ2 ,

β1-loopζ = ζ

[
8f1 + 8f2 + 16h1 + 16h2 − 3λ1 − 3λ2

]
.

(3.3)

• 2-loop corrections to the beta functions of the quartic couplings:

β2-loophi
= −96h3

i + 40λih2
i +

(5xfi
3 − 13

2

)
λ2
ihi +

(1
4 −

xfi
6

)
λ3
i ,

β2-loopfi
= −384h3

i − 160h2
i fi + 96λih2

i + 128λihifi + 32λif2
i + 32λi′ζ2

+ 9λ2
ihi +

(5xfi
3 − 7

2

)
λ2
i fi + 1

4
(
3− 2xfi

)
λ3
i ,

β2-loopζ = ζ

[
− 80

(
h2

1 + h2
2

)
+ 32λ1

(
f1 + 2h1

)
+ 32λ2

(
f2 + 2h2

)

+ λ2
1

(−21 + 10xf1
12

)
+ λ2

2

(−21 + 10xf2
12

)]
.

(3.4)

Note that in the expression of β2-loopfi
given above, one of the terms has the coupling

λi′ . Here, i′ denotes the complement of i, i.e., i′ = 2 when i = 1, and i′ = 1 when i = 2.

3.1.1 Fixed points of the 2-loop beta functions of the gauge couplings and
1-loop beta functions of the quartic couplings

We will now determine the fixed points of the RG flow of the couplings where the two
sectors are coupled to each other, i.e., ζ 6= 0. To determine these fixed points, let us first
set βλi = 0. A nontrivial solution of this equation is

λi = 21− 4xfi
−27 + 13xfi

. (3.5)

As mentioned earlier, we can see that gauge couplings at the fixed point become small
while remaining positive when xf1 and xf2 approach the value 21

4 from below.
Next, we set β1-loophi

= 0 resulting in

hi =
(3±

√
6

16

)
λi. (3.6)

Now, for convenience, let us define the following combinations of the quartic couplings:

fp,m ≡
f1 ± f2

2 , hp,m ≡
h1 ± h2

2 . (3.7)
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In terms of these couplings, the 1-loop beta functions are as follows

β1-loopfp
= fm

[
32hm−3(λ1−λ2)

]
+8
[
ζ2 +(fp+hp)(fp+3hp)

]
+8f2

m−3fp(λ1 +λ2)

+24h2
m+ 9

32(λ2
1 +λ2

2),

β1-loopfm
= fm

[
16fp+32hp−3(λ1 +λ2)

]
+32fphm−3fp(λ1−λ2)+48hphm+ 9

32(λ2
1−λ2

2),

β1-loopζ = ζ
[
16fp+32hp−3(λ1 +λ2)

]
. (3.8)

In appendix D, we show that a unitary fixed point of the above beta functions with ζ 6= 0
can exist only if xf1 = xf2 ≡ xf which leads to the equality of the two gauge couplings:

λ1 = λ2 = λ = 21− 4xf
−27 + 13xf

. (3.9)

Moreover, as proved in the same appendix, at such a unitary fixed point, we must have

h1 = h2 = h =
(3−

√
6

16

)
λ, (3.10)

or equivalently,

hp =
(3−

√
6

16

)
λ, hm = 0. (3.11)

Plugging these solutions into the beta functions we get the following simpler expressions:

β1-loopfp
= 8

[
ζ2 + (fp + hp)(fp + 3hp)

]
+ 8f2

m − 6fpλ+ 9
16λ

2,

β1-loopfm
= fm

[
16fp + 32hp − 6λ

]
,

β1-loopζ = ζ
[
16fp + 32hp − 6λ

]
.

(3.12)

Now it turns out that for the fixed points with ζ 6= 0, β1-loopfm
= β1-loopζ = 0 degenerates into

a single equation:

16fp + 32hp − 6λ = 0 =⇒ fp =
√

6
8 λ. (3.13)

Here we have substituted hp by its value given above to obtain fp in terms of λ. Substituting
these values of fp and hp in β1-loopfp

, we get

β1-loopfp
= 8(ζ2 + f2

m) +
(39− 18

√
6

32

)
λ2 . (3.14)

Finally setting β1-loopfp
= 0, we get

8(ζ2 + f2
m) =

(18
√

6− 39
32

)
λ2 . (3.15)

Therefore, we see that there is a circle of fixed points for the 1-loop beta functions of the
quartic couplings. In the following subsection, we will show that this fixed circle survives
even when the 2-loop contributions to the beta functions of the quartic couplings are taken
into account.
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3.1.2 2-loop corrections to the fixed points of the quartic couplings

To analyze the corrections to the fixed points after including the 2-loop contributions to
the beta functions of the quartic couplings, we split these couplings as follows:

hi = h0 + δhi,

fi = f0i + δfi,

ζ = ζ0 + δζ,

(3.16)

where h0, f0i and ζ0 are solutions to the fixed point criteria arising from the 1-loop beta
functions. These quantites are O(λ), and as derived in the previous subsection, they satisfy
the following conditions:

h0 =
(3−

√
6

16

)
λ, f01+f02 =

√
6

4 λ, 8
(
ζ2

0 + 1
4(f01−f02)2

)
=
(18
√

6−39
32

)
λ2. (3.17)

The quantities δhi, δfi and δζ are corrections to these fixed point values due to 2-loop
contributions. They are O(λ2).

Now, retaining terms up to O(λ3) in the 1-loop beta functions, we have

β1-loophi
=β1-looph0

+32h0δhi−6λδhi,

β1-loopfi
=β1-loopf0i

+16f0iδfi+32f0iδhi+32h0δfi−6λδfi+48h0δhi+16ζ0δζ,

β1-loopζ =β1-loopζ0
+
[
8f01+8f02+32h0−6λ

]
δζ+ζ0

[
8δf1+8δf2+16δh1+16δh2

]
.

(3.18)

The quantities β1-looph0
, β1-loopf0i

and β1-loopζ0
are the 1-loop beta functions with the couplings

h0, f0i and ζ0. They vanish because h0, f0i and ζ0 constitute a fixed point of the 1-loop
beta functions.

Now, demanding that δhi, δfi and δζ correspond to the fixed point of the overall beta
functions (including 2-loop corrections) up to O(λ3), we get the following equations:

32h0δhi − 6λδhi = 96h3
0 − 40λh2

0 −
(5xf

3 − 13
2

)
λ2h0 −

(1
4 −

xf
6

)
λ3, (3.19)

16f0iδfi + 32f0iδhi + 32h0δfi − 6λδfi + 48h0δhi + 16ζ0δζ

= 384h3
0 + 160h2

0f0i − 96λh2
0 − 128λh0f0i − 32λf2

0i − 32λζ2
0

− 9λ2h0 −
(5xf

3 − 7
2

)
λ2f0i −

1
4
(
3− 2xf

)
λ3,

(3.20)

[
8f01 + 8f02 + 32h0 − 6λ

]
δζ + ζ0

[
8δf1 + 8δf2 + 16δh1 + 16δh2

]

= ζ0

[
160h2

0 − 128λh0 − 32λ
(
f01 + f02

)
− λ2

(−21 + 10xf
6

)]
.

(3.21)

From (3.19), we get

δh1 = δh2 = δh ≡ λ2
[

93
√

6− 201 + 8(7− 5
√

6)xf
768
√

6

]
. (3.22)
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To analyze the solutions of equations (3.20) and (3.21), let us introduce the following
combinations of the couplings:

f0p ≡
1
2(f01 + f02), f0m ≡

1
2(f01 − f02),

δfp ≡
1
2(δf1 + δf2), δfm ≡

1
2(δf1 − δf2).

(3.23)

After substituting h0, f0p, δh and (ζ2
0 +f2

0m) by their values, equations (3.20) and (3.21)
lead to the following equations:

16
(
ζ0δζ + f0mδfm

)
= −λ3

[
−5784 + 5607

√
6 + 8(51

√
6− 172)xf

1536

]
, (3.24)

8f0mδfp = −λ2f0m

[
2160 + 339

√
6 + 56

√
6xf

288

]
, (3.25)

8ζ0δfp = −λ2ζ0

[
2160 + 339

√
6 + 56

√
6xf

288

]
. (3.26)

Note that the last two equations can be satisfied by setting

δfp = −λ2
[

2160 + 339
√

6 + 56
√

6xf
2304

]
. (3.27)

Therefore, we see that the 2-loop contributions to the beta functions do not impose any
additional constraint on ζ0 and f0m. From this, we can conclude that the fixed circle
survives even after accounting for the 2-loop terms in the planar beta functions. Moreover,
note that the l.h.s. of (3.24) is proportional to δ(ζ2 + f2

m). This means that this equation
gives the 2-loop correction to the radius of the fixed circle. In section 5, we will prove that
this fixed circle actually survives under all higher loop corrections in the planar limit.

3.2 Analysis of symmetry breaking at finite temperature

In this subsection, we will analyze the pattern of symmetry breaking at finite temperature
for the large N fixed points in our model. We will begin by demonstrating that the effective
potential at any finite temperature is stable for all points on the fixed circle (at least up
to leading order in λ). Then we will compute the thermal masses of the fields Φ1 and
Φ2 and identify the conditions under which some of the fixed points demonstrate the dual
phenomena of spontaneous breaking of a baryon symmetry and a persistent BEH phase
at nonzero temperatures. In what follows, we will truncate the values of the different
couplings on the fixed circle to their leading order.

3.2.1 Stability of the effective potential

The leading order terms in the thermal effective potential of the fields Φ1 and Φ2 are
O(λ). At this order, there are only terms which are quadratic and quartic in the fields.
The quadratic terms lead to thermal masses of these fields which will be discussed in the
following subsection. Here we will consider only the quartic terms which would determine
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whether the potential is stable (i.e., bounded from below) or not.26 These terms are of the
following form:

Vquartic = h̃1Tr
[
ρT1 ρ1

]
+h̃2Tr

[
ρT2 ρ2

]
+f̃1

(
Tr
[
ρ1
])2

+f̃2
(
Tr
[
ρ2
])2

+2ζ̃Tr
[
ρ1
]
Tr
[
ρ2
]
, (3.28)

where ρ1 and ρ2 are symmetric matrices defined as follows:

ρ1 ≡ ΦT
1 Φ1, ρ2 ≡ ΦT

2 Φ2. (3.29)

The first two terms in (3.28) are manifestly non-negative if h̃1 > 0 and h̃2 > 0. A sufficient
condition for the remaining terms to be non-negative is

f̃1 > 0, f̃2 > 0, and f̃1f̃2 > ζ̃2. (3.30)

After rescaling the couplings by appropriate powers of Nc1 and Nc2, these conditions can
be summarized as follows:

h1 > 0, h2 > 0, f1 > 0, f2 > 0, (f1f2 − ζ2) > 0. (3.31)

Let us now check whether these conditions are satisfied for the points on the fixed circle.
At these points, we have

h1 = h2 = h =
(3−

√
6

16

)
λ, fp ≡

1
2(f1 + f2) =

√
6

8 λ, (3.32)

and
ζ2 + f2

m =
(18
√

6− 39
256

)
λ2, (3.33)

where fm ≡ 1
2(f1 − f2).

From the values of h1 and h2 we can conclude that they are positive since
(

3−
√

6
16

)
≈

0.034 > 0. To see that the bounds on f1 and f2 are satisfied, note that (3.33) imposes the
following constraint on the value of fm:

|fm| ≤


√

18
√

6− 39
16

λ. (3.34)

From this we can conclude that

f1,2 = fp±fm≥
√

6
8 λ−


√

18
√

6−39
16

λ=
2
√

6−
√

18
√

6−39
16 λ≈ 0.165λ> 0. (3.35)

Finally, note that

f1f2 − ζ2 = (fp + fm)(fp − fm)− ζ2 = f2
p − (f2

m + ζ2) =
(

63− 18
√

6
256

)
λ2 ≈ 0.074λ2 > 0.

(3.36)
26The coefficients of these quartic terms in the classical potential are O(λ). The quantum corrections to

this classical potential are suppressed by higher powers of λ.
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Therefore, we see that all the conditions sufficient for the non-negativity of the quartic
terms in the potential are satisfied at all points on the fixed circle. In fact, we have
proved a slightly stronger condition, i.e., these quartic terms are strictly positive-definite
for nonzero values of the field configurations. This means that as long as the thermal
masses are non-negative, the potential increases steadily when one moves away from the
origin along any direction in the field space. This is true even when either of the thermal
masses is zero ruling out the possibility of there being any flat direction27 in such a scenario.

3.2.2 Thermal masses

Now, let us discuss the quadratic terms in the potential. These terms have the following
form:

Vquadratic = 1
2
(
M2

)
ai,bj

φaiφbj . (3.37)

As earlier, we can evaluate the contribution of 1-loop Feynman diagrams to the thermal
mass matrix M2 by using the general expression derived in [10]. For the model that we
are presently considering, this expression is given by

(
M2

)
ai,bj

= β−2
th
24

[∑
c,k

λai,bj,ck,ck + 6
2∑
l=1

2∑
β=1

∑
e,u

g2
l

(
T lβA (S)

)
ai,eu

(
T lβA (S)

)
eu,bj

]
. (3.38)

Here β−1
th is the temperature. λai,bj,ck,dl are the symmetric couplings introduced in equa-

tions (C.6), (C.7) and (C.8). T 11
A (S) and T 12

A (S) are the generators of the two SO(Nc1)’s in
the representations corresponding to the scalar fields in the model. Their explicit forms are
given in the equations (C.14) and (C.15). Similarly, T 21

A (S) and T 22
A (S) are the generators

of the two SO(Nc2)’s and their forms can be obtained by a (1↔ 2) exchange of the indices
in (C.14) and (C.15).

Using the explicit forms of the symmetric couplings and the generators, one can show
that the matrixM2 takes the following form:

(
M2

)
=
(
m2

th,1INc1×Nc1 0Nc1×Nc2

0Nc2×Nc1 m2
th,2INc2×Nc2

)
. (3.39)

where m2
th,1 and m2

th,2 are the 1-loop thermal masses (squared) of the 2 fields with the
following values:

m2
th,1 = 16π2β−2

th
3

[(
2 + 1

Nc1

)
h1 +

(
1 + 2

N2
c1

)
f1 + Nc2

Nc1
ζ + 3

8

(
1− 1

Nc1

)
λ1

]
,

m2
th,2 = 16π2β−2

th
3

[(
2 + 1

Nc2

)
h2 +

(
1 + 2

N2
c2

)
f2 + Nc1

Nc2
ζ + 3

8

(
1− 1

Nc2

)
λ2

]
.

(3.40)

If either m2
th,1 or m2

th,2 is negative, then the minimum of the potential will be away from
the origin in the field space, and hence at least one of the order parameter 〈[det Φ1]〉

27We refer the reader to [1, 2, 44, 61, 62] for examples of non-supersymmetric theories with such flat
directions in the planar limit.
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or 〈[det Φ2]〉 will be nonzero. This would indicate a spontaneous breaking of the baryon
symmetry and the Higgsing of some of the gauge bosons in the respective sector.

Thus, to determine whether these dual phenomena actually occur at any of the points
on the large N fixed circle, we need to compute the thermal masses at these points. The
values of the couplings at these fixed points are as follows:

λ1 = λ2 = λ = 21− 4xf
−27 + 13xf

, h1 = h2 = h =
(3−

√
6

16

)
λ, fp ≡

f1 + f2
2 =

√
6

8 λ. (3.41)

In addition, the double trace couplings ζ and fm ≡ f1−f2
2 are constrained to lie on the circle

ζ2 + f2
m =

(
18
√

6−39
256

)
λ2. Substituting the values of the above couplings in the expressions

of the thermal masses and taking the limit Nci →∞, we get

m2
th,1 = 16π2β−2

th
3

[
3
4λ+ fm + rζ

]
, m2

th,2 = 16π2β−2
th

3

[
3
4λ− fm + ζ

r

]
, (3.42)

where the parameter r is defined as follows:

r ≡ Nc2
Nc1

. (3.43)

This parameter did not enter in the 2-loop planar beta functions of the couplings.28 How-
ever, as we can see now, it leaves its imprint in the effective potential of the scalar fields
through the thermal masses. There are constraints on the value of this parameter which
need to be satisfied to get a symmetry-broken phase at non-zero temperatures. Moreover,
even when the constraints on r are satisfied, only a subset of points on the fixed circle
demonstrate a symmetry-broken phase. We will next discuss these conditions on r and the
fixed points. In what follows, we will assume that r < 1, i.e., Nc1 > Nc2. The results that
we will get can be generalized to the case r > 1, i.e., Nc1 < Nc2, by a (1↔ 2) exchange of
indices everywhere.

3.2.3 Conditions for symmetry breaking

To analyze the conditions on the parameter r and the fixed points for breaking of the baryon
symmetry and a persistent BEH phase at nonzero temperatures, let us first consider the
following relation between the couplings fm and ζ at any point on the fixed circle:

fm = ±
√(18

√
6− 39

256

)
λ2 − ζ2. (3.44)

This relation imposes the following bounds on the values of ζ at these fixed points:

−

√
18
√

6− 39
16 λ ≤ ζ ≤

√
18
√

6− 39
16 λ. (3.45)

28In section 5, we will show that this feature of the planar beta functions holds at all orders of the ’t
Hooft couplings.
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To avoid carrying along the factor of λ throughout our analysis, let us define a normalized
version (z) of the coupling ζ by stripping off the factor of λ:

z ≡ ζ

λ
. (3.46)

The above-mentioned bounds on ζ then lead to the following bounds on the normalized
coupling z:

−

√
18
√

6− 39
16 ≤ z ≤

√
18
√

6− 39
16 . (3.47)

Now, by using equations (3.42) and (3.44), we can express the thermal masses of the
scalar fields in terms of the parameter r and the normalised coupling z as follows:

m2
th,1 = 16π2β−2

th
3 λ

[
3
4 ±

√(18
√

6− 39
256

)
− z2 + rz

]
,

m2
th,2 = 16π2β−2

th
3 λ

[
3
4 ∓

√(18
√

6− 39
256

)
− z2 + z

r

]
.

(3.48)

Note that the above expression of m2
th,1 is positive-definite as can be seen from the following

inequalities: ∣∣∣∣∣±
√(18

√
6− 39

256

)
− z2 + rz

∣∣∣∣∣ ≤
√(18

√
6− 39

256

)
+ r|z|

≤ (1 + r)
√(18

√
6− 39

256

)

< 2
√(18

√
6− 39

256

)
≈ 0.282 < 3

4 .

(3.49)

Here, in the first line, we have used the relation |a + b| ≤ |a| + |b|, and the fact that√(
18
√

6−39
256

)
− z2 ≤

√(
18
√

6−39
256

)
. In the second line, we have imposed the upper bound

on |z| given in (3.47). In the last line, we have used the fact that r < 1.
Now, let us see under what conditions m2

th,2 can be negative. First note that when
z = 0, m2

th,2 is positive:

m2
th,2

∣∣∣
z=0

= 16π2β−2
th

3 λ

[
3
4 ∓

√(18
√

6− 39
256

)]
> 0. (3.50)

We can also see that for any particular value of r, m2
th,2 in either of the branches in (3.48)

is a continuous function of z. Therefore, for any fixed r, if m2
th,2 has to be negative at some

value of z in the range
(
−
√

18
√

6−39
16 ,

√
18
√

6−39
16

)
, then it must also pass through zero at

some point (say, z0) in this interval. At this point we have

3
4 ∓

√(18
√

6− 39
256

)
− z2

0 + z0
r

= 0

=⇒
(

1 + 1
r2

)
z2

0 + 3
2r z0 +

(183− 18
√

6
256

)
= 0.

(3.51)
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For the existence of a real solution of this equation, the discriminant of the corresponding
quadratic polynomial must be non-negative, i.e.,

( 3
2r

)2
− 4

(
1 + 1

r2

)(183− 18
√

6
256

)
≥ 0

=⇒ r ≤

√
6
√

6− 13
61− 6

√
6
≈ 0.191.

(3.52)

This puts an upper bound on the value of r for which a symmetry-broken phase can exist
for any of the points on the fixed circle.

Now, for every value of r lying below this upper bound, there are two solutions of the
quadratic equation given above:

z0 =
− 3

2r ±
√(

3
2r

)2
− 4

(
1 + 1

r2

)(
183−18

√
6

256

)
2
(
1 + 1

r2

)

= r

−12±
√(

18
√

6− 183
)
r2 +

(
18
√

6− 39
)

16
(
1 + r2

)
 .

(3.53)

Since (183 − 18
√

6) > 0, we have
√(

3
2r

)2
− 4

(
1 + 1

r2

)(
183−18

√
6

256

)
< 3

2r . Therefore, both
these solutions are negative. Hence, the value of z (or equivalently, ζ) for which m2

th,2 < 0
is always negative.29

Notice that when we went from the first line of equation (3.51) to its second line,
we blurred the distinction between the two branches of the linear equation. These two
branches correspond to the two possible signs of the coupling fm as given in (3.44). For
a positive fm, one should choose the (−) sign in the first line of (3.51). Similarly, for a
negative fm, one should choose the (+) sign in the same equation. Let us now see to which
of these branches the two solutions of the quadratic equation belong.

Solution 1: z0 = r

−12+

√(
18
√

6−183
)
r2+

(
18
√

6−39
)

16
(

1+r2
)

. In this case, we have

(
18
√

6− 39
256

)
− z2

0 =

12r2 +
√(

18
√

6− 39
)
−
(
183− 18

√
6
)
r2

16(1 + r2)


2

. (3.54)

29This can also be seen more directly from (3.42) since fm ≤
√

18
√

6−39
16 λ < 3

4λ for all points on the
fixed circle.
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Note that both the terms in the numerator of the r.h.s. of the above equation are non-
negative. Therefore, taking the positive square roots of both sides of this equation, we get√√√√(18

√
6− 39

256

)
− z2

0 =

12r2 +
√(

18
√

6− 39
)
−
(
183− 18

√
6
)
r2

16(1 + r2)

 = 3
4 + z0

r
. (3.55)

From the above equation we get

3
4 −

√√√√(18
√

6− 39
256

)
− z2

0 + z0
r

= 0. (3.56)

Therefore, we find that this solution always belongs to the branch where fm > 0.

Solution 2: z0 = r

−12−

√(
18
√

6−183
)
r2+

(
18
√

6−39
)

16
(

1+r2
)

. In this case, we have

(
18
√

6− 39
256

)
− z2

0 =

12r2 −
√(

18
√

6− 39
)
−
(
183− 18

√
6
)
r2

16(1 + r2)


2

. (3.57)

Now, the second term in the numerator of the r.h.s. of the above equation is negative. So,
while taking the square root of both sides of the equation, one has to be careful about the
sign of the quantity within the brackets. To check this sign, let us look at the magnitude
of the expression within the root in the r.h.s. This expression can be re-cast as follows:(

18
√

6− 39
)
−
(
183− 18

√
6
)
r2 = (12r2)2 +

(
18
√

6− 39− 144r2
)
(1 + r2). (3.58)

Therefore this expression will have a magnitude less than (or equal to) (12r2)2 (leading to
a positive sign of the quantity in brackets in the r.h.s. of (3.57)) only if

(
18
√

6− 39− 144r2
)
≤ 0 =⇒ r ≥

√
18
√

6− 39
12 ≈ 0.188. (3.59)

Thus, for
√

18
√

6−39
12 ≤ r ≤

√
6
√

6−13
61−6

√
6 , we have

√√√√(18
√

6−39
256

)
−z2

0 =

12r2−
√(

18
√

6−39
)
−
(
183−18

√
6
)
r2

16(1+r2)

= 3
4 + z0

r
, (3.60)

and we can again conclude that the solution lies in the branch where fm > 0.
For r <

√
18
√

6−39
12 , we have√√√√(18

√
6−39

256

)
−z2

0 =−

12r2−
√(

18
√

6−39
)
−
(
183−18

√
6
)
r2

16(1+r2)

=−
(3

4 + z0
r

)
, (3.61)

and the solution lies in the branch where fm < 0.
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Let us summarize the above results:

• When
√

18
√

6−39
12 ≤ r <

√
6
√

6−13
61−6

√
6 , there are two fixed points on the same branch

(fm > 0) for which the thermal mass (squared) m2
th,2 vanishes. The values of the

normalized coupling z at these two fixed points are:

z
(1)
0 = r

−12 +
√(

18
√

6− 183
)
r2 +

(
18
√

6− 39
)

16
(
1 + r2

)
 ,

z
(2)
0 = r

−12−
√(

18
√

6− 183
)
r2 +

(
18
√

6− 39
)

16
(
1 + r2

)
 ,

(3.62)

where manifestly z(2)
0 < z

(1)
0 < 0.

• When r <
√

18
√

6−39
12 , again we have two fixed points for which m2

th,2 vanishes. The
values of z at these fixed points are again given by the expressions in (3.62). However,
the fixed point with ζ = z

(1)
0 λ lies in the branch fm > 0, whereas the one with

ζ = z
(2)
0 λ lies in the branch fm < 0.

Now that we have identified the fixed points where m2
th,2 = 0, it is possible to determine

the points at which it is negative. To apply the argument of continuity of m2
th,2 as we move

along the fixed circle, we need to work in a particular branch. If there are two fixed points
where m2

th,2 vanishes in that branch, then in the interval between these two points it will
be negative. On the other hand, if there is only one fixed point (say, at z = z0) in that
branch where m2

th,2 vanishes, then it will be negative for all values of z below z0.
Before enumerating all the fixed points where m2

th,2 < 0, let us briefly comment on the
points where the afore-mentioned branches meet. At these points, we have fm = 0 and
z = σ

√
18
√

6−39
16 where σ = ±1. From (3.48), we find that at these points:

m2
th,2 = 16π2β−2

th
3 λ

3
4 + σ

√
18
√

6− 39
16r

 . (3.63)

Therefore, m2
th,2 > 0 at all values of r for the fixed point with σ = 1. For the fixed point

with σ = −1, m2
th,2 ≥ 0 when r ≥

√
18
√

6−39
12 , and m2

th,2 < 0 when r <
√

18
√

6−39
12 .

Thus, from the above analysis we can finally conclude that m2
th,2 < 0 for the fixed

points satisfying any one of the following conditions:

1. r ∈
[√

18
√

6−39
12 ,

√
6
√

6−13
61−6

√
6

)
, ζ ∈ (z(2)

0 λ, z
(1)
0 λ), and fm > 0,

2. r ∈
(

0,
√

18
√

6−39
12

)
, ζ ∈ [zminλ, z

(1)
0 λ), and fm ≥ 0,

3. r ∈
(

0,
√

18
√

6−39
12

)
, ζ ∈ (zminλ, z

(2)
0 λ), and fm < 0.
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Figure 3. Fixed points in the real double bifundamental model for which m2
th,2 < 0.

