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1 Introduction

In recent years a lot of attention has been devoted to development and phenomenological

applications of the theory of perturbative saturation [1]. The main physical idea of this

approach is that at high enough energy hadronic wave function resembles a dense gluon

cloud, sometimes referred to as the Color Glass Condensate (CGC) [2–4]. When the en-

ergy is high enough the density scale becomes large and the physics becomes essentially

perturbative and tractable.

The theoretical description of the energy evolution of the wave function towards such

a dense state at leading order in αs has been long known. It is given by the so called

JIMWLK equation [2–10], or equivalently Balitsky hierarchy [11–13]. It generalizes the

well known BFKL equation [14–18] by including finite density effects in the hadronic wave

function.

The mean field approximation to the JIMWLK equation, the so called Balitsky-

Kovchegov (BK) equation [11–13, 19] has been used extensively in the last several years

in phenomenological applications, that include fits to DIS low x data [20, 21] as well as

various aspects of p-p and p-A data [22]. For phenomenological applications it is crucial

to include perturbative corrections beyond leading order, since they are known to lead to

large effects already in the linear BFKL framework [23, 24]. Currently only the corrections

due to running coupling constant ([25–28]) are included in the numerical work, although
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there has been recent progress in understanding of the more problematic gluon emission

contributions [29].

Significant progress in including the full set of next to leading order corrections in

the high energy evolution was achieved by Balitsky and Chirilli [30]. This work presented

the complete set of NLO corrections to the evolution of the scattering amplitude of the

fundamental dipole in QCD. Subsequently analogous calculation was performed in the

N = 4 super Yang Mills theory [31]. Recently Grabovsky [32] computed certain parts of

the NLO evolution equation for three-quark singlet amplitude in the SU(3) theory.

Using the results of [30] and [32] in a recent paper [33] we have derived the complete

operator form of the JIMWLK Hamiltonian at next to leading order. This paper appeared

simultaneously with [34], which directly calculated most elements of the general Balitsky

hierarchy at NLO. We also note that similar results have been independently obtained

in [35]. For the sake of self-completeness of the present paper, in appendix A we quote

the main result of ref. [33]. In appendix B we provide some insight on how the result is

obtained, while a more detailed report of our derivation and a comparison with [34] will

appear in a forthcoming separate publication [36].

Even though the JIMWLK NLO Hamiltonian is now available, there are theoretical

questions about it that still have to be addressed. In this paper we address one such

question, namely that of conformal invariance. The leading order JIMWLK equation is

conformally invariant when applied on gauge invariant states. This holds even in QCD,

although conformal invariance of the classical Yang-Mills action is violated by the quantum

anomaly, since the coupling constant renormalization is necessary only beyond leading

order.

The NLO evolution of the color dipole derived in [30] as well as the explicit form of

the NLO JIMWLK Hamiltonian given in [33] is not conformally invariant. There are two

sources for the violation of conformal symmetry at this level. One is due to the genuine

quantum anomaly associated with the introduction of renormalization scale. The other one

is due to the fact that the calculations involve hard cutoff in rapidity space, which itself

is not conformally invariant [37]. In principle it should be possible to eliminate this latter

source of noninvariance by employing an explicitly conformally invariant rapidity cutoff.

However, it is not known how to do it explicitly. Instead, it was shown in [31] that in

the particular case of the dipole evolution it is possible to redefine the dipole operator in

such a way that its evolution becomes conformally invariant, up to the running coupling

effects. In this paper we show that the reason for it, is that conformal invariance is in

fact present in the NLO JIMLWK Hamiltonian, albeit the conformal transformation of the

Wilson lines is slightly different from the naive one. To avoid dealing with the running

coupling effects, we will consider here the N = 4 super Yang-Mills theory. On the level

of JIMWLK equation this theory is very similar to QCD. However it has no conformal

anomaly and is conformally invariant as a full Quantum Field Theory.

We show that the NLO JIMLWK equation for N = 4 theory has exact conformal

invariance, even though it is derived with sharp rapidity cutoff. The conformal transfor-

mation of the Wilson line operators is perturbatively different from the naive one, and this

is the origin of apparent noninvariance of the HNLO JIMWLK as well as the dipole evolution

– 2 –



J
H
E
P
0
4
(
2
0
1
4
)
0
3
0

equation. The modified transformation is an exact symmetry of the Hamiltonian.1 Our

functional formalism is not only an explicit realization of the idea that evolution kernels

could be modified as discussed in [31, 37], but a proof that such modification is possible

for any operator in the theory.2

We show how the properties of the generator of the conformal transformation allow one

to define operators with naive conformal transformation properties. Evolution equations

satisfied by these “conformal operators” are invariant under naive conformal transforma-

tion. For the color dipole operator this procedure results in the same definition of the

conformal dipole as given in [31]. Applying this general procedure to the baryon operator

in SU(3) theory, we derive an expression for the “conformal baryon”. We also derive the

operator form of the Hamiltonian, which generates evolution of the “conformal operators”.

This Hamiltonian itself is invariant under naive conformal transformation.

We present the NLO JIMWLK Hamiltonian for the N = 4 SUSY in the next section

(2). Calculational details relevant for this derivation can be found in appendix B. In section

3 we apply the inversion transformation to the Hamiltonian and compute the “anomalous”

term responsible for apparent breaking of the conformal invariance. In section 4 we modify

the symmetry generator and demonstrate that the full JIMWLK Hamiltonian is indeed

invariant under the new symmetry transformation. Appendix C is a supplement to this

section. Conformal operators, including conformally invariant Hamiltonian are presented

in section 5. Section 6 contains a summary of the results.

