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Abstract: We present several new results for the N -partite information, IN , of spatial
regions in the ground state of d-dimensional conformal field theories. First, we show that
IN can be written in terms of a single N -point function of twist operators. Using this, we
argue that in the limit in which all mutual separations are much greater than the regions
sizes, the N -partite information scales as IN ∼ r−2N∆, where r is the typical distance
between pairs of regions and ∆ is the lowest primary scaling dimension. In the case of
spherical entangling surfaces, we obtain a completely explicit formula for the I4 in terms of
2-, 3- and 4-point functions of the lowest-dimensional primary. Then, we consider a three-
dimensional scalar field in the lattice. We verify the predicted long-distance scaling and
provide strong evidence that IN is always positive for general regions and arbitrary N for
that theory. For the I4, we find excellent numerical agreement between our general formula
and the lattice result for disk regions. We also perform lattice calculations of the mutual
information for more general regions and general separations both for a free scalar and
a free fermion, and conjecture that, normalized by the corresponding disk entanglement
entropy coefficients, the scalar result is always greater than the fermion one. Finally, we
verify explicitly the equality between the N -partite information of bulk and boundary fields
in holographic theories for spherical entangling surfaces in general dimensions.
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1 Introduction

In quantum field theory (QFT), vacuum expectation values are statistical measures of the
vacuum state fluctuations in the quantum fields, and a complete knowledge of such expec-
tation values can be used to fully characterize the theory [1]. An alternative formulation
of QFT can be performed in terms of algebras associated to spacetime regions [2] — pro-
totypically, causal diamonds. In this, the rôle played by the vacuum expectation values of
the quantum fields in the usual formulation should be played by statistical measures of the
vacuum state in the corresponding algebras. The natural quantities that one can associate
to such algebras are entanglement measures such as entanglement entropy (EE).

As a matter of fact, the EE of any pair of regions is ill-defined in the continuum, al-
though one can often construct well-defined regularized versions of it which capture univer-
sal information about the continuum theory.1 On the other hand, an entanglement-based
axiomatic approach to QFT would naturally require the use of measures which can be
defined properly in the continuum theory. A natural choice is the mutual information (MI)
which, given a pair of disjoint regions A1, A2 can be defined in terms of the EE as

I2(A1, A2) ≡ S(A1) + S(A2)− S(A1A2) , (1.1)

where A1A2 is shorthand for A1 ∪ A2. Strictly speaking, the r.h.s. of this formula is
only defined in the continuum as a limit of regulated EEs, but there exists an alternative
equivalent definition which makes sense in the continuum theory in terms of relative entropy
— see e.g. [23]. The mutual information is positive semi-definite, I2 ≥ 0, monotonous
under inclusion, and symmetric in its arguments, among other properties — see e.g. [24].
It has been suggested that the long-distance expansion of the mutual information of pairs of
regions could be used to systematically extract the operatorial content of the theory [24, 25].
Indeed, the exponents of the inverse distance powers appearing in such expansion are linear
combinations of the conformal dimensions of the theory [26] and, in the case of spherical
regions, the expansion can be organized as a sum of conformal blocks associated to each
primary field [26–29]. In that case, the leading term is given by [30]

I2 = c(2∆)R
2∆
1 R2∆

2
r4∆

12
, where c(N∆) ≡

√
π

4
Γ[N∆ + 1]
Γ
[
N∆ + 3

2
] , (R1,2 � r12) (1.2)

In this expression, which is valid in general dimensions, R1, R2 are the radii of the spheres,
r12 is the distance between them, and ∆ is the lowest scaling dimension of the theory, which
is assumed to correspond to a scalar field.2 For more general regions, c(2∆) is replaced by
a complicated function of the spacetime dimension, the geometry of the regions, and ∆.

Subleading terms in the mutual information long-distance expansion are expected to
include information also about the Operator Product Expansion (OPE) coefficients. In

1A few examples in the context of conformal field theories (CFTs) are: the trace-anomaly coefficients
for even dimensional theories [3–8], the Euclidean sphere partition function in odd dimensions [9, 10], the
stress-tensor two-point function charge CT in general dimensions [11–13], the thermal entropy coefficient
CS in general dimensions [14–16], and others [17–22].

2Analogous formulas for the case in which the lowest primary has an arbitrary spin have also been
obtained [29, 31]. In the case of a free fermion, the subleading term has been computed in [24].

– 2 –



J
H
E
P
0
3
(
2
0
2
3
)
2
4
6

fact, one such coefficient appears already in the analogous leading long-distance term in
the case of the tripartite information, I3. Given three entangling regions A1, A2, A3, this
is defined as

I3(A1, A2, A3) ≡ S(A1) + S(A2) + S(A3)− S(A1A2)− S(A1A3)− S(A2A3) + S(A1A2A3) ,
(1.3)

where unions are again implicitly understood. As opposed to the mutual information,
the tripartite information can be both positive and negative for different theories [32, 33].
When a given theory satisfies I3 ≤ 0 for arbitrary regions, the mutual information is said
to be “monogamous”, which is the case, for instance, of holographic theories [34, 35] —
see also [36–38]. On the other hand, examples of theories which exhibit non-monogamous
mutual informations include free fields [39]. Finally, as argued in [25], a CFT with I3 = 0 for
general regions is only possible in d = 2 — such theory corresponding to a free fermion [39].
In the long-distance regime, it has been shown that the tripartite information of three
spherical regions is given, for a general d-dimensional CFT, by3 [25]

I3 =
[

26∆Γ
(
∆ + 1

2
)3

2πΓ
(
3∆ + 3

2
) − c(3∆)(COOO)2

]
R2∆

1 R2∆
2 R2∆

3
r2∆

12 r
2∆
13 r

2∆
23

, (R1,2,3 � r12, r23, r13) (1.4)

where ∆ is again the scaling dimension of the lowest scaling-dimension primary of the
theory denoted by O, and COOO its three-point structure constant.

In view of the above results, it is conceivable to imagine a procedure which would boot-
strap the CFT data from long-distance expansions of this kind. In order to do this, one
could either go to higher orders in the corresponding long-distance expansion or, comple-
mentarily, consider the leading terms in higher-N generalizations of the mutual information.
Given N disjoint regions A1, . . . , AN ≡ {Ai}, a somewhat canonical choice is the N -partite
information, which can be defined as

IN (A1, . . . , AN ) ≡ −
∑
σ

(−)|σ|S(σ) , (1.5)

where the sum is over all the subsets σ ⊂ {A1, . . . , AN} and |σ| is the number of elements
in the subset. IN can be alternatively written in terms of lower-partite informations, e.g. as

IN (·, AN−1, AN ) = IN−1(·, AN−1) + IN−1(·, AN )− IN−1(·, AN−1AN ) , (1.6)

where · ≡ A1, . . . , AN−2, which makes manifest both the fact that IN is a well-defined
quantity in QFT and also that it can be interpreted as a measure of the non-extensivity of
IN−1. Not much is known about IN for general QFTs. In fact, studies of IN for N ≥ 4 in
QFT have been mostly limited to holographic theories. In that context, it has been argued
that IN does not have a definite sign beyond N = 3 [34, 40]. The N -partite information also
plays an important rôle in various systematic approaches aimed at a full characterization of
various multipartite entanglement measures and their properties for holography theories —

3Observe also that, in the case of a lowest-dimensional fermionic primary of dimension ∆f , the leading
power in I3 is no longer ∼ (R/r)6∆f , but rather ∼ (R/r)6∆̃f , where ∆f < ∆̃f ≤ ∆f + 1

6 , the saturation of
the inequality occurring at least for a free fermion [25].
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see e.g. [41–46]. Additional holographic explorations involving the N -partite information
include e.g. [47, 48]. In the context of two-dimensional CFTs, the N -partite information
has also been studied using replica trick techniques in [49, 50].

In this paper we present several new results involving the N -partite information of
spatial regions in CFTs. First of all, we show that for general CFTs in arbitrary dimensions,
the N -partite information can be written as a single N -point correlator of the form

IN ({Ai}) = lim
n→1

(−)N+1

1− n 〈Σ̃
(n)
A1

Σ̃(n)
A2
· · · Σ̃(n)

AN
〉 , (1.7)

where Σ̃Ai is the “twist operator” with support on Ai which implements the identification
between copies when computing the Rényi entropy S(n)(Ai) using the replica trick. Us-
ing this, we show that the leading term in the long-distance expansion of the N -partite
information behaves as

IN ({Ai}) ∝
[
R

r

]2N∆
, (R� r) (1.8)

for general theories and dimensions.4 Here, ∆ is the lowest scaling dimension of the theory
and, for simplicity, we assumed all region sizes to be equal to R and the same for the
relative distances (up to O(1) factors), which we denoted r. Generalizing the N = 2, 3
cases, we observe that the leading term in IN generically contains N -,(N − 1)-,. . . and
2-point correlators of the smallest-dimension primary operator. In particular, we obtain
the following general formula for the long-distance limit of the four-partite information in
the case of spherical regions

I4
R8∆ = +

[
〈O1O2O3O4〉 −

1
r2∆

12 r
2∆
34
− 1
r2∆

13 r
2∆
24
− 1
r2∆

14 r
2∆
23

]2

c(4∆) (1.9)

−
[

1
r∆

13r
∆
14r

2∆
34 r

2∆
12 r

∆
23r

∆
24

+ 1
r∆

12r
∆
14r

2∆
24 r

2∆
13 r

∆
23r

∆
34

+ 1
r∆

12r
∆
13r

2∆
23 r

2∆
14 r

∆
24r

∆
34

]

× 9
√
πΓ (3∆)2 (COOO)2

Γ (∆)2 Γ
(
4∆ + 3

2

)
+
[

1
r2∆

12 r
2∆
23 r

2∆
34 r

2∆
14

+ 1
r2∆

13 r
2∆
23 r

2∆
24 r

2∆
14

+ 1
r2∆

12 r
2∆
13 r

2∆
24 r

2∆
34

] [
8c(1,1,1,1)

4:4 (∆)− c(4∆)
]
.

In this formula, R� rij ∀i 6= j and for simplicity we considered equal-radii spheres, c(4∆)
was defined in eq. (1.2) and c(1,1,1,1)

4:4 (∆) is a complicated integral which appears explicitly
in eq. (A.49) and which we have not been able to integrate analytically, with the exception
of the ∆ = 1/2 case, for which we find5

c
(1,1,1,1)
4:4 (∆ = 1/2) = 4

45 + 2
3π2 . (1.10)

4An alternative N−partite entanglement measure and its associated holographic dual were recently
proposed in [51]. It could be interesting to study its asymptotic behavior at large separations.

5Additional numerical values are presented in table 1.

– 4 –



J
H
E
P
0
3
(
2
0
2
3
)
2
4
6

Observe that the above formula for the I4 contains a four-point function of the leading
primary, O, which will be a theory-dependent function of the two invariant cross-ratios.
Subindices in the four-point function refer to insertions in each of the four spherical regions,
so that 〈O1O2O3O4〉 ≡ 〈O(xA1)O(xA2)O(xA3)O(xA4)〉.

We perform a highly non-trivial check of eq. (1.9) by computing I4 in the case of four
identical disk regions of diameter R centered at the corners of a square of side length

√
2r

for a three-dimensional free scalar in the lattice. The results read, respectively,

I4|eq. (1.9)
d=3 free scalar =

[ 1
180 + 1

6π2

]
R4

r4 ' 0.0224R
4

r4 , I4|lattice
d=3 free scalar ' 0.0207R

4

r4 , (R� r)
(1.11)

which, given the limitations of the lattice, is an excellent agreement. We carry out addi-
tional lattice calculations for the free scalar for N = 2, 3, 4, 5, 6. We show that the scaling
given by eq. (1.8) is respected in all cases for different shapes of the entangling regions.
Our results suggest that the N -partite information of a three-dimensional free scalar is
positive for general regions and arbitrary N , i.e. we provide evidence that

IN ({Ai})|d=3 free scalar
(?)
≥ 0 ∀ {Ai}, N , (1.12)

a result which most likely holds in general dimensions.
In the particular case of the mutual information, we perform additional lattice calcula-

tions for different pairs of regions at arbitrary distances. The dependence of mutual infor-
mation on the shape of the entangling regions has been previously studied e.g. in [52–56] for
holographic theories and e.g. in [24, 57–59] for free fields in the lattice and in the so-called
“Extensive Mutual Information” model. Here we consider both the free scalar as well as
a free fermion in the lattice and compute the mutual information for pairs of identical re-
gions with different shapes as a function of the separation. We observe that, conveniently
normalized by the corresponding disk EE universal coefficient, F0, the scalar results are
systematically larger than the fermion ones, which leads us to conjecture that

I2(A1, A2)
F0

∣∣∣∣
d=3 free scalar

(?)
>

I2(A1, A2)
F0

∣∣∣∣
d=3 free fermion

∀A1, A2 , (1.13)

holds for arbitrary pairs of regions.
Finally, we close with a discussion on holographic conformal field theories. We first

argue that at long distances the N -partite information of a holographic theory equals the
N -partite information of the dual bulk theory in the gravitational background dual to the
ground state of the CFT [60]. Then we prove that, at leading order in the long distance
expansion, both boundary and bulk twist operators equal each other. This is done by
explicit computation using the universality of the modular flow for boundary spheres and
bulk hemispheres, as well as the extrapolate dictionary. The whole result implies the
equality between boundary and bulk N -partite information for the cases in which each
individual boundary region has spherical boundary.