Here z(1)
0 and z(2)

0 are the values of the normalized coupling z defined in (3.62), and zmin
is the lower bound on the value of z which was given in (3.47), i.e.,

zmin = −

√
18
√

6− 39
16 . (3.64)

We provide graphical plots of these fixed points in figure 3.
In appendix E we have shown that for all these fixed points, the thermal expectation

values of the scalar fields (up to gauge transformations) have the following forms:

〈Φ1〉 = 0, 〈Φ2〉 =
(
− Nc2

64π2
m2

th,2
h2 + f2

) 1
2

diag{±1, 1, 1, · · · , 1}, (3.65)

where ‘diag’ stands for a diagonal matrix with the corresponding diagonal entries given in
the brackets. Note that in the zero temperature limit, 〈Φ2〉 = 0 due to the vanishing of
m2

th,2. This means that both the baryon symmetries are unbroken in the ground state.
For any nonzero temperature, the above forms of the thermal expectation values of

the scalar fields lead to the following consequences:

1. There are two gauge inequivalent vacua with the order parameter 〈[det Φ2]〉 6= 0.
This leads to the spontaneous breaking of the baryon symmetry in the second sector
at all nonzero temperatures.
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2. For either of the two vacua, the SO(Nc2) × SO(Nc2) gauge symmetry in the second
sector is broken down to SO(Nc2). To see this, let us consider a gauge transformation
O1×O2 belonging to SO(Nc2)×SO(Nc2) which leaves the thermal expectation values
given in (3.65) invariant, i.e.,

O1〈Φ2〉OT2 = 〈Φ2〉. (3.66)

This relates O2 to O1 as follows:

O2 = 〈Φ2〉−1O1〈Φ2〉. (3.67)

Thus, we see that the residual gauge symmetry is just SO(Nc2). Consequently, half
of the generators in the second sector are broken. This, in turn, leads to half of
the gauge bosons in this sector getting Higgsed, and the system being in the Brout-
Englert-Higgs (BEH) phase at all nonzero temperatures.

Therefore, we find that the spontaneous breaking of the baryon symmetry and the
persistent BEH phase always occur together in this model as mentioned in section 1.

4 Complex double bifundamental model

In this section we will turn our attention to the complex double bifundamental model. We
will begin by demonstrating that this model is actually dual to the real double bifunda-
mental model in the Veneziano limit. Therefore, in this limit, all the conclusions that we
arrived at in the last section are equally valid for the complex double bifundamental model.
In particular, we will see that for the planar beta functions in this model, there is a fixed
circle in the space of couplings. Just as before, by looking at the thermal masses of the
scalar fields we will determine the conditions under which a subset of these fixed points
demonstrate spontaneous breaking of the baryon symmetry and a persistent BEH phase
at nonzero temperatures.

4.1 Planar equivalence between the two double bifundamental models

Let us now demonstrate that the real and the complex double bifundamental models are
perturbatively equivalent in the Veneziano limt. This equivalence between the two models
rests on the procedure of orbifolding a parent theory to obtain an equivalent daughter
theory.30 In this case, a real double bifundamental model symmetric under the gauge group
G(R) ≡

2∏
i=1

SO(2Nci)×SO(2Nci) and with 2Nfi flavors of Majorana fermions in the ith sector
serves as the parent theory. On the other hand, the daughter theory is a complex double
bifundamental model symmetric under the gauge group G(C) ≡

2∏
i=1

SU(Nci)×SU(Nci) and

with Nfi flavors of Dirac fermions in the ith sector.
The idea of orbifolding a parent theory is to first identify a discrete global symmetry

in it. One can then project all its fields to the components that are invariant under this
30This is a counterpart of string orbifold equivalence discussed in [63, 64].
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symmetry group. Operators composed of these projected fields are also invariant under
the discrete global symmetry and hence, are known as neutral operators. One can next
project the Lagrangian of the parent theory to its part containing such neutral operators
by simply removing the terms that are not invariant under the discrete symmetry. The
form of this truncated Lagrangian of the parent theory should be similar to the Lagrangian
of the daughter theory. Based on this similarity between the two Lagrangians, it can
be shown that in the planar limit there is a mapping between the couplings in the two
theories under which the correlators of neutral operators in the parent theory are equal
to the corresponding correlators in the daughter theory. In this precise sense, the two
theories are dual to each other in the planar limit. We will next show how this procedure
of orbifolding of the real double bifundamental model leads to its planar equivalence with
the complex double bifundamental model. Our arguments for this equivalence will closely
follow those given for similar dualities in [65, 66].31

To demonstrate the planar equivalence between the two models, let us first express
the Majorana fermions in the real double bifundamental model in terms of Weyl spinors
as follows:32

ψ
(p)
i =



 ψ
(p)
i,L

iσ2
(
ψ

(p)
i,L

)∗
 for p ∈ {1, · · · , Nfi},

−iσ2
(
ψ

(p−Nfi)
i,R

)∗
ψ

(p−Nfi)
i,R

 for p ∈ {Nfi + 1, · · · , 2Nfi},

(4.1)

χ
(p)
i =



 χ
(p)
i,L

iσ2
(
χ

(p)
i,L

)∗
 for p ∈ {1, · · · , Nfi},

−iσ2
(
χ

(p−Nfi)
i,R

)∗
χ

(p−Nfi)
i,R

 for p ∈ {Nfi + 1, · · · , 2Nfi},

(4.2)

where the spinors with the subscript ‘L’ are left-handed, while those with the subscript
‘R’ are right-handed. Substituting the above expressions of the Majorana fermions in
equation (2.31), we get the following form of the Lagrangian (after removing some total
derivatives):
LRDB

= −1
4

2∑
i=1

2∑
α=1

(Fiα)Aµν(Fiα)µνA + i
2∑
i=1

(
ψ

(q)
i,L

)†
ai
σµ
(
Dµψ

(q)
i,L

)
ai

+ i
2∑
i=1

(
χ

(q)
i,L

)†
ji
σµ
(
Dµχ

(q)
i,L

)
ji

+ i
2∑
i=1

(
ψ

(q)
i,R

)†
ai
σµ
(
Dµψ

(q)
i,R

)
ai

+ i
2∑
i=1

(
χ

(q)
i,R

)†
ji
σµ
(
Dµχ

(q)
i,R

)
ji

+ 1
2

2∑
i=1

Tr
[(
DµΦi

)T
DµΦi

]

−
2∑
i=1

h̃Ri Tr
[
ΦT
i ΦiΦT

i Φi

]
−

2∑
i=1

f̃Ri Tr
[
ΦT
i Φi

]
Tr
[
ΦT
i Φi

]
− 2ζ̃RTr

[
ΦT

1 Φ1
]
Tr
[
ΦT

2 Φ2
]
,

(4.3)
31See also [67–74] for discussions on the various aspects of the planar equivalence.
32From here onwards, we shall be working in the Weyl representation of the Clifford algebra.
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where σµ = (I,−−→σ ), and the dummy index q runs over the values {1, · · · , Nfi} for the
fermions in the ith sector. We have put a superscript R on the couplings to distinguish
them from the couplings in the dual complex double bifundamental model.

Now, note that the above Lagrangian is invariant under the following Z2 transformation
of the fields:33

(Viα)µ → Ji(Viα)µJTi ,
Φi → JiΦiJ

T
i ,(

ψ
(q)
i,L, ψ

(q)
i,R

)
→

(
−iJiψ(q)

i,L, −iJiψ
(q)
i,R

)
,(

χ
(q)
i,L, χ

(q)
i,R

)
→

(
−iJiχ(q)

i,L, −iJiχ
(q)
i,R

)
,

(4.4)

where
Ji = iσ2 ⊗ INci×Nci =

(
0Nci×Nci INci×Nci
−INci×Nci 0Nci×Nci

)
. (4.5)

To project the fields on to their neutral components, we demand the invariance of the fields
under the above transformations. This yields the following structure of the projected fields:

(Viα)µ =
(

(BA
iα)µ −(CSiα)µ

(CSiα)µ (BA
iα)µ

)
, Φi =

(
Φi1 Φi2
−Φi2 Φi1

)
,(

ψ
(p)
i,L

)
ai+Nci

= i
(
ψ

(p)
i,L

)
ai
,

(
ψ

(p)
i,R

)
ai+Nci

= i
(
ψ

(p)
i,R

)
ai

∀ ai ∈{1, · · · ,Nci},(
χ

(q)
i,L

)
ji+Nci

= i
(
χ

(q)
i,L

)
ji
,

(
χ

(q)
i,R

)
ji+Nci

= i
(
χ

(q)
i,R

)
ji

∀ ji ∈{1, · · · ,Nci}.

(4.6)

Here (BA
iα)µ and (CSiα)µ are imaginary (Nci ×Nci)-matrices which are anti-symmetric and

symmetric respectively. Similarly, Φi1 and Φi2 are real (Nci × Nci)-matrices, but they do
not have any symmetry property under transposition.

Let us now combine these projected fields to define a new set of fields:

(Ṽiα)µ ≡
√

2
[
(BA

iα)µ − i(CSiα)µ
]
, Φ̃i ≡ Φi1 + iΦi2,(

Ψ̃(q)
i,L

)
ai
≡
√

2
(
ψ

(q)
i,L

)
ai
,

(
Ψ̃(q)
i,R

)
ai
≡
√

2
(
ψ

(q)
i,R

)
ai
∀ ai ∈ {1, · · · , Nci},(

χ̃
(q)
i,L

)
ji
≡
√

2
(
χ

(q)
i,L

)
ji
,

(
χ̃

(q)
i,R

)
ji
≡
√

2
(
χ

(q)
i,R

)
ji
∀ ji ∈ {1, · · · , Nci}.

(4.7)

Here, (Ṽiα)µ is an Nci ×Nci Hermitian matrix. Therefore it can serve as a generator
of U(Nci). Note that this is distinct from a generator of the group SU(Nci) in the complex
double bifundamental model (the daughter theory). However, the difference in the number
of generators between the two cases is suppressed by a factor of 1

N2
ci

compared to the
total number of generators in either of them. Hence, this difference can be ignored while
computing correlators in the planar limit [70]. With this caveat, let us go on treating
(Ṽiα)µ as a gauge field in the projected theory. The field strength corresponding to this
gauge field is given by

(F̃iα)µν = ∂µ(Ṽiα)ν − ∂ν(Ṽiα)µ −
igRi√

2

[
(Ṽiα)µ, (Ṽiα)ν

]
, (4.8)

where gRi is the gauge coupling in the ith sector of the parent theory.
33Here, the fields in both the sectors are transformed simultaneously.
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The Weyl fermions introduced above can be combined together to form Dirac fermions
as shown below:

(
Ψ̃(q)
i

)
ai
≡


(
Ψ̃(q)
i,L

)
ai(

Ψ̃(q)
i,R

)
ai

 , (χ̃(q)
i

)
ji
≡


(
χ̃

(q)
i,L

)
ji(

χ̃
(q)
i,R

)
ji

 . (4.9)

Now writing the Lagrangian of the parent theory in terms of the gauge fields (Ṽiα)µ,
the complex scalar fields Φ̃i, and the Dirac fermions (Ψ̃(q)

i , χ̃
(q)
i ), we get

L(proj.)
RDB = −1

2Tr
[
(F̃iα)µν(F̃iα)µν

]
+ i

2∑
i=1

(
Ψ̃

(q)
i

)
ai

(
/DΨ̃(q)

i

)
ai

+ i
2∑
i=1

(
χ̃

(q)
i

)
ji

(
/Dχ̃

(q)
i

)
ji

+
2∑
i=1

Tr
[
(DµΦ̃i)†DµΦ̃i

]
− 2

2∑
i=1

h̃Ri Tr
[
Φ̃†i Φ̃iΦ̃†i Φ̃i

]
− 4

2∑
i=1

f̃Ri Tr
[
Φ̃†i Φ̃i

]
Tr
[
Φ̃†i Φ̃i

]
− 8ζ̃RTr

[
Φ̃†1Φ̃1

]
Tr
[
Φ̃†2Φ̃2

]
, (4.10)

where

DµΦ̃i ≡ ∂µΦ̃i −
igRi√

2
(Ṽi1)µΦ̃i + igRi√

2
Φ̃i(Ṽi2)†µ,

DµΨ̃(q)
i ≡ ∂µΨ̃(q)

i −
igRi√

2
(Ṽi1)µΨ̃(q)

i ,

Dµχ̃
(q)
i ≡ ∂µχ̃

(q)
i −

igRi√
2

(Ṽi2)µχ̃(q)
i .

(4.11)

Finally, to obtain the Lagrangian of the daughter theory, we need to rescale the above
Lagrangian by a factor of Γ−1, where Γ is the order of the discrete global symmetry group
in the parent theory. This is necessary to account for contribution of projectors on the
fields to the correlators of neutral operators in the parent theory [65, 66]. In our case,
Γ = 2 since the global symmetry group is Z2. To express this rescaled Lagrangian in terms
of canonically normalized fields, let us rescale the fields appearing in (4.10) as follows:

(Ṽ ′iα)µ ≡
1√
2

(Ṽiα)µ, Ψ̃′(q)i ≡ 1√
2

Ψ̃(q)
i , χ̃

′(q)
i ≡ 1√

2
χ̃

(q)
i , Φ̃′i ≡

1√
2

Φ̃i. (4.12)

In terms of these rescaled fields, the Lagrangian of the daughter theory takes the following
form:

Ldaughter = −1
2Tr

[
(F̃ ′iα)µν(F̃ ′iα)µν

]
+ i

2∑
i=1

(
Ψ̃′

(q)
i

)
ai

(
/DΨ̃′(q)i

)
ai

+ i
2∑
i=1

(
χ̃′

(q)
i

)
ji

(
/Dχ̃
′(q)
i

)
ji

+
2∑
i=1

Tr
[
(DµΦ̃′i)†DµΦ̃′i

]
− 4

2∑
i=1

h̃Ri Tr
[
Φ̃′†i Φ̃′iΦ̃

′†
i Φ̃′i

]

− 8
2∑
i=1

f̃Ri Tr
[
Φ̃′†i Φ̃′i

]
Tr
[
Φ̃
′†
i Φ̃′i

]
− 16ζ̃RTr

[
Φ̃′†1 Φ̃′1

]
Tr
[
Φ̃′†2 Φ̃′2

]
, (4.13)
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where

(F̃ ′iα)µν ≡ ∂µ(Ṽ ′iα)ν − ∂ν(Ṽ ′iα)µ − igRi
[
(Ṽ ′iα)µ, (Ṽ ′iα)ν

]
,

DµΦ̃′i ≡ ∂µΦ̃′i − igRi (Ṽ ′i1)µΦ̃′i + igRi Φ̃′i(Ṽ ′i2)†µ,

Dµ

(
Ψ̃′(q)i

)
≡ ∂µΨ̃′(q)i − igRi (Ṽ ′i1)µΨ̃′(q)i ,

Dµ

(
χ̃
′(q)
i

)
≡ ∂µχ̃′(q)i − igRi (Ṽ ′i2)µχ̃′(q)i .

(4.14)

Note that if we expand the field strengths (F̃ ′iα)µν in terms of generators TAiα normalized so
that the corresponding second Dynkin index is 1

2 , then the Lagrangian given above has the
same structure as the Lagrangian of the complex double bifundamental model in (2.36). In
fact, the two Lagrangians are exactly identical if we impose the following relations between
the couplings:

gCi = gRi , h̃
C
i = 4h̃Ri , f̃Ci = 8f̃Ri , ζ̃C = 8ζ̃R, (4.15)

where we have now introduced the superscript ‘C’ to indicate that the couplings correspond
to the complex double bifundamental model. From (4.15), one can derive the relations
between the ’t Hooft couplings34 in the two dual theories to be

λCi = λRi
2 , hCi = 2hRi , fCi = 2fRi , ζC = 2ζR. (4.16)

As a consistency check, we provide the forms of the 2-loop beta functions of the gauge
couplings and the 1-loop beta functions of the quartic couplings in the complex double
bifundamental model at the Veneziano limit:

β2-loop
λCi

= −
(21− 4xfi

3

)
(λCi )2 +

(−54 + 26xfi
3

)
(λCi )3,

β1-loop
hCi

= 8(hCi )2 − 12λCi hCi + 3
2(λCi )2,

β1-loop
fCi

= 4(fCi )2 + 16fCi hCi + 12(hCi )2 + 4(ζC)2 − 12λCi fCi + 9
2(λCi )2,

β1-loop
ζC

= ζC
2∑
i=1

(
4fCi + 8hCi − 6λCi

)
.

(4.17)

These beta functions have been computed by methods analogous to those illustrated for
the real double bifundamental model in appendix C. One can compare these beta functions
to those of the real double bifundamental model given in (3.2) and (3.3), and see that they
are consistent with the relations given in (4.16).

From the planar equivalence between the two double bifundamental models, we can
obtain the unitary fixed points (with ζC 6= 0) corresponding to the beta functions given
above. As earlier, for the existence of such unitary fixed points, the ratios xfi ≡ Nfi

Nci
must

satisfy the condition that xf1 = xf2 ≡ xf . When this condition is satisfied, the unitary
34Note that while defining the ’t Hooft couplings in the parent theory, one has to take Nci → 2Nci in the

relations given in (2.32).
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fixed points are all the points lying on the following manifold in the coupling space:

λC1 = λC2 = λC ≡ 21− 4xf
−54 + 26xf

, hC1 = hC2 = hC ≡
(3−

√
6

4

)
λC ,

fCp ≡
fC1 + fC2

2 =
√

3
2λ

C , (ζC)2 + (fCm)2 =
(18
√

6− 39
16

)
(λC)2 ,

(4.18)

where fCm ≡
fC1 −f

C
2

2 . As before, this conformal manifold has the topology of a circle. The
orbifold equivalence with the real double bifundamental model ensures that this fixed circle
would survive even after taking the 2-loop contributions to the planar beta functions into
account. In fact, in section 5, we will prove that this fixed circle survives under all loop
corrections at the planar limit.

4.2 Analysis of thermal effective potential and symmetry breaking

Let us now discuss the thermal effective potential of the scalar fields in the complex double
bifundamental model for the fixed points given in (4.18). From here onwards, we will drop
the superscript ‘C’ over the couplings.

First we will check the stability of the potential at these fixed points. The quartic
terms in the potential (up to leading order in λ) are

Vquartic =
2∑
i=1

h̃iTr
[
Φ†iΦiΦ†iΦi

]
+

2∑
i=1

f̃iTr
[
Φ†iΦi

]
Tr
[
Φ†iΦi

]
+ 2ζ̃Tr

[
Φ†1Φ1

]
Tr
[
Φ†2Φ2

]
. (4.19)

As in the case of the real double bifundamental model, the single trace interactions are
manifestly positive because

h̃i = 16π2

Nci
h = 16π2

Nci

(3−
√

6
4

)
λ > 0. (4.20)

To ensure that the other terms are positive, we need to check the positivity of f̃1, f̃2 and
(f̃1f̃2 − ζ̃2). But this is guaranteed by the relations in equation (4.16), and the positivity
of the corresponding quantities in the dual real double bifundamental model.35 Therefore,
we can conclude that the potential is stable for all points on the fixed circle.

Next, consider the quadratic terms in the potential which have the following form:

Vquadratic = 1
2

2∑
i=1

m2
th,iTr

[
Φ†iΦi

]
, (4.21)

where the thermal masses (squared) are36

m2
th,1 = 16π2β−2

th

[
1
3h1 + 1

6

(
1 + 1

N2
c1

)
f1 + 1

6
Nc2
Nc1

ζ + 1
4

(
1− 1

N2
c1

)
λ1

]
,

m2
th,2 = 16π2β−2

th

[
1
3h2 + 1

6

(
1 + 1

N2
c2

)
f2 + 1

6
Nc1
Nc2

ζ + 1
4

(
1− 1

N2
c2

)
λ2

]
.

(4.22)

35See the proof of this in section 3.2.1.
36These thermal masses are computed by methods analogous to those discussed in section 3.2.2.

– 37 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
3

In the Veneziano limit (Nci → ∞), we can drop all the subleading terms in 1
Nci

and
substitute the couplings by their values at the fixed points (given in (4.18)) to obtain

m2
th,1 = 16π2

3 β−2
th

[
3λ
2 + fm

2 + rζ

2

]
, m2

th,2 = 16π2

3 β−2
th

[
3λ
2 −

fm
2 + ζ

2r

]
, (4.23)

where r ≡ lim
Nc1,Nc2→∞

Nc2
Nc1

. Note that these thermal masses are equal to the corresponding
thermal masses in the dual real double bifundamental model (see (3.42)) under the mapping
between the couplings in the two models given in (4.16). This is actually a consequence of
the perturbative orbifold equivalence between the two models being valid in thermal states.
Since the proof of the perturbative planar (orbifold) equivalence [65] between the parent
and the daughter theories relies only on some combinatorics arising from the projection
under a discrete automorphism, it can be extended to the finite temperature case without
any major modification.37 This ensures the equality of the 1-loop planar diagrams [5, 10]
contributing to the thermal masses in the two theories.

The equality of the thermal masses in the two dual theories allows us to just use the
results obtained in section 3.2 to investigate the conditions under which one of the thermal
masses (squared) is negative. We quote these conditions below.

First, without any loss of generality, we assume that Nc2 < Nc1, i.e., r < 1. Under this
assumption, on one hand, m2

th,1 > 0 for all points on the fixed circle. On the other hand,
m2

th,2 < 0 for the fixed points satisfying any one of the following conditions:

1. r ∈
[√

18
√

6−39
12 ,

√
6
√

6−13
61−6

√
6

)
, ζ ∈ (4z(2)

0 λ, 4z(1)
0 λ), and fm > 0,

2. r ∈
(

0,
√

18
√

6−39
12

)
, ζ ∈ [4zminλ, 4z(1)

0 λ), and fm ≥ 0,

3. r ∈
(

0,
√

18
√

6−39
12

)
, ζ ∈ (4zminλ, 4z(2)

0 λ), and fm < 0.

Here z(1)
0 and z

(2)
0 are the values defined in (3.62), and zmin is given in (3.64). For the

reader’s convenience, we provide these values once more below:

z
(1)
0 = r

−12 +
√(

18
√

6− 183
)
r2 +

(
18
√

6− 39
)

16
(
1 + r2

)
 ,

z
(2)
0 = r

−12−
√(

18
√

6− 183
)
r2 +

(
18
√

6− 39
)

16
(
1 + r2

)
 ,

zmin = −

√
18
√

6− 39
16 .

(4.24)

37It would be interesting to see if the equivalence holds non-perturbatively for the double bifundamental
models. See [75–78] for the criteria for such non-perturbative planar equivalences between various models.
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The graphical plots of these fixed points are similar to those given in figure 3. The only
difference is that the quantity z in those figures has to be now defined as z = ζ

4λ .
For all these fixed points, the thermal expectation values of the scalar fields (up to

gauge transformations) are as follows:38

〈Φ1〉 = 0, 〈Φ2〉 =
(
− Nc2

64π2
m2

th,2
h2 + f2

) 1
2

diag{eiθ, 1, 1, · · · , 1}, (4.25)

where θ ∈ [0, 2π). Note that in the zero temperature limit, we again have 〈Φ2〉 = 0 and
both the baryon symmetries are unbroken. For any nonzero temperature, we have a circle
of gauge inequivalent vacua each of which develops a nonzero thermal expectation value
〈[det Φ2]〉 6= 0. This leads to the spontaneous breaking of the baryon symmetry in the
second sector as in case of the real double bifundamental model. Moreover, the gauge
symmetry in this sector is broken down to SU(Nc2). This can be seen by checking that
a gauge transformation U1 × U2 belonging to SU(Nc2) × SU(Nc2) can leave the thermal
expectation values 〈Φ2〉 invariant only if

U2 = 〈Φ2〉−1U1〈Φ2〉. (4.26)

Thus, only one of the two unitary transformations is independent and the residual gauge
symmetry is SU(Nc2). As a result of this, half of the generators in the second sector are
broken, and accordingly, half of the gauge bosons in this sector get Higgsed. Therefore, we
find that just as in case of the real double bifundamental model, the spontaneous breaking
of the baryon symmetry and the persistent BEH phase are linked to each other in the
complex double bifundamental model.

5 Survival of the fixed circle at all orders in the planar limit

In the previous two sections, we saw that the 2-loop planar beta functions in the real double
bifundamental models yield conformal manifolds which have the topology of a circle. This
intriguing result raises the question of whether such conformal manifolds survive under
higher order contributions in the ’t Hooft couplings to the planar beta functions. In this
section we will show that it is indeed the case. This means that the double bifundamental
models belong to the list of interesting non-supersymmetric theories which have conformal
manifolds in the planar limit [1, 2, 44, 61].

We will first prove a lemma in the following subsection that the planar beta functions
in these models are independent of the ratio r = Nc2

Nc1
. This ratio is the only quantity that

could have led to an asymmetry in the forms of the planar beta functions of the couplings in
the two sectors.39 The above-mentioned lemma ensures the absence of such an asymmetry
in the planar limit.

38The arguments for arriving at these expectation values are exactly analogous to those in appendix E
for the real double bifundamental model.

39A difference in the values of xf1 ≡
Nf1
Nc1

and xf2 ≡
Nf2
Nc2

could also have led to an asymmetry between
the two sectors. But we have already shown that in such a scenario, there is no unitary fixed point with
ζ 6= 0. Therefore, we keep assuming that xf1 = xf2 in the Nc1, Nc2 →∞ limit.
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While proving this lemma, we will illustrate the planar diagrams that contribute to
connected correlators in the ground state of these models. To extract the planar beta func-
tions from such correlators we work in dimensional regularization40 and the MS scheme. In
this scheme, the contributions to the beta functions come from the coefficients of the O(1

ε )
terms in such connected correlators, i.e., the residues of these correlators corresponding to
the pole at ε = 0.

One advantage of working with dimensional regularization is that all diagrams with
a massless tadpole41 vanish in this scheme [79]. The vanishing of such diagrams is not
essential to the arguments that we will propose as such tadpoles can at most contribute
to the renormalization of the masses42 and they do not affect the beta functions in any
mass-independent renormalization scheme. However, it simplifies the analysis slightly since
we have taken the renormalized masses of all the fields in the double bifundamental models
to be zero.

Before proceeding further, let us make a brief comment about our convention for
representing different diagrams in this section. The fields in the double bifundamental
models are matrices, and hence an appropriate convention for drawing the corresponding
Feynman diagrams would be ’t Hooft’s double line notation. Indeed, we make use of
this notation while discussing the large N scaling of different diagrams in appendix F.
However, in this section, we will represent the propagators of the scalar fields by single
lines to avoid unnecessary clutter. We hope the reader will not be confused by this slightly
unconventional notation.

Now, without further ado, let us delve into the proof of the afore-mentioned lemma.
As we will see in section 5.2, the insights gained while proving this lemma will be essential
to the proof of the survival of the fixed circle in the planar limit.

5.1 Lemma: planar beta functions are independent of r = Nc2
Nc1

In sections 3 and 4, we found that the two-loop planar beta functions in the double bifun-
damental models are independent of the ratio r = Nc2

Nc1
. Here, we will show that this feature

of the planar beta functions actually persists at all orders in the ’t Hooft couplings.
Before proceeding with the argument, we note that the interactions in the double

bifundamental models can be divided into two classes: single trace and double trace inter-
actions. The couplings corresponding to the former are the gauge couplings (g1 and g2)43
and the quartic couplings h̃1 and h̃2, whereas those corresponding to the latter are the
quartic couplings f̃1, f̃2 and ζ̃.

40In dimensional regularization, we take the theories to be defined in (4− ε) dimensions.
41Here, by tadpole, we mean a subdiagram which has only one external vertex. It doesn’t matter how

this vertex is connected to the rest of the diagram. The loop integrals in such a subdiagram vanish in
dimensional regularization when all the propagators in such loops are massless.

42In fact, these tadpoles are responsible for the generation of the thermal masses of the scalar fields. In
a thermal state, the vanishing of such tadpoles is spoiled by the contributions of the Matsubara modes.