2 The NLO JIMWLK Hamiltonian.

The JIMWLK Hamiltonian [2–10] is the limit of the QCD Reggeon Field Theory (RFT),

applicable for computations of high energy scattering amplitudes of dilute (small parton

number) projectiles on dense (nuclei) targets. In general it predicts the rapidity evolution

of any hadronic observable O via the functional equation of the form

d

dY
O = −HJIMWLKO (2.1)

The JIMWLK Hamiltonian defines a two-dimensional non-local field theory of a uni-

tary matrix (Wilson line) S(x) which, in the high energy eikonal approximation represents

the scattering amplitude of a quark at the transverse coordinate x. The leading order

Hamiltonian is:

HLO JIMWLK = − 1

2

∫
d2z d2x d2y M(x, y, z) ĥ(x, y, z) (2.2)

with ĥ being the Hamiltonian density:

ĥ ≡
[
Ja
L(x) Ja

L(y) + Ja
R(x) Ja

R(y) − 2Ja
L(x)Sab

A (z) Jb
R(y)

]
. (2.3)

1To be more precise, within the perturbative NLO framework the Hamiltonian HNLO JIMWLK is invariant

up to terms of order O(α2
s).

2Results, in many respects similar to ours were obtained independently in [35]. We thank Simon Caron-

Huot for sharing his results prior to publicaiton.
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Here SA is a unitary matrix in the adjoint representation - the gluon scattering amplitude.

The left and right SU(N) rotation generators, when acting on functions of S have the

representation

Ja
L(x) = tr

[
δ

δST
x

T aSx

]
− tr

[
δ

δS∗x
S†xT

a

]
; Ja

R(x) = tr

[
δ

δST
x

SxT
a

]
− tr

[
δ

δS∗x
T aS†x

]
.

(2.4)

Here T a are SU(N) generators in the fundamental representation. The leading order dipole

kernel is given by

M(x, y; z) =
αs

2π2

(x− y)2

X2 Y 2
. (2.5)

We use the notations of ref. [30] X ≡ x−z, X ′ ≡ x−z′, Y ≡ y−z, Y ′ ≡ y−z′, W ≡ w−z,
W ′ ≡ w − z′, and Z ≡ z − z′. The dipole form of the kernel is appropriate when the

Hamiltonian acts on gauge invariant observables. If one wishes to consider evolution of

non-gauge invariant states and/or is interested in non-singlet exchanges, like the reggeized

gluon, the appropriate kernel is the Weizsacker-Williams kernel

M(x, y; z)→ K(x, y; z) = −αs

π2

X · Y
X2 Y 2

. (2.6)

In this paper we are only interested in the evolution of the gauge invariant sector, as

ultimately only this sector of the theory is physical. Another reason to concentrate on the

dipole form of the kernel is that even at leading order only the Hamiltonian with dipole

kernel is explicitly conformally invariant.

At next to leading order the Hamiltonian contains terms with at most two factors of the

adjoint Wilson line SA, and at most three factors of the color charge density, since at this

order at most two soft gluons are emitted in each step in the evolution. More constraints

on the form of the Hamiltonian come from the symmetries of the theory. As discussed in

detail in [38], the theory must have SUL(N) × SUR(N) symmetry, which in QCD terms

is the gauge symmetry of |in〉 and |out〈 states and two discrete symmetries: the charge

conjugation S(x) → S∗(x), and another Z2 symmetry: S(x) → S†(x), Ja
L(x) ↔ −Ja

R(x)

which in [38] was identified with signature, and can be understood as the combination of

charge conjugation and time reversal symmetry [39].

Taking these constraints into account, the Hamiltonian can quite generally be written

in terms of six kernels

HNLO JIMWLK =

∫
x,y
K2,0(x, y) [Ja

L(x) Ja
L(y) + Ja

R(x) Ja
R(y)]

− 2

∫
x,y,z

K2,1(x, y, z) Ja
L(x)Sab

A (z) Jb
R(y)

+

∫
x,y,z,z′

K2,2(x, y; z, z′)
[
fabc fdef Ja

L(x)Sbe
A (z)Scf

A (z′) Jd
R(y) − Nc J

a
L(x)Sab

A (z) Jb
R(y)

]
+

∫
w,x,y,z,z′

K3,2(w;x, y; z, z′)facb
[
Jd
L(x) Je

L(y)Sdc
A (z)Seb

A (z′) Ja
R(w)

− Ja
L(w)Scd

A (z)Sbe
A (z′) Jd

R(x) Je
R(y)

]
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+

∫
w,x,y,z

K3,1(w;x, y; z) f bde
[
Jd
L(x) Je

L(y)Sba
A (z) Ja

R(w) − Ja
L(w)Sab

A (z) Jd
R(x) Je

R(y)
]

+

∫
w,x,y

K3,0(w, x, y)f bde
[
Jd
L(x) Je

L(y) Jb
L(w) − Jd

R(x) Je
R(y) Jb

R(w)
]
. (2.7)

All color charge density operators JL(R) in (2.7) are understood as placed to the right of

all factors of S, and thus not acting on S in the Hamiltonian.

To determine the kernels in (2.7) we calculate the action of the Hamiltonian on the

color dipole and compare the result with the result of [31]. The action of all terms in the

Hamiltonian on a color dipole is given in appendix B. Additionally we use the results of [32]

for the connected pieces of the evolution of the baryon operator. This corresponds to ac-

tion of the Hamiltonian on the baryon operator B(u, v, w) = εijkε
lmnSil(u)Sjm(v)Skn(w)

and keeping only terms with at least one Wilson line and three color charge density oper-

ators, where no two operators JL(R)(x) act on the same coordinate of the baryon operator

B(u, v, w). The result of application of HJIMWLK on B gives directly the kernels K3,2

and K3,1, and here we do not present this calculation in any detail (to appear in [36]).

Comparison with [32] gives

K3,2(w;x, y; z, z′) =

=
i

2

[
Mx,y,zMy,z,z′ +Mx,w,zMy,w,z′ −My,w,z′Mx,z′,z −Mx,w,zMy,z,z′

]
ln
W 2

W ′ 2

K3,1(w;x, y; z) =

∫
z′

[
K3,2(y;w, x; z, z′)−K3,2(x;w, y; z, z′)

]
(2.8)

Note that we present these kernels here in a somewhat different form than in [33]. The

difference between eq. (2.8) and similar expressions in [33] are terms which do not depend

on one of the three coordinates x, y or w. In the Hamiltonian, this amounts to additional

operators with three J ’s , which contain explicit factors of the type Qa
L(R) =

∫
d2u Ja

L(R)(u).