The remainder of the paper is organized as follows. In section 2 we present a derivation
of the N -partite information formula (1.7). We then study the long-distance expansion of

– 5 –



J
H
E
P
0
3
(
2
0
2
3
)
2
4
6

the twist operator and keep only the leading long-distance term. A new method for deter-
mining the OPE coefficients of such term is also presented and, in the particular case of
a spherical boundary region, this is evaluated explicitly in the n → 1 limit, leading to a
new explicit formula — see eq. (2.24) below. We then present a diagrammatic method to
organize the computation of the leading contribution to the N -partite information at long
distances. The method is illustrated via examples, through the explicit analysis of the I2, I3
and I4 cases. We present closed formulas for each of these quantities in the aforementioned
regime. In section 3 we apply the general formulas derived in the previous section to the
particular case of a free scalar in arbitrary dimensions. We then consider particular geomet-
ric arrangements of the regions in three spacetime dimensions and determine the associated
coefficients. In section 4 we compute the N -partite information (for N = 2, 3, 4, 5, 6) for
various entangling regions for a three-dimensional free scalar in the lattice. We verify the
leading scaling predicted by our general formula and perform a highly non-trivial check of
eq. (1.9) in the case of disk regions, finding excellent agreement. In all cases, we find IN
to be positive for the free scalar. Additionally, also in the lattice, we compute the mutual
information for pairs of regions both for the scalar and for a free fermion for arbitrary
separations, verifying the expected scalings at short and long separations. In the case of
disk regions, we provide analytic approximations valid for most separations. Based on the
results obtained, we conjecture the free scalar mutual information to be greater than the
free fermion one for general configurations. In section 5, we reinterpret our previous results
from the perspective of holography. In that context, we argue that, at leading order in the
long-distance expansion, the CFT twist operator associated to a spherical region equals the
bulk twist operator associated to the dual hemispherical region, establishing the equality
between boundary and bulk N -partite informations, as expected from [60]. Appendix A
presents an explicit computation of the various coefficients appearing in the long-distance
terms of I2, I3 and I4. Those coefficients are given in terms of sums of products of the
twist OPE coefficients Cij . In order to carry out the various required computations of
this appendix we present a collection of formulas (and in some cases its derivations) in
appendix B. Appendix C contains a table where we compare various possible fits to the
lattice data obtained in the long-distance regime for the free scalar and verify that the
scaling predicted by eq. (1.8) is always preferred by the data. Appendix D contains ana-
lytic results for the mutual information of the pairs of regions considered in section 4 for
two toy models which possess, respectively, the same scaling as the free scalar and the free
fermion for long separations.

2 N -partite information for general CFTs

In this section we provide new general formulas for the N -partite information of spatial
regions in general CFTs and arbitrary dimensions. We start by proving that IN can be
written in terms of a single N -point correlator of twist operators. Then, we obtain the
general scaling of IN for long separations and obtain a new explicit formula for the OPE
coefficients of the leading long-distance term in the case of spherical entangling surfaces.

– 6 –
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2.1 General formula in terms of twist operators

As explained in the introduction, given N non-empty disjoint regions we can define the
N -partite information as in eq. (1.5) or eq. (1.6). Explicitly, eq. (1.5) takes the form

IN ({Ai}) =
∑
i

S(Ai)−
∑
i<j

S(AiAj) +
∑
i<j<k

S(AiAjAk)− · · ·+ (−)N+1S(A1A2 · · ·AN ) ,

(2.1)
where recall that we use the notation A1A2 · · ·AN ≡ A1 ∪A2 ∪ · · · ∪AN , etc. This formula
has a natural separation in terms of the number of regions involved in each of the entropies.
We can thus use the following compact notation to write the N -partite information

IN ({Ai}) = −
N∑
α=1

(−)α
∑

i1<···<iα
S(Ai1 · · ·Aiα) . (2.2)

We will use this expression later on. In order to proceed, let us consider the replica trick,
which entails the evaluation of the Rényi entropies for integer n in the form

S(n)(A) = 1
1− n log

[
Z(C(n)

A )
Zn

]
, (2.3)

so that analytically continuing for real n and taking the n → 1 limit yields the EE of
region A,

S(A) = lim
n→1

S(n)(A) . (2.4)

In the above formula, C(n)
A represents the replica manifold for the n copies of the original

spacetime geometry, after suitably identifying the region A of the i-th copy with the (i+1)-
th one, and n+1↔ 1. Z(X) is the partition function of the theory defined on the manifold
X (for simplicity we use Z when the manifold is a single copy of the original spacetime).
Observe that replacing all EEs in the above definitions of the N -partite information by
Rényi entropies, it is straightforward to define the n-th Rényi N -partite information, I(n)

N ,
which reduces to IN for n→ 1.

The identification process required to define the manifold C(n)
A can be implemented by

introducing a twist operator Σ(n)
A with support on the entangling region [3, 61, 62]. This

operator identifies the operators of different replicas in the region A, namely, φi → φi+1
when x ∈ A. Σ(n)

A can be normalized such that we extract the contribution from the
identity operator and write6

Σ(n)
A = 〈Σ(n)

A 〉(1 + Σ̃(n)
A ) with 〈Σ(n)

A 〉 = Z(C(n)
A )

Zn
. (2.5)

We would like to write down a closed formula for I(n)
N in terms of correlators of Σ̃(n)

A . Let
us start by translating equation (2.2) in the language of twist operators. More concretely,
we take the terms of order α which have the form∑

i1<···<iα
S(Ai1 · · ·Aiα) = lim

n→1

∑
i1<···<iα

1
1− n log〈Σ(n)

Ai1
· · ·Σ(n)

Aiα
〉 . (2.6)

6Notice that this definition implies 〈Σ̃(n)
A 〉 = 0.

– 7 –
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Now, let us apply relation (2.5) to further massage the order-α correlators,

log〈Σ(n)
Ai1
· · ·Σ(n)

Aiα
〉 = log

[
〈Σ(n)

Ai1
〉 · · · 〈Σ(n)

Aiα
〉
]

+ log
[〈 (

1 + Σ̃(n)
Ai1

)
· · ·
(
1 + Σ̃(n)

Aiα

) 〉]
, (2.7)

where we separated the expectation values of the individual twist operators from their tilded
parts. The part that contains the products of tilded twist operators can be expanded and
it becomes

log
[〈 (

1 + Σ̃(n)
Ai1

)
· · ·
(
1 + Σ̃(n)

Aiα

) 〉]
= (2.8)

log
[
1 + 〈Σ̃(n)

Ai1
Σ̃(n)
Ai2
〉+ . . .︸︷︷︸

other pairings

+〈Σ̃(n)
Ai1

Σ̃(n)
Ai2

Σ̃(n)
Ai3
〉+ . . .︸︷︷︸

other triplets

+ · · ·

+ 〈Σ̃(n)
Ai1

Σ̃(n)
Ai2
· · · Σ̃(n)

Aiα
〉
]
,

where, as previously noted, there are not terms proportinal to 〈Σ̃(n)
Ai
〉 as those are zero.

We start by analyzing the contribution of the twist normalization factors to the N -
partite information. This requires studying the quantity

N∑
α=1

(−)α
 ∑
i1<···<iα

1
1− n

[
log〈Σ(n)

Ai1
〉+ · · ·+ log〈Σ(n)

Aiα
〉
] . (2.9)

Notice that we have separated the logarithm of the product of expectations values of twist
operators appearing in (2.7) into the sum of logarithms of each individual expectation
value. For each order α, the number of ordered α indices is simply given by the number
of combinations of α elements one can take from a set of N objects, i.e. by the binomial
coefficient

(N
α

)
. For each choice of ordered indices we have the sum of α different terms,

therefore, the total number of terms of the form log〈Σ(n)
Aj
〉 is α ·

(N
α

)
for each α. On the

other hand, among all these terms the logarithm of the twist operator of a particular region
should appear the same number of times regardless of the chosen region, since the formula
treats all regions on an equal footing. Thus, we conclude that for each α we have

∑
i1<···<iα

1
1− n

[
log〈Σ(n)

Ai1
〉+ · · · log〈Σ(n)

Aiα
〉
]

= α

N

(
N

α

)
N∑
i=1

1
1− n log〈Σ(n)

Ai
〉 . (2.10)

Summing the above equation over α with the appropriate signs one gets that eq. (2.9)
equals (

N∑
α=1

(−)α
(
N − 1
α− 1

))
N∑
i=1

1
1− n log〈Σ(n)

Ai
〉 . (2.11)

Shifting the summation index α by 1, the term in parenthesis can be identified with the
binomial expansion of (1 − 1)N−1, and therefore, vanishes identically for N > 1. This
shows that IN for N > 1 does not depend on the expectation value of the individual twist
operators. Notice that for N = 1, I1 reduces to the usual entanglement entropy and in
that case the normalization factor is the answer. This result is true even for the Renyi I(n)

N ,
as we did not need to take the n→ 1 limit to arrive at this conclusion.
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Now, we analyze the contribution of the second term in the right hand side of (2.7)
to IN . The first thing to notice is that to simplify those contributions, it is convenient to
take the n → 1 at this stage. The correlator of an arbitrary number of products of Σ̃(n)’s
vanishes as (n− 1) in the n→ 1 limit, therefore, the linear approximation of the logarithm
becomes exact in such a limit. This means that the contribution to IN we are interested
in is

IN ⊃ lim
n→1

1
1− n

N∑
α=1

(−)α
∑

i1<···<iα

[
+ 〈Σ̃(n)

Ai1
Σ̃(n)
Ai2
〉+ . . .︸︷︷︸

other pairings

+ 〈Σ̃(n)
Ai1

Σ̃(n)
Ai2

Σ̃(n)
Ai3
〉+ . . .︸︷︷︸

other triplets

+ · · ·+ 〈Σ̃(n)
Ai1

Σ̃(n)
Ai2
· · · Σ̃(n)

Aiα
〉
]
. (2.12)

For each α there would be contributions coming from correlators of each order K with
α ≥ K. Thus we will study the contribution to IN from all correlators of order K for each
K. These correlators will only appear for α ≥ K. Now, for each α ≥ K the number of
ordered α indices appearing in eq. (2.12) is given by

(N
α

)
and each such term will contain

(α
K

)
correlators of K tilded twist operators, since that is the number of groups of K elements
one can made out of α operators. Finally, the number of times a given correlator of K
operators appears in such term will be independent of the choice of correlator and therefore
we have that the contribution to IN from the order K correlators is given by

lim
n→1

(
N∑

α=K
(−)α

(N
α

)(α
K

)(N
K

) ) ∑
i1<···<iK

〈Σ̃(n)
Ai1
· · · Σ̃(n)

AiK
〉 (2.13)

where the factor of
(N
K

)
in the denominator is the total number of distinct K correlators

we can form out of N twist operators, and thus, it coincides with the number of terms
appearing in the above sum over K indices. Using the identity(N

α

)(α
K

)(N
K

) =
(
N −K
α−K

)
, (2.14)

and shifting the summation index in eq. (2.13), we find that the term in parenthesis is
nothing but the binomial expansion of (1 − 1)N−K , and thus, it identically vanishes for
N > K. This means that the only correlator of twist operators that can contribute to the
N -partite information is precisely the correlator of N twist operators. Hence, we find that
the N -partite information is given by

IN ({Ai}) = lim
n→1

(−)N+1

1− n 〈Σ̃
(n)
A1

Σ̃(n)
A2
· · · Σ̃(n)

AN
〉 . (2.15)

This result can be alternatively proved by induction. This method requires guessing
eq. (2.15), but such equation is the natural generalization of the I2 and I3 cases worked
out in detailed for example in [25]. Therefore, we start assuming that eq. (2.15) holds for
N = K − 1. Then, we use the recursive definition of IN presented in eq. (1.6) to write
down a formula for IK , namely,

IK({Ai}) = lim
n→1

(−)K

1− n
〈

Σ̃(n)
A1

Σ̃(n)
A2
· · · Σ̃(n)

AK−2

(
Σ̃(n)
AK−1

+ Σ̃(n)
AK
− Σ̃(n)

AK−1AK

) 〉
. (2.16)
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Using eq. (2.5) for the operator Σ̃(n)
AK−1AK

we have

Σ̃(n)
AK−1AK

=
Σ(n)
AK−1

Σ(n)
AK

〈Σ(n)
AK−1

Σ(n)
AK
〉
− 1 =

1 + Σ̃(n)
AK−1

+ Σ̃(n)
AK

+ Σ̃(n)
AK−1

Σ̃(n)
AK

1 + 〈Σ̃(n)
AK−1

Σ̃(n)
AK
〉

− 1 , (2.17)

where in the first equality we used Σ(n)
AK−1AK

= Σ(n)
AK−1

Σ(n)
AK

while in the second we used
eq. (2.5). Taking the n→ 1 limit, the above equation reduces to

Σ̃(n)
AK−1AK

≈ Σ̃(n)
AK−1

+ Σ̃(n)
AK

+ Σ̃(n)
AK−1

Σ̃(n)
AK

. (2.18)

Notice that we have ignored the extra term in the denominator. This is possible because
in the n→ 1 limit, the correlator of an arbitrary number of twist operators goes as (n− 1)
and therefore, any extra (n− 1) factor in eq. (2.17) would not contribute to the N -partite
information. Plugging eq. (2.18) into eq. (2.16) leads to eq. (2.15) for N = K, and therefore
it completes the proof.

2.2 Long-distance behavior of IN
With eq. (2.15) at hand, let us now study the long-distance behavior of the N -partite
information. In this regime, we can approximate each twist operator by the product of
local operators located at a convenient location inside the region X as [63, 64]

Σ̃(n)
X =

∑
{kj}6=I

CX{kj}

n−1∏
j=0

Φ(j)
kj

(xX) . (2.19)

For the j-th copy, the kj label a complete set of operators (with the identity removed).
The leading contribution at long distances will come from the lowest scaling dimension
operator of the theory. Assuming for simplicity that such operator is a scalar of conformal
dimension ∆, which we denote by O, then we can simply keep the term

Σ̃(n)
X ≈

∑
i<j

CXijOi(xX)Oj(xX) . (2.20)

Observe that in principle there is also a contribution of the form
∑
iC

X
i Oi(xX), but such

single-sheet operators do not contribute in the n → 1 limit.7 We abbreviate Oi(xX) with
OiX . We apply this formalism to the particular case when X is a ball of radius RX . In
that situation, it is convenient to use the new coefficients Cij ≡ CXij R

−2∆
X which are scale

independent and thus are the same for all the ball-like regions involved.
The coefficients Cij can be computed by studying the effect of a twist operator in the

correlator of test operators far away from the region X, and located on different sheets.
This is, one considers

〈Σ̃(n)
X O

i(x)Oj(x)〉 , (2.21)
7The argument is the following: the coefficient Ci has support on a single sheet and by the replica

symmetry it cannot depend on i, so it should be a constant. On the other hand, since Σ̃(n)
X → 1 as n→ 1,

then, one concludes that Ci ∼ O(n − 1). In the computation of the IN>1 we would always have products
of more than one of those coefficients. Therefore, they cannot contribute to IN in the n→ 1 limit.
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with |x− xX | � RX . Using the above equation, eq. (2.20) and the two-point function

〈Oi(x)Oj(xX)〉 = δij

|x− xX |2∆ , (2.22)

one finds the following formula for Cij

Cij = lim
x→∞

|x− xX |4∆

R2∆
X

〈Σ̃(n)
X O

i(x)Oj(x)〉 . (2.23)

The Cij coefficients are determined by the two-point function in replica space. Earlier
works on the type of computations presented in this paper did not obtain explicitly the
form of those coefficients but instead they managed to compute sums over these coefficients
in the n→ 1 limit. We devote subsection 2.2.1 to study the Cij coefficients and argue that

Cij = 1
sin2∆

[
π(i−j)
n

] , (2.24)

in the n → 1 limit. Namely, the above expression is valid for the purposes of computing
entanglement related quantities, so after adding over all the indices we need to keep only
the piece proportional to (n− 1) in replica computations.