43Note that each gauge coupling also covers a corresponding ghost coupling. Furthermore, gauge fixing
terms do not affect the large N counting since they only affect gauge propagators which are normalized to
be O(1).
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Now, let us consider the double bifundamental model as two initially decoupled bifun-
damental scalar QCDs coupled through the double trace coupling ζ̃. Note that ζ̃ is the
only coupling that mediates an interaction between the two bifundamental scalar QCDs.
Hence, if the theory starts with ζ̃ = 0 at any energy scale, it will be preserved along the RG
flow. In this case, as we saw already, each bifundamental scalar QCD’s large N planar beta
function would be determined solely by the corresponding ’t Hooft couplings (λi ∝ Ncig

2
i ,

hi ∝ Ncih̃i, fi ∝ N2
cif̃i).

Here, a question naturally arises: what happens to the structure of the beta functions
after a non-zero double trace interaction ζ̃ between the two sectors is turned on? Since
each decoupled sector could have an independent large N limit (i.e. Nc1 6= Nc2), one might
wonder whether the planar beta functions of the couplings would depend on the additional
parameter r = Nc2

Nc1
. We will now argue that this is not the case when the ’t Hooft coupling

ζ is defined with an appropriate normalization as ζ ∝ Nc1Nc2ζ̃.
To prove the r-independence of the planar beta functions, we will use the following

feature of the connected planar diagrams that contribute to such beta functions: Any double
trace vertex in such a diagram links two otherwise disconnected planar subdiagrams.44 We
have provided an argument for this in appendix F by identifying the connected diagrams
that have dominant contributions in the large N limit. Here let us just explain what is
meant by the above statement. Consider a connected planar diagram with a double trace
vertex. If we remove this vertex from the diagram and join the pairs of legs with identical
colors that were initially attached to it, then we are still left with a planar diagram. But
according to the above statement, it is no longer a connected diagram. Rather, it has two
disconnected pieces each of which is a connected planar subdiagram.

Now, let us see how this feature of connected planar diagrams constrains the form
of the planar beta functions. Note that these beta functions receive contributions from
both vertex renormalizations and wave function renormalizations.45 Let us first discuss
why the wave function renormalizations do not lead to a dependence of the planar beta
functions on the ratio r. The contributions to such wave function renormalizations come
from connected planar diagrams with two external legs. If such a planar diagram contains
a double trace vertex, then as we just argued, it can be decomposed into two disconnected
pieces. But one of these disconnected piece would always be a tadpole (eg. see the diagrams
in figure 4). As we mentioned earlier, such tadpoles contribute only to the renormalization
of masses of the attached propagator. But since all the propagators here are massless,
these diagrams simply vanish. Therefore, there is no planar diagram with a double trace
vertex which contributes to the wave function renormalizations. This means that in the
planar limit, these wave function renormalizations do not depend on the coupling ζ which
connects the two sectors and they are just functions of the single trace couplings in the
respective sectors. Hence, their contributions to the beta functions do not generate any
r-dependence.

44See e.g. [80] which discusses general large N scaling involving multi-trace vertices.
45We note that there is a scheme-independent way to understand the reason why tadpole diagrams do

not contribute to the wave function renormalization from their external momentum independence.
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(a) (b)

Figure 4. Examples of planar diagrams with 2 external legs and a massless tadpole: here we
use red color for components in the first sector, and blue color for the same in the second sector.
In both the diagrams, the color indices of the two external propagators are the same. The blobs
comprise of single trace vertices and propagators belonging to the respective sector. These blobs
are massless tadpoles.

Now, let us turn our attention to the vertex renormalizations of the different couplings.
First, consider the single trace couplings λi and hi. We will show that, just like the wave
function renormalizations, the vertex renormalizations of these single trace couplings are
independent of the double trace couplings in the planar limit. This will, in turn, imply
that the planar beta functions of the single trace couplings are totally independent of the
double trace couplings.46 To prove this, let us work with a specific example, viz., the planar
vertex renormalization of the coupling h1. The structure of this vertex renormalization
can be understood from connected diagrams with 4 external legs of the scalar field Φ1.
We take the color indices corresponding to these external legs to be (ai, bj, aj, bi) with
a 6= b and i 6= j. Now, for these external legs, if there is a connected planar diagram
containing a double trace vertex, then by the arguments given above we can split it into
two disconnected pieces by removing this vertex and joining the residual legs with identical
colors. The only way to get such a diagram without generating a vanishing tadpole is to
let each of the disconnected pieces have a pair of external legs. But then the two external
legs for either of the two disconnected pieces would have different color indices which is
impossible given the structure of the interaction vertices. This means that there cannot
be any connected planar diagram with double trace vertices for the external legs that we
specified above. Consequently, the planar vertex renormalization of h1 does not receive
any contribution from the double trace couplings. Similar arguments can be given to show
that the above property is shared by the vertex renormalizations of the other single trace
couplings. Together with the same feature of the wave function renormalizations, this
conclusively demonstrates that the planar beta functions of the single trace couplings are
independent of the double trace couplings. As a byproduct of this, we see that for a fixed
i, βλi and βhi depend only on λi and hi in the planar limit because there is no connected
planar graph involving the coupling ζ which couples the two sectors. In other words, the
planar beta functions of the single trace couplings are only generated from the single trace
couplings in the same sector, which proves their r-independence.

Hence, what remains to be proven is the r-independence of the vertex renormalizations
for the double trace couplings fi and ζ. To demonstrate this, let us first consider the planar
diagrams contributing to the vertex renormalizations of f1 and f2 which do not contain any
double trace vertex. An example of such a diagram is shown in figure 5. Such a diagram can

46This statement is a well-known fact for such large N gauge theories (see for example, [49, 68]). It can
be generalized to cases involving multi-trace couplings.
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(ai)

(ai)

(bj)

(bj)

(ij)

(ij)

Figure 5. Example of a diagram containing only single trace vertices contributing to the vertex
renormalization of f1: the solid lines represent propagators of the scalar field Φ1, whereas the wavy
lines represent propagators of the gauge field V12. The color indices for the different propagators
are indicated in brackets adjacent to the respective propagators. we take the color indices on the
two sides to be distinct, i.e., a 6= b, i 6= j. Each of the two vertices contributes a factor of g2

1 ∝ λ1
Nc1

.
Thus, the diagram scales as O( 1

N2
c1

) in the large Nc1 limit.

(a) Diagrams in the first sector (b) Diagrams in the second sector

Figure 6. Diagrams without double trace vertices contributing to the vertex renormalizations of
f1 and f2: in both the diagrams, the pair of external legs on the left have the same color indices.
Similarly, the pair of external legs on the right have the same color indices. The blobs contain only
single trace vertices and propagators belonging to a particular sector.

be generally expressed as a blob which contains only single trace vertices and propagators
belonging to a particular sector47 and is connected to the external legs as shown in figure 6.
We will denote the set of all such blobs in the ith sector by B0

i . All diagrams in B0
i scale as

O( 1
N2
ci

) in the large Nci limit.48 Note that these diagrams do not contain the double trace
coupling ζ which mixes the two sectors. Hence, as earlier, their contributions do not lead
to an r-dependence in the planar vertex renormalizations of f1 and f2.

Now, let us determine the planar diagrams containing double trace vertices that con-
tribute to the vertex renormalizations of the double trace couplings. For this, recall our
observation that each double trace vertex in a connected planar diagram links two otherwise
disconnected planar subdiagrams. Note that if such a disconnected piece is not attached
to any of the external legs, then it is a massless tadpole which vanishes (eg. see figure 7).
Therefore, the only connected planar diagrams contributing to the vertex renormalizations
of the double trace couplings are linear chains of planar subdiagrams connected through
double trace vertices as shown in figure 8. Each of these subdiagrams contains only single
trace vertices and propagators belonging to a particular sector. It may also include coun-
terterm vertices corresponding to the wave function renormalization of the fields and the

47The blob can also contain counterterm vertices corresponding to the renormalization of the single trace
vertices and the wave function renormalization of the fields in the same sector.

48We refer the reader to appendix F for an analysis of the large N scaling of such diagrams.
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renormalizations of the single trace vertices in the same sector.49 The vertices connecting
such subdiagrams can also be counterterm vertices corresponding to the double trace cou-
plings. A lower order term in the perturbative expansion of such counterterm vertices can
contribute to a higher order correction to the vertex renormalization.

Here, let us make an important observation: there are two classes of planar subdia-
grams in such a chain. One of them consists of the planar subdiagrams at the two ends,
each of which is attached to two external legs as well as a double trace vertex which con-
nects it to the rest of the diagram. It includes the case where the two external legs directly
connect to the double trace vertex. The other class consists of the planar subdiagrams
in the middle, each of which is connected to two double trace vertices on the two sides.
From now on, we will call these two classes of planar subdiagrams ‘external blobs’ and
‘internal blobs’ respectively. So there are four distinct types of blobs which we denote by
BE

1 , B
I
1 , B

E
2 , B

I
2 . Here the superscript indicates whether the blob is external or internal,

and the subscript indicates the sector to which the corresponding propagators and vertices
belong. An important point to note here is that each internal blob in BI

i contributes a fac-
tor of O(N2

ci) to the planar graph, whereas the contribution of each external blob is O(1).50
From these scalings of the different blobs in the Nci → ∞ limit along with the property
that fi only connects B∗i and B∗i while ζ only connects B∗1 and B∗2 , we can infer that any
planar graph contributing to the vertex renormalization of a double trace quartic coupling
does not generate an r-dependence. To illustrate this, let us consider the two diagrams in
figure 8. Both these diagrams contribute to the vertex renormalization of the coupling f1.
The diagram in figure 8a consists only of vertices belonging to the first sector. In figure 8b,
two of the vertices with the double trace coupling f̃1 are replaced by vertices with the cou-
pling ζ̃. In addition, the BI

1 blob in the middle is replaced by a BI
2 blob.51 Since the double

trace couplings f̃1 and ζ̃ scale as f̃1 ∝ f1
N2
c1

and ζ̃ ∝ ζ
Nc1Nc2

, the replacement of the two
vertices leads to an additional factor of (Nc1

Nc2
)2 in the diagram shown in figure 8b compared

to the one in figure 8a. However, this factor is exactly cancelled by the replacement of the
BI

1 blob by the BI
2 blob. Therefore, we can conclude that the scaling of the two diagrams

in the limit Nc1, Nc2 →∞ limit is exactly similar, and there is no relative factor of r = Nc2
Nc1

between them. Similar arguments can be applied to other planar diagrams contributing
to the vertex renormalizations of the double trace quartic couplings. Consequently, all
these planar vertex renormalizations are independent of r. Coupled with the same feature
of the wave function renormalizations, this proves the r-independence of the planar beta
functions of all the double trace quartic couplings. This completes our proof of the lemma.

Finally, we remark that one can extend this lemma to the case of a general weakly cou-
pled QFT which consists of two originally decoupled 3+1 dimensional QFTs, T1 and T2, de-
formed by an arbitrary number of quartic double trace scalar operators Tr[Φ†1Φ1] Tr[Φ†2Φ2]
where the scalar Φi belongs to the sector Ti.

49As we have already argued, such wave function and vertex renormalizations can depend only on the
single trace couplings in the respective sector.

50See appendix F for a derivation of the ways in which different diagrams scale in the large N limit.
51Here, let us remark that the external blobs belonging to BE1 in such a diagram cannot be replaced by

blobs belonging to BE2 without changing the external legs as well.
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Figure 7. Example of a diagram with 4 external legs and a massless tadpole: the external and
internal blobs are characterized by filled or patterned color respectively. The color indices in the
two external propagators on each side are the same. The blobs stand for connected diagrams with
propagators and single trace vertices belonging to the first sector. The vertices at which the external
blobs connect to the lower internal blob and the vertex connecting the two internal blobs correspond
to the double trace coupling f̃1. The internal blob on the top is a massless tadpole.

(a) (b)

Figure 8. Examples of linear chains of blobs contributing to the vertex renormalization of a double
trace coupling (here f1).

5.2 Proof of the survival of the fixed circle in the planar limit

Let us now prove that the fixed circle survives at all orders of the ’t Hooft couplings in the
planar limit. The fact that the planar beta functions are independent of the ratio r = Nc2

Nc1
ensures that the beta functions of the couplings λi, hi and fi in the two sectors are related
to each other in the planar limit by the following exchanges:

λ1 ↔ λ2, h1 ↔ h2, f1 ↔ f2. (5.1)

Moreover, as we argued in the previous subsection, the planar beta functions of the single
trace couplings (λi and hi) do not receive contributions from the double trace couplings
(fi and ζ). This guarantees that the RG flows of the single trace couplings in one sector
do not depend on the couplings in the other sector.52 Therefore, the planar beta functions
of these single trace couplings take the following forms:

βλi = βλ(λi, hi), βhi = βh(hi, λi). (5.2)

As we have already seen from the 1-loop and 2-loop beta functions, there is a discrete set
of solutions of the equations βλ(λi, hi) = βh(hi, λi) = 0, and only one of these solutions
corresponds to unitary fixed points where the two sectors are coupled. At this solution,
the single trace couplings in the two sectors are equal, i.e., we have53

λ1 = λ2 = λ0, h1 = h2 = h0. (5.3)
52The mixing of the two sectors can happen only when the double trace coupling ζ contributes to the

beta functions.
53λ0 and h0 receive corrections from higher loop diagrams to their magnitudes determined from the 2-loop

beta functions in the previous sections.
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We assume that within the domain of validity of perturbation theory, this solution survives
at all orders in the ’t Hooft couplings. Note that this is consistent with the identical forms
of the beta functions of the single trace couplings in the two sectors as shown in (5.2).

Next, we will determine the planar beta functions of the double trace couplings in the
subspace where λi and hi are fixed at their values given in (5.3). In appendix G, we have
shown how these planar beta functions can be expressed in terms of the corresponding wave
function and vertex renormalizations. In particular, we have argued there that these beta
functions depend only on the wave function and vertex renormalizations in a region where
λ1 = λ2 = λ and h1 = h2 = h with (λ, h) lying in the neighborhood of (λ0, h0). So hence-
forth, all our discussions will be restricted to such a region in the space of couplings. Let
us now look at the forms of the relevant planar vertex and wave function renormalizations
in the above-mentioned region.

First let us discuss the wave function renormalizations ZΦ1 and ZΦ2 of the scalar fields
Φ1 and Φ2. These are determined by demanding that the sums over the planar diagrams
of the form shown in figure 9 are free of divergences in the ε → 0 limit. As we discussed
in the previous subsection, these diagrams contain only propagators, single trace vertices
and the corresponding counterterm vertices. Since we are probing a region in the coupling
space where the single trace couplings in the two sectors are identical, the sums over such
diagrams are also the same for the two sectors. Thus, the wave function renormalizations
of the scalar fields in the two sectors are equal, i.e., we have

ZΦ1 = ZΦ2 ≡ ZΦ, (5.4)

where ZΦ is a function of λ and h.
Next, let us turn our attention to the vertex renormalizations of the double trace

couplings. To determine these vertex renormalizations, we will consider the contributions
of different planar diagrams with two external legs on each side as shown in figures 6
and 8.54 The diagrams in figure 6 contribute only to the vertex renormalizations of f1 and
f2. They contain blobs comprising only of single trace vertices and propagators belonging
to a particular sector. In the previous subsection we denoted the set of all such blobs in the
ith sector by B0

i . All the diagrams in B0
i are O( 1

N2
ci

) in the large Nci limit. Let us denote
the sum over the diagrams in B0

i by C0
i . Since the quantity C0

i receives contributions only
from the single trace couplings in the ith sector and we are considering a region where
these single trace couplings are the same for the two sectors, the dependence of C0

i on the
respective sector is solely determined by its overall scaling with Nci, i.e., we have

C0
i = C0

N2
ci

, (5.5)

where C0 is a function of λ and h.55
Now let us consider the class of diagrams shown in figure 8. These diagrams are linear

chains of blobs where the two adjacent blobs are connected by double trace vertices or
54While considering the sum over such diagrams, we will ignore the contributions of the external legs.
55It also depends on the momenta of the external legs.
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Figure 9. Blobs contributing to wave function renormalization for Φ1 and Φ2. Each blob is made
only of single trace couplings and propagators belonging to the corresponding sector.

the corresponding counterterm vertices. Each of these blobs is a connected diagram made
of propagators and single trace vertices belonging to a single sector. It can also contain
counterterm vertices corresponding to the wave function renormalization of the scalar fields
and the renormalizations of the single trace vertices belonging to the same sector. There
are four distinct classes of such blobs: BI

1 , BE
1 , BI

2 and BE
2 . Since each blob’s loop integrals

are independent of the other blobs, the total contribution of a given chain of blobs would be
the product of the contributions from the individual blobs. This factorization implies that
a building block of the planar vertex renormalizations is an infinite sum over all possible
planar diagrams within a given blob B∗i . Let us denote this sum by C∗i . Note that all the
components appearing in the diagrams contributing to C∗i depend only on the single trace
couplings in the ith sector. Since we are considering a region where the single trace ’t Hooft
couplings λi and hi are the same in the two sectors, the dependence of the quantity C∗i on
the sector to which it belongs comes only from its overall scaling with Nci, i.e., we have56

CEi = CE , CIi = N2
ciC

I . (5.6)

Here we have used the fact that the external blob BE
i consists of connected planar diagrams

with two external legs which scale like O(1) while the internal blob BI
i consists of closed

connected planar diagrams which scale like O(N2
ci) as Nci →∞. We will call CE,Ii ‘building

blobs’ for obvious reasons.
Now, consider a geometric sum of linear chains of internal building blobs in a given

sector connected by the double trace coupling f̃i in that sector (see figure 10). We denote
these sums for the two sectors by D1 and D2. For convenience, we absorb the contributions
of the counterterms in the vertices corresponding to the double trace couplings. Therefore,
the coupling f̃1 and f̃2 in these sums are multiplied by the corresponding vertex renormal-
izations Zf1 and Zf2 . Based on this diagrammatic expansion, we can see that the quantity
Di has the following value:57

Di =CIi

∞∑
n=0

[
αZfi f̃iC

I
i

]n
= CIi

1−αZfi f̃iCIi
= N2

ciC
I

1−αZfi f̃iN2
ciC

I
= N2

ciC
I

1−16π2αZfifiC
I
, (5.7)

56Here CE and CI depend on the values of λ and h. CI also depends on the momentum flowing through
the linear chain, while CE depends on the momenta of the two external legs to which the external blob
is attached.

57Here let us make a brief comment about the symmetry factors of the different diagrams in this expansion
which will also hold for the expansions given in (5.8). The symmetry factors in these diagrams mostly arise
due to the invariance under exchanges of vertices and propagators within individual blobs. Such symmetry
factors are absorbed in the definition of the quantity CI and CE , and we need not worry about them
while connecting the different blobs via double trace vertices. The exceptions to the above statement are
diagrams where all the four legs emanating from a double trace vertex are identical. But the contributions
of such diagrams are suppressed by powers of 1

Nci
, and hence they can be ignored in the planar limit.
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D1= + + +· · ·

(a)

D2= + + +· · ·

(b)

Figure 10. Diagrammatic expansions of D1 and D2: the red blobs correspond to sector 1, while
the blue blobs correspond to sector 2.

where α is a normalization associated with the vertex factor of the couplings f̃i and ζ̃.
Its exact value is not essential to the arguments that will follow and hence we will leave
it unspecified. The only thing that we need to keep in mind is that this normalization is
the same for all the double trace couplings which follows from the way they appear in the
Lagrangians of the two double bifundamental models. We absorb the dimensionful factor
µ̃ε in the definition of α. The energy scale µ̃ is related to the renormalization scale µ in the
MS scheme by µ̃2 = µ2 eγE

4π with γE being the Euler-Mascheroni constant. The quantity CI
has mass-dimension (−ε) which can be verified by checking the dimension of the Feynman
diagrams appearing in the internal blobs. This leads to (αCI) being dimensionless.

Now that we have obtained the quantities D1 andD2, we can evaluate the contributions
of all planar diagrams with a fixed pair of external legs on the two sides.58 Such diagrams
are of two types. One class of diagrams do not involve double trace vertices as shown in
figure 6 and contribute to correlators where all the external legs correspond to fields be-
longing to the same sector. The other class comprises of diagrams where alternating linear
sequences of D1 and D2 are coupled by the double trace vertex ζ̃ (or the corresponding
counterterm vertex) internally and connected to an appropriate external building blob CEi
at each end. Just as in case of the vertices with the coupling f̃i, we absorb the counterterm
vertices for ζ̃ by multiplying the vertex renormalization Zζ to the vertices connecting D1
and D2. Now, summing over all such diagrams, we get

Γ(4)
11 = C0

N2
c1

+ (CE)2
{
αZf1 f̃1 + α2Z2

f1 f̃
2
1D1

+ Z2
ζ (1 + αZf1 f̃1D1)2αζ̃D2αζ̃

( ∞∑
n=0

(Z2
ζD1αζ̃D2αζ̃)n

)}
,

Γ(4)
22 = C0

N2
c2

+ (CE)2
{
αZf2 f̃2 + α2Z2

f2 f̃
2
2D2

+ Z2
ζ (1 + αZf2 f̃2D2)2αζ̃D1αζ̃

( ∞∑
n=0

(Z2
ζD2αζ̃D1αζ̃)n

)}
,

Γ(4)
12 = (CE)2

{
(1 + αZf1 f̃1D1)(1 + αZf2 f̃2D2)αZζ ζ̃

( ∞∑
n=0

(Z2
ζD2αζ̃D1αζ̃)n

)}
,

(5.8)

58The color indices for the two legs on each side are identical.
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where Γ(4)
ij is the sum over planar diagrams when the pairs of external legs on the two sides

correspond to the fields Φi and Φj . The first term in the expression of Γ(4)
11 or Γ(4)

22 is due
to the contributions of diagrams without double trace vertices. In the remaining terms,
the overall factor of (CE)2 comes from the two external building blobs at the two ends.59
The first two terms within the curly braces in the expression of Γ(4)

11 or Γ(4)
22 correspond

to diagrams without any ζ̃ vertex. The other terms correspond to diagrams with different
numbers of insertions of the ζ̃ vertex. Note that the total number of such insertions in
these diagrams must be even as the components on the two sides of such a vertex belong
to different sectors while the external legs at the two ends of these diagrams belong to the
same sector. The factor (1 + αZfi f̃iDi)2 arises as a coefficient of these terms to include
diagrams where there is a chain of blobs appearing in the expansion of Di at either end, as
well as diagrams where the first double trace vertex on either end corresponds to ζ̃. The
expansion in the expression of Γ(4)

12 can be understood similarly.

Performing the sum over the geometric series appearing in (5.8) and using the expres-
sions of Di given in (5.7), we get the following re-summed expressions:

N2
c1

16π2
Γ(4)

11
α

= C0

16π2α
+(CE)2

{
Zf1f1−16π2αCI(Zf1Zf2f1f2−Z2

ζ ζ
2)

1−16π2αCI(Zf1f1+Zf2f2)+(16π2αCI)2(Zf1Zf2f1f2−Z2
ζ ζ

2)

}
,

N2
c2

16π2
Γ(4)

22
α

= C0

16π2α
+(CE)2

{
Zf2f2−16π2αCI(Zf1Zf2f1f2−Z2

ζ ζ
2)

1−16π2αCI(Zf1f1+Zf2f2)+(16π2αCI)2(Zf1Zf2f1f2−Z2
ζ ζ

2)

}
,

Nc1Nc2
16π2

Γ(4)
12
α

= (CE)2
{

Zζζ

1−16π2αCI(Zf1f1+Zf2f2)+(16π2αCI)2(Zf1Zf2f1f2−Z2
ζ ζ

2)

}
, (5.9)

where we have now switched to the ’t Hooft couplings fi = N2
ci

16π2 f̃i and ζ = Nc1Nc2
16π2 ζ̃.

To extract the vertex renormalizations in the MS scheme from the above expressions, we
need to demand that all O( 1

εn ) terms in these expressions vanish for n > 0. This would
render these quantities finite in the ε → 0 limit. To simplify the analysis of these vertex
renormalizations, let us introduce the following quantities:

Γ(4)
ij ≡

NciNcj

16π2 Γ(4)
ij , f i ≡ Zfifi, , ζ ≡ Zζζ, C0 ≡ C0

16π2α
. (5.10)

59The CE at each end depends on the momenta of the external legs to which the corresponding external
blob is attached. Since the momenta at the two ends can be distinct, the values of CE at the two ends
can also be different. Nevertheless, to avoid unnecessary clutter, we use the shorthand notation (CE)2 to
denote the product of the two CE ’s. Note that this product can be taken to be the same while evaluating
the vertex renormalizations of all the double trace couplings by choosing the same set of momenta for
the external legs in all these cases. The vertex renormalizations are determined by demanding that the
expressions in (5.8) are free of divergences in the ε → 0 limit. The momentum-dependent pieces in these
expressions do not contribute to these vertex renormalizations.
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Then the expressions in (5.9) can be rewritten as

Γ(4)
11
α

= C0 + (CE)2
{

f1 − 16π2αCI(f1f2 − ζ
2)

1− 16π2αCI(f1 + f2) + (16π2αCI)2(f1f2 − ζ
2)

}
,

Γ(4)
22
α

= C0 + (CE)2
{

f2 − 16π2αCI(f1f2 − ζ
2)

1− 16π2αCI(f1 + f2) + (16π2αCI)2(f1f2 − ζ
2)

}
,

Γ(4)
12
α

= (CE)2
{

ζ

1− 16π2αCI(f1 + f2) + (16π2αCI)2(f1f2 − ζ
2)

}
.

(5.11)

We can make a further simplification by introducing

fp ≡
f1 + f2

2 ≡ Zfpfp, fm ≡
f1 − f2

2 ≡ Zfmfm, (5.12)

and taking the sum and difference of the first two expressions in (5.11) as shown below:

Γ(4)
11 + Γ(4)

22
2α = C0 + (CE)2

{
fp − 16π2αCI(f2

p − f
2
m − ζ

2)
1− 32π2αCIfp + (16π2αCI)2(f2

p − f
2
m − ζ

2)

}
,

Γ(4)
11 − Γ(4)

22
2α = (CE)2

{
fm

1− 32π2αCIfp + (16π2αCI)2(f2
p − f

2
m − ζ

2)

}
,

Γ(4)
12
α

= (CE)2
{

ζ

1− 32π2αCIfp + (16π2αCI)2(f2
p − f

2
m − ζ

2)

}
.

(5.13)

Notice that demanding the third expression in (5.13) to be free of divergences in the ε→ 0
limit automatically ensures that the second expression is also divergence-free if we take

Zfm = Zζ , (5.14)

or equivalently, fm = fm
ζ ζ. Assuming this equality, we can rewrite the first and third

expressions in (5.13) as given below:

Γ(4)
11 +Γ(4)

22
2α =

C0+(CE)2


Zfpfp−16π2αCI

(
Z2
fp
f2
p−Z2

ζ (f2
m+ζ2)

)
1−32π2αCIZfpfp+(16π2αCI)2

(
Z2
fp
f2
p−Z2

ζ (f2
m+ζ2)

)

 ,

Γ(4)
12
α

= ζ

(CE)2

 Zζ

1−32π2αCIZfpfp+(16π2αCI)2
(
Z2
fp
f2
p−Z2

ζ (f2
m+ζ2)

)

 .