When such a factor appears in the rightmost position in the operator, the operator vanishes

when acting on gauge invariant states, since such a state is annihilated by Qa
L(R). When

Qa is not at the rightmost position, it can be commuted all the way to the right and then

dropped. The commutator, which remains and cannot be neglected, involves one less power

of J . Thus our choice of kernels K3,2 and K3,1 will be reflected by a somewhat different

expression for the kernels K2,1 and K2,2 relative to those given in [33].

Comparing the result of the action of the Hamiltonian (2.7) on a dipole with the dipole

evolution calculated in [31] we get the following relations:

K2,2(x, y; z, z′) =
α2
s

16π4

[
(x− y)2

X2Y ′2(z − z′)2

(
1 +

(x− y)2(z − z′)2

X2Y ′2 −X ′2Y 2

)

− (x− y)2

X ′2Y 2(z − z′)2

(
1 +

(x− y)2(z − z′)2

X ′2Y 2 −X2Y ′2

)]
ln
X2Y ′2

X ′2Y 2
(2.9)

K2,1(x, y; z) =
α2
sNc

16π3

(x− y)2

X2Y 2

[
π2

3
+ 2 ln

Y 2

(x− y)2
ln

X2

(x− y)2

]
+
i

2
Nc

[
K3,1(y;x, y; z) +K3,1(x; y, x; z)

]
(2.10)
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Nc
K2,0(x, y) − i

{
K3,0(y, x, y) +K3,0(x, y, x)−K3,0(y, y, x)−K3,0(x, x, y)

+K3,0(y, x, x) +K3,0(x, y, y)
}

=
α2

4π3

∫
z

(x− y)2

X2Y 2

[
π2

3
+ 2 ln

Y 2

(x− y)2
ln

X2

(x− y)2

]
(2.11)

As shown in the appendix, the expression for K2,1 can be simplified with the final result:

K2,1(x, y, z) =
α2
sNc

48π

(x− y)2

X2Y 2
(2.12)

Note that eq. (2.11) determines K2,0 in terms of K3,0, but does not determine each

coefficient function separately. Thus strictly speaking we need more information than is

available to us directly to determine the virtual coefficients. However, as we will show in the

next sections, only a very specific expression for K3,0 satisfies the condition of conformal

invariance. This form is:

K3,0(w, x, y) = − 1

3

[∫
z,z′

K3,2(w, x, y; z, z′) +

∫
z
K3,1(w, x, y; z)

]
. (2.13)

This expression is explicitly antisymmetric under the permutation of any two coordinates,

and thus its action on dipole vanishes. In the following we take the coefficient K3,0 in ([33])

to be given by eq. (2.13). Strictly speaking, this leaves a gap in our proof of conformal

invariance which should be closed by explicit calculation of K3,0 by a different method.

However, given that we are able to show that conformal invariance does hold for all other

terms, we consider this gap not to be significant.

With K3,0 given by eq. (2.13), eq. (2.11) gives

K2,0(x, y) =
α2Nc

16π3

∫
z

(x− y)2

X2Y 2

[
π2

3
+ 2 ln

Y 2

(x− y)2
ln

X2

(x− y)2

]
(2.14)

3 Naive conformal transformations.

It is now straightforward to find the conformal transformation properties of the Hamilto-

nian. The Hamiltonian is obviously rotationally and dilatationally invariant. It is therefore

sufficient to consider the transformation of coordinate inversion. This is most conveniently

done in the complex notation. For a 2d vector x, we introduce x± = x1± i x2. The “naive”

inversion transformation is

I0 : x+ → 1/x− ; x− → 1/x+ ;

I0 : S(x+, x−)→ S(1/x−, 1/x+) JL,R(x+, x−)→ 1

x+x−
JL,R(1/x−, 1/x+) . (3.1)

The transformation properties of the various kernels under the inversion are

K3,2(1/w; 1/x, 1/y; 1/z, 1/z′) = z4z′4
[
K3,2(w;x, y; z, z′) + δK3,2(w; , x, y; z, z′)

]
,

δK3,2 =
i

2

[
Mx,y,zMy,z,z′ +Mx,w,zMy,w,z′ −My,w,z′Mx,z′,z −Mx,w,zMy,z,z′

]
ln
z′ 2

z2
(3.2)

K3,1(1/w; 1/x, 1/y; 1/z) = z4
[
K3,1(w;x, y; z) + δK3,1(w;x, y; z)

]
,
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δK3,1(w;x, y; z) =
i

2

∫
z′

[
(Mx,w,z −My,w,z)

(
Mx,z,z′ +My,z,z′ −My,x,z′

) ]
ln
z′ 2

z2
(3.3)

K3,0(1/w, 1/x, 1/y) = K3,0(w, x, y) + δK3,0(w, x, y)

δK3,0(w, x, y) = − i
6

∫
z,z′

z4z′4

[
Mx,w,zMy,w,z′ +Mx,y,z′ (My,w,z −Mx,w,z)

+Mx,w,zMx,z,z′ −My,w,zMy,z,z′

]
ln
z′ 2

z2
(3.4)

K2,1(1/x, 1/y; 1/z) = z4K2,1(x, y; z) , (3.5)

K2,0(1/x, 1/y) = K2,0(x, y) , K2,2(1/x, 1/y; 1/z, 1/z′) = z4z′ 4K2,2(x, y; z, z′). (3.6)

The last line requires some explanation. Formally eq. (2.14) gives

δK2,0(x, y) = −iNc

∫
z,z′

z4z′4
[
−Mx,y,zMx,y,z′ +Mx,y,zMx,z,z′ +Mx,y,zMy,z,z′

]
ln
z′ 2

z2
. (3.7)

However, the expression in the bracket is symmetric under z ↔ z′. This property is obvious

for the first term, while it also holds for the other two terms since purely algebraically

Mx,z,z′Mx,y,z = Mx,y,z′My,z′,z =
α2
s

4π4

(x− y)2

(z − z′)2(y − z)2(x− z′)2
(3.8)

The integrand in eq. (3.7) is therefore an antisymmetric function of z and z′ and vanishes

upon integration. Thus the kernel K2,0 is in fact conformally invariant.