Now, let us write down the correlator in eq. (2.15) by keeping only the leading long
distance piece appearing in eq. (2.20),

〈
N∏
α=1

Σ̃(n)
Aα
〉 =

N∏
α=1

R2∆
Aα

∑
i1<j1

Ci1j1 · · ·
∑

iN<jN

CiN jN 〈O
i1
A1
Oj1A1
· · · OiNANO

jN
AN
〉 . (2.25)

The case in which all the indices appearing in the above correlator are different reduces
to a product of the expectation values of the individual operators, and since 〈OiAJ 〉 =
0 such configuration does not contribute. On the other hand, the configurations that
use the minimum number of sheets simply put all the twist operators on the same pair
of sheets. Following this philosophy, we will separate the possible configurations in the
correlator (2.25) in terms of the number of sheets N with non-trivial operator insertions.
Below, we will represent those configurations using matrices where the columns represent
the different sheets while rows represent the different regions.

Before moving on, observe that eq. (2.25) makes evident the leading scaling of the
N -partite information at long distances. Indeed, if we assume for simplicity that all ball
regions are characterized by the same radius R and that each pair is separated a distance
r, up to order-1 factors, we have

IN ({Ai}) ∝
[
R

r

]2N∆
, (2.26)

where the r-dependent piece comes from the N -point correlator of the operators OiβAβO
jβ
Aβ

which, as we show explicitly below for the N = 2, 3, 4 cases, gives rise to various products
of correlators of same-sheet different-region operators involving a total of 2N operators
each. Schematically, for each pair of operators we get a contribution ∼ r−2∆, and so
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IN ({Ai}) ∝ r−2N∆. While this result is derived assuming the entangling surfaces to be
spheres, the scaling in eq. (2.26) holds for arbitrary regions as long as all relevant scales
characterizing them are much smaller than the mutual separations.

For the analysis of the correlator appearing in eq. (2.25) it is useful to introduce the
following graph representation of the twist operator,

Σ̃A ≈
∑
i<j CijOiAO

j
A ≈

i j
A

where vertices represent the different sheets on which local operators are supported, and the
lines represent the spatial region on which the operator is located. We also introduce some
notation for the various coefficients appearing in the IN . We will denote them by c(i1,··· ,iα)

N :K ,
where the subindexN stands for the fact we are considering the N -partite information while
the index K means that such coefficient is given in terms of a sum involving K different
sheets. The super index (i1, · · · , iα) characterizes the various powers of Cij appearing in the
expression for that coefficient. Notice that the c(i1,··· ,iα)

N :K are symmetric under permutations
of the indices {i1, · · · , iα} and thus, we can chose to denote them in increasing order.

2.2.1 The Cij coefficients

Let us now return to the problem of determining the functional form of the Cij coefficients.
In order to evaluate eq. (2.23), one needs a formula for the correlator (2.21). Recently, one
such formula was derived in [31]. For the special case in which the operators in question
are scalars, this takes the form

〈Ω|Σ(n)
A O

l(x)Ok(x)|Ω〉 =
tr
{
O(x)ρn−(l−k)

A O(x)ρ(l−k)
A

}
tr ρnA

. (2.27)

The above result can be put in a more familiar form in terms of the density operator
ρ̃A(n) := ρnA/ tr ρnA. Since ρA is a density operator, and therefore Hermitian, completely
positive and satisfying tr ρA = 1; the same holds for ρ̃A(n) for n > 0. Thus eq. (2.27)
becomes

〈Ω|Σ(n)
A O

l(x)Ok(x)|Ω〉 = tr
{
ρ̃A(n)O(n)

A

[
x, i

τkl
π

]
O(x)

}
, (2.28)

with τkl ≡ π(k − l)/n. Notice that the operators on the r.h.s. are defined in the original
CFT (a single sheet of the replica space), and

O(n)
A [x, s] ≡ ρ̃A(n)−isO(x)ρ̃A(n)is (2.29)

is the operator transformed by the modular flow induced by ρ̃A(n). On the r.h.s. of
eq. (2.28) we have the correlation function of a field with a modular-evolved field. Such
correlator is analytic in the strip with Im s ∈ (0, 1), and obeys the KMS periodicity be-
tween the boundaries of the strip [65]. This implies that the correlator is well defined on
0 ≤ τkl ≤ 1. It follows from its definition that 1/n < τkl < 1 − 1/n provided we ordered
the indices such that k > l. We will do so here.
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The correlator on the r.h.s. of eq. (2.28) can be studied for any density operator ρ.
This observation suggests to approximate the operator ρ̃A(n) by ρA in the n → 1 limit.
Any correction to this approximation will be of order (n−1) and thus it will not contribute
to the entropies. Taking the n → 1 limit on the state while keeping the n dependence on
the modular parameters is the only consistent approximation of that correlator. Thus, in
this regime we have

〈Ω|Σ(n)
A O

l(x)Ok(x)|Ω〉 ≈ tr
{
ρAOA

[
x, i

τkl
π

]
O(x)

}
=
〈
OA

[
x, i

τkl
π

]
O(x)

〉
. (2.30)

This relation coincides with the so called 1/n prescription derived in [29]. Such prescription
has been sucessfully applied in similar entanglement computations in the literature, see for
example [28, 29] and references therein.

Now, we are ready to compute the Cij coefficients starting from eq. (2.23) and the
large r limit of eq. (2.30). For a sphere of radius R, the modular flow acts geometrically
on local operators via

r±[s] = R
(R+ r±)− e∓2πs (R− r±)
(R+ r±) + e∓2πs (R− r±) , (2.31)

where r± = r ± t are standard null coordinates [9, 66]. This flow can be interpreted as a
conformal transformation, which helps us derive the form in which the unitary acts on the
operator, this is

OA[x, s] = UA(s)O(x)U †A(s) = Ω∆[x, s]O(x[s]) , (2.32)

where UA(s) is the unitary that implements the modular evolution, while Ω[x, s] is the
conformal factor associated to the coordinate transformation. This can be derived from
eq. (2.31) and the relation dx[s]2 = Ω2[x, s]dx2 . When r →∞ we find

〈OA [x, s]O(x)〉 = 1(
− sinh2[πs]

)∆
R2∆

r4∆ . (2.33)

Replacing s→ iτkl/π in the above formula, and plugging the result into eq. (2.23) leads to
our final formula for the Ckl, which reads

Ckl = 1
sin2∆ τkl

with τkl = π(k − l)
n

. (2.34)

In appendix A we use the above expression for the Ckl to compute the relevant coeffi-
cients appearing in the mutual and tripartite information at long distances, this is done
in sections A.1 and A.2 respectively. We reproduce results for these quantities previously
appeared in the literature, which provides strong support for the validity of the above for-
mula. In the same appendix we also compute the coefficients appearing in the four-partite
information at long distances (which are all new in the literature).

– 13 –



J
H
E
P
0
3
(
2
0
2
3
)
2
4
6

2.2.2 Explicit formulas for I2

Completely explicit formulas for IN in the long-distance regime can in principle be ob-
tained from eq. (2.15) on a case-by-case basis for arbitrary values of N . In the following
subsections we present such formulas for N = 2, 3, 4 in the case of spherical entangling
surfaces. Starting with the mutual information case, we have

I2(A1, A2) = lim
n→1

1
n− 1〈Σ̃

(n)
A1

Σ̃(n)
A2
〉 . (2.35)

As we have seen, in the long-distance regime the correlator can be written as

〈Σ̃(n)
A1

Σ̃(n)
A2
〉 = (R1R2)2∆∑

i<j

∑
k<l

CijCkl〈OiA1O
j
A1
OkA2O

l
A2〉 , (2.36)

where Ri are the radii of the spheres. The various contributions can be organized in terms
of the number of sheets with non-trivial operator insertions,

N = 2,
(

1 · · · OiA1
· · · OjA1

· · · 1
1 · · · OiA2

· · · OjA2
· · · 1

)
, i j

as previously described. We define the following coefficient

c
(2)
2:2 ≡ lim

n→1

1
n− 1

∑
i<j

C2
ij , (2.37)

which we compute explicitly in eq. (A.13) below. Plugging the result into the mutual
information we get

I2(A1, A2) =
√
π

4
Γ (2∆ + 1)
Γ
(
2∆ + 3

2

)〈OA1OA2〉2R2∆
1 R2∆

2 . (2.38)

In figure 1 we provide a graph representation of the long distance mutual information in
terms of standard spatial correlators. The above formula can be written more explicitly
using the expression for the correlator of the leading primary operator,

〈O(xA1)O(xA2)〉 = 1
r2∆

12
, (2.39)

where r12 ≡ |xA1 − xA2 | is the distance between the spheres centers. Then we get

I2(A1, A2) =
√
π

4
Γ (2∆ + 1)
Γ
(
2∆ + 3

2

)R2∆
1 R2∆

2
r4∆

12
, (2.40)

in agreement with previous results [26, 29–31].
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A1 A2

Figure 1. Graph representation of the mutual information. The result involves the square of the
correlator of the primary operator with the lowest conformal dimension of the theory. In each
correlator, the primary is defined at two points lying at the (centers of each of the) spheres.

2.2.3 Explicit formulas for I3

Let us now consider the tripartite information. In that case, we have

I3(A1, A2, A3) = − lim
n→1

1
n− 1〈Σ̃

(n)
A1

Σ̃(n)
A2

Σ̃(n)
A3
〉 . (2.41)

The leading contribution to I3 comes from replacing the twist operators by a product of
two operators of lowest scaling dimension as in eq. (2.20), which leads to the following
expression for the correlator in eq. (2.41),

〈Σ̃(n)
A1

Σ̃(n)
A2

Σ̃(n)
A3
〉 = (R1R2R3)2∆∑

i<j

∑
k<l

∑
m<n

CijCklCmn〈OiA1O
j
A1
OkA2O

l
A2O

m
A3O

n
A3〉 . (2.42)

ForN = 2 non-trivial sheets there is one only possible configuration which has the following
structure

N = 2,

1 · · · OiA1
· · · OjA1

· · · 1
1 · · · OiA2

· · · OjA2
· · · 1

1 · · · OiA3
· · · OjA3

· · · 1

 , i j

as previously described. The contribution of such term to eq. (2.42) is∑
i<j

C3
ij〈OiA1O

i
A2O

i
A3〉〈O

j
A1
OjA2
OjA3
〉 . (2.43)

Notice in the above graph that each vertex represents a correlator. The number of legs
attached to it will correspond to the number of operators, thus, we have a product of two
three point functions, one at sheet i and the other one at sheet j.

The other non-zero configurations will necesarilly have two operators on each row
(sheet), one such example will be

N = 3,

1 · · · OiA1
· · · OjA1

· · · 1 · · · 1
1 · · · 1 · · · OjA2

· · · OkA2
· · · 1

1 · · · OiA3
· · · 1 · · · OkA3

· · · 1

 ,

i j

k

This graph is obtained by taking three vertices (corresponding to three different sheets),
and three lines (corresponding to the three twist operators) and constructing a graph with
the condition that on each vertex there must be at least two lines connected to it. This
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leads to the single graph above. The terms contributing to the correlator with such a
graph are

∑
i<j<k

CijCikCjk
(
〈OiA1O

i
A3〉〈O

j
A1
OjA2
〉〈OkA2O

k
A3〉+ permutations of {A1, A2, A3}

)
. (2.44)

The number of terms in the parenthesis with the exact same contribution is 3!, which equals
the number of different ways we can label the sides of the triangle with labels A1, A2, and
A3. Thus, we conclude that the I3, is given by

I3 =− lim
n→1

(R1R2R3)2∆

n− 1
[

+
∑
i<j

C3
ij〈OiA1O

i
A2O

i
A3〉〈O

j
A1
OjA2
OjA3
〉

+ 6
∑
i<j<k

CijCjkCki〈OiA1O
i
A3〉〈O

j
A1
OjA2
〉〈OkA2O

k
A3〉
]
. (2.45)

Let us now define the following coefficients

c
(3)
3:2 ≡ lim

n→1

1
n− 1

∑
i<j

C3
ij and c

(1,1,1)
3:3 ≡ lim

n→1

1
n− 1

∑
i<j<k

CijCjkCki , (2.46)

which we explicitly compute in detail in appendix A.2. The results appear in eq. (A.15)
and eq. (A.27), respectively. In terms of these expressions the tripartite information adopts
the final form [25]

I3 =
[26∆Γ

(
∆ + 1

2

)3

2πΓ
(
3∆ + 3

2

) 〈O1O3〉〈O1O2〉〈O2O3〉 −
26∆ (Γ (3∆ + 1))2

Γ (6∆ + 2) 〈O1O2O3〉2
]

× (R1R2R3)2∆ , (2.47)

where we used the notation Oi ≡ OAi . Notice that in cases in which 〈OOO〉 = 0, we have
I3 > 0. For those, the mutual information is non-monogamous at long distances.

The above formula can also be illustrated graphically in the usual space representation
of correlators as shown in figure 2. There, simple lines represent correlators, while lines
joint by a triangle vertex represents three-point functions. Thus, diagrammatically, the
tripartite information is determined by two contributions: one made out of products of
two-point functions connecting the three regions and another one which is the square of a
three-point function.

The final formula for the tripartite information can be written in terms of the relative
separations of the spheres using eq. (2.39) and the three-point function formula

〈O(xA1)O(xA2)O(xA3)〉 = COOO

r∆
12r

∆
23r

∆
13
, (2.48)

as in eq. (1.4).
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A1

A3

A2 A1

A3

A2

Figure 2. Graph representation of the two types of terms contributing to the I3 at long distances.
Both contributions are represented via totally connected diagrams, as expected from clustering.