(5.15)
Zfp and Zζ are determined by demanding that the quantities within brackets in the above
expressions are free of divergences in the ε → 0 limit. Apart from depending on Zfp and
Zζ , these quantities are functions of λ, h, fp and (f2

m + ζ2). Since Zfp and Zζ are chosen
in the MS scheme such that they just cancel the overall divergences in these quantities,
they must also be functions of λ, h, fp and (f2

m + ζ2). So, to summarize, the planar vertex
renormalizations Zfp , Zfm and Zζ depend on the different couplings as shown below:

Zfp = Zfp(λ, h, fp, f2
m + ζ2), Zfm = Zζ = Zζ(λ, h, fp, f2

m + ζ2). (5.16)
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From the planar vertex and wave function renormalizations, we can now evaluate the
planar beta functions of the different double trace couplings. As derived in appendix G,
these beta functions are given by

βf1 = f1
∑
A

κA
∂

∂κA
Res

[
Zf1 − 2ZΦ1

]
= f1

∑
A

κA
∂

∂κA
Res

[
Zf1 − 2ZΦ

]
,

βf2 = f2
∑
A

κA
∂

∂κA
Res

[
Zf2 − 2ZΦ2

]
= f2

∑
A

κA
∂

∂κA
Res

[
Zf2 − 2ZΦ

]
,

βζ = ζ
∑
A

κA
∂

∂κA
Res

[
Zζ − ZΦ1 − ZΦ2

]
= ζ

∑
A

κA
∂

∂κA
Res

[
Zζ − 2ZΦ

]
.

(5.17)

Here, Res[· · · ] indicates the residue of the quantity within the brackets at the ε = 0 pole.
κA runs over the couplings λ, h, f1, f2 and ζ. The derivatives in the above expressions have
to be computed on the subspace h = h0 and λ = λ0. The second equality in each line
of (5.17) relies on the fact that ZΦ1 = ZΦ2 = ZΦ when λ1 = λ2 = λ and h1 = h2 = h.

Now, let us use differentiation by parts to rewrite the above expressions of βf1 and βf2 as

βf1 =
(∑

A

κA
∂

∂κA
− 1

)
Res

[
f1Zf1 − 2f1ZΦ

]
,

βf2 =
(∑

A

κA
∂

∂κA
− 1

)
Res

[
f2Zf2 − 2f2ZΦ

]
,

(5.18)

Here we have also used the fact that the action of the operator ∑
A
κA

∂
∂κA

on fi is triv-

ial. From these expressions, we can obtain the planar beta functions of fp = f1+f2
2 and

fm = f1−f2
2 as given below:

βfp =
(∑

A

κA
∂

∂κA
− 1

)
Res

[
fpZfp − 2fpZΦ

]
,

βfm =
(∑

A

κA
∂

∂κA
− 1

)
Res

[
fmZfm − 2fmZΦ

]
.

(5.19)

Now, using differentiation by parts once more, we can rewrite the above expressions as

βfp = fp
∑
A

κA
∂

∂κA
Res

[
Zfp − 2ZΦ

]
,

βfm = fm
∑
A

κA
∂

∂κA
Res

[
Zfm − 2ZΦ

]
.

(5.20)

By comparing the expressions of βfm and βζ in (5.20) and (5.17) respectively, and by using
the fact that Zfm = Zζ , we get

βfm = fm
ζ
βζ . (5.21)
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This means that the equations obtained by setting all the planar beta functions to zero
(with the condition ζ 6= 0) are degenerate. The corresponding degenerate fixed points
satisfy the following two equations:

fp
∑
A

κA
∂

∂κA
Res

[
Zfp − 2ZΦ

]
= 0,

∑
A

κA
∂

∂κA
Res

[
Zζ − 2ZΦ

]
= 0.

(5.22)

Notice that the residues in the above equations are functions of λ, h, fp and (f2
m + ζ2).

Moreover, the operator ∑A κA
∂
∂κA

acting on these residues takes the following form:

∑
A

κA
∂

∂κA
= λ0

∂

∂λ
+ h0

∂

∂h
+ fp

∂

∂fp
+ 2

(
f2
m + ζ2

) ∂

∂(f2
m + ζ2) . (5.23)

Therefore, we can see that the two equations in (5.22) are essentially two functions of fp
and (f2

m + ζ2) set equal to zero.60 From the analysis of 2-loop beta functions, we have
already seen that there are perturbatively reliable solutions of these equations. These solu-
tions correspond to the fixed circles in the double bifundamental models. Here we can see
that the entire effect of the higher loop corrections is to modify the location of the plane
on which the fixed circle lies61 and the radius of the circle.62

Thus, we have proved the survival of the fixed circles in the double bifundamental
models under all loop corrections in the planar limit. As a result, we can conclude that
all the points on this circle which demonstrate thermal order are genuine CFTs in this
limit. Therefore, the respective baryon symmetries in these theories remain broken up to
arbitrarily high temperatures and the systems exist in a persistent BEH phase.

6 Conclusion and discussion

In this paper we studied the possibility of spontaneous breaking of global symmetries at
nonzero temperatures for large N conformal gauge theories in D = 4 space-time dimensions.
We started with some familiar QCD models, viz., QCDs with SO(Nc) and SO(Nc)×SO(Nc)
gauge symmetries. The matter contents of these theories consist of Majorana fermions in
the fundamental representation of the SO(Nc)’s, and real scalar fields transforming in the
fundamental/bifundamental representation of the gauge group. By analyzing the beta
functions of the different couplings in the Nc → ∞ limit, we determined the Banks-Zaks-
like fixed points in these models. We showed that the conformal theories at these fixed
points fail to demonstrate spontaneous breaking of certain global symmetries (a flavor
symmetry for the vector model and a Z2 baryon symmetry for the bifundamental model)
at nonzero temperatures.

60The values of λ and h in these equations are set to λ0 and h0.
61This plane is determined by λ0, h0 and the value of fp obtained by solving the equations in (5.22).
62The radius of the fixed circle is determined by the value of (f2

m + ζ2) obtained by solving the equations
in (5.22).

– 52 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
3

We then extended these models by taking two copies of the bifundamental scalar QCD
(with ranks Nc1 and Nc2) and coupling them via a double trace interaction. We called this
the ‘real double bifundamental model’. Both by direct perturbative computations up to
2-loops as well as general diagrammatic arguments at all orders in the ’t Hooft couplings,
we showed that this model has the following interesting property: Within the domain of
validity of perturbation theory, the planar beta functions of the different couplings yield a
conformal manifold with the topology of a circle.

Let us emphasize here that the proof of the existence of the conformal manifolds in the
double bifundamental models at the planar limit in section 5 is largely model-independent.
So it can be used to generate similar families of models with conformal manifolds. One such
family would be models where there are two similar large N QFTs T1 and T2, each having
a single matrix-valued scalar Φi, with only a double trace interaction between them.63
For example, when the gauge groups in each theory are products of SU(N)’s or SO(N)’s,
and the scalar fields are in either the adjoint, the symmetric, the anti-symmetric or the
bifundamental representations of the gauge groups, then Tr(Φ†1Φ1) Tr(Φ†2Φ2) can be such
a double trace interaction coupling the two theories. It would be interesting to investigate
other variants as well, for example, models with multiple double trace interactions between
two similar large N QFTs.

Let us now return back to the real double bifundamental model. For the fixed points
lying on the above-mentioned manifold, we explored the possibility of spontaneous breaking
of global symmetries at nonzero temperatures. We found that such a symmetry breaking
indeed occurs in certain parameter regimes. The relevant symmetries here are two Z2
baryon symmetries, one for each sector. We found that in the zero temperature limit, i.e.,
in the ground state, both these symmetries remain unbroken. Moreover, in this limit, the
effective potential of the scalar fields steadily increases as one moves away from the origin
in the field space along any direction. This is in contrast with the models discussed in [1, 2]
where, in the planar limit, a flat direction of the potential in the field space allowed for
nonzero vacuum expectation values of the fields which led to the spontaneous breaking of
scale invariance. This also made it possible to spontaneously break global O(N) symmetries
in these models even at zero temperature. Here nothing of that sort happens due to the
absence of such flat directions of the effective potential.

When a temperature is turned on, the scalar fields in this model pick up thermal
masses. If the square of any of these masses is negative, then the minimum of the thermal
effective potential64 lies away from the origin in the field space which leads to nonzero
expectation values of the scalar fields. This, in turn, means that at least one of the
Z2 baryon symmetries is broken in such a thermal state. Thus, to determine whether
these baryon symmetries are spontaneously broken at nonzero temperatures for the points
lying on the conformal manifold, one just needs to evaluate the thermal masses at these

63Here, we assume that no other interaction between T1 and T2 is generated along the RG flow. We
thank Ofer Aharony for suggestions on this issue.

64In computing the thermal effective potential we have included the microscopic fields. Due to the matter
content which does not permit a deconfining phase transition, we have no evidence for the existence of light
non-perturbative degrees of freedom to be included in the calculation of the potential.
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points. We analysed these thermal masses and made the following observations which
constitute the main results of the paper: When Nc2 < Nc1, the baryon symmetry in the
first sector is always unbroken. On top of this, when the ratio r ≡ Nc2

Nc1
≤
√

6
√

6−13
61−6

√
6 , then

the baryon symmetry in the second sector is spontaneously broken at all temperatures for
a certain subset of points on the conformal manifold. Along with this symmetry-breaking,
half of the gauge bosons in the second sector are Higgsed.65 Thus, the system exists in
a persistent Brout-Englert-Higgs (BEH) phase at all temperatures for such fixed points.
Exactly analogous features hold when Nc1 < Nc2.

In addition to observing the above features in the real double bifundamental model,
we also studied a closely related model which we called the ‘complex double bifundamental
model’. This model again has two sectors each of which is symmetric under the gauge
group SU(Nci) × SU(Nci). The matter content in each sector consists of Dirac fermions
transforming in the fundamental representation of the individual SU(Nci)’s in that sec-
tor, and a set of complex scalar fields transforming in the bifundamental representation
of SU(Nci) × SU(Nci). Here, the global symmetries of our interest are two U(1) baryon
symmetries, one for each sector. The analysis of the spontaneous breaking of these symme-
tries was considerably simplified by a perturbative planar equivalence between this model
and the real double bifundamental model with ranks 2Nc1 and 2Nc2 in the two sectors.
This equivalence allowed us to extend all the features of the real double bifundamental
model discussed above to the complex double bifundamental model. Thus, this model
demonstrates both a conformal manifold in the planar limit as well as the spontaneous
breaking of one of the baryon symmetries at nonzero temperatures for a subset of points
on this manifold when the ranks of the two sectors are sufficiently different. Just like be-
fore, the breaking of the baryon symmetry is accompanied by a persistent BEH phase at
all temperatures.

Here, let us briefly comment on the fact that the persistence of thermal order in our
models66 does not contradict the standard results in the AdS/CMT literature predicting
symmetry-restoration in holographic CFTs [26–28]. In these works, symmetry breaking
was examined by analyzing charged scalar hairs on the AdS side. These hairs correspond
to order parameters which are expectation values of gauge invariant operators with O(1)
scaling dimensions in the dual CFT. In our case, the order parameter for the Z2 or the U(1)
symmetry is the expectation value of the determinant of the scalar fields which has an O(N)
scaling dimension. Hence, these symmetries are baryon-like. In AdS/CFT correspondence,
the dual of such a baryon-like operator is interpreted as a wrapped Euclidean D-brane in
the AdS bulk which has a point-like intersection with the boundary [83–85]. In a given
supergravity background, the expectation value of such an operator can be obtained from
a regularized partition function evaluated by summing over all possible configurations of
the D-brane satisfying appropriate boundary conditions [86–88]. It would be interesting to

65It was pointed out in [81, 82] that in certain cases thermal perturbation theory is challenged by IR
problems. What we can add here is that for those gauge particles which gain a perturbative mass, the mass
is of order

√
λT which for weak coupling is larger than λT . This value shields perturbation theory from

the problems which could have been posed by those particles.
66We have not yet determined whether these models have holographic duals.
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see whether it is possible to violate the no-hair theorem for black holes by obtaining baryon
hairs in the bulk via the above prescription. Such baryon hairs would then correspond to
spontaneously broken baryonic symmetries in thermal states of the dual CFT.

Let us now end with a discussion on how the above-mentioned features of the double
bifundamental models may be affected when corrections due to finiteness of Nc1 and Nc2
are taken into account. To analyze this, we have studied how the fixed points for the real
double bifundamental model are modified by finite Nci corrections in appendix H. There
we have taken the two ranks to be of comparable magnitudes, say O(N) with N being a
large number. We have worked in a regime where 1

N �’t Hooft couplings. In this regime,
for each order in 1

N , one can expand the corresponding terms in the beta functions about
the fixed points at the planar limit in powers of the ’t Hooft couplings. Since we have the
explicit expressions of these beta functions only up to 2-loops, we have been able to study
the O

(
1
N

)
corrections to the beta functions only up to the first subleading terms in such

an expansion. This analysis shows that the degeneracy in the fixed points is not lifted if
the ratios xf1 ≡

Nf1
Nc1

and xf2 ≡
Nf2
Nc2

are tuned appropriately. Under such a fine-tuning, the
closed curve of fixed points remains on a plane in the space of couplings. However, when
the ranks of the two sectors are unequal, its shape is deformed away from the circular form
that we found in the planar limit. In addition to these observations, we have also looked
at the leading order terms in the expansion of the O

(
1
N2

)
terms. For these terms, we have

found the degeneracy in the fixed points to again survive under appropriate fine-tuning
of xf1 and xf2. It would be interesting to see if the above-mentioned features persist up
to all orders under suitable constraints on xf1 and xf2. One way to check this may be
to re-sum the series expansions of the beta functions in powers of the ’t Hooft couplings
(as we have done in section 5 at the planar limit), and then systematically consider the
subleading terms in the 1

N -expansion.67 Even if the degeneracy in the fixed points is lifted
at higher orders, there may be isolated fixed points which survive under finite N corrections
after such re-summations. It would be interesting to see if any of the large N fixed points
that demonstrate thermal order survive under such finite N corrections. We would like to
resolve this issue in the future.
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A Baryon symmetry in the bifundamental scalar QCD

In this appendix, we will show that the Z2 transformation given in (2.19) is indeed a global
symmetry of the Lagrangian of the bifundamental scalar QCD. We will also show that
this symmetry can be interpreted as an automorphism of the set of equivalence classes of
field configurations, where each class comprises of gauge-equivalent configurations. The
analysis presented here can be extended in a straightforward way to derive similar results
for the baryon symmetries in the double bifundamental models.

Let us first show the invariance of the Lagrangian given in (2.16) under the afore-
mentioned Z2 transformation. For the convenience of the reader, we provide the form of
this Lagrangian below:68

LBifund = −1
2

2∑
α=1

Tr
[
(Fα)µν(Fα)µν

]
+ i

2ψ
(p)( /Dψ(p)) + i

2χ
(p)( /Dχ(p)) + 1

2Tr
[(
DµΦ

)T
DµΦ

]

− h̃Tr
[
ΦTΦΦTΦ

]
− f̃Tr

[
ΦTΦ

]
Tr
[
ΦTΦ

]
. (A.1)

Now, let us see how each term in the above Lagrangian transforms under the transforma-
tions given in (2.19). To be specific, we will set a = 1 in these transformations. These
transformations can be written more compactly as

Φ→ T Φ,
ψ(p) → T ψ(p) ∀ p ∈ {1, · · · , Nf},

(V1)µ → T (V1)µT −1,

(A.2)

where T is an Nc ×Nc diagonal matrix of the following form:

T ≡ diag{−1, 1, · · · , 1}. (A.3)

The terms −1
2Tr

[
(F2)µν(F2)µν

]
and i

2χ
(p)( /Dχ(p)) are clearly invariant as the Z2 transfor-

mation acts trivially on the fields appearing in these terms. The quartic interaction terms
are also manifestly invariant as (ΦTΦ) remains unchanged under the transformation. So
we just need to check the invariance of the terms −1

2Tr
[
(F1)µν(F1)µν

]
, i

2ψ
(p)( /Dψ(p)) and

1
2Tr

[(
DµΦ

)T
DµΦ

]
. For this, we can first obtain the transformations of the field strength

(F1)µν and the covariant derivatives of ψ(p) and Φ as follows:

(F1)µν → T (F1)µνT −1, Dµψ
(p) → T Dµψ

(p), DµΦ→ T DµΦ. (A.4)
68Here (Fα)µν is the field strength corresponding to the gauge field (Vα)µ which is an imaginary-valued

anti-symmetric Nc ×Nc matrix. Just like the scalar field Φ and the gauge field (Vα)µ, this field strength is
also an Nc × Nc matrix. We take the fermionic fields (ψ(p) and χ(p)) of each flavor to be column vectors
with Nc components.
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From these transformations we can then derive the invariance of the above-mentioned terms
as shown below:

−1
2Tr

[
(F1)µν(F1)µν

]
→ −1

2Tr
[
T (F1)µν(F1)µνT −1

]
= −1

2Tr
[
(F1)µν(F1)µν

]
,

i

2ψ
(p)( /Dψ(p))→ i

2ψ
(p)T †T ( /Dψ(p)) = i

2ψ
(p)( /Dψ(p)),

1
2Tr

[(
DµΦ

)T
DµΦ

]
→ 1

2Tr
[(
DµΦ

)T
T TT DµΦ

]
= 1

2Tr
[(
DµΦ

)T
DµΦ

]
.

(A.5)

Here, we have used the fact that T † = T T = T −1. This conclusively demonstrates the
invariance of the Lagrangian under the Z2 transformation.

Now, let us show that this Z2 transformation is an automporhism of a set of classes
of gauge-equivalent field configurations. For this, it is necessary and sufficient to demon-
strate that performing the Z2 transformation over a gauge transformation is equivalent to
performing another gauge transformation over the Z2 transformation. To prove this state-
ment, let us consider a gauge transformation O1×O2 ∈ SO(Nc)×SO(Nc) which transforms
the fields as follows:

Φ′ = O1ΦOT2 ,
(ψ(p))′ = O1ψ

(p), (χ(p))′ = O2χ
(p) for p ∈ {1, · · ·Nf},

(Vα)′µ = Oα(Vα)µOTα −
i

g
(∂µOα)OTα for α ∈ {1, 2}.

(A.6)

Now, if we act T on the above configurations, we get

T Φ′= T O1ΦOT2 = (T O1T −1)(T Φ)OT2 ,
T (ψ(p))′= T O1ψ

(p) = (T O1T −1)(T Ψ(p)),

T (V1)′µT −1 = T O1(V1)µOT1 T −1− i
g
T (∂µO1)OT1 T −1

= (T O1T −1)(T (V1)µT −1)(T OT1 T −1)− i
g

(
∂µ(T O1T −1)

)
T OT1 T −1

= (T O1T −1)(T (V1)µT −1)(T O1T −1)T− i
g

(
∂µ(T O1T −1)

)
(T O1T −1)T ,

(A.7)

while (χ(q))′ and (V2)′µ are left invariant. In deriving the last line of the above equations
we have used the fact that T T = T −1 and OT1 = O−1

1 .
From the above expressions we can clearly see that the overall transformation can be

obtained by first acting the Z2 global transformation on the original fields and then perform-
ing a gauge transformation by (T O1T −1)×O2.69 This means that the Z2 transformation
maps two configurations related by a gauge transformation to two other configurations
which are also related by a gauge transformation. This completes the proof of the state-
ment that the Z2 symmetry is an automorphism of the set of classes of gauge-equivalent
configurations in the model.

69The fact that this is a gauge transformation can be verifed by checking that T O1T −1 is an orthogonal
matrix and det

[
T O1T −1

]
= 1.
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B Two-loop beta functions of QCD

In this appendix we will review the two-loop beta functions in a general QCD without any
Yukawa interaction. We will mainly follow the presentation of [90, 91] where the authors
employed dimensional regularization and the modified minimal subtraction (MS) scheme.
We refer the reader also to [92] for the detailed forms of such two-loop beta functions.

Let us consider a general QCD Lagrangian (without Yukawa interaction) of the fol-
lowing form:70

LQCD =−1
4F

A
µνF

A
µν+ 1

2DµφaDµφa+iκψ†j /Dψj−
1
4!λabcdφaφbφcφd+ mass terms, (B.1)

where κ = 1
2 for Majorana fermions and κ = 1 for Dirac fermions. FAµν is the field strength

corresponding to a gauge field V A
µ associated with an arbitrary compact semi-simple Lie

group G. {φa} and {ψj} are sets of scalars and fermions respectively, and we denote the
representation in which they transform under the gauge group by S and F respectively.
We choose the scalars to be real and take the couplings λabcd to be fully symmetric under
permutation of indices. Note that the indices a and j may contain both gauge and flavor
indicies. The matter and the gauge sectors are coupled through the covariant derivatives

Dµφa ≡ ∂µφa − igV A
µ

(
TA(S)

)
ab
φb,

Dµψj ≡ ∂µψj − igV A
µ

(
TA(F )

)
jk
ψk,

(B.2)

where TA(S) and TA(F ) are the generators of the gauge group in the representations S and
F . Calculation of the beta functions in such a theory largely reduces to a determination
of various group theoretical quantities associated with the representations S, F and the
G, and different combinations of the quartic couplings λabcd. When G is not simple,
there are several subtleties in the evaluation of the group theoretical invariants because of
diagrammatic reasons. We will discuss these subtleties in the following subsections.

B.1 Gauge couplings

The two-loop beta function for the gauge coupling g in the general QCD Lagrangian (B.1)
is as follows:

βg ≡
dg

d lnµ

=− g3

(4π)2

{11
3 C2(G)− 4

3κS2(F )− 1
6S2(S)

}
− g5

(4π)4

{34
3 C2(G)2−κ[4C2(F )+ 20

3 C2(G)]S2(F )−[2C2(S)+ 1
3C2(G)]S2(S)

}
.

(B.3)

70Just as in the main text, we suppress the gauge-fixing and ghost terms here as well. At the two-loop
level, ghost terms affect the beta functions of quartic couplings through wave function renormalization of
the gauge and scalar propagators. On the other hand, the beta functions are independent of the gauge
fixing term as they should be.
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Figure 11. Set of two-loop diagrams contributing to βg which is affected by substitution rules for
the semi-simple gauge group. We follow a standard convention where the solid line, the dotted line
and the wavy line correspond to the fermions, the scalars and the gluons respectively.

The first and second line in the above expression correspond to the one-loop and two-
loop contributions. The quantities C2(R) and S2(R) are the quadratic Casimir and the
second Dynkin index respectively of the representation R (G corresponds to the adjoint
representation). Note that there is no contribution from the quartic couplings at this order.
Equation (B.3) is valid for any simple gauge group. For a general semi-simple gauge group
G = ∏

iGi with independent gauge coupling gi for each simple Gi, one has to modify this
equation to obtain the beta function of gi by the following substitutions:

g3C2(G)→ g3
iC

i
2(G),

g3S2(R)→ g3
i S

i
2(R)

g5[C2(G)]2 → g5
i [Ci2(G)]2

g5C2(G)S2(R)→ g5
iC

i
2(G)Si2(R)

g5C2(R)S2(R)→
∑
j

g3
i g

2
jC

j
2(R)Si2(R),

(B.4)

where Ci2(R) and Si2(R) denote the quadratic Casimir and the Dynkin index of the repre-
sentation R corresponding to the simple Lie group Gi. While employing these rules, one
should consider only the matter and the gauge fields that transform nontrivially under the
group Gi.

The above substitution rules can be understood diagrammatically (see figure 11) when
we decompose the semi-simple gauge field into the direct sum of simple gauge fields as
V A
µ TA(S)→ (Vi)AµT iA(S), V A

µ TA(F )→ (Vi)AµT iA(F ).

B.2 Quartic couplings

One-loop. The contribution of one-loop diagrams to the beta function of the quartic
coupling λabcd is

β1-loopabcd ≡ dλabcd
d lnµ = 1

(4π)2

{
Λ2
abcd − 3g2ΛSabcd + 3g4Aabcd

}
, (B.5)

where the group invariants Λ2
abcd,ΛSabcd, Aabcd are defined as follows:

Λ2
abcd = 1

8
∑
perm

λabefλefcd, ΛSabcd =
∑

k=a,b,c,d
C2(k)λabcd,

Aabcd = 1
4
∑
perm
{Λac,efΛef,bd + Λae,fdΛeb,cf} with Λab,cd ≡

(
TA(S)

)
ac

(
TA(S)

)
bd
.

(B.6)
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(a) Λ2
abcd (b) ΛSabcd (c) Aabcd

Figure 12. One-loop contributions to the running of quartic couplings with corresponding group
factors e.g. in the Landau gauge.

Here, ‘perm’ denotes all possible permutations of the indicies {a, b, c, d}. C2(k) is the
quadratic Casimir of the representation in which the scalar k transforms under the gauge
group. The diagrammatic interpretation of each term is straightforward: Λ2

abcd and Aabcd
come from one-particle irreducible vertices made of two quartic and two gauge interaction
vertices respectively, while ΛSabcd comes from the one-loop anomalous dimension of each
external scalar propagators (see the diagrams in figure 12). When the gauge group is semi-
simple, we need to do the following two substitutions in the expressions of the 1-loop beta
functions:

g2ΛSabcd →
∑
i

g2
i (ΛS)iabcd,

g2Λab,cd →
∑
i

g2
i (Λ)iab,cd,

(B.7)

where (ΛS)iabcd and (Λ)iab,cd are given by

(ΛS)iabcd ≡
∑

k=a,b,c,d
Ci2(k)λabcd, (Λ)iab,cd ≡

(
T iA(S)

)
ac

(
T iA(S)

)
bd
. (B.8)

Based on the above substitution rules, we find it convenient to define

(A)ijabcd ≡
1
4
∑
perm

{
(Λ)iac,ef (Λ)jef,bd + (Λ)iae,fd(Λ)jeb,cf

}
. (B.9)

Then the substitution rule for the last term in (B.5) is as follows:

g4Aabcd →
∑
i,j

g2
i g

2
j (A)ijabcd. (B.10)

Two-loop. More complicated structures arise at the level of two-loop diagrams where 11
different types of combinations contribute to the beta functions:

(4π)4β2-loopabcd = 1
2
∑
k

Λ2(k)λabcd−Λ3
abcd+g2

(
2Λ2S

abcd−6Λ2g
abcd

)
−g4

{[35
3 C2(G)− 10

3 κS2(F )− 11
12S2(S)

]
ΛSabcd−

3
2ΛSSabcd−

5
2A

λ
abcd−

1
2A

λ
abcd

}
+g6

{[161
6 C2(G)− 32

3 κS2(F )− 7
3S2(S)

]
Aabcd−

15
2 A

S
abcd+27Agabcd

}
.