For the very same reason we can disregard the last two terms in δK3,0. The coefficients

of these terms do not depend on one of the coordinates. As discussed above, such terms

cannot be dropped automatically, but rather we should commute the charge associated

with this coordinate to the right of all other operators before discarding a term of this

type. However in the present case such commutation generates a term proportional to∫
z,z′ Mx,y,zMx,z,z′ ln z′ 2

z2
Ja(x)Ja(y). Since the operator Ja(x)Ja(y) is symmetric under the

interchange x→ y, the coefficient can be symmetrized and it vanishes due to eq. (3.8). We

will therefore disregard these terms.

Under the action of the “naive” inversion the Hamiltonian transforms in the following

way:

I0 H
JIMWLK I0 = HJIMWLK + A; (3.9)

A =

∫
w,x,y,z,z′

δK3,2(w;x, y; z, z′)facb
[
Jd
L(x) Je

L(y)Sdc
A (z)Seb

A (z′) Ja
R(w)

− Ja
L(w)Scd

A (z)Sbe
A (z′) Jd

R(x) Je
R(y)

]
+

∫
w,x,y,z

δK3,1(w;x, y; z) f bde
[
Jd
L(x) Je

L(y)Sba
A (z) Ja

R(w) − Ja
L(w)Sab

A (z) Jd
R(x) Je

R(y)
]

+δK3,0(w;x, y)f bde
[
Jd
L(x) Je

L(y) Jb
L(w) − Jc

R(x) Jb
R(y) Ja

R(w)
]

(3.10)
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After substituting the above expressions for the δKs we obtain

A =
i

2

∫
w,x,y,z,z′

ln
z′ 2

z2

{
facb

[
Jd
L(x) Je

L(y)Sdc
A (z)Seb

A (z′) Ja
R(w)

− Ja
L(w)Scd

A (z)Sbe
A (z′) Jd

R(x) Je
R(y)

] [
Mx,w,zMy,w,z′ −My,w,z′Mx,z′,z −Mx,w,zMy,z,z′

]
+f bde

[
Jd
L(x) Je

L(y)Sba
A (z) Ja

R(w) − Ja
L(w)Sab

A (z) Jd
R(x) Je

R(y)
]

×
[

(My,w,z −Mx,w,z)My,x,z′ +Mx,w,zMy,z,z′ −My,w,zMx,z,z′

]
− 1

3
f bde

[
Jd
L(x)Je

L(y)Jb
L(w)

−Jd
R(x)Je

R(y)Jb
R(w)

][
Mx,w,zMy,w,z′ +Mx,y,z′ (My,w,z −Mx,w,z)

]}

−Nc

2

∫
x,y,z,z′

ln
z′ 2

z2
Mx,y,z

(
Mx,z,z′ +My,z,z′

)
Ja
L(x)Sab

A (z) Jb
R(y) (3.11)

In the first term we dropped the term in δK3,2 which does not depend on w, since

it vanishes when acting on color singlets. The last term (JSJ) arises from the term

−My,w,zMy,z,z′ in δK3,1 which does not depend on x. It is generated by commuting the

appropriate global color charge Qa to the right of the rest of the factors in the operator

JJSJ . As discussed above, once Qa has been commuted to the rightmost position it can

be discarder.

4 The Conformal Symmetry of the Hamiltonian.

The NLO Hamiltonian is not invariant under the naive inversion transformation I0,

I0 : HNLO JIMWLK → HNLO JIMWLK + A . (4.1)

One might however expect, that the Hamiltonian does possess an exact inversion (and

conformal) symmetry, but that this symmetry is represented in a slightly different way

than the naive transformation eq. (3.1). This is generically the situation if one arrives at an

effective theory by integrating out a subset of degrees of freedom. Say, one integrates over

the subset {α} and obtains effective theory in terms of the remaining degrees of freedom

{β}. If the cutoff separating α from β is not invariant under a symmetry of the full theory,

the transformation of β involves α, that is δβ = f(α, β). After the integration f(α, β)

becomes some effective operator expressible in terms of β only. However this operator

generically is not simply equal to f(α = 0, β). This means, that the transformation of

β in the effective theory looks somewhat different than in the original formulation before

the integration of α. The situation in our case is very similar. The sharp rapidity cutoff

used in deriving HNLO JIMWLK is not invariant under the conformal symmetry. Thus we

expect that the naive form of conformal transformation should be modified, but that the

symmetry itself is still the symmetry of HNLO JIMWLK.
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If this is true, the anomalous piece A can be compensated if the Wilson lines S form

a non-trivial representation of the conformal group such that

I : S(x)→ S(1/x) + δS(x) , I : JL,R(x)→ 1

x2
JL,R(1/x) + δJL,R(x)

I : HLO → HLO − A (4.2)

where δS and δJ are perturbatively of the order αs, such that the net anomaly is cancelled

and the total Hamiltonian remains invariant at NLO:

I : HLO + HNLO → HLO + HNLO . (4.3)

Note that within the NLO perturbative framework, the transformation of HNLO is with

the “naive” operator I0 only.

Our goal is to explicitly construct such I. We are going to search it perturbatively in

the form

I = (1 + C) I0 . (4.4)

Inspired by the construction of the conformal dipole in [31], we search for C in the form:

C =

∫
u,v,z′

F (u, v, z′) ĥ(u, v, z′) , (4.5)

where ĥ(u, v, z) is the leading order Hamiltonian density defined in eq. (2.2), and F (u, v, z)

is a function to be determined.