2.2.4 Explicit formulas for I4

Let us now move to the N = 4 case. We have

I4(A1, A2, A3, A4) = lim
n→1

1
n− 1〈Σ̃

(n)
A1

Σ̃(n)
A2

Σ̃(n)
A3

Σ̃(n)
A4
〉 . (2.49)

Here again the leading contribution to I4 comes from replacing the twist operators by
a product of two operators of lowest scaling dimension as in (2.20), which leads to the
following expression for the correlator in (2.49)

〈Σ̃(n)
1 Σ̃(n)

2 Σ̃(n)
3 Σ̃(n)

4 〉 (2.50)

= (R1R2R3R4)2∆∑
i<j

∑
k<l

∑
m<n

∑
p<q

CijCklCmnCpq〈Oi1O
j
1O

k
2Ol2Om3 On3O

p
4O

q
4〉 ,

where throughout the subsection we use the notation Σ̃Ai ≡ Σ̃i and Oi ≡ OAi . Organizing
the contributions to eq. (2.50) in terms of the number N of sheets with non-trivial operator
insertions, one finds that for N = 2 there is one only possible configuration, which has the
following structure

N = 2,


1 · · · Oi1 · · · O

j
1 · · · 1

1 · · · Oi2 · · · O
j
2 · · · 1

1 · · · Oi3 · · · O
j
3 · · · 1

1 · · · Oi4 · · · O
j
4 · · · 1

 . (2.51)

The contribution of such term to eq. (2.50) is∑
i<j

C4
ij〈O1O2O3O4〉2 thus I4 ⊃ c(4)

4:2〈O1O2O3O4〉2R8∆ , (2.52)

where

c
(4)
4:2 ≡ lim

n→1

1
n− 1

∑
j<k

C4
ij , (2.53)

and we can associate to it the graph presented in figure 3.
The next configurations we study are the ones that are defined on three different sheets,

i.e. N = 3. Let us illustrate one of such configurations in matrix form,

N = 3,


1 · · · Oi1 · · · 1 · · · Ok1 · · · 1
1 · · · 1 · · · Oj2 · · · Ok2 · · · 1
1 · · · Oi3 · · · O

j
3 · · · 1 · · · 1

1 · · · Oi4 · · · O
j
4 · · · 1 · · · 1

 , (2.54)

– 17 –



J
H
E
P
0
3
(
2
0
2
3
)
2
4
6

i j

Figure 3. Graph representation of the contribution of the correlator of four twist operators to I4
when the twist operators have non-trivial support on only two sheets. In the above graph vertices
represent sheets while lines represents operators on particular regions. Observe that the number of
lines ending at a vertex gives the order of the associated correlator.

i j

k

i j

k

i j

k

Figure 4. Graph representation of one class of contributions of the correlator of four twist operators
to I4 when the twist operators have non-trivial support on three sheets. In the above graph, vertices
represent sheets while lines represents operators on particular regions.

which corresponds to the left graph in figure 4. The other two graphs in that figure have
similar matrix representations obtained from the above by permutation of columns. In the
graphs of figure 4, the indices {i, j, k} have been ordered and, therefore, they represent
different contributions to I4.

However, all of them will be proportional to the product of the following correlators

(〈O1O3O4〉〈O1O2〉〈O2O3O4〉+ permutations of {1, 2, 3, 4}/∼ equivalence) , (2.55)

where we include only the permutations that lead to independent configurations. For
instance, in the matrix representation of eq. (2.54) the interchange 3↔ 4 leads to the same
configuration and thus, it should not be included into the permutations of eq. (2.55). Thus,
the number of terms in eq. (2.55) equals the different orderings of 4 regions where two of
these are indistinguishable. This corresponds to 4!/2! = 12 configurations. The coefficient
can be obtained by summing over the contributions from all the graphs presented in figure 4,
which can be grouped together into the single coefficient

c
(1,1,2)
4:3 ≡ lim

n→1

1
n− 1

∑
i<j<k

[
C2
ijCjkCki + CijC

2
jkCki + CijCjkC

2
ki

]
. (2.56)

In the above formula each term represents the coefficient associated to the contribution of
each graph from left to right. Thus, the contribution to I4 coming from those graphs is
given by

I4 ⊃ C(1,1,2)
4:3 (〈O1O3O4〉〈O1O2〉〈O2O3O4〉+ perms. of {1, 2, 3, 4}/∼ equivalence) R8∆ .

(2.57)
For N = 3, there is another set of configurations contributing to I4 which are represented
graphically in figure 5.
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Figure 5. Graph representation of another class of contributions of the correlator of four twist
operators to I4 when the twist operators have non-trivial support on three sheets.

The contributions of each of these graphs are proportional to the following correlators(
〈O1O2〉〈O1O2O3O4〉〈O3O4〉 + permutations of {1, 2, 3, 4}/∼ equivalence

)
, (2.58)

where the number of terms is given by the number of different ways of labelling each of
these graphs with four letters taking into account that lines connecting the same pair of
sheets are indistinguishable. Thus we have 4!/(2!2!) = 6 configurations. The coefficients
associated to each graph can be grouped together into the following coefficient

c
(2,2)
4:3 ≡ lim

n→1

1
n− 1

∑
i<j<k

[
C2
ijC

2
ik + C2

ijC
2
jk + C2

ikC
2
jk

]
, (2.59)

where each term corresponds with the contribution of one of the graphs in figure 5, from
left to right. Thus, we find the total contribution to I4 of these terms is given by

I4⊃C(2,2)
4:3

(
〈O1O2〉〈O1O2O3O4〉〈O3O4〉+ permutations of {1, 2, 3, 4}/∼ equivalence

)
R8∆ .

(2.60)
For N = 4, there are two different configurations. The first one is of the form

N = 4


1 · · · Oi1 · · · O

j
1 · · · 1 · · · 1 · · · 1

1 · · · 1 · · · Oj2 · · · Ok2 · · · 1 · · · 1
1 · · · 1 · · · 1 · · · Ok3 · · · Ol3 · · · 1
1 · · · Oi4 · · · 1 · · · 1 · · · Ol4 · · · 1

 , (2.61)

which corresponds to the left graph in figure 6. However, as in the previous cases, for this
given ordering of indices there would be a total of three independent graphs as illustrated
in that figure. All these graphs give contributions proportional to the following correlators(

〈O1O2〉〈O2O3〉〈O3O4〉〈O1O4〉 + permutations of {1, 2, 3, 4}
)
, (2.62)

where in this case, every labelling of the lines for each graph gives rise to a non-equivalent
configuration and thus there is a total of 4! = 24 configurations. The associated coefficients
can then be put together in the following single coefficient

c
(1,1,1,1)
4:4 = lim

n→1

1
n− 1

∑
i<j<k<l

[CijCjkCklCli + CijCjlClkCki + CilCljCjkCki] , (2.63)
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Figure 6. Graph representation of one class of contributions of the correlator of four twist operators
to I4 when the twist operators have non-trivial support on four sheets.

i

l k

j i

l k

j i

l k

j

Figure 7. Graph representation of another class of contributions of the correlator of four twist
operators to I4 when the twist operators have non-trivial support on four sheets.

where each term in the right hand side comes from a graph in figure 6 from left to right.
Thus the total contribution to I4 from the configurations described by the above graphs is

I4 ⊃ C
(1,1,1,1)
4:4

(
〈O1O2〉〈O2O3〉〈O3O4〉〈O1O4〉 + permutations of {1, 2, 3, 4}

)
R8∆ . (2.64)

The second set of configurations for N = 4 are described in the graphs of figure 7.
Here each graph gives a contribution proportional to the following correlators

(
〈O1O2〉2〈O3O4〉2 + permutations of {1, 2, 3, 4}/∼ equivalence

)
, (2.65)

where the number of terms equal the number of non-equivalent ways of labelling the four
lines of the associated graph. This is a total of 4!/(2!2!) = 6 configurations. The coefficients
to which each of the above graphs contributes can be grouped together into

c
(2,2)
4:4 = lim

n→1

1
n− 1

∑
i<j<k<l

[
C2
ilC

2
jk + C2

ijC
2
kl + C2

ikC
2
jl

]
. (2.66)

This gives a total contribution to I4 of the form

I4 ⊃ c(2,2)
4:4

(
〈O1O2〉2〈O3O4〉2 + permutations of {1, 2, 3, 4}/∼ equivalence

)
R8∆ . (2.67)

For N > 4 since there is a total of 8 operators there would necessarily be a sheet
with only one operator insertion and therefore it would vanish for all those configurations.
Putting all the contributions from eqs. (2.52), (2.57), (2.60), (2.64) and (2.67) together
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leads to the following formula for I4 in the long-distance regime

I4
R8∆ =+ c

(4)
4:2 〈O1O2O3O4〉2

+ c
(1,1,2)
4:3

(
〈O1O2O3〉〈O3O4〉〈O1O2O4〉+ permutations of {1, 2, 3, 4}/∼ equivalence

)
+ c

(2,2)
4:3

(
〈O1O2〉〈O1O2O3O4〉〈O3O4〉 + permutations of {1, 2, 3, 4}/∼ equivalence

)
+ c

(1,1,1,1)
4:4

(
〈O1O2〉〈O2O3〉〈O3O4〉〈O1O4〉 + permutations of {1, 2, 3, 4}

)
+ c

(2,2)
4:4

(
〈O1O2〉2〈O3O4〉2 + permutations of {1, 2, 3, 4}/∼ equivalence

)
. (2.68)

After a close inspection one realizes that the terms appearing in the last line should be
absent from a four-partite information, since those will not have the required scaling be-
haviour as one separates regions. In other words, they represent disconnected contributions.
However, similar disconnected terms will also come from certain contributions to the four-
point functions appearing on the other terms. We should be able to write down the final
answer in terms of connected contributions only.8 We do so next

I4
R8∆ = + c

(4)
4:2

(
〈O1O2O3O4〉2 − 〈O1O2〉2〈O3O4〉2 − 〈O1O3〉2〈O2O4〉2 − 〈O1O4〉2〈O2O3〉2

)
+ 2 c(1,1,2)

4:3

(
〈O1O3O4〉〈O1O2〉〈O2O3O4〉+ 〈O1O2O4〉〈O1O3〉〈O2O3O4〉

+ 〈O1O2O3〉〈O1O4〉〈O2O3O4〉+ 〈O1O2O4〉〈O2O3〉〈O1O3O4〉

+ 〈O1O2O3〉〈O2O4〉〈O1O3O4〉+ 〈O1O2O3〉〈O3O4〉〈O1O2O4〉
)

+ 2 c(2,2)
4:3

[(
〈O1O2O3O4〉 − 〈O1O2〉〈O3O4〉

)
〈O1O2〉〈O3O4〉

+
(
〈O1O2O3O4〉 − 〈O1O3〉〈O2O4〉

)
〈O1O3〉〈O2O4〉

+
(
〈O1O2O3O4〉 − 〈O1O4〉〈O2O3〉

)
〈O1O4〉〈O2O3〉

]
+ 8 c(1,1,1,1)

4:4

(
〈O1O2〉〈O2O3〉〈O3O4〉〈O1O4〉 + 〈O1O3〉〈O2O3〉〈O2O4〉〈O1O4〉

+ 〈O1O2〉〈O1O3〉〈O2O4〉〈O3O4〉
)

+ 2
[
c

(2,2)
4:4 + c

(2,2)
4:3 + 1

2c
(4)
4:2

] (
〈O1O2〉2〈O3O4〉2 + 〈O1O3〉2〈O2O4〉2

+ 〈O1O4〉2〈O2O3〉2
)
, (2.69)

where we have taken into account the number of terms associated to each coefficient and
written them explicitly. Thus, consistency with the long-distance expected behavior (ex-
pectation from clustering principle) implies that the last combination of coefficients should
exactly cancel. That is precisely what happens.

8We thank Horacio Casini for pointing this out to us.
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All the coefficients appearing in the above formula are computed in appendix A, where
we find

c
(4)
4:2 = 28∆ [Γ (4∆ + 1)]2

2 Γ (8∆ + 2) , c
(1,1,2)
4:3 = − 9

√
πΓ (3∆)2

4Γ (∆)2 Γ
(
4∆ + 3

2

) ,
c

(2,2)
4:3 = −28∆ [Γ (4∆ + 1)]2

2 Γ (8∆ + 2) , and c
(2,2)
4:4 = 28∆ [Γ (4∆ + 1)]2

4 Γ (8∆ + 2) . (2.70)

from eqs. (A.30), (A.40), (A.45), and (A.82) respectively. Unfortunately, we were not able
to find a completely explicit formula for c(1,1,1,1)

4:4 . The expression for this coefficient appears
in eq. (A.49), whose numerical evaluation for a few particular values of ∆ (analytically for
∆ = 1/2 and possibly also for ∆ = 1) we present in table 1. As anticipated, we find
that the last combination of coefficients in eq. (2.69) vanishes exactly, which represents a
non-trivial consistency check of our calculations.

Additionally, the relation between c
(4)
4:2 and c(2,2)

4:3 from eq. (2.70) suggests that the I4
can be written in a more compact form in terms of the square of the connected four-point
function, namely,

I4
R8∆ = +

[
〈O1O2O3O4〉 − 〈O1O2〉〈O3O4〉 − 〈O1O3〉〈O2O4〉 − 〈O1O4〉〈O2O3〉

]2
×
[

28∆ [Γ (4∆ + 1)]2

2 Γ (8∆ + 2)

]
−
[
〈O1O3O4〉〈O1O2〉〈O2O3O4〉+ 〈O1O2O4〉〈O1O3〉〈O2O3O4〉

+ 〈O1O2O3〉〈O1O4〉〈O2O3O4〉+ 〈O1O2O4〉〈O2O3〉〈O1O3O4〉

+ 〈O1O2O3〉〈O2O4〉〈O1O3O4〉+〈O1O2O3〉〈O3O4〉〈O1O2O4〉
] 9

√
πΓ (3∆)2

2Γ(∆)2 Γ
(
4∆+ 3

2

)


+
[
〈O1O2〉〈O2O3〉〈O3O4〉〈O1O4〉+ 〈O1O3〉〈O2O3〉〈O2O4〉〈O1O4〉

+ 〈O1O2〉〈O1O3〉〈O2O4〉〈O3O4〉
] [

8c(1,1,1,1)
4:4 − 28∆ [Γ (4∆ + 1)]2

Γ (8∆ + 2)

]
. (2.71)

Using the explicit form of the two- and three-point functions, the final expression for the
I4 can be written as in eq. (1.9). Finally, observe that this final formula can be expressed
via a space representation of the correlators contributing to it as shown in figure 8.

In view of eq. (2.71) and the results previously obtained for N = 2, 3, it is clear
that the leading long-distance term of the N -partite information will be given by some
linear combination of products of 2-, 3-, . . . , (N − 1)-, N -point functions of the smallest-
conformal-dimension primary of the corresponding theory. While such information should
also be available (at least in principle) within the mutual information expansion, the results
presented here support the idea of using the N -partite information expansion as a com-
plementary approach. Given a CFT for which the input information are all the N -partite
informations corresponding to ball regions in the long-distance regime, one could system-
atically identify the scaling dimension of the leading primary as well as all its N -point
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Figure 8. We provide a graph representation of the various terms contributing to I4. Single
lines represent two-point correlators, lines converging at a triangle vertex represent three-point
correlators while lines converging at a square vertex represents connected four-point correlators.
Observe that each diagram gives a completely connected contribution to I4.

correlators as follows: first, ∆ would be extracted from the mutual information expansion
in eq. (1.2); then, eq. (1.4) would be used to extract the three-point coefficient; eq. (1.9)
would be used to extract the four-point function; analogous formulas would yield the higher
N -point functions. Information about subleading primaries will start appearing at the next
order in the long-distance expansions. Determining the precise way in which this will hap-
pen and how one should systematically proceed in order to extract the CFT data involving
such operators requires further work. However, we know that an essential part in such pro-
cess will require to upgrade the expansion in terms of local replica operators (2.19) to an
expansion in terms of “OPE blocks” associated to each replica primary [27] — remember
that each “OPE block” includes the resumed contribution of a given primary as well as
their associated descendants [67]. Doing so would reduce the type of operators included in
the N -partite information expansion to the replica primaries. For a recent discussion on
the “OPE block” expansion applied to the tripartite information see [25].