(B.11)
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Here the new group factors are defined as follows:

Λ2(k) = 1
6λkcdeλkcde, Λ3

abcd = 1
4
∑
perms

λabefλceghλdfgh,

Λ2S
abcd = 1

8
∑
perm

(
C2(S)

)
fg
λabefλcdeg, Λ2g

abcd = 1
8
∑
perms

λabefλcdgh
(
TA(S)

)
eg

(
TA(S)

)
fh
,

ΛSSabcd =
∑
k

C2(k)2λabcd, Aλabcd = 1
4
∑
perms

λabef{TA(S), TB(S)}ef{TA(S), TB(S)}cd,

A
λ
abcd = 1

4
∑
perms

λabef{TA(S), TB(S)}ce{TA(S), TB(S)}df , ASabcd =
∑
k

C2(k)Aabcd,

Agabcd = 1
8f

ACEfBDE
∑
perms

{TA(S), TB(S)}ab{TC(S), TD(S)}cd. (B.12)

Here,
(
C2(S)

)
fg
≡
(
TA(S)TA(S)

)
fg
, and fABC ’s denote the structure constants of the

gauge group.
For the semi-simple gauge group G = ∏

iGi, the following additional substitution rules
are necessary because of the internal gluon loops:

g2C2(R)→
∑
i

g2
iC

i
2(R),

g4C2(G)C2(R)→
∑
i

g4
iC

i
2(G)Ci2(R),

g4C2(R1)S2(R2)→
∑
i

g4
iC

i
2(R1)Si2(R2),

g4C2(R1)C2(R2)→
∑
i,j

g2
i g

2
jC

i
2(R1)Cj2(R2),

g6S2(R)Aabcd →
∑
i,j

g4
i g

2
jS

i
2(R)(A)ijabcd,

g6C2(G)Aabcd →
∑
i,j

g4
i g

2
jC

i
2(G)(A)ijabcd,

g6C2(R)Aabcd →
∑
i,j,k

g2
i g

2
j g

2
kC

k
2 (R)(A)ijabcd,

g6Agabcd →
∑
i

g6
i (Ag)iabcd,

(B.13)

where (Ag)iabcd refers to the invariant Agabcd defined in (B.12) for the simple factor Gi. Note
that the substitution rules for g2Λ2g

abcd, g4Aλabcd and g4A
λ
abcd can be obtained from the rule

already given in the second line of (B.7).
Next we outline the diagrammatic origin of the different group theoretical contributions

to the running of two-loop quartic couplings. For simplicity, we work in the Landau gauge.
1
2
∑
k Λ2(k)λabcd, −Λ3

abcd. This first contribution comes from the two-loop anomalous
dimension of the scalar propagators as shown in the figure 13a. The second contribution is a
genuine 1-PI contribution to the quartic vertex as shown in the figure 13b. No substitution
rule is required since there is no gluon propagator.
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(a) (b)

Figure 13. (quartic3) contributions to the two-loop beta function of quartic couplings.

(a) (b) (c) (d)

Figure 14. (quartic2 · gauge2) contributions to the two-loop beta function of quartic couplings.

2Λ2S
abcdg

2, −6Λ2g
abcdg

2. These terms came from all possible insertions of a single gluon
propagator to the one-loop quartic 1-PI diagram in the figure 12a as shown in the figure 14.
The required substitution rules are g2Λab,cd →

∑
i g

2
i (Λ)iab,cd and g2C2(R) → ∑

i g
2
iC

i
2(R)

to take account all possible gluon propagators.

−g4
{[

35
3 C2(G)− 10

3 κS2(F )− 11
12S2(S)

]
ΛS
abcd−

3
2ΛSS

abcd

}
. This factor comes from the

g4 contribution to the two-loop anomalous dimension of the scalar propagator where the
corresponding 8 feynman diagrams are given in the figure 1 of [90]. The required substitu-
tion rules are

g4C2(G)C2(R)→
∑
i

g4
iC

i
2(G)Ci2(R),

g4C2(R1)S2(R2)→
∑
i

g4
iC

i
2(R1)Si2(R2),

g4C2(R1)C2(R2)→
∑
i,j

g2
i g

2
jC

i
2(R1)Cj2(R2)

to cover all possible gluons inside a scalar propagator together with all possible matter
contribution to the gluon propagator.

5
2A

λ
abcdg

4, 1
2A

λ
abcdg

4. The first term comes from the diagrams 15a ∼ 15d in figure 15,
and the second term originates from 15e. The required substitution rules are to reflect
the fact that each gluon propagator has semi-simple indices corresponding to the simple
factors {Gi}.[

161
6 C2(G)− 32

3 κS2(F )− 7
3S2(S)

]
Aabcdg

6, −15
2 A

S
abcdg

6, 27Agabcdg6. These three
terms come solely from the cubic or quartic gauge interaction vertices. The four Feynman
diagrams shown in figure 16 generate these terms. The first diagram 16a generates Aabcd
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(a) (b) (c)

(d) (e)

Figure 15. (quartic · gauge4) contributions to the two-loop beta function of quartic couplings.

(a) (b) (c)

(d)

Figure 16. (gauge6) contributions to the two-loop beta function of quartic couplings.

and one needs to use the substitution rules

g6S2(R)Aabcd →
∑
i,j

g4
i g

2
jS

i
2(R)(A)ijabcd

because of the semi-simple index for the gluon lines and the corresponding one-loop inser-
tions. The second and the third diagrams (16b and 16c) generate Agabcd and correspond
to addition of the gluon propagator in the figure 12c. Hence, all the gluons should belong
to the same node Gi, which is reflected in the substitution rule g6Agabcd →

∑
i g

6
i (Ag)iabcd.

Finally, the fourth diagram 16d generates all three group invariants. While extending
ASabcd to the corresponding invariant for a semi-simple gauge group, one should use the
substitution rules for Aabcd and C2(R) introduced earlier.
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B.3 QCD with fundamental scalars/bifundamental scalar QCD

Let us now apply the formalism of B.1, B.2 to evaluate the two-loop beta function of the
gauge coupling and the one-loop beta functions of the quartic couplings for the two models
described in the section 2.1.

QCD with fundamental scalars. The model of QCD with fundamental scalars is made
of SO(Nc) Yang-Mills gauge fields with Nf flavors of massless Majorana fermions and Ns

flavors of massless real scalars transforming in the fundamental representation of the gauge
group. Its renormalized Lagrangian is

LVector = −1
4F

A
µνF

µνA + i

2ψ
(p)
a ( /Dψ(p))a + 1

2
(
Dµφ

(p)
)
a

(
Dµφ(p)

)
a

− h̃φ(p)
a φ

(p)
b φ

(q)
b φ(q)

a − f̃φ(p)
a φ(p)

a φ
(q)
b φ

(q)
b .

(B.14)

To evaluate the beta functions of the different couplings, we need to identify the symmetric
couplings and the generators of the gauge group in the representation of the scalar fields.
These are given in (2.3) and (2.12) respectively. In addition, we need the quadratic Casimirs
and the Dynkin indices of the different representations which are given below:

C2(F ) = Nc − 1
4 , C2(S) = Nc − 1

4 , C2(G) = Nc − 2
2 ,

S2(F ) = Nf

2 , S2(S) = Ns

2 , S2(G) = Nc − 2
2 .

(B.15)

Now, using these, we can evaluate the 2-loop beta function of the gauge coupling from (B.3),
and the 1-loop beta function of the quartic couplings from (B.5). We provide the forms of
these beta functions below in terms of the ’t Hooft couplings (λ, h and f) defined in (2.4):

βλ =−
(22−4xf−xs

6 − 22
3Nc

)
λ2+

(13xf+4xs−34
6 − 23xf+5xs−136

6Nc
− 68

3N2
c

)
λ3,

β1-looph = 96fh
N2
c xs

+h2
( 32
Nc

+8xs+8
)

+hλ
( 3
Nc
−3
)

+λ2
( 3

32−
3

16Nc

)
, (B.16)

β1-loopf = f2
( 64
N2
c xs

+8
)

+fh
( 16
Nc

+16xs+16
)

+24h2xs+fλ
( 3
Nc
−3
)

+ 3λ2xs
32 ,

where xf,s ≡ Nf,s/Nc.

Bifundamental scalar QCD. The bifundamental scalar QCD is made of SO(Nc) ×
SO(Nc) semi-simple gauge group with two sets of Majorana fermions, ψ(p) and χ(p), each
of which consists of Nf flavors and transforms in the fundamental representation of one
of the SO(Nc)’s while remaining a singlet under the other SO(Nc). In addition, there is
an Nc × Nc matrix of scalar fields denoted by Φ which transforms in the bifundamental
representation of the gauge group. The renormalized Lagrangian of this model is

LBifund = −1
4

2∑
α=1

(Fα)Aµν(Fα)µνA + i

2ψ
(p)
a ( /Dψ(p))a + i

2χ
(p)
i ( /Dχ(p))i + 1

2Tr
[(
DµΦ

)T
DµΦ

]

− h̃Tr
[
ΦTΦΦTΦ

]
− f̃Tr

[
ΦTΦ

]
Tr
[
ΦTΦ

]
. (B.17)
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As explained in B.1 and B.2, for computing the beta functions of the different couplings,
we need to use (B.3), (B.5) with appropriate substitution rules to take into account the
different internal gluon lines corresponds to the each simple gauge group. The diagrams
responsible for these rules are given in figure 11 for the two-loop βλ and figure 12 for the one-
loop βf,h. The necessary ingredients to compute these beta functions are the symmetric
couplings and the generators given in (2.18) and (2.26) respectively, and the quadratic
Casimirs and the second Dynkin indices of the different representations. We provide these
quadratic Casimirs and Dynkin indices below:

Cα2 (F ) = Nc − 1
4 , Cα2 (S) = Nc − 1

4 , Cα2 (G) = Nc − 2
2 ,

Sα2 (F ) = Nf

2 , Sα2 (S) = Nc

2 , Sα2 (G) = Nc − 2
2 ,

(B.18)

where the superscript α distinguishes the two SO(Nc)’s. Using these ingredients, we can
compute the beta functions for the case where the gauge couplings g1 and g2 corresponding
to the two SO(Nc)’s are equal (say, g). We provide the forms of these beta functions below
in terms of the ’t Hooft couplings (λ, h and f) defined in (2.21):

βλ = −
(21− 4xf

6 − 22
3Nc

)
λ2 +

(13xf − 27
6 − 23xf − 128

6Nc
− 68

3N2
c

)
λ3,

β1-looph = 96fh
N2
c

+ h2
( 32
Nc

+ 16
)

+ hλ

( 6
Nc
− 6

)
+ λ2

( 3
16 −

3
4Nc

)
,

β1-loopf = f2
( 64
N2
c

+ 8
)

+ fh

( 16
Nc

+ 32
)

+ 24h2 + fλ

( 6
Nc
− 6

)
+ 9λ2

16 ,

(B.19)

where xf = Nf
Nc

.

C Beta functions in the real double bifundamental model

In this appendix, we will derive the beta functions of the different couplings in the real
double bifundamental model up to the contributions of 2-loop diagrams. For this, we will
use the formalism discussed in appendix B.

C.1 Beta functions of the gauge couplings (up to 2-loops)

In this model the gauge group has the following structure:

G = (G11 ×G12)× (G21 ×G22) (C.1)

where each Giγ is an orthogonal group with rank Nci. We will denote all the scalars and
fermions in the ith sector transforming nontrivially under the group Gi ≡ (Gi1 × Gi2) by
Si and Fi respectively. We will also find it useful to denote all the scalars and the fermions
in the model collectively by S and F respectively.
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The beta functions (up to 2-loops) of the gauge couplings are given by

βgi ≡µ
dgi
dµ

=− g3
i

(4π)2

{
11
3 C

iγ
2 (Gi)−

4
6S

iγ
2 (Fi)−

1
6S

iγ
2 (Si)

}

− g5
i

(4π)4

{
34
3 C

iγ
2 (Gi)2−

(
2Ciγ2 (Fi)+ 10

3 C
iγ
2 (Gi)

)
Siγ2 (Fi)−

1
3C

iγ
2 (Gi)Siγ2 (Si)

}

+ 2g3
i

(4π)4

2∑
j=1

2∑
ρ=1

g2
jC

jρ
2 (Si)Siγ2 (Si).

(C.2)

In the above expression, C2 and S2 denote the quadratic Casimir and the second Dynkin
index of the corresponding representation. The super scripts (iγ) indicate the simple Lie
group Giγ corresponding to which these quantities are computed. The values of these
quadratic Casimirs and Dynkin indices are given by Cjβ2 (Ri) = Ciβ2 (R)δji and Sjβ2 (Ri) =
Siβ2 (R)δji where

Ciβ2 (F ) = Nci − 1
4 , Ciβ2 (S) = Nci − 1

4 , Ciβ2 (G) = Nci − 2
2 ,

Siβ2 (F ) = Nfi

2 , Siβ2 (S) = Nci

2 , Siβ2 (G) = Nci − 2
2 .

(C.3)

Substituting these values in the expressions of the beta functions of the gauge couplings,
we get

βgi = − g3
i

2(4π)2

{
21Nci − 44− 4Nfi

6

}

− g5
i

2(4π)4


(
27N2

ci − 128Nci + 136
)
−
(
13Nci − 23

)
Nfi

6

 .
(C.4)

From the above expression, one can obtain the beta functions of the rescaled couplings
λi ≡

Ncig
2
i

(4π)2 which are given below:

βλi = −λ2
i

{
21− 4xfi

6 − 22
3Nci

}
− λ3

i

{
27− 13xfi

6 + 23xfi − 128
6Nci

+ 68
3N2

ci

}
. (C.5)

Here xfi ≡ Nfi
Nci

.

C.2 1-loop beta functions of the quartic couplings

Let us now evaluate the beta functions of the quartic couplings. To use the results worked
out for the 1-loop beta functions of these couplings in [91], we will introduce the following
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couplings which are symmetric under permutation of indices:

λa1i1,b1j1,c1k1,d1l1 = 4h̃1

[
δi1j1δk1l1(δa1c1δb1d1 + δa1d1δb1c1) + δi1k1δj1l1(δa1b1δc1d1 + δa1d1δb1c1)

+ δi1l1δj1k1(δa1b1δc1d1 + δa1c1δb1d1)
]

+ 8f̃1

[
δi1j1δk1l1δa1b1δc1d1 + δi1k1δj1l1δa1c1δb1d1 + δi1l1δj1k1δa1d1δb1c1

]
,

(C.6)

λa2i2,b2j2,c2k2,d2l2 = 4h̃2

[
δi2j2δk2l2(δa2c2δb2d2 + δa2d2δb2c2) + δi2k2δj2l2(δa2b2δc2d2 + δa2d2δb2c2)

+ δi2l2δj2k2(δa2b2δc2d2 + δa2c2δb2d2)
]

+ 8f̃2

[
δi2j2δk2l2δa2b2δc2d2 + δi2k2δj2l2δa2c2δb2d2 + δi2l2δj2k2δa2d2δb2c2

]
,

(C.7)
λa1i1,b1j1,c2k2,d2l2 = λa1i1,c2k2,b1j1,d2l2 = λa1i1,c2k2,d2l2,b1j1

= λc2k2,a1i1,b1j1,d2l2 = λc2k2,a1i1,d2l2,b1j1 = λc2k2,d2l2,a1i1,b1j1

= 8ζ̃δa1b1δi1j1δc2d2δk2l2 .

(C.8)

In terms of these couplings, the quartic potential of the scalar fields takes the following
form:

Vquartic = 1
4!

[
λa1i1,b1j1,c1k1,d1l1φa1i1φb1j1φc1k1φd1l1 +λa2i2,b2j2,c2k2,d2l2φa2i2φb2j2φc2k2φd2l2

+λa1i1,b1j1,c2k2,d2l2φa1i1φb1j1φc2k2φd2l2 +λa1i1,b2j2,c1k1,d2l2φa1i1φb2j2φc1k1φd2l2

+λa1i1,b2j2,c2k2,d1l1φa1i1φb2j2φc2k2φd1l1 +λa2i2,b1j1,c1k1,d2l2φa2i2φb1j1φc1k1φd2l2

+λa2i2,b1j1,c2k2,d1l1φa2i2φb1j1φc2k2φd1l1 +λa2i2,b2j2,c1k1,d1l1φa2i2φb2j2φc1k1φd1l1

]
.

(C.9)

where the summation over repeated indices is implicitly assumed.
The couplings h̃1 and f̃1, or equivalently the rescaled couplings h1 = Nc1h̃1

16π2 and f1 =
N2
c1f̃1

16π2 , appear in the expression of λa1i1,b1j1,c1k1,d1l1 . Therefore, to determine the beta
functions of h1 and f1, we will first evaluate the beta function of λa1i1,b1j1,c1k1,d1l1 . The
beta functions of h2 and f2 can be then obtained by a (1 ↔ 2) exchange in the indices.
Similarly, we will also evaluate the beta function of the rescaled coupling ζ = Nc1Nc2ζ̃

16π2 by
evaluating the same for λa1i1,b1j1,c2k2,d2l2 .
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C.2.1 Evaluation of β1-loop
hi

and β1-loop
fi

The 1-loop beta function of the coupling λa1i1,b1j1,c1k1,d1l1 , as derived in [91], is given by

(4π)2β1-loopa1i1,b1j1,c1k1,d1l1
= (Λ2)a1i1,b1j1,c1k1,d1l1 − 3

2∑
i=1

2∑
β=1

g2
i (ΛS)iβa1i1,b1j1,c1k1,d1l1

+ 3
2∑

i,j=1

2∑
β,γ=1

g2
i g

2
j (A)iβ,jγa1i1,b1j1,c1k1,d1l1

(C.10)

where

(Λ2)a1i1,b1j1,c1k1,d1l1 ≡
1
8
∑
perms

λa1i1,b1j1,eu,fvλeu,fv,c1k1,d1l1 ,

(ΛS)iβa1i1,b1j1,c1k1,d1l1
≡ 4Ciβ2 (S1)λa1i1,b1j1,c1k1,d1l1 ,

(A)iβ,jγa1i1,b1j1,c1k1,d1l1
≡ 1

4
∑
perms

(
(Λ)iβa1i1,c1k1;eu,fv(Λ)jγeu,fv;b1j1,d1l1

+ (Λ)iβa1i1,eu;fv,d1l1
(Λ)jγeu,b1j1;c1k1,fv

)
,

(C.11)

with the quantity (Λ)iβa1i1,c1k1;eu,fv defined as follows:

(Λ)iβa1i1,c1k1;eu,fv ≡
(
T iβA (S)

)
a1i1,eu

(
T iβA (S)

)
c1k1,fv

. (C.12)

Let us now briefly explain the notations used in the definition of the above objects. In
the first and third lines of (C.11), the sums are over all permutations of the indices
(a1i1, b1j1, c1k1, d1l1). In the second line, S1 denotes the scalar fields in the first sector.
They transform in the bifundemental representation of SO(Nc1) × SO(Nc1), and are in-
variant under the orthogonal transformations in the other sector. Therefore, the quadratic
Casimir Ciβ2 (S1) has the following value:

Ciβ2 (S1) = δi1

(
Nci − 1

4

)
. (C.13)

The quantities T iβA (S) in (C.12) are the generators of the representation in which the scalar
fields transform under the group Giβ . For example, the generators T 1β can be chosen to
take the following values:(

T 11
c1d1(S)

)
a1i1,b1j1

= − i2
[
δc1a1δd1b1 − δc1b1δd1a1

]
δi1j1 ,(

T 11
c1d1(S)

)
a1i1,b2j2

=
(
T 11
c1d1(S)

)
a2i2,b1j1

=
(
T 11
c1d1(S)

)
a2i2,b2j2

= 0,
(C.14)

(
T 12
k1l1(S)

)
a1i1,b1j1

= − i2
[
δk1i1δl1j1 − δk1j1δl1i1

]
δa1b1 ,(

T 12
k1l1(S)

)
a1i1,b2j2

=
(
T 12
k1l1(S)

)
a2i2,b1j1

=
(
T 12
k1l1(S)

)
a2i2,b2j2

= 0.
(C.15)

Similarly, the generators T 2β can be chosen by (1↔ 2) exchange in the indices of the above
expressions.
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Contributing term Contribution to β1-looph1
Contribution to β1-loopf1

(Λ2)a1i1,b1j1,c1k1,d1l1 16h2
1

(
1 + 2

Nc1

)
+ 96

N2
c1
h1f1 24h2

1 + 8f2
1

(
1 + 8

N2
c1

)
+ 16h1f1

(
2 + 1

Nc1

)
+ 8ζ2

−3
2∑
i=1

2∑
β=1

g2
i (ΛS)iβa1i1,b1j1,c1k1,d1l1

−6λ1h1
(
1− 1

Nc1

)
−6λ1f1

(
1− 1

Nc1

)
3

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (A)iβ,jγa1i1,b1j1,c1k1,d1l1

3λ2
1

16

(
1− 4

Nc1

) 9λ2
1

16

Table 1. Contribution of different terms to β1-loop
h1

and β1-loop
f1

.

Note that the generators T 1β
c1d1

(S) are antisymmetric under the exchange of c1 and d1.
Generators which are related by such exchanges of indices, therefore, should not be counted
as independent generators. Hence, while summing over the generators T 1β

c1d1
(S) in (C.12),

one should introduce a factor of 1
2 to count only the independent ones.

Now that we have introduced all the ingredients that go into computation of the 1-loop
beta function of λa1i1,b1j1,c1k1,d1l1 , we can evaluate the contributions of these terms to the
beta functions of h1 and f1. These contributions are enumerated in table 1.

Adding all the contributions we get

β1-looph1
= 96h1f1

N2
c1

+
(

16+ 32
Nc1

)
h2

1−
(

6− 6
Nc1

)
h1λ1+

( 3
16−

3
4Nc1

)
λ2

1, (C.16)

β1-loopf1
= 8
(

1+ 8
N2
c1

)
f2

1 +32
(

1+ 1
2Nc1

)
f1h1−

(
6− 6

Nc1

)
f1λ1+24h2

1+ 9λ2
1

16 +8ζ2. (C.17)

Similarly, we can obtain the 1-loop beta functions of h2 and f2 which are given below:

β1-looph2
= 96h2f2

N2
c2

+
(

16+ 32
Nc2

)
h2

2−
(

6− 6
Nc2

)
h2λ2+

( 3
16−

3
4Nc2

)
λ2

2, (C.18)

β1-loopf2
= 8
(

1+ 8
N2
c2

)
f2

2 +32
(

1+ 1
2Nc2

)
f2h2−

(
6− 6

Nc2

)
f2λ2+24h2

2+ 9λ2
2

16 +8ζ2. (C.19)

C.2.2 Evaluation of β1-loop
ζ

The 1-loop beta function of the coupling λa1i1,b1j1,c2k2,d2l2 , as derived in [91], is given by

(4π)2(β)1-loopa1i1,b1j1,c2k2,d2l2
= (Λ2)a1i1,b1j1,c2k2,d2l2 − 3

2∑
i=1

2∑
β=1

g2
i (ΛS)iβa1i1,b1j1,c2k2,d2l2

+ 3
2∑

i,j=1

2∑
β,γ=1

g2
i g

2
j (A)iβ,jγa1i1,b1j1,c2k2,d2l2

(C.20)
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Contributing term Contribution to β1-loopζ

(Λ2)a1i1,b1j1,c2k2,d2l2 8ζ
[

2∑
i=1

{
hi
(
2 + 1

Nci

)
+ fi

(
1 + 2

N2
ci

)}
+ 4ζ

Nc1Nc2

]

−3
2∑
i=1

2∑
β=1

g2
i (ΛS)iβa1i1,b1j1,c2k2,d2l2

−3ζ
2∑
i=1

λi
(
1− 1

Nci

)
3

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (A)iβ,jγa1i1,b1j1,c2k2,d2l2

0

Table 2. Contribution of different terms to β1-loop
ζ .

where

(Λ2)a1i1,b1j1,c2k2,d2l2 ≡
1
8
∑
perms

λa1i1,b1j1,eu,fvλeu,fv,c2k2,d2l2 ,

(ΛS)iβa1i1,b1j1,c2k2,d2l2
≡ 2

(
Ciβ2 (S1) + Ciβ2 (S2)

)
λa1i1,b1j1,c2k2,d2l2 ,

(A)iβ,jγa1i1,b1j1,c2k2,d2l2
≡ 1

4
∑
perms

(
(Λ)iβa1i1,c2k2;eu,fv(Λ)jγeu,fv;b1j1,d2l2

+ (Λ)iβa1i1,eu;fv,d2l2
(Λ)jγeu,b1j1;c2k2,fv

)
.

(C.21)

with the quantity (Λ)iβa1i1,c2k2;eu,fv defined as follows:

(Λ)iβa1i1,c2k2;eu,fv ≡
(
T iβA (S)

)
a1i1,eu

(
T iβA (S)

)
c2k2,fv

. (C.22)

Here S2 denotes the scalar fields in the second sector. The rest of the notations are similar
to the ones introduced earlier.

The contributions of these terms to the 1-loop beta function of ζ are given below in
table 2.

Adding all the contributions we get

β1-loopζ = ζ

[
8
(

1+ 2
N2
c1

)
f1+8

(
1+ 2

N2
c2

)
f2+16

(
1+ 1

2Nc1

)
h1+16

(
1+ 1

2Nc2

)
h2

+ 32
Nc1Nc2

ζ−
(

3− 3
Nc1

)
λ1−

(
3− 3

Nc2

)
λ2

]
.

(C.23)

C.3 2-loop beta functions of the quartic couplings

Let us now turn to the evaluation of 2-loop corrections to the beta functions of the quartic
couplings. The strategy is analogous to the one employed to determine the 1-loop beta
functions. We will determine the 2-loop corrections to the beta functions of h1 and f1 by
using the expressions of similar corrections to the beta function of λa1i1,b1j1,c1k1,d1l1 . As
earlier, the 2-loop beta functions of h2 and f2 can then be obtained by (1↔ 2) exchange of
the indices. Similarly, to determine the 2-loop beta function of ζ, we will use the expression
of the corrections to the beta function of λa1i1,b1j1,c2k2,d2l2 .
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C.3.1 Evaluation of β2-loop
hi

and β2-loop
fi

The expression of the two loop beta function of the coupling λa1i1,b1j1,c1k1,d1l1 is as follows:

(4π)4β2-loopa1i1,b1j1,c1k1,d1l1

= 1
2
∑
k

Λ2(k)λa1i1,b1j1,c1k1,d1l1−Λ3
a1i1,b1j1,c1k1,d1l1

+
2∑
i=1

2∑
β=1

g2
i

(
2(Λ2S)iβa1i1,b1j1,c1k1,d1l1

−6(Λ2g)iβa1i1,b1j1,c1k1,d1l1

)

−
2∑
i=1

2∑
β=1

g4
i

[35
3 C

iβ
2 (G)− 5

3S
iβ
2 (F )− 11

12S
iβ
2 (S)

]
(ΛS)iβa1i1,b1j1,c1k1,d1l1

+
2∑

i,j=1

2∑
β,γ=1

g2
i g

2
j

{
3
2(ΛSS)iβ,jγa1i1,b1j1,c1k1,d1l1

+ 5
2(Aλ)iβ,jγa1i1,b1j1,c1k1,d1l1

+ 1
2(Aλ)iβ,jγa1i1,b1j1,c1k1,d1l1

}

+
2∑

i,j=1

2∑
β,γ=1

g4
i g

2
j

{[161
6 Ciβ2 (G)− 16

3 S
iβ
2 (F )− 7

3S
iβ
2 (S)

]
(A)iβ,jγa1i1,b1j1,c1k1,d1l1

}

− 15
2

2∑
i,j,r=1

2∑
β,γ,ρ=1

g2
i g

2
j g

2
r (AS)iβ,jγ,rρa1i1,b1j1,c1k1,d1l1

+27
2∑
i=1

2∑
β=1

g6
i (Ag)

iβ
a1i1,b1j1,c1k1,d1l1

. (C.24)

The sum in the first term of the above expression runs over the values {a1i1, b1j1, c1k1, d1l1}.
The different quantities appearing in this expression are defined below:

Λ2(k) = 1
6λk,eu,fv,gwλk,eu,fv,gw,

Λ3
a1i1,b1j1,c1k1,d1l1 = 1

4
∑
perms

λa!i1,b1j1,eu,fvλc1k1,eu,gw,htλd1l1,fv,gw,ht,

(Λ2S)iβa1i1,b1j1,c1k1,d1l1
= 1

8
∑
perms

(
Ciβ2 (S)

)
fv,gw

λa1i1,b1j1,eu,fvλc1k1,d1l1,eu,gw,

(Λ2g)iβa1i1,b1j1,c1k1,d1l1
= 1

8
∑
perms

λa1i1,b1j1,eu,fvλc1k1,d1l1,gw,ht

(
T iβA (S)

)
eu,gw

(
T iβA (S)

)
fv,ht

,

(ΛS)iβa1i1,b1j1,c1k1,d1l1
= 4Ciβ2 (S1)λa1i1,b1j1,c1k1,d1l1 ,

(ΛSS)iβ,jγa1i1,b1j1,c1k1,d1l1
= 4Ciβ2 (S1)Cjγ2 (S1)λa1i1,b1j1,c1k1,d1l1 ,

(Aλ)iβ,jγa1i1,b1j1,c1k1,d1l1
= 1

4
∑
perms

λa1i1,b1j1,eu,fv{T
iβ
A (S), T jγB (S)}eu,fv{T iβA (S), T jγB (S)}c1k1,d1l1 ,

(Aλ)iβ,jγa1i1,b1j1,c1k1,d1l1
= 1

4
∑
perms

λa1i1,b1j1,eu,fv{T
iβ
A (S), T jγB (S)}c1k1,eu{T

iβ
A (S), T jγB (S)}d1l1,fv,

(AS)iβ,jγ,rρa1i1,b1j1,c1k1,d1l1
= 4Crρ2 (S1)(A)iβ,jγa1i1,b1j1,c1k1,d1l1

,

(Ag)iβa1i1,b1j1,c1k1,d1l1
= 1

8(fiβ)ACE(fiβ)BDE
∑
perms

{T iβA (S), T iβB (S)}a1i1,b1j1{T
iβ
C (S), T iβD (S)}c1k1,d1l1 .