We are now to transform the leading order Hamiltonian using the basic commutation

relations:

[Ja
R(x), Jb

R(y)] = ifabcJc
R(x)δ(x− y) , [Ja

L(x), Jb
L(y)] = −ifabcJc

L(x)δ(x− y) , (4.6)

[Ja
R(x), Sbc

A (y)] = ifacdSbd
A (x)δ(x− y) , [Ja

L(x), Sbc
A (y)] = −ifabdSdc

A (x)δ(x− y)

we obtain

δSab
A (z) ≡ [Sab

A (z), C] (4.7)

= i

∫
v,z′

Fz,v,z′

[
f cad[Sdb

A (z)Jc
L(v)− 2Sdb

A (z)Sce
A (z′)Je

R(v)]− f cbdSad
A (z)Jc

R(v)
]

−i
∫
u,z′

Fu,z,z′

[
f cbd[Jc

R(u)Sad
A (z)− 2Je

L(u)Sad
A (z)Sec

A (z′)]− f cadJc
L(u)Sdb

A (z′)
]

δJa
L(x) ≡ [Ja

L(x), C] = −ifabc
∫
v,z′

Fx,v,z′

[
Jc
L(x)Jb

L(v)− 2Jc
L(x)Sbd

A (z′)Jd
R(v)

]
−ifabc

∫
u,z′

Fu,x,z′J
b
L(u)Jc

L(x) + 2ifabd
∫
u,v
Fu,v,xJ

b
L(u)Sdc

A (x)Jc
R(v) (4.8)

δJa
R(x) ≡ [Ja

R(x), C] = ifabc
∫
u,z′

Fu,x,z′

[
Jb
R(u)Jc

R(x)− 2Jd
L(u)Sdb

A (z′)Jc
R(x)

]
+ifabc

∫
v,z′

Fx,v,z′J
c
R(x)Jb

R(v)− 2ifacd
∫
u,v
Fu,v,xJ

b
L(u)Sbd

A (x)Jc
R(v) (4.9)
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The transformation of the LO JIMWLK Hamiltonian

δHLO ≡ [HLO, C] = −1

2

∫
x,y,z

M(x, y, z) (4.10)

×
{
Ja
R(y)[Ja

R(x), C] + [Ja
R(x), C]Ja

R(y) + Ja
L(y)[Ja

L(x), C] + [Ja
L(x), C]Ja

L(y)

−2[Ja
L(x), C]Sab

A (z)Jb
R(y)− 2Ja

L(x)[Sab
A (z), C]Jb

R(y)− 2Jb
L(y)Sba

A (z)[Ja
R(x), C]

}
Putting all terms together yields the transformation of HLO:

δHLO = −i
∫
x,y,w,z,z′

facb
[
Sec
A (z)Sdb

A (z′)Je
L(x)Jd

L(y)Ja
R(w)

− Sce
A (z)Sbd

A (z′)Je
R(x)Jd

R(y)Ja
L(w)

][
Fy,w,z′Mw,x,z − Fw,x,zMy,w,z′

− Fy,w,z′Mx,z′,z + Fx,z′,zMy,w,z′ − Fy,z,z′Mx,w,z + Fx,w,zMy,z,z′

]
+

∫
x,y,z,z′

fabcfdefSbe
A (z)Scf

A (z′)Ja
L(x)Jd

R(y)
[
Fx,y,z′My,z′,z − Fy,z′,zMx,y,z′

− Fx,z,z′My,x,z + Fy,x,zMx,z,z′

]
+i

∫
x,y,w,z,z′

f bde
[
Sba
A (z)Jd

L(x)Je
L(y)Ja

R(w) − Sab
A (z)Jd

R(x)Je
R(y)Ja

L(w)
]

×
[
(Fy,w,zMy,x,z′ − Fx,w,zMx,y,z′) + (Fx,w,zMz,y,z′ − Fy,w,zMx,z,z′)

+ (Fx,y,z′Mx,w,z − Fy,x,z′My,w,z) + (Fx,z,z′My,w,z − Fz,y,z′Mx,w,z)
]

+Nc

∫
x,y,z,z′

Sab
A (z)Ja

L(x)Jb
R(y)

[
− Fx,y,zMz,x,z′ +Mx,y,zFz,x,z′

− Fy,x,zMz,y,z′ +Mx,y,zFz,y,z′

]
+
i

4

∫
x,y,w,z,z′

f bde
[
Jd
R(x)Je

R(y)Jb
R(w)− Jd

L(x)Je
L(y)Jb

L(w)
]

×
[
Fx,y,z′(Mx,w,z −My,w,z)−Mx,y,z′(Fx,w,z − Fy,w,z) + Fy,w,z′Mx,y,z

−My,w,z′Fx,y,z +My,w,z′Fx,w,z − Fy,w,z′Mx,w,z

]
(4.11)

Note that if we choose F (x, y, z) = M(x, y, z)φ(z), due to eq. (3.8) the coefficient of the

SSJJ term in (4.11) vanishes identically for arbitrary function φ(z).

Furthermore, by inspection we see that with the following choice of F

F (x, y, z) = − 1

2
M(x, y, z) ln

z2

a2
(4.12)

with a - an arbitrary constant, all the respective coefficients in (4.11) and (3.11) coincide

and lead to complete cancelation of the anomaly. With this choice we have

δHLO =
i

2

∫
x,y,w,z,z′

ln
z′2

z2
facb

[
Sec
A (z)Sdb

A (z′)Je
L(x)Jd

L(y)Ja
R(w)

−Sce
A (z)Sbd

A (z′)Je
R(x)Jd

R(y)Ja
L(w)

][
My,w,z′Mx,w,z−My,w,z′Mx,z′,z−My,z,z′Mx,w,z

]
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− i
2

∫
x,y,w,z,z′

ln
z′2

z2
f bde

[
Sba
A (z)Jd

L(x)Je
L(y)Ja

R(w) − Sab
A (z)Jd

R(x)Je
R(y)Ja

L(w)
]

×
[
Mx,y,z′(Mx,w,z −My,w,z) + (Mx,z,z′My,w,z −My,z,z′Mx,w,z)

]
− Nc

2

∫
x,y,z,z′

ln
z′2

z2
Sab
A (z)Ja

L(x)Jb
R(y)

[
Mx,y,z(Mx,z,z′ +My,z,z′)

]
− i

8

∫
x,y,w,z,z′

ln
z′2

z2
f bde

[
Jd
R(x)Je

R(y)Jb
R(w)− Jd

L(x)Je
L(y)Jb

L(w)
]

×
[
Mx,y,z′(Mx,w,z −My,w,z) +My,w,z′Mx,y,z −My,w,z′Mx,w,z

]
(4.13)

We thus find that the Hamiltonian is indeed invariant under the transformation

I S(x) I = S(1/x) + [C, S(1/x)] = S(1/x)− I0[C, S(x)]I0 (4.14)

with

C = − 1

2

∫
x,y,z

M(x, y, z) ln

(
z2

a2

)
ĥ(x, y, z) (4.15)

The last equality in eq. (4.14) follows since

I0 C I0 = −C . (4.16)

The explicit operator form of the transformation can be read off eqs. (4.7), (4.8), (4.9).