3 Free scalar CFT

In this section we obtain even more explicit formulas for the N -partite information (for
N = 2, 3, 4) in the particular case of a CFT which has a free scalar as its lowest-dimensional
operator. We particularize our formulas to three dimensions, obtaining analytic results
which in section 4 we compare with lattice calculations. We close with some conjectures
regarding the sign of IN for free-scalar CFTs in general dimensions.

Let us consider then a CFT which has a free scalar as its lowest-dimensional primary
operator. This includes, obviously, free scalar theories, but also theories which have a free
sector. Various simplifications occur in that case. First, the conformal dimension of a free
scalar field is given by

∆free scalar = d− 2
2 , (3.1)

and so it is a half-integer. Second, correlators including an odd number of operators
vanish. Finally, correlators involving an even number of fields are completely determined
by two-point correlators by virtue of Wick’s theorem. For instance, the four-point function
becomes

〈O1O2O3O4〉 = 〈O1O2〉〈O3O4〉+ 〈O1O3〉〈O2O4〉+ 〈O1O4〉〈O2O3〉 , (3.2)
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and similarly for higher-point correlators. As a consequence, the long-distance N -partite
information of a free theory must be given by a single term of the form

I free scalar
N ({Ai}) = CN

(
N∏
α=1

〈
OAαOAα+1

〉
+ permutations of {A1, · · · , AN}

)
RN(d−2) ,

(3.3)
where AN+1 ≡ A1 and R is the radii of the spheres. This is due to the fact that the
only completely connected 2N -point correlators on N regions that can be constructed with
two-point correlators are the ones presented above.

3.1 Mutual information

In the case of the mutual information, the general formula at long distances in the case
of spherical entangling surfaces was presented in eq. (2.40). For a free scalar such formula
reduces to

I free scalar
2 = 22(d−2)Γ (d− 1)2

2 Γ (2(d− 1))
R4∆

r4∆ , (3.4)

where R is the radius of the balls which we assumed to be the same, and r is the center-
to-center distance between the regions.

For comparison with the lattice results we consider the case of d = 3. Also, we rewrite
the result using the parameters Rlatt ≡ 2R, rlatt ≡ r. We have

I free scalar
2

∣∣∣
d=3

= 1
48
R2

latt
r2

latt
≈ 0.08333x−2 , (3.5)

where x ≡ rlatt/Rlatt.

3.2 Tripartite information

The tripartite information at long distances is given by eq. (2.47). For a free scalar this
reduces to

I free scalar
3 =

23(d−2)Γ
(
d−1

2

)3

2πΓ
(

3(d−1)
2

) 〈O1O3〉〈O1O2〉〈O2O3〉R3(d−2) . (3.6)

Now, let us consider a geometric configuration where the balls are located at the vertices
of an equilateral triangle. Then, we have

〈O1O2〉 = 〈O2O3〉 = 〈O1O3〉 = 1
rd−2 , (3.7)

where r is the length of the side of triangle. In that case, eq. (3.6) reduces to

I free scalar
3 =

23(d−2)Γ
(
d−1

2

)3

2πΓ
(

3(d−1)
2

) R3(d−2)

r3(d−2) , (3.8)

where R is the radius of the balls, which we assumed to be the same for the three.
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Again, for comparison with the lattice results, we consider the case of d = 3 and use
instead the parameters Rlatt and rlatt which are related to the previous ones by Rlatt = 2R
and rlatt = r/

√
3. Rlatt is just the diameter of each disk, while rlatt is the radius of

the circumference containing the vertices of the equilateral triangle. In terms of these
parameters we have

I free scalar
3

∣∣∣
d=3

= 1
12
√

3π
R3

latt
r3

latt
≈ 0.01531x−3 (3.9)

where x ≡ rlatt/Rlatt.

3.3 Four partite information

For the I4, the long-distance expression for spherical entangling surfaces was given in
eq. (2.71). This expression simplifies now for two reasons. First, the three-point function
of the free scalar exactly vanishes, which makes the whole second term vanish. Second, the
four-point function reduces to products of two-point functions as in eq. (3.2), which makes
the first term vanish as well. We are then left with

I free scalar
4 = +

[
8c(1,1,1,1)

4:4

(
d− 2

2

)
− 24(d−2) [Γ (2d− 3)]2

Γ (4d− 6)

] (
〈O1O2〉〈O2O3〉〈O3O4〉〈O1O4〉+

+ 〈O1O3〉〈O1O4〉〈O2O3〉〈O2O4〉 + 〈O1O2〉〈O1O3〉〈O2O4〉〈O3O4〉
)
R4(d−2) .

(3.10)

Now, let us consider a configuration in which the spherical regions are located at the corners
of a square of side r. In that case the correlators become

〈O1O2〉 = 〈O2O3〉 = 〈O3O4〉 = 〈O4O1〉 = 1
r
, (3.11)

and

〈O1O3〉 = 〈O2O4〉 = 1√
2r
. (3.12)

Plugging this into eq. (3.10) results in

I free scalar
4 = 16

[
c

(1,1,1,1)
4:4

(
d− 2

2

)
− 24(d−2) [Γ (2d− 3)]2

8 Γ (4d− 6)

]
R4(d−2)

r4(d−2) . (3.13)

Like in the previous cases, we restrict to the case of d = 3 and use the parameters Rlatt = 2R
and rlatt = r/

√
2 where Rlatt is the diameter of the disks while rlatt is the radius of the

circle that passes through the vertices of the square. Thus, in terms of these parameters
we have

I free scalar
4

∣∣∣
d=3

=
[ 1

180 + 1
6π2

]
R4

latt
r4

latt
' 0.0224R

4
latt
r4

latt
, (3.14)

where we used the analytic result obtained for c(1,1,1,1)
4:4 (∆ = 1/2) in eq. (A.76).
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Evaluating c(1,1,1,1)
4:4 for other values of ∆ we can determine the leading long-distance

coefficient in the spheres I4 for a free-scalar CFT in higher dimensions. In particular, using
the results presented in table 1, we find

I free scalar
4

∣∣∣
d=4

= 256
105

R8

r8 , (3.15)

I free scalar
4

∣∣∣
d=5
' 5.70678R

12

r12 , (3.16)

I free scalar
4

∣∣∣
d=6
' 15.4904R

16

r16 . (3.17)

As we can see, the coefficient is always positive and grows with d. In view of these results,
it is tempting to conjecture that the IN for N = 2, 3, 4 will be positive for free-scalar
CFTs in arbitrary dimensions and for general regions. In fact, lattice results for d = 3
and for N = 1, 2, . . . , 6 suggest the positivity of IN for the free scalar CFT for arbitrary
N and general regions. Thus, we conjecture that the N -partite information for theories
with a free scalar as their lowest-dimensional primary is always positive for arbitrary N

and d. While such a claim in the d ≥ 3 case relies exclusively on our result for the leading
long-distance term in the case of spherical regions, it is natural to expect that moving the
regions closer should tend to monotonically increase the absolute value of the N -partite
information on general grounds (and hence its overall sign would not change with respect to
the long-distance situation). Similarly, it is reasonable to expect that changing the shape
of the regions will not modify the sign of the IN either. This is related to the question
of whether or not the sign of IN is completely fixed for a given theory independently of
the shape of the entangling regions and their relative separations. As far as we know, all
available evidence supports a positive answer to this question, but we are not aware of a
general proof.

4 Lattice calculations in d = 3

In this section we compute the N -partite information (for N = 2, 3, 4, 5, 6) for various
entangling regions assembled forming regular N -gon configurations for a three-dimensional
free scalar in the lattice. First we focus on the long-distance regime. We verify that the
leading scaling obtained for IN in this regime in section 2.2 is fulfilled in all cases and
study the dependence on the shape of the entangling regions. In the case of disk regions,
we obtain numerical approximations for the coefficient of the leading terms, which can be
tested against analytic calculations using the results of section 2.2 for N = 2, 3, 4, finding
excellent agreement. Our results suggest that IN for a three-dimensional free scalar is
positive for all N and for general regions and configurations. In subsection 4.3 we perform
lattice calculations of the mutual information for pairs of regions both for a free scalar
and a free fermion for general separations. In all cases, we also present analytic results
for two toy models which approximate the respective scalings of each of the free models at
long separations. In the case of disk regions, we provide analytic approximations for the
whole range of values both for the scalar and the fermion. We determine various scalings
at small and large separations for the different regions and observe that, normalized by
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the respective disk entanglement entropy coefficients, the free scalar mutual information is
always greater than the fermion one, a feature which we conjecture to be true for arbitrary
regions.

4.1 Lattice setup and models

In the following subsection we perform lattice calculations for a free scalar CFT. In order
to do that, we consider a set of scalar fields and conjugate momenta φi, πj , i, j = 1, . . . , N
labelled by their positions at the square lattice — each subindex i makes reference to a
position (xi, yi). The fields satisfy canonical commutation relations, [φi, πj ] = iδij and
[φi, φj ]. = [πi, πj ] = 0. Then, given some Gaussian state ρ, the EE for some entangling
region A can be obtained from the correlators Xij ≡ tr(ρφiφj) and Pij ≡ tr(ρπiπj) as
follows [57, 68],

S(A) = tr [(CA + 1/2) log(CA + 1/2)− (CA − 1/2) log(CA − 1/2)] , (4.1)

where CA ≡
√
XAPA and (XA)ij ≡ Xij , (PA)ij = Pij (with i, j ∈ A) are the restrictions of

the correlators to the sites inside A. We compute the N -partite information using eq. (4.1)
along with eq. (1.5). Setting the lattice spacing to one, the Hamiltonian is given by

H = 1
2

∞∑
i,j=−∞

[
π2
i,j + (φi+1,j − φi,j)2 + (φi,j+1 − φi,j)2

]
, (4.2)

and the correlators corresponding to the vacuum state are given by [57]

X(0,0),(i,j) = 1
8π2

∫ π

−π
dx

∫ π

−π
dy

cos(jy) cos(ix)√
2(1− cosx) + 2(1− cos y)

, (4.3)

P(0,0),(i,j) = 1
8π2

∫ π

−π
dx

∫ π

−π
dy cos(jy) cos(ix)

√
2(1− cosx) + 2(1− cos y) . (4.4)

In the third subsection, where we compute mutual information of various regions for
arbitrary separations, we also consider a free Dirac fermion CFT. For that, we take fields ψi,
i = 1, . . . , N defined at the lattice points, satisfying canonical anticommutation relations,
{ψi, ψ†j} = δij . For a given Gaussian state ρ, we define the correlators matrix Dij ≡
tr(ρψiψ†j). Then, similarly to the scalars case, the EE for some entangling region A can be
obtained as [57]

S(A) = − tr [DA logDA + (1−DA) log(1−DA)] , (4.5)

where DA is the restriction of Dij to the lattice sites lying within A. Our mutual informa-
tion calculations are performed using this formula for the corresponding regions A, B and
A ∪B. The lattice Hamiltonian for the free fermion is given by

H = − i2
∑
n,m

[(
ψ†m,nγ

0γ1(ψm+1,n − ψm,n) + ψ†m,nγ
0γ2(ψm,n+1 − ψm,n)

)
− h.c.

]
, (4.6)

and the correlators in the vacuum state read [57]

D(n,k),(j,l) = 1
2δn,jδkl −

∫ π

−π
dx

∫ π

−π
dy

sin(x)γ0γ1 + sin(y)γ0γ2

8π2
√

sin2 x+ sin2 y
ei(x(n−j)+y(k−l)) . (4.7)
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Figure 9. We show two examples of the N -gon arrangements of entangling regions considered in
the lattice. The one in the left figure corresponds to N = 3 for rectangles with dimensions L× 2L.
The one in the right figure corresponds to N = 5 for disk regions. In each case, r is defined as the
radius of the circumference which shares center with the N -gon and passes through the center of
the entangling regions.

In the second subsection, we analyze the behavior of the N -partite information at long
distances for N = 2, 3, 4, 5, 6, for several (simple) entangling regions and arrangements
— i.e. relative positions of the blocks with respect to one another. For a given N , we
consider two arrangements: one in which the blocks are located at the vertices of a regular
N -gon, and one in which they are all aligned. For clarity reasons, we only present explicit
results for the N -gon arrangement — see figure 9 — but we also mention the analogous
linear-arrangement results when something qualitatively different is obtained in that case.
For each setup, we consider five different elementary blocks: disks, squares, rectangles
with dimensions L × 2L (along the horizontal and vertical axes, respectively), rectangles
with dimensions L× 4L, and rectangles with dimensions L× 6L. We study the N -partite
information for sets ofN identical elementary blocks of those kinds. We do this as a function
of the ratio x ≡ rlatt/Rlatt, where Rlatt is the characteristic size of the blocks and rlatt is
the characteristic separation among them. On the other hand, in the third subsection, we
focus on the mutual information I2, but we compute it for general separations, both for the
scalar and the fermion. In that case, results are presented for: disks, squares, rectangles
with dimensions L × 2L, rectangles with dimensions L × 3L, rectangles with dimensions
L× 4L and rectangles with dimensions L× 5L.

For our numerical calculations, we use a lattice of size 200, so we can consider points
separated at most 200 units. In the continuum limit, the lattice models yield results
corresponding to a free scalar field and a free fermion, respectively. In order to extract
such values from a finite lattice, we proceed as follows. Given a particular configuration
and keeping x fixed, we compute IN for increasingly greater values of Rlatt and rlatt. In
every case, we find that such values clearly tend to certain constant asymptotic values
as Rlatt, rlatt → ∞. In order to obtain those, we perform fits of the data points using
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functions {1, 1/x, 1/x2, . . . }. Reliable values are obtained whenever the resulting constant
values hardly depend on the order at which we stop adding fitting functions. This is
the situation encountered for the present models in all cases considered and therefore the
results presented can be directly attributed to the continuum theories. In the case of
the free fermion, we need to take into account the “doubling” in the number of fermionic
degrees of freedom which occurs in the lattice. In the present three-dimensional case, the
Dirac fermion result is obtained by dividing the final result by 4.