(C.25)
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Most of the notations in the above expressions have already been introduced in the eval-
uation of the 1-loop beta functions. The only new elements are the quantitiies (fiβ)ACE .
These are the structure constants of the group Giβ . For example, the structure constants
f11 are as follows:

(f11)m1n1,e1f1,u1v1 = 1
2

[
δm1e1

{
δn1u1δf1v1−δf1u1δn1v1

}
+δm1f1

{
δe1u1δn1v1−δn1u1δe1v1

}

−δn1e1

{
δm1u1δf1v1−δf1u1δm1v1

}
−δn1f1

{
δe1u1δm1v1−δm1u1δe1v1

}]
.

(C.26)

The other structure constants fiβ also have analogous forms.

With these ingredients, we can evaluate the contribution of each of the terms in (C.24)
to the 2-loop corrections (β2-looph1

and β2-loopf1
) in the beta functions of h1 and f1. We provide

the forms of these contributions in tables 3 and 4 below.

Summing up these contributions, we get

β2-looph1
=−96

(
1+ 6

Nc1
+ 17
N2
c1

)
h3

1−128
( 22
N2
c1

+ 29
N3
c1

)
h2

1f1−64
( 5
N2
c1

+ 82
N4
c1

)
h1f

2
1

− 320
N2
c1
h1ζ

2+8
(

5+ 2
Nc1
− 16
N2
c1

)
h2

1λ1+ 1
6

(
1− 1

Nc1

)(
−39+10xf1+ 128

Nc1

)
h1λ

2
1

+96
( 2
N2
c1
− 3
N3
c1

)
h1f1λ1+6

( 1
N2
c1
− 4
N3
c1

)
f1λ

2
1

− 1
12

(
1− 4

Nc1

)(
−3+2xf1+ 19

Nc1

)
λ3

1,

β2-loopf1
=−192

(
2+ 3

Nc1

)
h3

1−32
(

5+ 10
Nc1

+ 87
N2
c1

)
h2

1f1−1408
( 2
N2
c1

+ 1
N3
c1

)
h1f

2
1

−192
( 3
N2
c1

+ 14
N4
c1

)
f3

1 +24
(

4− 1
Nc1

)
h2

1λ1+32
(

4− 2
Nc1

+ 1
N2
c1

)
h1f1λ1

+9
(

1− 1
Nc1

)
h1λ

2
1+32

(
1− 1

Nc1
+ 5
N2
c1
− 5
N3
c1

)
f2

1λ1

+ 1
6

(
−21+10xf1+ 149−10xf1

Nc1
− 20
N2
c1

)
f1λ

2
1+ 1

4

(
3−2xf1−

19
Nc1

)
λ3

1

−256
( 2
N2
c2

+ 1
Nc1N2

c2

)
h1ζ

2−64
( 5
N2
c1

+ 4
N2
c2

+ 8
N2
c1N

2
c2

)
f1ζ

2+32
(

1− 1
Nc2

)
λ2ζ

2.

(C.27)

The 2-loop corrections to the beta functions of h2 and f2 can be obtained by (1 ↔ 2)
exchange of the indices in the above expressions.

– 72 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
3

Contributing term Contribution to β2-looph1

1
2
∑
k

Λ2(k)λa1i1,b1j1,c1k1,d1l1 32
(
1 + 2

Nc1
+ 3

N2
c1

)
h3

1 + 64
(

1
N2
c1

+ 2
N4
c1

)
h1f

2
1

+128
(

2
N2
c1

+ 1
N3
c1

)
h2

1f1 + 64
N2
c1
h1ζ

2

−Λ3
a1i1,b1j1,c1k1,d1l1 −64

(
2 + 10

Nc1
+ 27

N2
c1

)
h3

1 − 768
(

4
N2
c1

+ 5
N3
c1

)
h2

1f1

−384
(

1
N2
c1

+ 14
N4
c1

)
h1f

2
1 − 384

N2
c1
h1ζ

2

2
2∑
i=1

2∑
β=1

g2
i (Λ

2S)iβa1i1,b1j1,c1k1d1l1
λ1
(
1− 1

Nc1

){
16
(
1 + 2

Nc1

)
h2

1 + 96
N2
c1
h1f1

}

−6
2∑
i=1

2∑
β=1

g2
i (Λ2g)iβa1i1,b1j1,c1k1d1l1

λ1

{
24
(
1− 4

N2
c1

)
h2

1 + 96
(

1
N2
c1
− 2

N3
c1

)
h1f1

}

−
2∑
i=1

2∑
β=1

g4
i

[
35
3 C

iβ
2 (G)− 5

3S
iβ
2 (F )− 11

12S
iβ
2 (S)

]
−λ2

1h1
12

(
129− 20xf1 − 280

Nc1

)(
1− 1

Nc1

)
(ΛS)iβa1i1,b1j1,c1k1d1l1

3
2

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (ΛSS)iβ,jγa1i1,b1j1,c1k1,d1l1

3
2

(
1− 1

Nc1

)2
λ2

1h1

5
2

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (Aλ)iβ,jγa1i1,b1j1,c1k1,d1l1

λ2
1

{
5
2

(
1− 1

Nc1

)
h1 + 5

(
1
N2
c1
− 4

N3
c1

)
f1

}

1
2

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (A

λ)iβ,jγa1i1,b1j1,c1k1,d1l1
λ2

1

{
1
4

(
1− 3

Nc1
+ 2

N2
c1

)
h1 +

(
1
N2
c1
− 4

N3
c1

)
f1

}
2∑

i,j=1

2∑
β,γ=1

g4
i g

2
j

[
161
6 Ciβ2 (G)− 16

3 S
iβ
2 (F )− 7

3S
iβ
2 (S)

]
λ3

1
192

(
1− 4

Nc1

)(
147− 32xf1 − 322

Nc1

)
(A)iβ,jγa1i1,b1j1,c1k1,d1l1

−15
2

2∑
i,j,r=1

∑2
β,γ,ρ=1 g

2
i g

2
j g

2
r (AS)iβ,jγ,rρa1i1,b1j1,c1k1,d1l1

−15
16λ

3
1

(
1− 4

Nc1

)(
1− 1

Nc1

)
27

2∑
i=1

∑2
β=1 g

6
i (Ag)

iβ
a1i1,b1j1,c1k1,d1l1

27λ3
1

64

(
1− 6

Nc1
+ 8

N2
c1

)

Table 3. Contribution of different terms to β2-loop
h1

.
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Contributing term Contribution to β2-loopf1

1
2
∑
k

Λ2(k)λa1i1,b1j1,c1k1,d1l1 32
(
1 + 2

Nc1
+ 3

N2
c1

)
h2

1f1 + 64
(

1
N2
c1

+ 2
N4
c1

)
f3

1

+128
(

2
N2
c1

+ 1
N3
c1

)
h1f

2
1 + 64

N2
c1
f1ζ

2

−192
(
2 + 3

Nc1

)
h3

1 − 192
(
1 + 2

Nc1
+ 15

N2
c1

)
h2

1f1

−Λ3
a1i1,b1j1,c1k1,d1l1 −1536

(
2
N2
c1

+ 1
N3
c1

)
h1f

2
1 − 128

(
5
N2
c1

+ 22
N4
c1

)
f3

1

−256
(

2
N2
c2

+ 1
Nc1N2

c2

)
h1ζ

2 − 128
(

3
N2
c1

+ 2
N2
c2

+ 4
N2
c1N

2
c2

)
f1ζ

2

2
2∑
i=1

2∑
β=1

g2
i (Λ

2S)iβa1i1,b1j1,c1k1d1l1
λ1
(
1− 1

Nc1

){
24h2

1 + 8
(
1 + 8

N2
c1

)
f2

1

+16
(
2 + 1

Nc1

)
h1f1

}
+ 8

(
1− 1

Nc2

)
λ2ζ

2

−6
2∑
i=1

2∑
β=1

g2
i (Λ2g)iβa1i1,b1j1,c1k1d1l1

24λ1

{
3h2

1 +
(
1− 1

Nc1
+ 4

N2
c1
− 4

N3
c1

)
f2

1

+
(
4− 2

Nc1
+ 2

N2
c1

)
h1f1

}
+ 24λ2

(
1− 1

Nc2

)
ζ2

−
2∑
i=1

2∑
β=1

g4
i

[
35
3 C

iβ
2 (G)− 5

3S
iβ
2 (F )− 11

12S
iβ
2 (S)

]
−λ2

1f1
12

(
129− 20xf1 − 280

Nc1

)(
1− 1

Nc1

)
(ΛS)iβa1i1,b1j1,c1k1d1l1

3
2

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (ΛSS)iβ,jγa1i1,b1j1,c1k1,d1l1

3
2

(
1− 1

Nc1

)2
λ2

1f1

5
2

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (Aλ)iβ,jγa1i1,b1j1,c1k1,d1l1

λ2
1

{
15
2

(
1− 1

Nc1

)
h1 + 5

(
1− 1

Nc1
+ 3

N2
c1

)
f1

}

1
2

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (A

λ)iβ,jγa1i1,b1j1,c1k1,d1l1
λ2

1

{
3
2

(
1− 1

Nc1

)
h1 + 1

4

(
3− 5

Nc1
+ 14

N2
c1

)
f1

}
2∑

i,j=1

2∑
β,γ=1

g4
i g

2
j

[
161
6 Ciβ2 (G)− 16

3 S
iβ
2 (F )− 7

3S
iβ
2 (S)

]
λ3

1
64

(
147− 32xf1 − 322

Nc1

)
(A)iβ,jγa1i1,b1j1,c1k1,d1l1

−15
2

2∑
i,j,r=1

∑2
β,γ,ρ=1 g

2
i g

2
j g

2
r (AS)iβ,jγ,rρa1i1,b1j1,c1k1,d1l1

−45
16λ

3
1

(
1− 1

Nc1

)
27

2∑
i=1

∑2
β=1 g

6
i (Ag)

iβ
a1i1,b1j1,c1k1,d1l1

81λ3
1

64

(
1− 2

Nc1

)

Table 4. Contribution of different terms to β2-loop
f1

.
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C.3.2 Evaluation of β2-loop
ζ

Let us now determine the 2-loop corrections to the beta function of ζ. For this we will have
to consider such corrections to the beta function of the coupling λa1i1,b1j1,c2k2,d2l2 . These
corrections are given by

(4π)4β2-loopa1i1,b1j1,c2k2,d2l2

= 1
2
∑
k

Λ2(k)λa1i1,b1j1,c2k2,d2l2−Λ3
a1i1,b1j1,c2k2,d2l2

+
2∑
i=1

2∑
β=1

g2
i

(
2(Λ2S)iβa1i1,b1j1,c2k2,d2l2

−6(Λ2g)iβa1i1,b1j1,c2k2,d2l2

)

−
2∑
i=1

2∑
β=1

g4
i

[35
3 C

iβ
2 (G)− 5

3S
iβ
2 (F )− 11

12S
iβ
2 (S)

]
(ΛS)iβa1i1,b1j1,c2k2,d2l2

+
2∑

i,j=1

2∑
β,γ=1

g2
i g

2
j

{
3
2(ΛSS)iβ,jγa1i1,b1j1,c2k2,d2l2

+ 5
2(Aλ)iβ,jγa1i1,b1j1,c2k2,d2l2

+ 1
2(Aλ)iβ,jγa1i1,b1j1,c2k2,d2l2

}

+
2∑

i,j=1

2∑
β,γ=1

g4
i g

2
j

{[161
6 Ciβ2 (G)− 16

3 S
iβ
2 (F )− 7

3S
iβ
2 (S)

]
(A)iβ,jγa1i1,b1j1,c2k2,d2l2

}

− 15
2

2∑
i,j,r=1

2∑
β,γ,ρ=1

g2
i g

2
j g

2
r (AS)iβ,jγ,rρa1i1,b1j1,c2k2,d2l2

+27
2∑
i=1

2∑
β=1

g6
i (Ag)

iβ
a1i1,b1j1,c2k2,d2l2

. (C.28)

Here

Λ2(k) = 1
6λk,eu,fv,gwλk,eu,fv,gw,

Λ3
a1i1,b1j1,c2k2,d2l2 = 1

4
∑
perms

λa1i1,b1j1,eu,fvλc2k2,eu,gw,htλd2l2,fv,gw,ht,

(Λ2S)iβa1i1,b1j1,c2k2,d2l2
= 1

8
∑
perms

(
Ciβ2 (S)

)
fv,gw

λa1i1,b1j1,eu,fvλc2k2,d2l2,eu,gw,

(Λ2g)iβa1i1,b1j1,c2k2,d2l2
= 1

8
∑
perms

λa1i1,b1j1,eu,fvλc2k2,d2l2,gw,ht

(
T iβA (S)

)
eu,gw

(
T iβA (S)

)
fv,ht

,

(ΛS)iβa1i1,b1j1,c2k2,d2l2
= 2

(
Ciβ2 (S1) + Ciβ2 (S2)

)
λa1i1,b1j1,c2k2,d2l2 ,

(ΛSS)iβ,jγa1i1,b1j1,c2k2,d2l2
= 2

(
Ciβ2 (S1)Cjγ2 (S1) + Ciβ2 (S2)Cjγ2 (S2)

)
λa1i1,b1j1,c2k2,d2l2 ,

(Aλ)iβ,jγa1i1,b1j1,c2k2,d2l2
= 1

4
∑
perms

λa1i1,b1j1,eu,fv{T
iβ
A (S), T jγB (S)}eu,fv{T iβA (S), T jγB (S)}c2k2,d2l2 ,

(Aλ)iβ,jγa1i1,b1j1,c2k2,d2l2
= 1

4
∑
perms

λa1i1,b1j1,eu,fv{T
iβ
A (S), T jγB (S)}c2k2,eu{T

iβ
A (S), T jγB (S)}d2l2,fv,

(AS)iβ,jγ,rρa1i1,b1j1,c2k2,d2l2
= 2

(
Crρ2 (S1) + Crρ2 (S2)

)
(A)iβ,jγa1i1,b1j1,c2k2,d2l2

,

(Ag)iβa1i1,b1j1,c2k2,d2l2
= 1

8(fiβ)ACE(fiβ)BDE
∑
perms

{T iβA (S), T iβB (S)}a1i1,b1j1{T
iβ
C (S), T iβD (S)}c2k2,d2l2 .

(C.29)
The contributions of the terms in the above expressions to the 2-loop corrections in the
beta function of ζ are given in table 5.
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Contributing term Contribution to β2-loopζ

1
2
∑
k

Λ2(k)λa1i1,b1j1,c2k2,d2l2 ζ
2∑
i=1

[
16
(
1 + 2

Nci
+ 3

N2
ci

)
h2
i + 32

(
1
N2
ci

+ 2
N4
ci

)
f2
i

+64
(

2
N2
ci

+ 1
N3
ci

)
hifi + 32

N2
ci
ζ2
]

−32ζ
[

2∑
i=1

{
3
(
1 + 2

Nci
+ 3

N2
ci

)
h2
i + 6

(
1
N2
ci

+ 2
N4
ci

)
f2
i

−Λ3
a1i1,b1j1,c2k2,d2l2 +12

(
2
N2
ci

+ 1
N3
ci

)
hifi + 12

(
2 + 1

Nci

)
ζhi

Nc1Nc2

+12
(
1 + 2

N2
ci

)
ζfi

Nc1Nc2
+ 2

N2
ci
ζ2
}

+ 16
N2
c1N

2
c2
ζ2
]

2
2∑
i=1

2∑
β=1

g2
i (Λ

2S)iβa1i1,b1j1,c2k2,d2l2
8ζ

2∑
i=1

λi
(
1− 1

Nci

){(
2 + 1

Nci

)
hi +

(
1 + 2

N2
ci

)
fi + 2

Nc1Nc2
ζ

}

−6
2∑
i=1

2∑
β=1

g2
i (Λ2g)iβa1i1,b1j1,c2k2,d2l2

24ζ
2∑
i=1

λi
(
1− 1

Nci

){(
2 + 1

Nci

)
hi +

(
1 + 2

N2
ci

)
fi

}

−
2∑
i=1

2∑
β=1

g4
i

[
35
3 C

iβ
2 (G)− 5

3S
iβ
2 (F )− 11

12S
iβ
2 (S)

]
−ζ

2∑
i=1

{
λ2
i

24

(
129− 20xfi − 280

Nci

)(
1− 1

Nci

)}

(ΛS)iβa1i1,b1j1,c2k2,d2l2

3
2

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (ΛSS)iβ,jγa1i1,b1j1,c2k2,d2l2

3
4ζ

2∑
i=1

λ2
i

(
1− 1

Nci

)2

5
2

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (Aλ)iβ,jγa1i1,b1j1,c2k2,d2l2

5
2ζ

2∑
i=1

λ2
i

(
1− 1

Nci

)
1
2

2∑
i,j=1

2∑
β,γ=1

g2
i g

2
j (A

λ)iβ,jγa1i1,b1j1,c2k2,d2l2
1
8ζ

2∑
i=1

(
3− 5

Nci
+ 2

N2
ci

)
λ2
i

2∑
i,j=1

2∑
β,γ=1

g4
i g

2
j

[
161
6 Ciβ2 (G)− 16

3 S
iβ
2 (F )− 7

3S
iβ
2 (S)

]
0

(A)iβ,jγa1i1,b1j1,c2k2,d2l2

−15
2

2∑
i,j,r=1

2∑
β,γ,ρ=1

g2
i g

2
j g

2
r (AS)iβ,jγ,rρa1i1,b1j1,c2k2,d2l2

0

27
2∑
i=1

2∑
β=1

g6
i (Ag)

iβ
a1i1,b1j1,c2k2,d2l2

0

Table 5. Contribution of different terms to β2-loop
ζ .
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Adding these contributions we get

β2-loopζ = ζ

[ 2∑
i=1

{
− 80

(
1 + 2

Nci
+ 3
N2
ci

)
h2
i − 160

( 1
N2
ci

+ 2
N4
ci

)
f2
i − 320

( 2
N2
ci

+ 1
N3
ci

)
hifi

+ 1
12

(
1− 1

Nci

)(
− 21 + 10xfi + 128

Nci

)
λ2
i + 32

(
1− 1

Nci

)(
2 + 1

Nci

)
λihi

+ 32
(

1− 1
Nci

)(
1 + 2

N2
ci

)
λifi − 384

( 2
NciNci′

+ 1
N2
ciNci′

)
ζhi

− 384
( 1
NciNci′

+ 2
N3
ciNci′

)
ζfi + 16

( 1
NciNci′

− 1
N2
ciNci′

)
ζλi

}

− 32
( 1
N2
c1

+ 1
N2
c2

+ 16
N2
c1N

2
c2

)
ζ2
]
, (C.30)

where i′ is the complement of i, i.e., for i = 1, i′ = 2, and for i = 2, i′ = 1.

D Constraints on the fixed points in the large N limit

In this appendix, we will discuss some constraints on the fixed points of the RG flow of the
couplings in the real double bifundamental model. For this, we will restrict our attention
to just the 2-loop planar beta functions of the gauge couplings and the 1-loop planar beta
functions of the quartic couplings. In the planar limit (Nc1, Nc2 → ∞), the 1-loop beta
functions of the quartic couplings have the following forms:

β1-loophi
= 16h2

i − 6hiλi + 3
16λ

2
i ,

β1-loopfi
= 8f2

i + 32fihi − 6fiλi + 24h2
i + 9

16λ
2
i + 8ζ2 ,

β1-loopζ = ζ

[
8f1 + 8f2 + 16h1 + 16h2 − 3λ1 − 3λ2

]
.

(D.1)

Here λ1 and λ2 are fixed by demanding βλ1 = βλ2 = 0 which leads to the following nontrivial
solutions:

λi = 21− 4xfi
−27 + 13xfi

. (D.2)

In what follows, we will demonstrate the following constraints on unitary fixed points71
of the above beta functions.

• Constraint 1. When xf1 6= xf2, there is no unitary fixed point where the two sectors
are coupled, i.e., ζ 6= 0.

• Constraint 2. When xf1 = xf2, at any unitary fixed point with ζ 6= 0, we must
have h1 = h2 = 3−

√
6

16 λ, where λ is the common value of the gauge couplings in the
two sectors.

71By a unitary fixed point we mean a fixed point where the couplings are real. The reality of the couplings
is a necessary condition for the unitarity of the theory.
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D.1 Proof of constraint 1

When xf1 6= xf2, from equation (D.2) we have λ1 6= λ2. In this case, by demanding that
β1-loophi

= 0, we get

hi =
(3 + σi

√
6

16
)
λi, (D.3)

where σ1 and σ2 can be 1 or −1. Therefore,

hp ≡
h1 + h2

2 = 3(λ1 + λ2) + (σ1λ1 + σ2λ2)
√

6
32 ,

hm ≡
h1 − h2

2 = 3(λ1 − λ2) + (σ1λ1 − σ2λ2)
√

6
32 .

(D.4)

One can define similar linear combinations for the double trace couplings to simplify the
analyisis:

fp ≡
f1 + f2

2 , fm ≡
f1 − f2

2 . (D.5)

The 1-loop beta functions of these couplings (along with ζ) are as follows:

β1-loopfp
= fm

[
32hm−3(λ1−λ2)

]
+8
[
ζ2 +(fp+hp)(fp+3hp)

]
+8f2

m−3fp(λ1 +λ2)

+24h2
m+ 9

32(λ2
1 +λ2

2),

β1-loopfm
= fm

[
16fp+32hp−3(λ1 +λ2)

]
+32fphm−3fp(λ1−λ2)+48hphm+ 9

32(λ2
1−λ2

2),

β1-loopζ = ζ
[
16fp+32hp−3(λ1 +λ2)

]
. (D.6)

By setting β1-loopζ = 0 and demanding that ζ 6= 0, we get

fp = −2hp + 3
16(λ1 + λ2). (D.7)

Similarly, setting β1-loopfm
= 0, we get

fp =
−48hphm − 9

32(λ2
1 − λ2

2)
32hm − 3(λ1 − λ2) (D.8)

Here, we have assumed that
32hm − 3(λ1 − λ2) 6= 0. (D.9)

From the value of hm given in equation (D.4), we can see that this is equivalent to de-
manding

σ1λ1 6= σ2λ2. (D.10)
When σ1 = σ2, this holds true trivially because xf1 6= xf2. When σ1 = −σ2, this is true
because otherwise λ1 and λ2 would have opposite signs. This is not admissible because λi
is related to the gauge coupling by the relation

λi ≡
Ncig

2
i

(4π)2 , (D.11)

and hence both λ1 and λ2 must be positive.72 Therefore, we can trust equation (D.8).
72Here the reality of gi is the crucial assumption which is a necessary condition for the unitarity of

the theory.
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Now, combining (D.7) with (D.8), we get

16hphm − 6hm(λ1 + λ2)− 6hp(λ1 − λ2) + 9
32(λ2

1 − λ2
2) = 0. (D.12)

Substituting the values of hp and hm (given in (D.4)) into the above equation, we get

(13 + 6
√

6σ1)λ2
1 = (13 + 6

√
6σ2)λ2

2. (D.13)

When σ1 = σ2, we get λ2
1 = λ2

2 =⇒ λ1 = λ2 since we have already shown that both λ1
and λ2 must be positive. However, this cannot be true for xf1 6= xf2.

The other possibility is that σ1 = −σ2. For instance, consider the case σ1 = −σ2 = 1.
Then we get

(13 + 6
√

6)λ2
1 = (13− 6

√
6)λ2

2. (D.14)

Now the coefficient (13 + 6
√

6) > 0, whereas (13− 6
√

6) ≈ −1.69694 < 0. Then the signs
of λ2

1 and λ2
2 are opposite. However, this is not consistent with the reality of λ1 and λ2.

Therefore, equation (D.14) cannot be satisfied. Similarly, we can rule out the existence
of any unitary fixed point with σ1 = −σ2 = −1. Thus, from the above analysis, we can
conclude that when xf1 6= xf2, there is no unitary fixed point of the 1-loop beta functions
with ζ 6= 0.

D.2 Proof of constraint 2

When xf1 = xf2 = xf , from equation (D.2), we have λ1 = λ2 = λ ≡ 21−4xf
−27+13xf . As before

the couplings for the single trace interactions are given by

hi =
(

3 + σi
√

6
16

)
λ. (D.15)

hp = 6 + (σ1 + σ2)
√

6
32 λ, hm = (σ1 − σ2)

√
6

32 λ. (D.16)

The 1-loop beta functions of the couplings corresponding to the double trace interactions
simplify in this case as follows:

β1-loopfp
= 32fmhm + 8

[
ζ2 + (fp + hp)(fp + 3hp)

]
+ 8f2

m − 6fpλ+ 24h2
m + 9

16λ
2,

β1-loopfm
= fm

[
16fp + 32hp − 6λ

]
+ 32fphm + 48hphm,

β1-loopζ = ζ
[
16fp + 32hp − 6λ

]
.

(D.17)

Let us focus on the last two beta functions given above. Setting them equal to zero and
searching for fixed points with ζ 6= 0, we get

16fp = −32hp + 6λ, 32fphm + 48hphm = 0. (D.18)

Substituting the value of fp obtained from the first equation into the second one, we get

(12λ− 16hp)hm = 0 =⇒
(

18− (σ1 + σ2)
√

6
2

)
(σ1 − σ2) = 0. (D.19)
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The only way in which the above equation can be satisfied is if σ1 = σ2 = σ. In this case,
we have

hp = 3 + σ
√

6
16 λ, hm = 0, fp = −σ

√
6

8 λ. (D.20)

Now, setting β1-loopfp
= 0, we get

8(ζ2 + f2
m) = − 1

32

[
18σ
√

6 + 39
]
λ2. (D.21)

Note that the reality of the couplings fm and ζ leads to the l.h.s. of the above equation
being non-negative. The r.h.s. of the same equation is, however, manifestly negative if
σ = 1. Thus, the only admissible unitary fixed point is the one where σ = −1. Therefore,
we can conclude that when xf1 = xf2 , at any unitary fixed point where the two sectors
are coupled, the couplings corresponding to the single trace interactions have the following
values:

h1 = h2 =
(

3−
√

6
16

)
λ. (D.22)

E Minima of the thermal effective potential

In this appendix, we will investigate the minima of the thermal effective potential of the
scalar fields in the real double bifundamental model. When both the thermal masses
(squared), m2

th,1 and m2
th,2, are positive, one can trivially conclude that the minimum lies

at the origin of the field space. On the other hand, if either m2
th,1 or m2

th,2 is negative, the
minima would lie away from the origin, and the baryon symmetry would be broken. To
analyze the location of the minima in such a situation, we would restrict our attention to the
fixed points discussed in section 3.2 for which r ≡ Nc2

Nc1
< 1, and m2

th,1 > 0 while m2
th,2 < 0.