Note that the transformation of S involves the operators JL and JR. The simplest way to

understand what is the result of this transformation, is rather than examining its operator

form, directly examine its action on “states”. In other words we wish to examine its

action on expectation values of operators in a state with vanishing JL and JR. It is such

expectation values that are the subject of the Balitsky hierarchy. Thus for example, acting

on a dipole [u†v] ≡ tr[S†(u)S(v)] we obtain

I[u†v] = I0[1− C][u†v] (4.17)

=

[
[(1/u)†, 1/v] +

∫
z
Mu,v,z ln

z2

a2

{
[(1/u)†, 1/z][(1/z)†, 1/v]−Nc[(1/u)†, 1/v]

}]
.

5 Constructing conformal operators.

Our next step is to relate the modified conformal symmetry with the construction of the

conformal dipole operator in [31], and to extend such construction to arbitrary operators.

The original Wilson line operators transform in a non-canonical way under the modified

conformal symmetry. One can, however construct operators which do transform in the

standard way.

We define a conformal Wilson line operator U(x) so that under the modified conformal

(inversion) symmetry it transforms as

I U(x) I = U(1/x) (5.1)
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It is easy to find a perturbative solution to this condition:

Ū(x) = S(x) +
1

2
[C, S(x)] . (5.2)

Indeed

I Ū(x) I = I

(
S(x) +

1

2
[C, S(x)]

)
I = S(1/x) + [C, S(1/x)]− 1

2
[C, S(1/x)] = Ū(1/x) .

(5.3)

The operator Ū has the requisite transformation properties under inversion, but it does

not transform correctly under translation, since the kernel in operator C depends explicitly

on the coordinate z rather than on coordinate difference. This however is easily rectified.

Let us modify the definition3

U(x) = S(x) +
1

2
[C̄, S(x)] (5.4)

where C̄ = C−D, such that D is invariant under inversion, but C̄ has correct transformation

properties under translation. The choice of D is not unique, but a convenient choice that

reproduces the results of [31] is

D = − 1

2

∫
x,y,z

M(x, y, z) ln
(x− y)2z2

(x− z)2(y − z)2
ĥ(x, y, z) . (5.5)

This gives

C̄ =
1

2

∫
x,y,z

M(x, y, z) ln
(x− y)2a2

(x− z)2(y − z)2
ĥ(x, y, z) . (5.6)

Similarly, for an arbitrary operator O(x1 · · ·xn) we can perturbatively define its conformal

extension:

O(x1 · · ·xn) = O(x1 · · ·xn) +
1

2
[C̄, O(x1 · · ·xn)] . (5.7)

Applied to a single dipole this gives

tr[U †(u)U(v)] = [u†v] +
1

2

∫
z
M(u, v, z) ln

(u− v)2a2

(u− z)2(v − z)2

{
[u†z][z†v]−Nc[u

†v]
}

(5.8)

which coincides with the conformal dipole of [31].

Another operator of interest is a three quark singlet operator

B(u, v, w) = εijkεlmn S
im
F (u)Sjl

F (v)Skn
F (w)

for Nc = 3. Its conformal extension is calculated to be

B(u, v, w) = B(u, v, w) +
3

4

∫
z

{
Mu,v,z ln

(u− v)2a2

(u− z)2(v − z)2

[
1

6
(B(u, z, z)B(w, v, z)+

+B(v, z, z)B(w, u, z)−B(w, z, z)B(v, u, z))− B(u, v, w)

]
+ (u↔ w) + (v ↔ w)

}
.

(5.9)

3Note that eq. (5.4) does not imply a redefinition of the symmetry operator. The operator that commutes

with the Hamiltonian is still C. Eq. (5.4) merely defines the field U(x) with simple transformation properties

under C and translation.
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Linearized NLO evolution equation for B should coincide with the result of ref. [40], but

this comparison is beyond the scope of the present paper.

Finally, we note that one can rewrite the JIMWLK Hamiltonian in terms of the con-

formal Wilson line operators U(x). This is achieved by a substitution, inverting eq. (5.4)

S(x) = U(x) − 1

2
[C̄, U(x)] (5.10)

or alternatively by transforming HJIMWLK with the operator C̄

HJIMWLK
conformal = HJIMWLK − 1

2

[
C̄, HLO JIMWLK

]
. (5.11)

The calculation of this commutator is entirely analogous to eq. (4.11) with a different

function F . The “conformal” Hamiltonian HJIMWLK
conformal has exactly the same structure as the

original NLO JIMWLK Hamiltonian (2.7) but with the kernels K replaced by conformal

kernels K:

K3,2(w;x, y; z, z′) =
i

4

[
Mx,y,zMy,z,z′ ln

W 4X ′ 2Y ′ 2

W ′ 4X2Y 2
+Mx,w,zMy,w,z′ ln

(x− w)2W 2Y ′ 2

(y − w)2W ′ 2X2

−My,w,z′Mx,z′,z ln
W 4X ′ 2Y ′ 2

(y − w)2(z − z′)2W ′ 2X2
−Mx,w,zMy,z,z′ ln

(x− w)2(z − z′)2W 2Y ′ 2

W ′ 4X2Y 2

]
;

K3,1(w;x, y; z) =

∫
z′

[
K3,2(y;w, x; z, z′) − K3,2(x;w, y; z, z′)

]
;

K2,2(x, y; z, z′) = K2,2(x, y; z, z′)

+
α2
s

16π4

(x− y)2

(z − z′)2

[
1

Y 2X ′ 2
ln

(x− y)2(z − z′)2

X2Y ′ 2
+

1

X2Y ′ 2
ln

(x− y)2(z − z′)2

Y 2X ′ 2

]
;

K2,1(x, y; z) = K2,1(x, y; z)

−α
2
s Nc

16π4

∫
z′

(x− y)2

(z − z′)2

[
1

Y 2X ′ 2
ln

(x− y)2(z − z′)2

X2Y ′ 2
+

1

X2Y ′ 2
ln

(x− y)2(z − z′)2

Y 2X ′ 2

]
; (5.12)

K3,0(w, x, y) = − 1

3

[∫
z,z′
K3,2(w, x, y; z, z′) +

∫
z
K3,1(w, x, y; z)

]
; (5.13)

K2,0(x, y, z) = K2,1(x, y; z). (5.14)

For a dipole, HJIMWLK
conformal generates an evolution equation that fully agrees with the evolution

of conformal dipole given by eq. (66) of [31].