The quantities Rlatt and rlatt (which for the remainder of the section we denote simply
by R and r, respectively) are precisely defined as follows — see figure 9. For square and
rectangle blocks, R is the number of lattice links of the largest side. For instance, this
means that in a square of 5× 5 lattice points, R = 4; while in a L× 4L rectangle of 4× 13
lattice points, R = 12 (L = 3 in this example). For disk blocks, R is the number of lattice
links of the diameter. Thus, a circle with R = 12 has 13 lattice points along its diameter.
The definition of a circle in a lattice is not precise, so we define the circle of size R to be the
set of lattice points at a distance less than or equal to R/2 to the central point. Regarding
the magnitude r, for N = 2 we define it to be the distance between the rightmost boundary
point of the left region and the leftmost boundary point of the right one, whereas for an
N ≥ 3-gon arrangement, it corresponds to the radius of the circle in which we circumscribe
the polygon. This is not the precise distance between adjacent sites except in a particular
case (the hexagon), but the difference is always an O(1) number which does not change the
functional dependence we want to identify. On the other hand, for the linear arrangement
and N ≥ 3, r is the separation between the centers of adjacent blocks, measured in number
of lattice links.

When presenting the mutual information results in subsection 4.3, we will normalize
the results by the universal coefficient appearing in the EE of a disk region. For general
CFTs, the EE of an arbitrary smooth region A is given by

S(A) = c0
perimeter(∂A)

δ
− F (A) +O(δ) , (4.8)

where c0 is a non-universal constant, δ is a UV cutoff and F (A) is a dimensionless and
universal coefficient. In the case of a disk region, we denote this quantity by F0, namely,
F (∂A = S1) ≡ F0.9 As it turns out, F0 satisfies a number of interesting properties. On the
one hand, it coincides with the Euclidean free energy of the corresponding CFT on a three-
sphere [9]. In addition, an entropic monotonicity theorem for general three-dimensional
theories has been proven in [74] and the c-function coincides with F0 at the fixed points —
see also [53, 75, 76]. Finally, as shown in [59], for arbitrary CFTs it happens that

F (A)/F0 ≥ 1 for all regions A and F (A) = F0 ⇔ A = disk , (4.9)

namely, disks globally minimize the EE universal term for general three-dimensional CFTs.
In view of this, in order to compare the mutual information results of different theories, it

9F0 and its properties have been further studied in different contexts and for various theories — see
e.g. [52, 53, 69–73] and references therein.
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is natural to normalise the results by F0 in each case, and that is what we do. For the free
scalar and the free Dirac fermion we have, respectively [77, 78]

F s
0 = 1

16

[
2 log 2− 3

π2 ζ(3)
]
, F f

0 = 1
8

[
2 log 2 + 3

π2 ζ(3)
]
. (4.10)

4.2 Long-distance IN for a free scalar

Based on the results obtained in section 2.2, we expect the N -partite information for a free
scalar in general dimensions to scale as

I free scalar
N ∼ (1/x)(d−2)N for x ≡ r/R� 1 . (4.11)

Here, we used the result for the free-scalar conformal dimension, ∆free scalar = (d − 2)/2.
Hence, in d = 3 we expect I free scalar

N ∼ (1/x)N . In order to test this, for each set of en-
tangling regions we produce points at five distinct (large) values of x, and we fit them to
(1/x)N−1, (1/x)N , and (1/x)N+1 curves. In table 2, which we present in appendix C, we
have compiled the resulting coefficients of determination R2 — not to be confused with the
size of the regions — for each fit and highlight the one which corresponds to the best one.

The scaling predicted by eq. (4.11) is strongly favoured by all the sets of regions and for
all the values of N considered. Considering even greater values of N becomes increasingly
challenging due to technical reasons associated to the lattice, but the pattern is clear.
Repeating the analysis using the linear arrangement instead, we find very similar results
and the same evidence in favor of eq. (4.11).10

Let us now present the explicit results found for the N -partite information of the free
scalar corresponding to the configurations and regions explained above. The data points
obtained appear plotted in figure 10. As explained in the previous subsection, for every
data set we find that a function of the form IN ∝ (1/x)N fits the points very well. Naturally,
we expect subleading corrections to this behavior, namely,

I free scalar
N = α(N)(1/x)N + β(N)(1/x)N+1 + . . . (x� 1) (4.12)

Now, the values of α(2) and α(3) in the case of disk regions have been obtained analytically
in [30] and [25], respectively. They read

α(2)

∣∣∣
disks

= 1
12 ' 0.083333 , (4.13)

α(3)

∣∣∣
disks

= 1
12
√

3π
' 0.0153147 . (4.14)

In these two cases, performing a fit to the data points which includes the subleading
contribution — i.e. of the form (4.12) without the dots — results in a numerical prediction

10In that case, for N = 6 the 1/x5 scaling is slightly favoured with respect to 1/x6 for a couple of sets
of regions. However, this is most likely due to the fact that in the linear arrangement setup, studying
the long-distance regime is more problematic in a finite lattice because, as opposed to the N -gon case, all
separations between regions have to be large along the same direction.
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Figure 10. For a free scalar in the lattice, we plot the IN (continuum values) for N = 2, 3, 4, 5, 6
for sets of: squares, disks, L× 2L rectangles, L× 4L rectangles and L× 6L rectangles (in each plot
moving from the uppermost curve to the bottom one) placed in a regular N -gon configuration. The
horizontal axis is x = r/R, where r is the separation between the blocks and R their characteristic
size (see previous section for more details on these definitions from the geometric setup). The solid
curves correspond to fits of the form eq. (4.12), including two terms. The orange dashed lines in the
I2, I3 and I4 plots correspond to curves (1/12)/(x+1)2, 1/(12

√
3π)·(1/x3) and (1/180+1/(6π2))/x4

respectively, which are the exact leading behaviours. In the last two cases, the subleading term
(unknown) has a non-negligible effect, which explains the discrepancy with the points and the
numerical fits (the dashed gray lines represent the leading terms in the numerical approximations
which include two terms, namely: 0.0832/(x+ 1)2, 0.0155/x3 and 0.0207/x4).
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for α(2) and α(3) which is slightly better than the one obtained when only the leading term
is considered when compared to the analytic result. In particular, we find11

I free scalar
2

∣∣∣
disks
' 0.0832 /(x+ 1)2 + 0.00629 /(x+ 1)3 , (x� 1) (4.15)

I free scalar
3

∣∣∣
disks
' 0.0155 (1/x)3 − 0.00861 (1/x)4 , (x� 1) (4.16)

as the best fits. Hence, the lattice calculations for the disks mutual and tripartite infor-
mations reproduce the analytic results with remarkable accuracy (they differ by ∼ 0.16%
and ∼ 1.21%, respectively). For comparison, fits which only include the leading term
yield 0.0836 and 0.0144 respectively for the leading coefficients (discrepancies ∼ 0.32% and
∼ 6.35% respectively). In view of this, we proceed similarly for the N = 4 case, finding

I free scalar
4

∣∣∣
disks
' 0.0207 (1/x)4 − 0.0155 (1/x)5 , (x� 1) (4.17)

The leading coefficient can be compared with the exact formula result in eq. (3.14) obtained
in the previous section. As we can see, both results differ by ∼ 8%, which is considerably
more than for the N = 2, 3 cases, but still a very good agreement in view of the limitations
of the lattice.12 This is a highly non-trivial check of our general formula eq. (1.9) for the
long-distance four-partite information of ball regions. On the other hand, for the N = 5, 6
cases, we find

I free scalar
5

∣∣∣
disks
' 0.0446 (1/x)5 − 0.0699 (1/x)6 , (x� 1) (4.18)

I free scalar
6

∣∣∣
disks
' 0.183 (1/x)6 − 0.489 (1/x)7 , (x� 1) (4.19)

The leading-term coefficients could be eventually compared with formulas analogous to
eq. (1.9).

Performing similar fits for the square and rectangular regions, we find for the respective
mutual information coefficients13

α(2)
∣∣
L×L' 0.124 , α(2)

∣∣
L×2L' 0.0682 , α(2)

∣∣
L×4L' 0.0412 , α(2)

∣∣
L×6L' 0.0325 ,

(4.20)

β(2)
∣∣
L×L' 0.0150 , β(2)

∣∣
L×2L' 0.00126 , β(2)

∣∣
L×4L' −0.000502 , β(2)

∣∣
L×6L' −0.000636 .

Observe that, as we make the rectangles thinner, the coefficients α(2) tend to decrease.
It is easy to check that they are very accurately approximated — see figure 11 — by a

11Observe that in the case of the mutual information of the disk regions, defining r as the distance
between the leftmost point of the right disk and the rightmost point of the left disk, rather than the
separation between centers, the leading scaling is ∼ α(2)|disks/(x + 1)2. For x � 1, this is equivalent to
α(2)|disks · [1/x2− 4/x3 +O(x−4)], so we could have chosen to present the numerical results as an expansion
on 1/x rather than 1/(x+ 1). However, the definition of x we use here is more convenient for the analysis
of the following subsection, and performing a meaningful comparison with the leading analytic behavior of
our lattice points represented as a function of x in figure 10 requires using 1/(x+ 1).

12These limitations include the fact that disks are difficult to approximate in a square lattice, or the fact
that increasing the number of regions makes it more difficult to reliably obtain the continuum limit in a
finite lattice.

13As mentioned above, in this case we define the β(2) so that I free scalar
2 ' α(2) /(x+1)2+β(2) /(x+1)3+. . . .
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Figure 11. We plot the values of the leading coefficient in the mutual information of a free scalar
field in the long-distance regime for pairs of rectangle regions of dimensions L× ξL, as a function of
ξ. The solid curve is the fit presented in the main text, and the dashed line, the asymptotic value
corresponding to ξ →∞ (namely, very thin rectangles).

function of the form

α(2)
∣∣
L×ξL ' 0.015215 + 0.102340(1/ξ) + 0.0073286(1/ξ)2 . (4.21)

From this, we can extract the limiting value corresponding to arbitrarily thin rectangles,

α(2)
∣∣
L×ξL

ξ�1
' 0.015215 . (4.22)

Note that in order for this to hold one needs to be careful with the order of limits (we are
taking x� 1 and ξ � 1 at the same time). In particular, eq. (4.22) is valid as long as we
keep r � ξL, i.e. the expression is valid for pairs of very thin rectangles which are separated
a distance much greater than the length of their longest side. It would be interesting to
compute this coefficient analytically.14

On the other hand, we find for the I3,

α(3)
∣∣
L×L' 0.0280 , α(3)

∣∣
L×2L' 0.0112 , α(3)

∣∣
L×4L' 0.00512 , α(3)

∣∣
L×6L' 0.00355 ,

(4.23)

β(3)
∣∣
L×L' −0.0168 , β(3)

∣∣
L×2L'−0.00551 , β(3)

∣∣
L×4L'−0.00211 , β(3)

∣∣
L×6L '−0.00136 ,

for the I4,

α(4)
∣∣
L×L' 0.0442 , α(4)

∣∣
L×2L' 0.0125 , α(4)

∣∣
L×4L' 0.00418 , α(4)

∣∣
L×6L' 0.00251 ,

(4.24)

β(4)
∣∣
L×L'−0.0409, β(4)

∣∣
L×2L'−0.00626, β(4)

∣∣
L×4L'−0.000682, β(4)

∣∣
L×6L'−0.0000901,

14An analogous calculation of the leading coefficient as a function of ξ was performed in the case of a free
fermion in [24]. In that case, the leading scaling is I free fermion

2 ∼ O(x−4) instead.
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for the I5,

α(5)
∣∣
L×L' 0.152 , α(5)

∣∣
L×2L' 0.0226 , α(5)

∣∣
L×4L' 0.00543 , α(5)

∣∣
L×6L' 0.00279 ,

(4.25)

β(5)
∣∣
L×L' −0.281 , β(5)

∣∣
L×2L' −0.0294 , β(5)

∣∣
L×4L' −0.00409 , β(5)

∣∣
L×6L' −0.00144 ,

and for the I6,

α(6)
∣∣
L×L' 1.10 , α(6)

∣∣
L×2L' 0.158 , α(6)

∣∣
L×4L' 0.0557 , α(5)

∣∣
L×6L' 0.0171 ,

(4.26)

β(6)
∣∣
L×L' −4.02 , β(6)

∣∣
L×2L' −0.752 , β(6)

∣∣
L×4L' −0.0311 , β(5)

∣∣
L×6L' −0.0591 .

The resulting curves for the various IN are shown in figure 10 and approximate the data
points very well in all cases. Let us mention that, as a matter of fact, fits which only
include the leading term in eq. (4.12) also do a very good job at fitting the data — in most
cases the curves are indistinguishable from the ones presented in the figure. However, as
mentioned earlier, the numerical results for the coefficients α(2) and α(3) in the case of disk
regions are more precisely obtained including also the subleading term, and so we choose
to perform fits of that kind for all the rest of configurations. For comparison, in figure 10
we have included, in the case of square configurations, the best fits obtained from ansatze
of the form IN ∝ (1/x)N−1 and IN ∝ (1/x)N+1. It is obvious from the figure that those
are clearly wrong.

Observe that for every N , the values of I free scalar
N for all possible sets of regions are

positive. It seems then reasonable to speculate that the free scalar N -partite information
is positive for all possible regions and configurations. The results obtained replacing the
N -gon arrangement by the aligned one also support this claim. In view of the exact results
obtained in the previous section, it is in fact natural to conjecture that I free scalar

N ≥ 0 for
all possible regions and in general dimensions. It would be interesting to find additional
support for this conjecture.

4.3 I2 at arbitrary separations for free scalars and fermions

In this subsection we compute the mutual information of pairs of entangling regions of
different shapes for three-dimensional free scalars and free fermions in the lattice for gen-
eral separations. We also include results corresponding to two analytic toy models whose
long-distance behaviours mimic the free fermion and free scalar ones, respectively. The toy
models, which are introduced in detail in appendix D, correspond to the so-called “Ex-
tensive Mutual Information” (EMI) model [39] and a modified version of it, which we call
“Modified EMI” (MEMI) model. In the case of disk regions, we use the toy models to
produce very precise analytic approximations to the free scalar and free fermion mutual in-
formations for general separations. Based on the results, we conjecture that the free scalar
mutual information is greater than the fermion one for arbitrary regions (both conveniently
normalized by their respective F0).