First, let us employ gauge transformations to bring the matrices of the scalar fields to
the following diagonal forms:

Φi = diag{φi1, · · · , φiNci}. (E.1)

The thermal effective potential (up to leading order in λ) for such a configuration is

Veff = 1
2

2∑
i=1

Nci∑
ai=1

m2
th,i(φiai)2 +

2∑
i=1

Nci∑
ai=1

h̃i(φiai)4

+
2∑
i=1

Nci∑
ai=1

Nci∑
bi=1

f̃i(φiai)2(φibi)2 + 2ζ̃
Nc1∑
a1=1

Nc2∑
b2=1

(φ1a1)2(φ2b2)2.

(E.2)

One can determine the saddle points of this potential by setting its partial derivatives with
respect to all the scalar fields equal to zero as shown below:

∂Veff
∂φiai

= 2φiai

[
1
2m

2
th,i + 2h̃i(φiai)2 + 2f̃i

Nci∑
bi=1

(φibi)2 + 2ζ̃
Nci′∑
bi′=1

(φi′bi′ )
2
]

= 0, (E.3)
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where i′ denotes the complement of i. The above equation has the following possible
solutions:

φiai = 0 or 1
2m

2
th,i + 2h̃i(φiai)2 + 2f̃i

Nci∑
bi=1

(φibi)2 + 2ζ̃
Nci′∑
bi′=1

(φi′bi′ )
2 = 0. (E.4)

Let us consider a saddle where ni of the Nci diagonal entries of Φi are nonzero. In E.1,
we will show that for n1 6= 0, the solution corresponds to negative values of (φ1a1)2 which
is in conflict with the reality of φ1a1 . So such a saddle point cannot correspond to a
minimum of the potential. Later in E.2, we will argue that the minima actually correspond
to n1 = 0, n2 = Nc2.

E.1 Saddle points with n1 6= 0 correspond to imaginary field configurations

In this subsection we will prove that all the saddle points with n1 6= 0 correspond to
imaginary values of φ1a1 . For this, let us consider such a saddle where φai 6= 0 for the first
ni values of ai. The nonzero components of the scalar fields satisfy the following equations:

1
2m

2
th,1 + 2h̃1(φ1a1)2 + 2f̃1

n1∑
b1=1

(φ1b1)2 + 2ζ̃
n2∑
b2=1

(φ2b2)2 = 0 ∀ a1 ∈ {1, · · · , n1},

1
2m

2
th,2 + 2h̃2(φ2a2)2 + 2f̃2

n2∑
b2=1

(φ2b2)2 + 2ζ̃
n1∑
b1=1

(φ1b1)2 = 0 ∀ a2 ∈ {1, · · · , n2}.
(E.5)

Solving these equations, we get the following values of the squares of the fields after sub-
stituting the original couplings by the corresponding ’t Hooft couplings:

(φ1a1)2 = − N2
c1

64π2

[
(h2Nc2 + f2n2)m2

th,1 − rζn2m
2
th,2

(h1Nc1 + f1n1)(h2Nc2 + f2n2)− ζ2n1n2

]
∀ a1 ∈ {1, · · · , n1},

(φ2a2)2 = − N2
c2

64π2

[
(h1Nc1 + f1n1)m2

th,2 −
ζ
rn1m

2
th,1

(h1Nc1 + f1n1)(h2Nc2 + f2n2)− ζ2n1n2

]
∀ a2 ∈ {1, · · · , n2}.

(E.6)

To prove that the nonzero values of (φ1a1)2 are negative, we will show that both the
numerator and the denominator of the quantity within the brackets in the first line of (E.6)
are positive. First, let us consider the denominator:

(h1Nc1 + f1n1)(h2Nc2 + f2n2)− ζ2n1n2 = h1h2Nc1Nc2 + h1f2Nc1n2 + h2f1Nc2n1

+ (f1f2 − ζ2)n1n2.
(E.7)

Note that in section 3.2.1, we have already shown that hi > 0, fi > 0 and (f1f2 − ζ2) > 0
for all points on the fixed circle. Therefore, all the terms in the above expression are
positive-definite which ensures the positivity of the denominator. Now, let us look at the
numerator:

(h2Nc2 + f2n2)m2
th,1 − rζn2m

2
th,2

= h(Nc2 − n2) + π2

48β
−2
th n2

[
3(25− 2

√
6)λ2 − 16(fm + rζ)

(
9−
√

6
)
λ

]
(E.8)
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Here we have substituted the thermal masses by their values given in (3.42). Moreover we
have used the values of the different couplings and the equation of the fixed circle:

h1 = h2 = h =
(3−

√
6

16

)
λ, fp ≡

f1 + f2
2 =

√
6

8 λ, ζ2 + f2
m =

(18
√

6− 39
256

)
λ2, (E.9)

where fm ≡ f1−f2
2 . The equation of the fixed circle and the fact that r < 1 further impose

the condition (fm+rζ) < |fm|+|ζ| <
√

18
√

6−39
8 λ. This inequality, together with the positiv-

ity of h and the fact that n2 ≤ Nc2, ensures that the numerator is positive as shown below:

(h2Nc2 + f2n2)m2
th,1 − rζn2m

2
th,2 >

π2

48λ
2β−2

th n2

[
3(25− 2

√
6)− 2

√
18
√

6− 39
(
9−
√

6
)]

≈ 6.32λ2β−2
th n2 > 0. (E.10)

Therefore, we can conclude that

(φ1a1)2 < 0 ∀ a1 ∈ {1, · · · , n1}, (E.11)

which implies that φ1a1 is imaginary for these values of a1. This rules out the possibility
of any saddle point with n1 6= 0 being a minimum of the potential.

E.2 The minima correspond to the saddle points with n1 = 0, n2 = Nc2

Let us now consider the saddle points with n1 = 0. For these saddle points, φ1a1 = 0 for
all a1 ∈ {1, · · · , Nc1}, whereas the nonzero values of φ2a2 are as follows:

(φ2a2)2 = − N2
c2

64π2
m2

th,2
h2Nc2 + f2n2

∀ a2 ∈ {1, · · · , n2}. (E.12)

For these saddle points to be candidates for the minima of the potential, the above values
of (φ2a2)2 have to be positive. This can be verified by noting that for the fixed points under
consideration, we have m2

th,2 < 0, h2 > 0 and f2 > 0. The values of potential at these
saddle points are

Veff
∣∣∣
n1=0,n2

=− N2
c2

256π2

[
(m2

th,2)2

h2(Nc2
n2

) + f2

]
. (E.13)

Due to the positivity of h2 at the fixed points, we can see from the above expression that the
minima of the potential correspond to n2 = Nc2. Substituting n2 by Nc2 in (E.12), we get

(φ2a2)2 = − Nc2
64π2

m2
th,2

h2 + f2
∀ a2 ∈ {1, · · · , Nc2}. (E.14)
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Let us note here that there are 2Nc2 different field configurations that satisfy the above
equation. These configurations are as follows:

Φ1 = 0, Φ2 =
(
− Nc2

64π2
m2

th,2
h2 + f2

) 1
2

diag{σ1, · · · , σNc2}, (E.15)

where σ1, · · · , σNc2 can be 1 or −1. However, many of these configurations are related to
each other by SO(Nc2) × SO(Nc2) gauge transformations. It can be shown that all these
configurations can be categorized into two equivalence classes. The configurations in each
class are related to each other by gauge transformations. One can go from one class to
the other by flipping the sign of just one of the diagonal entries. Thus, we can choose one
representative from each of these classes as follows:

Φ1 = 0, Φ2 =
(
− Nc2

64π2
m2

th,2
h2 + f2

) 1
2

diag{±1, 1, · · · , 1}, (E.16)

and treat these as two distinct minima unrelated by gauge transformations. Since we are
working in a perturbative regime where the ’t Hooft couplings are small, the thermal ex-
pectation values of the field Φ1 and Φ2 would correspond to these minima at leading order
in perturbation theory.

F Large N scaling of planar diagrams

In this appendix we will discuss the scaling of different planar diagrams in the double
bifundamental models. For simplicity, we will restrict our attention to the complex double
bifundamental model. This would enable us to use ’t Hooft’s large N expansion in terms of
oriented surfaces. The so(Nci) valued gauge connections in the real double bifundamental
model generate both orientable and non-orientable diagrams. However, the large N scaling
of the planar diagrams are identical in both the double bifundamental models.

In the following analysis, we will take the two ranks Nc1 and Nc2 to be of comparable
magnitudes, say O(N), and then work in the limit N → ∞. In this limit, we will look
at how different planar diagrams scale with N . In the process, we will demonstrate an
important feature of these diagrams, viz., any double trace vertex in such a diagram links
two otherwise disconnected subdiagrams. As discussed in section 5, this feature plays
a crucial role in proving the survival of the fixed circles in these models under all loop
corrections at the planar limit. Throughout this appendix, we will be using ’t Hooft’s
double line notation to represent the diagrams. As we are interested only in how different
diagrams scale with N where N is the order of magnitude of the ranks in both the sectors,
we will not distinguish between the fields in the two sectors. Thus, unlike section 5, we will
not use different colors to show propagators and vertices belonging to different sectors.

F.1 Scaling of bubble diagrams

Let us begin our analysis by considering bubble diagrams, i.e., diagrams which have no
external legs. For convenience, we will temporarily rescale all the fields such that their

– 83 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
3

Figure 17. Structure of a double trace vertex.

propagators scale as O(1/N). This would not affect the scaling of the bubble diagrams
due to the absence of any external leg in such diagrams. Under the above rescaling of the
fields, the single trace and double trace couplings scale as O(N) and O(1) respectively.

Now, let us first consider a bubble diagram with only single trace vertices. Each vertex
in such a diagram contributes a factor of N , while each propagator (an edge in the double
line notation) contributes a factor of 1

N . Moreover, each color loop (a face in the double
line notation) in the diagram contributes a factor of N . Therefore, the overall scaling of
the diagram is given by

NV−E+F = N2−2g̃ (F.1)

where V,E and F are the number of vertices, edges and faces in the diagram respectively.
g̃ is the genus number corresponding to the diagram.73 For a planar diagram, we have
g̃ = 0. Hence such a diagram scales as N2.

Now let us extend our discussion to connected bubble diagrams with double trace
vertices. To be specific, let us consider a diagram with m double trace vertices. Each
such double trace vertex has the structure shown in figure 17. To understand how this
diagram scales with N , let us employ the following trick. Let us remove all the double
trace vertices from the diagram and join the pairs of legs with identical colors attached to
each such vertex. This would leave us with a set of disconnected bubble diagrams which
consist only of single trace vertices and propagators. Let the number of such disconnected
pieces be (m′ + 1). Here, m′ ≤ m as the removal of each double trace vertex can lead
to at most two disconnected pieces. Now, as we saw earlier, each of the disconnected
pieces, comprising only of single trace vertices and propagators, scales as N2−2g̃i where
g̃i is the genus number corresponding to that piece. Therefore, the overall scaling of the
disconnected diagram obtained by removing the double trace vertices is

N
∑m′+1

i=1 (2−2g̃i) = N2(m′+1)−2
∑m′+1

i=1 g̃i . (F.2)

From this we can now estimate the scaling of the original diagram with the double trace
vertices. For this, we just need to recall that in our present convention, each double trace
coupling scales as O(1). Therefore, the removal of such vertices from the diagram, by itself,
does not lead to any change in the scaling of the diagram. However, while removing a double
trace vertex, we are also joining two pairs of propagators in the diagram. This leads to a
reduction in the overall number of propagators by 2m. Since each such propagator scales as
1/N in our convention, the above reduction in their number leads to an enhancement by a

73Departing from the usual convention, we put a tilde over g to avoid any confusion with the gauge
couplings.
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Figure 18. Planar connected diagram with 2 external legs: here, as well as in all subsequent
diagrams, a shaded blob represents a planar connected component.

factor of N2m. Therefore, comparing with the overall scaling of the disconnected diagram
as given in (F.2), we find that the original diagram scales as

N2(m′+1)−2
∑m′+1

i=1 g̃i−2m = N2−2(m−m′)−2
∑m′+1

i=1 g̃i . (F.3)

From the above expression, we can see that the leading contributions come from diagrams
where m′ = m and g̃i = 0 for all the disconnected pieces. These are precisely the planar
diagrams with double trace vertices. Each double trace vertex in such a diagram connects
two disconnected planar subdiagrams. As we can see from (F.3), these planar diagrams
scale as N2, which is identical to the scaling of the planar diagrams with only single trace
vertices. Thus, our choice of scaling of the different couplings leads to a consistent large
N scaling of all planar bubble diagrams.

Next, we will determine the scaling of different diagrams that contribute to the wave
function and vertex renormalizations considered in section 5. Henceforth, we will revert
back to our previous convention of unrescaled fields where the corresponding propagators
are O(1).

F.2 Scaling of diagrams with 2 external legs

Let us first consider planar connected diagrams that contribute to the wave function renor-
malizations of the scalar fields. Such a diagram has 2 external legs as show in figure 18.
We can estimate the scaling of this diagram by first joining the two external legs and then
summing over the color indices in this propagator. This leads to an enhancement by a
factor of N2 due to the introduction of two new color loops. The resulting diagram is a
planar bubble as shown in figure 19. As we have already argued, such a planar bubble
scales as N2. Therefore, taking into account the above-mentioned enhancement, we can
conclude that the original diagram in figure 18 scales as N0.

F.3 Scaling of diagrams with 4 external legs

Now, let us look at planar connected diagrams with 4 external legs of the scalar fields. We
can have two different types of such diagrams:

1. Diagrams which contribute to the renormalization of the single trace vertices,

2. Diagrams which contribute to the renormalization of the double trace vertices.

We will derive the scaling of both these types of diagrams below.
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Figure 19. Bubble diagram obtained by joining the two external legs in figure 18.

F.3.1 Diagrams corresponding to vertex renormalizations of single trace
couplings

Any planar diagram which contributes to the renormalization of a single trace vertex has
the structure shown in figure 20. Suppose such a diagram scales as Nx. We can estimate
the value of x by constructing a bubble diagram via the following procedure: take two
identical copies of the diagram in figure 20 and join the external legs with identical colors
in these two copies as shown in figure 21. While joining these legs, sum over corresponding
color indices. This procedure introduces 4 new color loops which leads to an enhancement
by a factor of N4. The planar bubble diagram at the end of the procedure scales as N2.
Therefore, we have the following equation:

2x+ 4 = 2 =⇒ x = −1. (F.4)

Therefore, all planar connected diagrams of the kind shown in figure 20 scale as N−1.

F.3.2 Diagrams corresponding to vertex renormalizations of double trace
couplings

Planar diagrams which contribute to the renormalization of a double trace vertex are of
the form shown in figure 22.74 As in the case of the diagrams with 2 external legs, we
can estimate the scaling of the diagram in figure 22 by joining the pairs of external legs
with identical colors and then summing over the color indices. As a result, we obtain the
bubble diagram shown in figure 23. The joining of the external legs introduces 4 new color
loops leading to an enhancement by a factor of N4. As we have already argued, the bubble

74Here let us remark that given the characterization of a planar diagram as a cell decomposition of a
sphere (i.e., a compactified plane) in terms of a ribbon graph where the external lines correspond to open
intervals in the boundaries of the faces, the only requirement for these external lines to represent a double
trace vertex is that for each pair of them with identical colors, the two lines must lie on the same boundary
of a common face. This implies that in addition to the diagrams shown in figure 22, there can be diagrams
where the two pairs of external lines do not share a common face. In particular, one of the pairs of external
lines in such a diagram may not be continuously connected to the infinity of the plane. An example of this
would be a ribbon graph version of the diagram shown in figure 5. Despite this subtle difference, the large
N scaling of such diagrams would be the same as the scaling of the diagrams shown in figure 22 since the
following arguments are equally applicable to them.
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Figure 20. Planar connected diagram contributing to renormalization of a single trace vertex.

Figure 21. Bubble diagram obtained by joining the corresponding external legs of two copies of
the diagram in figure 20.

Figure 22. Planar connected diagram contributing to renormalization of a double trace vertex.

Figure 23. Bubble diagram obtained by joining the external legs with identical colors in figure 22.
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diagram in figure 23 scales as N2. Therefore, taking into account the above-mentioned
enhancement, we can conclude that the original diagram in figure 22 scales as N−2.

F.4 Comments

From the above analysis, we can draw the following two conclusions about connected planar
diagrams with 2 and 4 external legs:

1. All such diagrams with a particular set of external legs scale identically with N .

2. Since we have shown that these diagrams can be augmented by definite procedures to
construct planar bubble diagrams, the result that double trace vertices link otherwise
disconnected planar subdiagrams can be extended to these diagrams as well.

In section 5, we have repeatedly used these two features of the connected planar diagrams
to determine the structure of the planar beta functions of the different couplings.

G General expressions for the planar beta functions of the double trace
couplings in the double bifundamental models

In this appendix, we will derive some general expressions for the planar beta functions
of the double trace couplings (fi and ζ) in terms of the corresponding wave function and
vertex renormalizations. For this, we will restrict our attention to the subspace where the
planar beta functions of the single trace couplings (λi and hi) vanish. As we have shown in
section 5, these beta functions (βλi and βhi) are independent of the double trace couplings.
Hence, their roots can be determined independently. There is a discrete set of such roots out
of which only one corresponds to unitary fixed points where the two sectors are coupled.75
At this root, the single trace couplings in the two sectors are equal, i.e., we have

λ1 = λ2 = λ0 , h1 = h2 = h0. (G.1)

We will now derive the expressions for the beta functions of the double trace couplings on
the subspace defined by the above equation.

To derive these expressions, we will work in dimensional regularization and the MS
scheme. In this scheme, the renormalized double trace couplings are related to the corre-
sponding bare couplings as follows:

fBi = µ̃εZfiZ
−2
Φi fi , ζ

B = µ̃εZζZ
−1
Φ1
Z−1

Φ2
ζ. (G.2)

Here µ̃ is an energy scale which is related to the renormalization scale µ in the MS scheme
by µ̃2 = µ2 eγE

4π where γE is the Euler-Mascheroni constant. ZΦi is the wave function
renormalization of the field Φi, and Zfi and Zζ are the vertex renormalizations of the
respective couplings. The superscript B indicates the bare couplings. Since these bare

75Here, let us remind the reader that we need to have xf1 = xf2 for the existence of this root.
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couplings are independent of µ, they drop out once we differentiate the above equations
with respect to µ, and we get

βfi = −εfi − fi

 2∑
j=1

βλj
∂

∂λj
+

2∑
j=1

βhj
∂

∂hj
+
∑
A′

βκA′
∂

∂κA′

 ln
[
ZfiZ

−2
Φi

]
,

βζ = −εζ − ζ

 2∑
j=1

βλj
∂

∂λj
+

2∑
j=1

βhj
∂

∂hj
+
∑
A′

βκA′
∂

∂κA′

 ln
[
ZζZ

−1
Φ1
Z−1

Φ2

]
,

(G.3)

where κA′ runs over the double trace couplings in the model. Recall that we are working
in the subspace where the planar beta functions βλi and βhi vanish in the ε → 0 limit.
Therefore, for small nonzero values of ε, these beta functions are βλi = −ελ0, βhi = −εh0
on the subspace of our interest. In the neighborhood of this subspace, it is convenient to
switch to the following basis for the single trace couplings:

λp,m ≡
λ1 ± λ2

2 , hp,m ≡
h1 ± h2

2 . (G.4)

In terms of this basis, the operator
(

2∑
j=1

βλj
∂
∂λj

+
2∑
j=1

βhj
∂
∂hj

)
on the above-mentioned

subspace is as follows
2∑
j=1

βλj
∂

∂λj
+

2∑
j=1

βhj
∂

∂hj
= −ελ0

∂

∂λp
− εh0

∂

∂hp
. (G.5)

Thus, the equations in (G.3) can be rewritten as

βfi = −εfi − fi
(
−ελ0

∂

∂λp
− εh0

∂

∂hp
+
∑
A′

βκA′
∂

∂κA′

)
ln
[
ZfiZ

−2
Φi

]
,

βζ = −εζ − ζ
(
−ελ0

∂

∂λp
− εh0

∂

∂hp
+
∑
A′

βκA′
∂

∂κA′

)
ln
[
ZζZ

−1
Φ1
Z−1

Φ2

]
.

(G.6)

Now, we can expand the wave function and vertex renormalizations in powers of 1
ε as

follows:

Zfi = 1 +
∞∑
n=1

Z
(n)
fi

εn
, Zζ = 1 +

∞∑
n=1

Z
(n)
ζ

εn
, ZΦi = 1 +

∞∑
n=1

Z
(n)
Φi
εn

. (G.7)

To satisfy the equations in (G.6) at each order in the 1
ε -expansion, we need the beta

functions to have the following forms:

βfi = εβ
(1)
fi

+ β
(0)
fi
, βζ = εβ

(1)
ζ + β

(0)
ζ . (G.8)

Solving the O(ε) and O(1) terms in (G.6) we get

β
(1)
fi

= −fi, β(1)
ζ = −ζ, (G.9)

β
(0)
fi

= fi

(
λ0

∂

∂λp
+ h0

∂

∂hp
+
∑
A′

κA′
∂

∂κA′

)[
Z

(1)
fi
− 2Z(1)

Φi

]
,

β
(0)
ζ = ζ

(
λ0

∂

∂λp
+ h0

∂

∂hp
+
∑
A′

κA′
∂

∂κA′

)[
Z

(1)
ζ − Z

(1)
Φ1
− Z(1)

Φ2

]
.

(G.10)
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Finally, taking the ε → 0 limit, we get the following expressions of the planar beta
functions of the double trace couplings on the subspace λ1 = λ2 = λ0, h1 = h2 = h0:

βfi = fi
∑
A

κA
∂

∂κA

[
Z

(1)
fi
− 2Z(1)

Φi

]
,

βζ = ζ
∑
A

κA
∂

∂κA

[
Z

(1)
ζ − Z

(1)
Φ1
− Z(1)

Φ2

]
,

(G.11)

where κA runs over the values λp, hp, f1, f2 and ζ. Note that the expressions in (G.11) do not
involve differentiation with respect to λm and hm. Therefore, while evaluating these beta
functions, we can restrict our attention to the wave function and vertex renormalizations
in a region where λm = hm = 0, or equivalently, λ1 = λ2 = λ and h1 = h2 = h with (λ, h)
lying in the neighborhood of (λ0, h0). As discussed in section 5.2, this plays an important
role in proving the survival of the fixed circle under all loop corrections in the planar limit.

H Finite N corrections

In this appendix we will explore the fate of the fixed circle in the real double bifundamental
model when the corrections due to finiteness of Nci are taken into account. We will assume
that Nc1 and Nc2 are of comparable magnitudes (say, O(N), where N is a large number).
As we have already seen in appendix D, the values of xf1 and xf2 must be the same (say,
x0f ) at the leading order in 1

N for the existence of unitary fixed points where the two sectors
are coupled to each other. While considering finite N corrections to such a fixed point, we
will allow for a difference between xf1 and xf2 at subleading orders in the 1

N expansion.
So, we will take

xfi =
∞∑
n=0

x
(n)
fi , (H.1)

where x(n)
fi is the O( 1

Nn ) term in the expansion of xfi. Here, x(0)
f1 = x

(0)
f2 = x0f = 21

4 − ε
with 0 < ε� 1. The common value (λ0) of the gauge couplings in the two sectors for the
fixed points at the planar limit is determined by this small parameter ε. This relation can
be used to express x0f as a perturbative expansion in λ0.

Therefore, we see that there are two small parameters in the problem: 1
N and λ0. We

will work in a regime where 1
N � λ0. We will denote the nth order term in the 1/N -

expansion of a coupling g which lies at a fixed point of the beta functions by g(n). For each
value of n, all the couplings have perturbative expansions in λ0. We will determine the
first few terms in such perturbative expansions for the O(1/N) and O(1/N2) corrections
to the couplings.

For later convenience, we find it useful to define the following quantities:

λ(n)
p = λ

(n)
1 +λ(n)

2
2 , λ(n)

m = λ
(n)
1 −λ

(n)
2

2 ,

h(n)
p = h

(n)
1 +h(n)

2
2 , h(n)

m = h
(n)
1 −h

(n)
2

2 , f (n)
p = f

(n)
1 +f (n)

2
2 , f (n)

m = f
(n)
1 −f

(n)
2

2 .

(H.2)
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The λ0-expansion of these quantities for n = 0 are as follows:

λ(0)
p ≡ λ0, λ(0)

m = 0,

h(0)
m = 0, h(0)

p ≡ h0 =
(3−

√
6

16

)
λ0 +

[
93
√

6− 201 + 8(7− 5
√

6)x0f

768
√

6

]
λ2

0 +O(λ3
0)

=
(3−

√
6

16

)
λ0 −

(
234− 31

√
6

1536

)
λ2

0 +O(λ3
0),

f (0)
m ≡ f0m, ζ

(0) ≡ ζ0, f
(0)
p ≡ f0p =

√
6

8 λ0 −
[

2160 + 339
√

6 + 56
√

6x0f
2304

]
λ2

0 +O(λ3
0)

=
√

6
8 λ0 −

(
720 + 211

√
6

768

)
λ2

0 +O(λ3
0). (H.3)

Here we have substituted x0f in the expression of h0 and f0p by its leading order value in
the λ0 expansion:

x0f = 21
4 +O(λ0). (H.4)

Note that the quantities f0m, ζ0 are constrained to lie on a circle which is given by

(ζ2
0 +f2

0m) =
(18
√

6−39
256

)
λ2

0−
[
−5784+5607

√
6+8(51

√
6−172)x0f

12288

]
λ3

0+O(λ4
0)

=
(18
√

6−39
256

)
λ2

0−
[

2583
√

6−4336
4096

]
λ3

0+O(λ4
0).

(H.5)

We will now check whether the circle of fixed points satisfying the above constraints survives
when the finite N corrections are taken into account. In particular, we will focus on possible
fixed points where the two sectors are coupled, i.e., ζ 6= 0.

H.1 Finite N corrections to the gauge couplings

First, let us look at the finite N corrections to the values of the gauge couplings. From
the form of the planar beta functions of the gauge couplings, we see that λ0 satisfies an
equation of the following form at any fixed point:

− λ2
0

(
21− 4x0f

6

)
− λ3

0

(
27− 13x0f

6

)
+A0λ

4
0 +O(λ5

0) = 0. (H.6)

Here, we have included a contribution of the 3-loop diagrams to the planar beta functions of
the gauge couplings since it is necessary for determining the O(1/N) and O(1/N2) terms in
the values of the different couplings at the fixed points.76 Although we have not evaluated
the coefficient A0, we will see that most of the important conclusions in this appendix do
not rely on its exact value.