6 Conclusions

In this paper we studied conformal symmetry of the NLO JIMWLK Hamiltonian in N = 4

theory. We showed that even though the Hamiltonian was derived using a sharp rapidity

cutoff, which is not conformally invariant, conformal symmetry indeed remains an exact

symmetry of HNLO JIMWLK. The action of the conformal transformation on the Wilson

line operators acquires an additional term, consistent with the fact that those are operators

in the effective theory obtained by integrating out part of the degrees of freedom.
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We also showed how to define conformal extension for any function of Wilson lines so

that the resulting operator has the standard “naive” conformal symmetry transformation

properties. As two examples we considered the dipole operator and the baryon operator

in the SU(3) theory. We have also provided the expression for HNLO JIMWLK expressed in

terms of the “conformal” Wilson lines.

The conformal extension can be applied to HNLO JIMWLK
QCD presented in eq. (A.1). While

the resulting Hamiltonian is not conformal, the conformal invariance of this new Hamilto-

nian is only broken by terms proportional to the QCD β function.

A QCD NLO JIMWLK Hamiltonian

Here we quote the main result of [33] for NLO JIMWLK Hamiltonian in QCD.

HNLO JIMWLK
QCD =

∫
x,y,z

KJSJ(x, y; z)
[
Ja
L(x)Ja

L(y) + Ja
R(x)Ja

R(y)− 2Ja
L(x)Sab

A (z)Jb
R(y)

]
+

∫
x y z z′

KJSSJ(x, y; z, z′)
[
fabcfdefJa

L(x)Sbe
A (z)Scf

A (z′)Jd
R(y)−NcJ

a
L(x)Sab

A (z)Jb
R(y)

]
+

∫
x,y,z,z′

Kqq̄(x, y; z, z′)
[
2 Ja

L(x) tr[S†(z)T a S(z′)T b] Jb
R(y) − Ja

L(x)Sab
A (z) Jb

R(y)
]

+

∫
w,x,y,z,z′

KJJSSJ(w;x, y; z, z′)facb
[
Jd
L(x) Je

L(y)Sdc
A (z)Seb

A (z′) Ja
R(w)

−Ja
L(w)Scd

A (z)Sbe
A (z′) Jd

R(x) Je
R(y) +

1

3
[ Jc

L(x) Jb
L(y) Ja

L(w) − Jc
R(x) Jb

R(y) Ja
R(w)]

]
+

∫
w,x,y,z

KJJSJ(w;x, y; z) f bde
[
Jd
L(x) Je

L(y)Sba
A (z) Ja

R(w) − Ja
L(w)Sab

A (z) Jd
R(x) Je

R(y)

+
1

3
[ Jd

L(x) Je
L(y) Jb

L(w) − Jd
R(x) Je

R(y) Jb
R(w)]

]
(A.1)

All Js in (2.7) are assumed not to act on S in the Hamiltonian.

KJSJ(x, y; z) = − α2
s

16π3

(x− y)2

X2Y 2

[
b ln(x− y)2µ2 − bX

2 − Y 2

(x− y)2
ln
X2

Y 2

+

(
67

9
− π2

3

)
Nc −

10

9
nf

]
− Nc

2

∫
z′
K̃(x, y, z, z′) (A.2)

Here µ is the normalization point in the MS scheme and b = 11
3 Nc − 2

3nf .

KJSSJ(x, y; z, z′) =
α2
s

16π4

[
− 4

Z4
+

{
2
X2Y ′2 +X ′2Y 2 − 4(x− y)2Z2

Z4[X2Y ′2 −X ′2Y 2]

+
(x− y)4

X2Y ′2 −X ′2Y 2

[
1

X2Y ′2
+

1

Y 2X ′2

]
+

(x− y)2

Z2

[
1

X2Y ′2
− 1

X ′2Y 2

]}
ln
X2Y ′2

X ′2Y 2

]
+K̃(x, y, z, z′) (A.3)

K̃(x, y, z, z′) =
i

2

[
KJJSSJ(x;x, y; z, z′)−KJJSSJ(y;x, y; z, z′)

−KJJSSJ(x; y, x; z, z′) +KJJSSJ(y; y, x; z, z′)
]

(A.4)

– 14 –



J
H
E
P
0
4
(
2
0
1
4
)
0
3
0

Kqq̄(x, y; z, z′) = −
α2
s nf

8π4

{
X ′2Y 2 + Y ′2X2 − (x− y)2Z2

Z4(X2Y ′2 −X ′2Y 2)
ln
X2Y ′2

X ′2Y 2
− 2

Z4

}
(A.5)

KJJSJ(w;x, y; z) = − i α
2
s

4π3

[
X ·W
X2W 2

− Y ·W
Y 2W 2

]
ln

Y 2

(x− y)2
ln

X2

(x− y)2
(A.6)

KJJSSJ(w;x, y; z, z′) = −i α
2
s

2π4

(
XiY

′
j

X2Y ′2

)(
δij

2Z2
−

ZiW
′
j

Z2W ′2
+
ZjWi

Z2W 2
−

WiW
′
j

W 2W ′2

)
ln
W 2

W ′2

(A.7)

B Technical details of derivations

B.1 Action of the NLO JIMWLK Hamiltonian on the dipole

To facilitate comparison with the results of [30] we present the action of various operators

on the dipole [u†v]∫
x,y,z

K2,1(x, y, z)Ja
L(x)Sab

A (z)Jb
R(y)[u†v] =

∫
z
K2,1(u, v, z)