We present our results for the mutual information in a log-log scale. This allows for a
better appreciation of the short- and long-distance behaviours. On the one hand, observe
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that for rectangles of sides L × ξL separated a distance r ≡ x · ξL along the Y axis we
have, for general CFTs,

I2(x)/F0
x→0= k/F0

x
+ . . . (4.27)

where k is the universal coefficient characterizing the EE of a thin strip region. Hence, in
a doubly logarithmic scale, for any CFT we should have a linear behaviour with unit slope
for short separations, since log(I2/F0) = log(k/F0)− log x+ . . . in that case. Such straight
lines should cut the Y axis at a value log(k/F0). The values of such constants are known
for free scalars and fermions. In particular, we have [57]

ks ' 0.0397 , kf ' 0.0722 . (4.28)

For two disk regions, the limit r → 0 corresponds to the situation in which the disks touch
at a point.15 In that case, the results for the analytic toy models we consider in appendix D
suggest that the mutual information diverges, for general CFTs, as

I2(x)/F0
x→0= γ/F0√

x
+O(x0) , (4.29)

where γ is a new theory-dependent coefficient. On the other hand, for long separations
and general regions, we know that free scalars and fermions behave, respectively, as

I2(x)/F0|free scalar
x→0= αs

2 ·(1/x)2 +O(x−3) , I2(x)/F0|free fermion
x→0= αf

2 ·(1/x)4 +O(x−5) ,
(4.30)

and so, for long separations we expect the log-log curves to approach straight lines of slope
−2 and −4, respectively.

We present the results in figure 12. The different plots correspond to the mutual
information of pairs of identical regions separated along the X axis corresponding to:
squares, disks and increasingly thinner rectangles with lengths: L × 2L, L × 3L, L × 4L
and L× 5L, respectively. In all cases, we have included solid lines representing the short-
and long-distance behaviors appearing in eq. (4.27) and eq. (4.30). In the latter case, the
curves represent fits of the form (4.30) — including three subleading terms in each case
— to the data points corresponding to separations x = 3, 4, 5, 6, 7. The dotted orange
lines correspond to approximations of the form I2(x)/F0|free fermion ' αf

2 · (1/x)4 with the
coefficients αf

2 obtained in [24]. In all cases, the numerical fits tend to the corresponding
curves. In the case of the squares and the rectangles, the data points seem to tend, in all
cases, to the short-distance approximations given by eq. (4.27), which is a good check of the
numerics. In the same plot we include the exact analytic results obtained in appendix D
for each set of regions for the EMI and MEMI models — see eqs. (D.3), (D.10), (D.15)
and (D.18). For the MEMI model, the value of F0 turns out to vanish identically, and
so we normalize the corresponding curves in a way such that they tend to the free scalar
results for x → 0. As we can see, the EMI curves are quite similar to the fermion ones,
and so are the MEMI ones to the free scalar ones. This is particularly so in the case of the

15See e.g. [58] for examples of both finite and divergent mutual informations for pairs of regions with a
single contact point.
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Figure 12. We plot, in a log-log scale, the mutual information (normalized by the disk EE
coefficient F0) for pairs of identical regions for free scalars (blue), free fermions (red) and the analytic
toy models EMI and MEMI? (gray and purple, respectively) as a function of the dimensionless
separation x ≡ r/R, (R ≡ ξL). The upper plots correspond to square (left) and disk (right)
regions, respectively, whereas the middle and lower plots correspond to rectangle regions of sides
L × (2, 3, 4, 5)L. The thick blue and red lines represent the analytic approximations explained in
the main text. The orange dotted lines correspond to the leading long-distance approximations
obtained for the free fermion in [24].
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disks. In that case, we can actually approximate the free scalar and free fermion results
by the MEMI and EMI ones for rather general values of x. In particular, normalizing
the MEMI and EMI formulas by the long-distance coefficients of the free scalar and free
fermion, respectively, we find the approximations

I2(x)/F0|disks
free scalar '

1.29802
(1 + x)

√
x(2 + x)

, (x & 0.17) (4.31)

I2(x)/F0|disks
free fermion '

2.43574
[√

x(2 +x)− 2x(2 +x)(1+x−
√
x(2 +x))

]
x(1 + x)(2 + x) , (x & 0.2) (4.32)

These appear plotted as the thick blue and red lines respectively in the disks plot in
figure 12 and, as we can see, they approximate the data points very well for arbitrary
values of x greater than (roughly) 0.2. This is no coincidence. Indeed, as shown in [24],
in the case of spherical entangling surfaces in arbitrary dimensions, the EMI model result
is exactly equal to the contribution to the free-fermion mutual information produced by
the conformal block corresponding to the leading replica primary operator — namely, a
conserved current ψ̄iγµψj , where i, j are replica indices. The EMI model does not contain
any additional terms which do contribute to the free fermion mutual information, but such
leading primary block contribution is large enough to reproduce most of the full free-fermion
result for most values of x. As a matter of fact, something analogous happens with the free
scalar and the MEMI model, namely, the conformal block making the largest contribution
to the free-scalar mutual information in the case of spheres corresponds exactly to the
MEMI result in general dimensions — in this case, the leading conformal block corresponds
to a replica operator of the form φiφj . Again, such contribution, given by eq. (4.31) in the
three-dimensional case, approximates the full free-scalar result very precisely for sufficiently
large values of x.

Near the touching points, we find the following fits for the scalar and the fermion,
respectively,

I2(x)/F0|disks
free scalar

x→0' +1.3125/
√
x− 1.3522 + 0.41962

√
x , (4.33)

I2(x)/F0|disks
free fermion

x→0' +0.95599/
√
x− 1.7427 + 0.83507

√
x . (4.34)

These appear represented as solid lines in the plot. Computing lattice data points near
x → 0 is increasingly challenging and so the values of γ/F0|free scalar and γ/F0|free fermion
reported here should be taken with a grain of salt. They should be improved by additional
calculations near the touching region.

We observe that the curves for both models are monotonically decreasing as a function
of the separation for all sets of regions and that the scalar results lie above the fermion ones
for all regions and separations, a trend which persists as we make the entangling regions
thinner. It seems then reasonable to conjecture that

I2(A,B)/F0|free scalar > I2(A,B)/F0|free fermion , (4.35)

for arbitrary pairs of regions. Similar hierarchies — with the scalar systematically produc-
ing greater results — for EE universal coefficients in three dimensions have been previously
observed e.g. in [13, 59, 79].
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5 N -partite information in holography

In this section, we would like to reinterpret our analytic results of section 2 from the
holographic perspective. According to the proposal presented in [60], the entanglement
entropy of an arbitrary region A in a holographic theory dual to Einstein gravity can be
obtained from the formula

S(A) = min
m∼A

area(m(A))
4GN

+ Sb(Ab) , (5.1)

which includes the usual Ryu-Takayanagi term [80] plus the leading quantum correction.
In this expression, m(A) is the minimal area surface homologous to A, Ab is the bulk
homology region with boundary ∂Ab = A∪m(A) and Sb(Ab) represents its associated bulk
von Neumann entropy.

For a boundary region made of disconnected subregions, A = ∪Ki Ai, it is known that,
for sufficiently large mutual separations, the corresponding minimal-area surface becomes
disconnected and equal to the union of the individual extremal surfaces associated to the
subregions

m(∪Ki=1Ai) = ∪Ki=1m(Ai) . (5.2)

Thus, at long distances the minimal-area contribution to the holographic N -partite in-
formation cancels out from its definition and should be given entirely by the N -partite
information of the bulk dual theory, namely,

IN ({Ai}N ) = IbN ({Abi}N ) . (5.3)

In this section we will prove the above equality for largely separated boundary spherical
regions and its associated bulk hemispheres. We will achieve this by employing the same
techniques developed in section 2 to the bulk theory in the AdS background. Our re-
sult generalizes the analogous one obtained in [30] for the case of the holographic mutual
information.

Our main observations are the following. First, following the arguments presented
in [30], we conclude that, at large separations, the twist operator associated to a bulk
region can be approximated as

Σ̃(n)
Ab
≈
∑
i<j

Cbijφ
i(rbAb)φ

j(rbAb) , (5.4)

in the multicopy bulk theory, where the bulk OPE coefficients can be computed via

Cbij = lim
|x−xA|→∞

G(rb, rbAb)
−2〈Σ̃(n)

Ab
φi(rb)φj(rb)〉 , (5.5)

where rb are bulk Poincaré AdS coordinates so that rb = (x, z), x being the flat space
boundary coordinates. G(r, rAb) is the two-point function of the bulk field φ(rb) dual to
the operator O(x). In particular, for large separations, namely, for |x−xA| � RA, we have

G(rb, rbAb) ≈ α
2
∆

z∆z∆
Ab

|x− xA|2∆ , (5.6)
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where the coefficient α∆ comes from a normalization relation between bulk and boundary
two-point functions [81]. Indeed, we could arrive at the above formula from the bulk
two-point function and the extrapolate dictionary [82], this is

φ(x, z) ≈ α∆z
∆O(x), (5.7)

which is the leading term in the near boundary expansion of the dual bulk operator.
The above statement generalizes to arbitrary N -point correlation functions. Namely,

the bulk N -point correlation function can be obtained using (5.7) for each bulk operator

〈φ(x1, z1) · · ·φ(xN , zN )〉 ≈ αN∆z∆
1 · · · z∆

N 〈O(x1) · · · O(xN )〉 , (5.8)

provided all distances |xi−xj | � |zk| for all {i, j, k}. This is precisely the regime we are con-
sidering when computing correlation functions of bulk twist operators. The relation (5.8)
holds trivially for bulk replica operators as well with the obvious generalization.

In our derivation of the operator formula for IN ({Ai}N ) in terms of twist operators we
did not make any assumption about the theory being conformal or being defined on flat
space. Hence, the same formula should apply to IbN ({Abi}N ), this is

IbN ({Abi}N ) = lim
n→1

(−)N+1

1− n 〈Σ̃
(n)
Ab1

Σ̃(n)
Ab2
· · · Σ̃(n)

AbN
〉 . (5.9)

The same happens with our derivation of the twist OPE coefficient Cij of section 2.2.1,
more precisely, eq. (2.30). Thus, for the bulk twist operator we can similarly write

〈Ω|Σ(n)
Ab
φl(rb)φk(rb)|Ω〉 ≈

〈
φAb

[
rb, i

τkl
π

]
φ(rb)

〉
, (5.10)

where φAb
[
rb, s

]
is the bulk field operator evolved by the bulk modular flow associated to

region Ab, this is

φAb
[
rb, s

]
= ρisAbφ(rb)ρ−isAb

, and τkl = π(k − l)
n

. (5.11)

It turns out that the bulk modular flow for the region dual to a spherical region is also
explicitly known. The CFT modular flow for a spherical region is generated by the con-
formal Killing vector which preserves the associated causal cone, and it is given by (2.31).
Such Killing vector has a natural extension into the bulk where it becomes the AdS Killing
vector field which preserves the associated dual bulk hemispherical causal cone. This flow
is given by [9]

r±b [s] = R

(
R+ r±b

)
− e∓2πs (R− r±)

(R+ r±) + e∓2πs
(
R− r±b

) , (5.12)

where r±b = rb±t are standard null coordinates. Notice that this flow reduces to the bound-
ary flow for z = 0. The map generated by the bulk modular flow acts as a diffeomorphism
of the AdS metric and thus the action on the bulk field is trivial, this is

φAb

[
rb, i

τkl
π

]
= φ

(
rb
[
i
τkl
π

])
, (5.13)
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since φ(rb) transforms as a bulk scalar field. Using the above relation into (5.10), together
with the extrapolate dictionary (5.7) and the explicit modular flow (5.12), we find

〈Ω|Σ(n)
Ab
φl(rb)φk(rb)|Ω〉 ≈ α2

∆
Ω∆(x, i τklπ )z2∆

|x
[
i τklπ

]
− x|2∆ , (5.14)

for large |x − xA|. Plugging this formula back into (5.5) and using (5.6) we arrive at our
final formula for the bulk twist OPE coefficients

Cblk = 1
α2

∆z
2
Ab

lim
|x−xA|→∞

Ω∆(x, i τklπ )
|x
[
i τklπ

]
− x|2∆ = Clk

α2
∆z

2
Ab
. (5.15)

This is the main result of this section. It gives a simple relation between the OPE coeffi-
cients of the twist bulk operator and the ones of the boundary theory. Together with the
extrapolate dictionary (5.7) it allows us to conclude the equality between boundary and
bulk twist operators

Σ̃(n)
Ab
≈ Σ̃(n)

A , (5.16)

which holds inside correlation functions with operator insertions far away from the locations
of the twist operator. Therefore, at large separations we conclude that

IbN ({Abi}N ) = IN ({Ai}N ) . (5.17)

6 Final comments

In this paper we have presented several new results involving the N -partite information of
spacetime regions in conformal field theories. Our main results appear summarized in the
introduction. Here, we close with a few comments regarding possible extensions.

As we have seen, our final formula for I4 includes a coefficient which we left expressed
in terms of a triple integral which we were not able to evaluate explicitly for general values
of ∆ — see eq. (A.49). It would certainly be interesting to see it done.

On the other hand, it should be possible (although increasingly challenging) to obtain
explicit formulas for the long-distance leading term of the IN for N ≥ 5 in the case of
spherical entangling regions. In each case, the formulas should involve a linear combina-
tion of products of 2-,3-,. . . , N -point functions of the leading primary. In relation with the
CFT reconstruction program mentioned above, obtaining information about subleading
primaries requires going beyond leading order in the long-distance expansion. As a con-
crete question in this direction, it would be interesting to determine precisely how much
information about a CFT one can reconstruct from the knowledge of the leading and first
subleading terms in the mutual information long-distance expansion for spherical regions.

On a different front, it would be interesting to provide further evidence (or disprove)
the two conjectures we have put forward in this paper involving free fields, namely: i) the
fact that the free scalar N -partite information is positive-definite in general dimensions
and for arbitrary regions; ii) the observation that, normalized by the disk EE universal
coefficient, the mutual information of the three-dimensional free scalar is greater than the
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free fermion one for arbitrary regions. In relation with the latter, it would be interesting
to explore the possible existence of similar hierarchies between theories beyond free fields
and also beyond the mutual information case, i.e. for N ≥ 3.