76There may be terms involving the coupling h0 in such 3-loop contributions to the planar beta functions.
As we have already seen, the coupling h0 = ( 3−

√
6

16 )λ0 +O(λ0) at any fixed point. One can substitute this
relation between h0 and λ0 to express the quartic terms in the planar beta function of λ0 as A0λ

4
0.
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The value of λ0 in the above expression is determined by x0f . One can invert this
relation to express x0f as follows:

x0f = 21
4 −

165
16 λ0 +

(2145− 96A0
64

)
λ2

0 +O(λ3
0). (H.7)

Now, we will determine the values of the O(1/N) and O(1/N2) corrections to the gauge
couplings. As we will see, these corrections take the form of perturbative expansions in
λ0 where the leading order terms are independent of λ0. For the O(1/N2) contributions
to the couplings, we will discuss only these leading order terms. However, for the O(1/N)
contributions, we will need to take into account the first subleading terms in the λ0-
expansion as they play a role in determining the leading order terms in the O(1/N2)
corrections. Moreover, we will allow the quantities x(n)

fi to have a perturbative expansion
in λ0 as shown below:

x
(n)
fi = (x(n)

fi )0 + λ0(x(n)
fi )1 +O(λ2

0). (H.8)

We will check if the coefficients in this expansion can be fine-tuned such that the degeneracy
in the fixed points survives at a given order.

Having provided a general outline of our strategy, let us now turn to the analysis of
the O(1/N) and O(1/N2) corrections to the gauge couplings at the fixed points.

H.1.1 O(1/N) terms in the gauge couplings

To study the O(1/N) corrections to the gauge couplings, we will assume that the leading
order term in λ

(1)
i is independent of λ0. We will soon provide a consistency check for

this assumption. Keeping this assumption in mind, one can get the following perturbative
expansion for the beta function of λ(1)

i :

β
λ

(1)
i

= −λ0λ
(1)
i

(
21− 4x0f

3

)
+ λ2

0

(
2x(1)

fi

3 + 22
3Nci

)
− λ2

0λ
(1)
i

(
27− 13x0f

2

)

+ λ3
0

(
13x(1)

fi

6 + 29
24Nci

)
+ 4A0λ

3
0λ

(1)
i +O(λ4

0/N).

(H.9)

While writing the second last term in the above expansion, we have substituted x0f by 21
4

as all higher order terms in x0f lead to contributions at O(λ4
0/N) or a higher order in β

λ
(1)
i

.

Now, setting β
λ

(1)
i

= 0, we get the following value of λ(1)
i at the fixed point:

λ
(1)
i = −

16
(
11 +Nci(x(1)

fi )0
)

165Nci

+


−55

(
601 + 8Nci

(
13(x(1)

fi )0 + 2(x(1)
fi )1

))
+ 256A0

(
11 +Nci(x(1)

fi )0
)

9075Nci

λ0

+O(λ2
0/N).

(H.10)
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Note that the leading order term in λ
(1)
i is independent of λ0 as mentioned earlier. We

will see that this feature is shared by the leading order terms in the O(1/N) and O(1/N2)
corrections to all the couplings.

H.1.2 O(1/N2) terms in the gauge couplings

The beta functions of the O(1/N2) correction to the gauge couplings can be similarly
expanded as follows:

β
λ

(2)
i

= −
(
2λ0λ

(2)
i + λ

(1)2
i

)(21− 4x0f
6

)
+ 4

3λ0λ
(1)
i

(
x

(1)
fi + 11

Nci

)
+ 2

3λ
2
0x

(2)
fi

−
(
λ2

0λ
(2)
i + λ0λ

(1)2
i

)(27− 13x0f
2

)
+ λ2

0λ
(1)
i

(
13x(1)

fi

2 + 29
8Nci

)

+ 6A0λ
2
0λ

(1)2
i +O(λ3

0/N
2).

(H.11)

At the fixed point, we have

λ
(2)
i = − 16

1497375N2
ci

[
128A0

(
11 +Nci(x(1)

fi )0
)2

− 55
(

319 + 601Nci(x(1)
fi )0 +N2

ci

(
52(x(1)

fi )2
0 − 165x(2)

fi

))]
+O(λ0/N

2).

(H.12)

From the expressions of λ(1)
i and λ(2)

i one can extract the expressions of λ(1)
p,m ≡ λ

(1)
1 ±λ

(1)
2

2

and λ(2)
p,m ≡ λ

(2)
1 ±λ

(2)
2

2 . These will be useful in determining the finite N corrections to the
quartic couplings as we will discuss below.

H.2 Finite N corrections to the quartic couplings

The analysis of the finite N corrections to the quartic couplings at the fixed points is
quite similar to the one for the gauge couplings presented above. We will first discuss the
O(1/N) corrections and show that by tuning x(1)

fi and x(1)
f2 appropriately, the degeneracy

in the fixed points can be preserved up to the first subleading order in λ0. We will then
look at the O(1/N2) corrections. There we will again see that the degeneracy in the fixed
points can be preserved up to the leading order in λ0 by appropriately tuning the values
of x(2)

f1 and x(2)
f2 .

H.2.1 O(1/N) terms in the quartic couplings

The beta functions of the O(1/N) corrections to the quartic couplings have the following
forms:

β
h

(1)
p

= (32h0 − 6λ0)h(1)
p −

((
6h0 −

3
8λ0

)
λ(1)
p −

(
16h2

0 + 3h0λ0 −
3λ2

0
8

)( 1
Nc1

+ 1
Nc2

))

+
(
−288h2

0 + 80λ0h0 + 9
4λ

2
0

)
h(1)
p +

(
40h2

0 + 9
2h0λ0 −

15
8 λ

2
0

)
λ(1)
p +O(λ3

0/N),

(H.13)
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β
h

(1)
m

= (32h0 − 6λ0)h(1)
m −

((
6h0 −

3
8λ0

)
λ(1)
m −

(
16h2

0 + 3h0λ0 −
3λ2

0
8

)( 1
Nc1
− 1
Nc2

))

+
(
− 288h2

0 + 80λ0h0 + 9
4λ

2
0

)
h(1)
m +

(
40h2

0 + 9
2h0λ0 −

15
8 λ

2
0

)
λ(1)
m +O(λ3

0/N),

(H.14)

βζ(1) = ζ0

[
16f (1)

p + 32h(1)
p − 6λ(1)

p + (8h0 + 3λ0)
( 1
Nc1

+ 1
Nc2

)

+
(
128λ0 − 320h0

)
h(1)
p +

(
64f0p + 128h0 + 21

2 λ0

)
λ(1)
p + 64λ0f

(1)
p + 64f0mλ

(1)
m

]
+O(λ3

0/N), (H.15)

β
f

(1)
p

= 16(1 + 4λ0)(ζ0ζ
(1) + f0mf

(1)
m ) + (48h0 + 32f0p)h(1)

p +
(9λ0

8 − 6f0p

)
λ(1)
p

+ (16f0p + 32h0 − 6λ0)f (1)
p + f0m(32h(1)

m − 6λ(1)
m )

+ (8h0 + 3λ0)
(
f0p + f0m
Nc1

+ f0p − f0m
Nc2

)
+ 32(f2

0m + ζ2
0 )λ(1)

p

+
(
− 1152h2

0 − 320h0f0p + 192λ0h0 + 9λ2
0 + 128λ0f0p

)
h(1)
p

+
(

96h2
0 + 18h0λ0 −

45
8 λ

2
0 + 128h0f0p + 21

2 λ0f0p + 32f2
0p

)
λ(1)
p

+
(
− 160h2

0 + 128λ0h0 + 21
4 λ

2
0 + 64λ0f0p

)
f (1)
p

+ f0m

(
− 320h0h

(1)
m + 128λ0h

(1)
m + 128h0λ

(1)
m + 64f0pλ

(1)
m + 21

2 λ0λ
(1)
m

)
+O(λ3

0/N),

(H.16)

β
f

(1)
m

= (48h0 + 32f0p)h(1)
m +

(9λ0
8 − 6f0p

)
λ(1)
m + (16f0p + 32h0 − 6λ0)f (1)

m

+ f0m(16f (1)
p + 32h(1)

p − 6λ(1)
p ) + (8h0 + 3λ0)

(
f0p + f0m
Nc1

− f0p − f0m
Nc2

)
+
(
− 1152h2

0 − 320h0f0p + 192λ0h0 + 128λ0f0p + 9λ2
0

)
h(1)
m

+
(

96h2
0 + 128h0f0p + 18h0λ0 + 21

2 λ0f0p −
45
8 λ

2
0 + 32

(
f2

0p + f2
0m − ζ2

0

))
λ(1)
m

+ f0m

(
− 320h0h

(1)
p + 128λ0h

(1)
p + 128h0λ

(1)
p + 64f0pλ

(1)
p + 64λ0f

(1)
p + 21

2 λ0λ
(1)
p

)
+
(
− 160h2

0 + 128λ0h0 + 64λ0f0p + 21
4 λ

2
0

)
f (1)
m +O(λ3

0/N).

(H.17)

In the above expression of β(1)
ζ , we have ignored terms of the form ζ(1)

[
· · ·
]
where the dots

stand for a coefficient which is not suppressed by 1/N. This coefficient is identical to the
coefficient of ζ0 in βζ0 , and hence is set equal to zero at the fixed point.
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Now, setting β
h

(1)
p

and β
h

(1)
m

to zero, we get the following expressions for the O(1/N)
corrections to hp and hm:

h(1)
p = (−3 +

√
6)

330Nc1Nc2

[
11(Nc1 +Nc2) +Nc1Nc2

(
(x(1)
f1 )0 + (x(1)

f2 )0
)]

+ λ0
871200Nc1Nc2

[(
55(−7290 + 2947

√
6)− 8448(−3 +

√
6)A0

)
(Nc1 +Nc2)

+Nc1Nc2

{(
55(−702 + 281

√
6)− 768(−3 +

√
6)A0

)(
(x(1)
f1 )0 + (x(1)

f2 )0
)

+ 2640(−3 +
√

6)
(
(x(1)
f1 )1 + (x(1)

f2 )1
)}]

+O(λ2
0/N),

(H.18)

h(1)
m = (−3 +

√
6)

330Nc1Nc2

[
− 11(Nc1 −Nc2) +Nc1Nc2

(
(x(1)
f1 )0 − (x(1)

f2 )0
)]

+ λ0
871200Nc1Nc2

[
−
(
55(−7290 + 2947

√
6)− 8448(−3 +

√
6)A0

)
(Nc1 −Nc2)

+Nc1Nc2

{(
55(−702 + 281

√
6)− 768(−3 +

√
6)A0

)(
(x(1)
f1 )0 − (x(1)

f2 )0
)

+ 2640(−3 +
√

6)
(
(x(1)
f1 )1 − (x(1)

f2 )1
)}]

+O(λ2
0/N),

(H.19)

Substituting these values of h(1)
p and h

(1)
m in the expression of βζ(1) and then setting

βζ(1) = 0, we get the following value of f (1)
p :

f (1)
p = − 2

55
√

6Nc1Nc2

[
11(Nc1 +Nc2) +Nc1Nc2

(
(x(1)
f1 )0 + (x(1)

f2 )0
)]

+ λ0
871200Nc1Nc2

[
11(101475− 7195

√
6 + 1536

√
6A0)(Nc1 +Nc2)

+Nc1Nc2

{(
110(720− 101

√
6) + 1536

√
6A0

)(
(x(1)
f1 )0 + (x(1)

f2 )0
)

− 5280
√

6
(
(x(1)
f1 )1 + (x(1)

f2 )1
)}]

+ 32f0m
165Nc1Nc2

[
− 11(Nc1 −Nc2) +Nc1Nc2

(
(x(1)
f1 )0 − (x(1)

f2 )0
)]

+O(λ2
0/N).

(H.20)
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Now substituting the values of h(1)
p , h(1)

m and f (1)
p in the expression of β

f
(1)
p

, and then
setting β

f
(1)
p

= 0, we get

2(1 + 4λ0)
(
ζ0ζ

(1) + f0mf
(1)
0m

)
= (13− 6

√
6)λ0

880Nc1Nc2

[
11(Nc1 +Nc2) +Nc1Nc2

(
(x(1)
f1 )0 + (x(1)

f2 )0
)]

+ 4f0m

55
√

6Nc1Nc2

[
11(Nc1 −Nc2)−Nc1Nc2

(
(x(1)
f1 )0 − (x(1)

f2 )0
)]

+ λ2
0

1548800Nc1Nc2

[
11
(
5(8793

√
6− 5516) + 512(6

√
6− 13)A0

)
(Nc1 +Nc2)

+Nc1Nc2

{(
55(32 + 567

√
6) + 512(6

√
6− 13)A0

)(
(x(1)
f1 )0 + (x(1)

f2 )0
)

+ 55(416− 192
√

6)
}(

(x(1)
f1 )1 + (x(1)

f2 )1
)]

+ f0mλ0
435600Nc1Nc2

[
11(101475− 28315

√
6 + 1536

√
6A0)(Nc2 −Nc1)

+Nc1Nc2

{
(79200− 32230

√
6 + 1536

√
6A0)

(
(x(1)
f1 )0 − (x(1)

f2 )0
)

− 5280
√

6
(
(x(1)
f1 )1 − (x(1)

f2 )1
)}]

+O(λ3
0/N).

(H.21)

The above expression gives the O(1/N) correction to the location of the fixed points along
the radial direction of fixed circle in the N →∞ limit.

Finally, setting β
f

(1)
m

= 0, we get the following two constraints on the values of (x(1)
fi

)0

and (x(1)
fi

)1:

(x(1)
f1

)0 − (x(1)
f2

)0 = 11
( 1
Nc2
− 1
Nc1

)
,

(x(1)
f1

)1 − (x(1)
f2

)1 = − 9
376(437− 55

√
6)
( 1
Nc2
− 1
Nc1

)
.

(H.22)

The important point to note here is that after substituting the expressions of all the
quantities evaluated earlier, the coefficients of f0m and f

(1)
m in β

f
(1)
m

vanish and one is
left with a quantity that vanishes under the above constraints. This means that when the
values of (x(1)

fi
)0 and (x(1)

fi
)1 are tuned to satisfy these constraints, no additional condition is

imposed on the coupling fm and the degeneracy in the fixed points survives up to O(λ0/N)
corrections to the couplings. Now, substituting these relations between x(1)

f1
and x(1)

f2
in the
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expressions of f (1)
p and 2(1 + 4λ0)

(
ζ0ζ

(1) + f0mf
(1)
m

)
, we get

f (1)
p = − 4

55
√

6Nc2

(
11 +Nc2(x(1)

f2 )0
)

+ λ0
40946400Nc1Nc2[

81675(165− 7
√

6)Nc2 + 11
(
5(1662705− 124871

√
6) + 144384

√
6A0

)
Nc1

+ 188Nc1Nc2

{
(39600− 5555

√
6 + 768

√
6A0)(x(1)

f2 )0 − 2640
√

6(x(1)
f2 )1

}]

+O(λ2
0/N), (H.23)

2(1 + 4λ0)
(
ζ0ζ

(1) + f0mf
(1)
0m

)
= (13− 6

√
6)λ0

440Nc2

(
11 +Nc2(x(1)

f2 )0
)

+ λ2
0

774400Nc2

[
11
(
5(8793

√
6− 5516) + 512(6

√
6− 13)A0

)
+
(
55(567

√
6 + 32) + 512(6

√
6− 13)A0

)
Nc2(x(1)

f2 )0

− 1760(6
√

6− 13)Nc2(x(1)
f2 )1

]
− 3(165− 7

√
6)f0mλ0

752Nc1Nc2
(Nc1 −Nc2)

+O(λ3
0/N). (H.24)

The fact that h(1)
p , h(1)

m and f (1)
p are independent of f0m implies that even after taking the

O(1/N) corrections into account, the closed curve of fixed points still lies on a plane. When
Nc1 6= Nc2, the dependence of the quantity 2(1 + 4λ0)(f0mf

(1)
m + ζ0ζ

(1)) on f0m indicates a
deformation of the shape of the closed curve away from its circular form in the planar limit.
When the two ranks are equal, i.e., Nc1 = Nc2, the quantity 2(1 + 4λ0)(f0mf

(1)
m + ζ0ζ

(1)) is
independent of f0m which means that the closed curve of fixed points remains a circle up
to this order.

To explore whether the above features survive at higher orders in λ0, one needs to
evaluate the contributions of the higher loop diagrams to the beta functions. For now, we
will assume that the degeneracy in the fixed points survives at O(1/N) up to all orders in
λ0 and check whether the leading order contributions at O(1/N2) lift the degeneracy.
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H.2.2 O(1/N2) terms in the quartic couplings

The beta functions of the O(1/N2) corrections to the quartic couplings have the following
forms:

β
h

(2)
p

= (32h0−6λ0)h(2)
p +

(3
8λ0−6h0

)
λ(2)
p +16(h(1)2

p +h(1)2
m )+ 3

16(λ(1)2
p +λ(1)2

m )

−6(λ(1)
p h(1)

p +λ(1)
m h(1)

m )+(3λ0+32h0)
(
h

(1)
p +h(1)

m

Nc1
+h

(1)
p −h(1)

m

Nc2

)

+
(

3h0−
3λ0
4

)(
λ

(1)
p +λ(1)

m

Nc1
+λ

(1)
p −λ(1)

m

Nc2

)
+(40λ0−288h0)

(
h(1)2
p +h(1)2

m

)
+
(9

4h0−
15
8 λ0

)(
λ(1)2
p +λ(1)2

m

)
+
(9

2λ0+80h0

)(
λ(1)
p h(1)

p +λ(1)
m h(1)

m

)
+O(λ2

0/N
2),

(H.25)

β
h

(2)
m

= (32h0−6λ0)h(2)
m +

(3
8λ0−6h0

)
λ(2)
m +32h(1)

p h(1)
m + 3

8λ
(1)
p λ(1)

m

−6
(
λ(1)
p h(1)

m +λ(1)
m h(1)

p

)
+(3λ0+32h0)

(
h

(1)
p +h(1)

m

Nc1
−h

(1)
p −h(1)

m

Nc2

)

+
(

3h0−
3λ0
4

)(
λ

(1)
p +λ(1)

m

Nc1
−λ

(1)
p −λ(1)

m

Nc2

)
+(80λ0−576h0)h(1)

p h(1)
m

+
(9

2h0−
15
4 λ0

)
λ(1)
p λ(1)

m +
(9

2λ0+80h0

)(
λ(1)
p h(1)

m +λ(1)
m h(1)

p

)
+O(λ2

0/N
2),

(H.26)

βζ(2) = ζ0

[
16f (2)

p +32h(2)
p −6λ(2)

p

+
(

8h(1)
p +3λ(1)

p +8h(1)
m +3λ(1)

m

Nc1
+ 8h(1)

p +3λ(1)
p −8h(1)

m −3λ(1)
m

Nc2

)

−160
(
h(1)2
p +h(1)2

m

)
+ 21

4
(
λ(1)2
p +λ(1)2

m

)
+128

(
λ(1)
p h(1)

p +λ(1)
m h(1)

m

)
+64

(
λ(1)
p f (1)

p +λ(1)
m f (1)

m

)]
+O(λ2

0/N
2),

(H.27)

β
f

(2)
p

= 16
(
ζ0ζ

(2)+f0mf
(2)
m

)
+8(1+4λ0)

(
f (1)2
m +ζ(1)2

)
+64λ(1)

p

(
ζ0ζ

(1)+f0mf
(1)
m

)
+
(
16f0p+32h0−6λ0

)
f (2)
p +

(
32f0p+48h0

)
h(2)
p +

(9
8λ0−6f0p

)
λ(2)
p

+24
(
h(1)2
p +h(1)2

m

)
+ 9

16
(
λ(1)2
p +λ(1)2

m

)
+f0m

(
32h(2)

m −6λ(2)
m

)
+
(
32h(1)

p −6λ(1)
p

)
f (1)
p +

(
32h(1)

m −6λ(1)
m

)
f (1)
m +8f (1)2

p

+
(

(8h0+3λ0)(f (1)
p +f (1)

m )+(f0p+f0m)(8h(1)
p +3λ(1)

p +8h(1)
m +3λ(1)

m )
Nc1

+ (8h0+3λ0)(f (1)
p −f (1)

m )+(f0p−f0m)(8h(1)
p +3λ(1)

p −8h(1)
m −3λ(1)

m )
Nc2

)
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+
(

9h0−
45
8 λ0+ 21

4 f0p

)(
λ(1)2
p +λ(1)2

m

)
+(96λ0−1152h0−160f0p)

(
h(1)2
p +h(1)2

m

)
+2(96h0+9λ0+64f0p)

(
λ(1)
p h(1)

p +λ(1)
m h(1)

m

)
+64(2λ0−5h0)

(
h(1)
p f (1)

p +h(1)
m f (1)

m

)
+2
(

64h0+ 21
4 λ0+32f0p

)(
λ(1)
p f (1)

p +λ(1)
m f (1)

m

)
+32λ0f

(1)2
p

+f0m

(
−320h(1)

p h(1)
m +64λ(1)

m f (1)
p +128λ(1)

p h(1)
m +128λ(1)

m h(1)
p + 21

2 λ
(1)
p λ(1)

m

)
+O(λ2

0/N
2), (H.28)

β
f

(2)
m

=
(
16f0p+32h0−6λ0

)
f (2)
m +f0m

(
16f (2)

p +32h(2)
p −6λ(2)

p

)
+
(
32f0p+48h0

)
h(2)
m +

(9
8λ0−6f0p

)
λ(2)
m +

(
16f (1)

p +32h(1)
p −6λ(1)

p

)
f (1)
m

+
(
32f (1)

p +48h(1)
p

)
h(1)
m +

(9
8λ

(1)
p −6f (1)

p

)
λ(1)
m

+
(

(8h0+3λ0)(f (1)
p +f (1)

m )+(f0p+f0m)(8h(1)
p +3λ(1)

p +8h(1)
m +3λ(1)

m )
Nc1

− (8h0+3λ0)(f (1)
p −f (1)

m )+(f0p−f0m)(8h(1)
p +3λ(1)

p −8h(1)
m −3λ(1)

m )
Nc2

)

+4(48λ0−576h0−80f0p)h(1)
p h(1)

m +
(

18h0−
45
4 λ0+ 21

2 f0p

)
λ(1)
p λ(1)

m

+2(64λ0−160h0)
(
h(1)
p f (1)

m +h(1)
m f (1)

p

)
+2(96h0+9λ0+64f0p)

(
λ(1)
p h(1)

m +λ(1)
m h(1)

p

)
+2
(

64h0+ 21
4 λ0+32f0p

)(
λ(1)
p f (1)

m +λ(1)
m f (1)

p

)
+64λ0f

(1)
p f (1)

m +64f0m
(
f (1)
p λ(1)

p +f (1)
m λ(1)

m

)
−64ζ0ζ

(1)λ(1)
m

+f0m

[
128

(
λ(1)
p h(1)

p +λ(1)
m h(1)

m

)
−160

(
h(1)2
p +h(1)2

m

)
+ 21

4
(
λ(1)2
p +λ(1)2

m

)]
+O(λ2

0/N
2). (H.29)

In the above expression of βζ(2) , we have ignored terms of the forms ζ(2)
[
· · ·
]
and ζ(1)

[
· · ·
]

because the dots correspond to coefficients of ζ0 in βζ0 and βζ(1) respectively, and these
coefficients have already been set to zero at the fixed point.

As earlier, by setting β
h

(2)
p
, β

h
(2)
m

and βζ(2) to zero, one can determine the values of

h
(2)
p , h(2)

m and f (2)
p . Then by setting β

f
(2)
p

to zero, one can find the O(1/N2) correction to
the quantity (1 + 4λp)(ζ2 + f2

m). We will give the forms of these corrections shortly. But
first let us discuss the constraint following from setting β

f
(2)
m

to zero. Just like the O(1/N)
corrections, the coefficients of f0m, f (1)

m and f (2)
m in β

f
(2)
m

vanish, and no additional condition
is imposed on fm up to the leading order term in the λ0-expansion when β

f
(2)
m

= 0. In fact,
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this equation leads to a relation between the quantities x(2)
f1 and x(2)

f2 which is as follows:

x
(2)
f1 = x

(2)
f2 −

6(71
√

6− 163)(Nc2 −Nc1)
55(6
√

6− 13)Nc1N2
c2

(
11 +Nc2(x(1)

f2 )0
)

+O(λ2
0/N

2). (H.30)

Thus, when this relation is satisfied, the degeneracy in the fixed points survives at this
order. Now, imposing the above relation as well as the relation between x

(1)
f1 and x

(1)
f2

obtained earlier, we get

h(2)
p = 1

1497375(36− 13
√

6)Nc1N2
c2[(

4235(8821− 3606
√

6) + 46464(25
√

6− 62)A0
)
Nc1

+ 27225(32− 13
√

6)Nc2
(
11 +Nc2(x(1)

f2 )0
)

+
(
55(148262− 60519

√
6) + 8448(25

√
6− 62)A0

)
Nc1Nc2(x(1)

f2 )0

+Nc1N
2
c2

{(
55(7865− 3207

√
6) + 384(25

√
6− 62)A0

)
(x(1)
f2 )2

0

+ 27225(25
√

6− 62)x(2)
f2

}]
+O(λ0/N

2),

(H.31)

h(2)
m = (13

√
6− 32)(Nc1 −Nc2)

55(36− 13
√

6)Nc1N2
c2

[
11 +Nc2(x(1)

f2 )0

]
+O(λ0/N

2), (H.32)

f (2)
p = (165− 7

√
6)(Nc1 −Nc2)

5170Nc1N2
c2

[
11 +Nc2(x(1)

f2 )0

]

−
√

6
8984250N2

c2

[(
11 +Nc2(x(1)

f2 )0

){
1536A0

(
11 +Nc2(x(1)

f2 )0
)

+ 55
(
− 656 + 4125

√
6 + 2(−101 + 120

√
6)Nc2(x(1)

f2 )0
)}

+ 108900N2
c2x

(2)
f2

]
+O(λ0/N

2),

(H.33)

2
(
ζ0ζ

(2) + f0mf
(2)
m

)
+ (1 + 4λ0)

(
f (1)2
m + ζ(1)2

)
+ 8λ(1)

p

(
ζ0ζ

(1) + f0mf
(1)
m

)
= 6
√

6− 13
9075N2

c2

(
11 +Nc2(x(1)

f2 )0
)2

+ λ0
145200N2

c2

[(
(−2216 + 441

√
6) + 768

55 (13− 6
√

6)A0

)(
11 +Nc2(x(1)

f2 )0
)2

+
(
72(163− 71

√
6)− 32(13− 6

√
6)Nc2(x(1)

f2 )1
)(

11 +Nc2(x(1)
f2 )0

)
+ 330(13− 6

√
6)N2

c2x
(2)
f2

]
−
[

3(165− 7
√

6)(Nc1 −Nc2)λ0
752Nc1Nc2

]
f (1)
m

+
[(165− 7

√
6)(Nc1 −Nc2)

(
11 +Nc2(x(1)

f2 )0
)

2585Nc1N2
c2

]
f0m +O(λ2

0/N
2). (H.34)
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The last quantity is the O(1/N2) correction to (1+4λp)(ζ2 +f2
m) up to the first subleading

order in the λ0-expansion. When Nc1 6= Nc2, this quantity has terms which are dependent
on f0m and f

(1)
m . These terms provide the correction to the shape of the closed curve of

fixed points at O(1/N2). Notice that when Nc1 = Nc2, this quantity becomes independent
of f0m and f (1)

m which indicates that the circular form of the closed curve is preserved up
to this order.

To determine whether the degeneracy in the fixed points survives at higher orders in
λ0 as well as to evaluate the higher order corrections to the couplings at the fixed points,
one needs to compute the contributions of the higher loop diagrams to the beta functions.
This lies beyond the scope of this paper.
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