{
1

Nc
[u†v]− [u†z][z†v]

}
(B.1)∫

x,y
K2,0(x, y) [Ja

L(x) Ja
L(y) + Ja

R(x) Ja
R(y)] [u†v] = −4

∫
z
K2,0(u, v, z)

N2
c − 1

2Nc
[u†v] (B.2)∫

w,x,y,z
K3,1(w;x, y; z)f bde

[
Jd
L(x)Je

L(y)Sba
A (z)Ja

R(w)− Ja
L(w)Sab

A (z)Jd
R(x)Je

R(y)
]
[u†v] =

= −iNc

∫
z

[
K3,1(v;u, v; z) +K3,1(u; v, u; z)

]{
[u†z][z†v]− 1

Nc
[u†v]

}
(B.3)∫

x,y,z,z′
K2,2(x, y; z, z′)fabc fdef Ja

L(x)Sbe
A (z)Scf

A (z′) Jd
R(y)[u†v]

= −
∫
z,z′

K2,2(u, v; z, z′)
{

[u†z′][z′†z][z†v]− [u†zz′†vz†z′]
}

(B.4)∫
w,x,y,z,z′

K3,2(w;x, y; z, z′)facb
[
Jd
L(x) Je

L(y)Sdc
A (z)Seb

A (z′) Ja
R(w)

− Ja
L(w)Scd

A (z)Sbe
A (z′) Jd

R(x) Je
R(y)

]
[u†v] =

=
i

2

∫
z,z′

{[
K3,2(v; v, u; z, z′) +K3,2(u;u, v; z, z′)−K3,2(u; v, u; z, z′)

−K3,2(v;u, v; z, z′)
]{

[u†z′][z′†z][z†v]− [u†zz′†vz†z′]
}

+
[
K3,2(v; v, u; z, z′)

−K3,2(u;u, v; z, z′)−K3,2(u; v, u; z, z′) +K3,2(v;u, v; z, z′)−K3,2(v;u, u; z, z′)

+K3,2(u; v, v; z, z′)
]

[u†z′][z′†z][z†v]

}
(B.5)∫

w,x,y
K3,0(w, x, y)f bde

[
Jd
L(x) Je

L(y) Jb
L(w) − Jd

R(x) Je
R(y) Jb

R(w)
]

[u†v] =

= i
N2

c − 1

2

{
K3,0(v, u, v) +K3,0(u, v, u)−K3,0(v, v, u)

−K3,0(u, u, v) +K3,0(v, u, u) +K3,0(u, v, v)
}

[u†v] (B.6)
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We note, that with the explicit expression for K3,2 and K3,1 in eq. (2.8), we have

K3,2(v; v, u; z, z′) +K3,2(u;u, v; z, z′)−K3,2(u; v, u; z, z′)−K3,2(v;u, v; z, z′) = 0

K3,1(v;u, v; z) +K3,1(u; v, u; z) = − i
2

∫
z′

[
Mu,v,zMu,v,z′ ln

U2V 2

U ′2V ′2
+

+Mu,v,z′(Mv,z,z′ −Mu,z,z′) ln
U ′2V 2

U2V ′2
− 2Mu,v,z

[
Mu,z,z′ ln

V 2

V ′2
+Mv,z,z′ ln

U2

U ′2

]]
(B.7)

B.2 Algebra with kernels.

We can relate the kernels K3,2 and K3,1 to the kernels KJJSSJ and KJJSJ introduced

above.

α2
sNc

8π3

(x− y)2

X2Y 2
ln

Y 2

(x− y)2
ln

X2

(x− y)2
= − i

2
Nc

[
KJJSJ(x;x, y; z)−KJJSJ(y;x, y; z)

]
=

= − i
2
Nc

∫
z′

[
KJJSSJ(y;x, x; z, z′)−KJJSSJ(y; y, x; z, z′) +KJJSSJ(x; y, y; z, z′)

−KJJSSJ(x;x, y; z, z′)
]

(B.8)

We can relate KJJSSJ with K3,2 by straightforward algebraic manipulations:

KJJSSJ(w;x, y, z, z′) = K3,2(w;x, y, z, z′)

−i α
2
s

8π4

[
2π2

αs

[
−My,z,z′

1

W 2
−Mx,z′,z

1

W ′2
+My,w,z′

(
1

W 2
− 1

Z2

)
+Mx,w,z

(
1

W ′2
− 1

Z2

)]

− 1

W ′2
1

W 2
+

1

Z2

(
1

X2
+

1

Y ′2
+

1

W 2
+

1

W ′2

)]
ln
W 2

W ′ 2
(B.9)

This allows us to express K2,1 as

K2,1(x, y, z) =
α2
sNc

48π

(x− y)2

X2Y 2
− (B.10)

−α
2
sN

16π4

∫
z′

{
2π2

αs

[
(My,z′,z −Mx,z′,z)

[
1

Y ′2
ln
Y 2

Y ′2
− 1

X ′2
ln
X2

X ′2

]
+

+Mx,y,z

[
1

Y ′2
ln
Y 2

Y ′2
+

1

X ′2
ln
X2

X ′2
− 1

Z2
ln

X2Y 2

X ′2Y ′2

]]
+

1

Z2

(
1

X2
− 1

Y 2

)
ln
X ′2Y 2

X2Y ′2

}

The last term in this equation can be simplified if we discard the terms that do not depend

on either x or y. With some additional algebra we have

K2,1(x, y, z) =
α2
sNc

48π

(
1− 6a

π3

)
(x− y)2

X2Y 2
(B.11)

where the constant a is defined by∫
Y ′

Y ′i
Y ′2(Y − Y ′)2

ln
Y 2

Y ′2
= ξ

Yi
Y 2

(B.12)
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The last equation must be true by rotational invariance and dimensional counting, given

that the integral is convergent. The explicit calculation gives ξ = 0. Thus we determine

the coefficient K2,1 as

K2,1(x, y, z) =
α2
sNc

48π

(x− y)2

X2Y 2
(B.13)
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