In the context of holographic theories, it would be interesting to extend the arguments
leading to the equality between boundary and bulk twist operators to general shapes and
arbitrary distances. This could help us to understand further these mysterious objects,
although, there is no guarantee that such equality holds in those cases. For the shape de-
pendence, one might require further input on the bulk modular flow which might be possible
in the bulk free field approximation. The results of this analysis could be checked against
analytic and numerical results on the shape dependence of holographic entanglement en-
tropy [52, 71, 72, 83]. On the other hand, moving away from the long-distance regime for
boundary spheres may be possible, given the universality of both, bulk and boundary mod-
ular flows. This second exploration is of special interest, since understanding the behaviour
of the N−partite information at moderate separation distances could elucidate the nature
of the holographic phase transition of the Ryu-Takayanagi prescription.
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A Coefficients for the N -partite information

Throughout the paper, we are interested in computing sums of combinations of the following
basic coefficient,

Cij = 1
sin2∆

[
π(i−j)
n

] . (A.1)

Following [28, 29], where similar sums over Cij were computed, we will make extensive use
of the following representation for the sine function:

1
sin∆

(
θ
2

) = 2∆−2

π2Γ (∆)

∫ ∞
−∞

dq e−
q
2 e

q θ
2π Γ

(∆
2 + i

q

2π

)
Γ
(∆

2 − i
q

2π

)

= 2∆−2

π2Γ (∆)

∫ ∞
−∞

dq e−
q
2 e

q θ
2π

∣∣∣∣Γ(∆
2 + i

q

2π

) ∣∣∣∣2 . (A.2)

This formula can be written in a more compact form in terms of the beta function B(x, y)
due to its relation with the gamma function,

B(x, y) = Γ(x)Γ(y)
Γ(x+ y) =

∫ 1

0
tx−1(1− t)y−1dt , (A.3)
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where in the last equality we present its integral definition. Thus, we can rewrite eq. (A.2) as

1
sin∆

(
θ
2

) = 2∆−2

π2

∫ ∞
−∞

dq e−
q
2 e

q θ
2πB

(∆
2 + i

q

2π ,
∆
2 − i

q

2π

)
. (A.4)

For the sake of simplicity, we introduce the following compact notation

Bq(∆) ≡ B
(

∆ + i
q

2π ,∆− i
q

2π

)
=

∣∣∣Γ (∆ + i q2π
) ∣∣∣2

Γ (2∆) , (A.5)

to represent the beta function of our interest. In terms of this function we have

1
sin∆

(
θ
2

) = 2∆−2

π2

∫ ∞
−∞

dq e−
q
2 e

q θ
2πBq

(∆
2

)
, (A.6)

where the integral representation of the beta function (A.5) from eq. (A.3) takes the sim-
ple form

Bq(∆) =
∫ 1

0
dt t∆−1(1− t)∆−1e

iq
2π log( t

1−t) . (A.7)

We will make use of this notation in what follows.

A.1 Computation of I2 coefficients

We are interested in computing the sum

c
(2)
2:2 ≡ lim

n→1

1
n− 1

∑
i<j

C2
ij = lim

n→1

n

2(n− 1)

n−1∑
j=1

1
sin4∆

(
πj
n

) . (A.8)

For that purpose, we use the representation (A.6) with θ → 2πj/n in the above sum, which
leads to

c
(2)
2:2 = lim

n→1

1
n− 1

n−1∑
j=1

24∆−3

π2

∫ ∞
−∞

dq e−
q
2 e

qj
n Bq (2∆) . (A.9)

We can carry out the sum over j explicitly using
n−1∑
j=1

e
qj
n = eq/n − eq

1− eq/n
≈ (n− 1) qeq

eq − 1 , (A.10)

which cancels out the (n− 1) in the n→ 1 limit and leads to

c
(2)
2:2 = 24∆−3

π2

∫ 1

0
dt t2∆−1(1− t)2∆−1

∫ ∞
−∞

dq
qe

q
2

eq − 1e
iq
2π log( t

1−t) , (A.11)

after plugging in the integral representation (A.7). We can now perform the integral over q,
which is just the Fourier transform presented in eq. (B.16) with k → [log t− log(1− t)]/2π.
This results in: ∫ ∞

−∞
dq

qe
q
2

eq − 1e
iq
2π log( t

1−t) = 4π2t(1− t) . (A.12)
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Plugging this result back into (A.11) leads to the well-known expression for c(2)
2:2,

c
(2)
2:2 = 24∆−1

∫ 1

0
dt t2∆(1− t)2∆ = 24∆−1 Γ (2∆ + 1)2

Γ (4∆ + 2) . (A.13)

The above result for c(2)
2:2 was first obtained in16 [26].

A.2 Computation of I3 coefficients

We are interested in computing the coefficients c(3)
3:2 and c(1,1,1)

3:3 which appear in the expres-
sion for the tripartite information at long distances. We start with

c
(3)
3:2 ≡ lim

n→1

1
n− 1

∑
i<j

C3
ij . (A.14)

This computation is identical to the one of the coefficient c(2)
2:2 which determines I2 at long

distances with the simple replacement ∆→ 3∆/2, therefore, we conclude that

c
(3)
3:2 = 26∆−1Γ (3∆ + 1)2

Γ (6∆ + 2) . (A.15)

Our second coefficient of interest is

c
(1,1,1)
3:3 ≡ lim

n→1

1
n− 1

∑
i<j<k

CijCjkCki = lim
n→1

1
3!(n− 1)

∑
i 6=j 6=k

CijCjkCki

= lim
n→1

n

3(n− 1)
∑

0<j<k
C0jCjkCk0 = lim

n→1

n

3(n− 1)

n−1∑
k=2

k−1∑
j=1

C0jCjkCk0 . (A.16)

In the first line, we rewrite the ordered sum in a disordered form by including the permu-
tation factor that accounts for the multiple counting of each configuration. In the second
line, we fix one index to the particular value of zero and multiply by n the result (making
use of the replica symmetry). Furthermore, we reorder the resulting sum, which requires
an extra permutation factor of 2!. Plugging in the explicit expression for the coefficients,
we get

c
(1,1,1)
3:3 = lim

n→1

n

3(n− 1)

n−1∑
k=2

1
sin2∆

(
πk
n

) k−1∑
j=1

1
sin2∆

(
π(k−j)
n

) 1
sin2∆

(
πj
n

) . (A.17)

Next, we use the integral representation (A.6) for each of the sine functions above, leading to

c
(1,1,1)
3:3 = lim

n→1

n

3(n− 1)

[
22∆−2

π2

]3

×
n−1∑
k=2

k−1∑
j=1

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

ds e−
p
2 e−

q
2 e−

s
2 e

pk
n e

qj
n e

s(k−j)
n Bp (∆)Bq (∆)Bs (∆) .

(A.18)
16While the authors of [26] arrived at the same single sum in eq. (A.8), following a methodology which is

completely analogous to ours which at the time was only established for 2d CFTs, the method used to carry
out the sum differed from ours only in the way the analytic continuation was carried out. Namely, they did
not use the integral representation (A.6), but instead followed a series of mathematical manipulations that
allowed them to find the appropriate analytic continuation in n.
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In this form, we can explicitly carry out the sums over j and k and take the n → 1 limit
of the resulting expression. This gives

e−
p
2 e−

q
2 e−

s
2

n−1∑
k=2

k−1∑
j=1

e
pk
n e

qj
n e

s(k−j)
n ≈ (n− 1)f(p, q, s) , (A.19)

where

f(p, q, s) ≡ −e
p+q+s

2

[
p

(e−p − eq)(1− ep+s) −
q

(es − eq)(1− ep+q) + s

(es − eq)(1− ep+s)

]
.

(A.20)
This function is to be introduced inside eq. (A.18). We can therefore manipulate it to get
a more symmetric form by changing p→ −p, obtaining

f̃(p, q, s) = e
p+q+s

2

[
p

(ep − es)(ep − eq) + q

(eq − es)(eq − ep) + s

(es − eq)(es − ep)

]
. (A.21)

The resulting function f̃(p, q, s) is symmetric under permutations among {p, q, s}. We could
deduce from here that inside the integral each term will contribute the same and thus it
should be enough to focus on evaluating any of the three terms and multiplying the answer
by three. However, this is not true because each term individually is not well defined due
to spurious divergences at coincident points of the {p, q, s} variables. Such poles would
cancel in the full expression, the following form of the function makes it manifest

f̃(p, q, s) = e
p+q+s

2

(ep − eq)

[
p− s
ep − es

− q − s
eq − es

]
. (A.22)

Thus, the integral of interest is

c
(1,1,1)
3:3 = 26(∆−1)

3π6

∫ ∞
−∞

dp e
p
2Bp (∆)

∫ ∞
−∞

dq e
q
2Bq (∆) 1

ep − eq

×
∫ ∞
−∞

ds e
s
2 Bs (∆)

(
p− s
ep − es

− q − s
eq − es

)
. (A.23)

We start by doing the integral over s of the p dependent piece; the one that depends on q
is identical. We have∫ ∞
−∞

ds e
s
2 Bs (∆) p− s

ep − es
= e−

p
2

∫ ∞
−∞

ds
(s− p) e

s−p
2

es−p − 1 Bs (∆) = 4π2e−
p
2Bp (∆ + 1) , (A.24)

where in the last equality we used eq. (B.23). All in all, we obtain

c
(1,1,1)
3:3 = 26∆

3 (2π)4

∫ ∞
−∞

dp

∫ ∞
−∞

dq Bp (∆)Bq (∆)
(
e
p
2Bq (∆ + 1)− e

q
2Bp (∆ + 1)

eq − ep

)
. (A.25)

Once again, the resulting integral has a simple spurious pole if we split the terms which
does not appear in the full expression. Nevertheless, for computational purposes we need
to treat each term independently. We can do so with eq. (B.24), obtaining

c
(1,1,1)
3:3 = 26∆

3 (2π)4 ∆

∫ ∞
−∞

dq q e−
q
2 B2

q (∆)Bq (∆ + 1) . (A.26)
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This final integral can also be carried out using eq. (B.26), which leads to our final formula

c
(1,1,1)
3:3 = −

26∆Γ
(
∆ + 1

2

)3

12πΓ
(
3∆ + 3

2

) . (A.27)

We have been very explicit in the manipulations leading to the final form of this coefficient.
We will be more sketchy from now on; the general strategy is always the same: replacing the
inverse powers of the sine by the integral representation (A.6), summing and extracting the
piece that contributes in the n → 1 limit, and then manipulating the resulting expression
to be able to integrate it.

A.3 Computation of I4 coefficients

The first coefficient appearing in eq. (2.68) is straightforward to obtain, as it is given by
the single sum

c
(4)
4:2 = lim

n→1

1
n− 1

∑
j<k

C4
ij . (A.28)

This can be written as a single sum using the symmetry under i ↔ j and the ciclicity of
the replica geometry,

c
(4)
4:2 = lim

n→1

n

2(n− 1)

n−1∑
j=1

C4
0j . (A.29)

The computation is now analogous to the one of c(2)
2:2 which produced eq. (A.13), the only

difference being the power of C0j in the sum. This is accounted for by changing ∆→ 2∆,
producing

c
(4)
4:2 = 28∆−1 Γ (4∆ + 1)2

Γ (8∆ + 2) . (A.30)

The remaining coefficients in eq. (2.68) require more work, so before getting into the
details of the computations, let us write them in a convenient form. Using arguments
analogous to (A.16) based on replica symmetry and the symmetries of the expression being
summed, we can write them as

c
(1,1,2)
4:3 = lim

n→1

n

3(n− 1)

n−1∑
k=2

k−1∑
j=1

[
C2

0jCjkCk0 + C0jC
2
jkCk0 + C0jCjkC

2
k0

]
, (A.31)

c
(2,2)
4:3 = lim

n→1

n

3(n− 1)

n−1∑
k=2

k−1∑
j=1

[
C2

0jC
2
0k + C2

0jC
2
jk + C2

0kC
2
jk

]
, (A.32)

c
(1,1,1,1)
4:4 = lim

n→1

n

4(n− 1)

n−1∑
l=3

l−1∑
k=2

k−1∑
j=1

[C0jCjkCklCl0 + C0jCjlClkCk0 + C0lCljCjkCk0] ,

(A.33)

c
(2,2)
4:4 = lim

n→1

n

4(n− 1)

n−1∑
l=3

l−1∑
k=2

k−1∑
j=1

[
C2

0lC
2
jk + C2

0jC
2
kl + C2

0kC
2
jl

]
. (A.34)
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A.3.1 Computation of c(1,1,2)
4:3

Replace in eq. (A.31) the integral representation for each coefficien. Summing and extract-
ing the relevant piece in the n→ 1 limit, we get

e−
p
2 e−

q
2 e−

s
2

n−1∑
k=2

k−1∑
j=1

(
e
pj
n e

q(k−j)
n e

sk
n + e

sj
n e

p(k−j)
n e

qk
n + e

s(k−j)
n e

qj
n e

pk
n

)
≈ (n− 1)f (1,1,2)

4:3 (p, q) ,

(A.35)
where

f
(1,1,2)
4:3 (p, q, s) = e

p+q+s
2

(eq − ep)

[
q + s

eq+s − 1 −
p+ s

ep+s − 1

]
+ e

p+q+s
2

(es − ep)

[
s+ q

es+q − 1 −
p+ q

ep+q − 1

]

+ e
p+q+s

2

(es − eq)

[
s+ p

es+p − 1 −
q + p

eq+p − 1

]
. (A.36)

Therefore, we are left with the following triple integral to evaluate

c
(1,1,2)
4:3 = 28∆−6

3π6

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

ds f
(1,1,2)
4:3 (p, q, s)Bp(2∆)Bq(∆)Bs(∆) . (A.37)

The form of f (1,1,2)
4:3 (p, q, s) allows to integrate each piece by means of the same tricks than

before. Integrals (B.23) and (B.24) reduce the computation to the following single integral

c
(1,1,2)
4:3 = 28∆−4

2π4∆

∫ ∞
−∞

dq q e−
q
2 Bq(2∆)Bq(∆)Bq(∆ + 1)

+ 28∆−4

3π4∆

∫ ∞
−∞

dq q e−
q
2 B2

q (∆)Bq(2∆ + 1) . (A.38)

We can now shift the argument of one of the beta functions of the first term by means of
basic gamma function identities to obtain:

c
(1,1,2)
4:3 = 28∆−3(7∆ + 2)

3π4∆ (2∆ + 1)

∫ ∞
−∞

dq q e−
q
2B2

q (∆)Bq (2∆ + 1)

− 3× 28∆−6

π4 (2∆ + 1)

∫ ∞
−∞

dq q e−
q
2B2

q (∆)Bq (2∆) . (A.39)

Using the result (B.26) from appendix B, we get

c
(1,1,2)
4:3 = − 9

√
πΓ (3∆)2

4Γ (∆)2 Γ
(
4∆ + 3

2

) = −9× 28∆ Γ (3∆)2 Γ (4∆ + 1)
2 Γ (∆)2 Γ (8∆ + 2)

. (A.40)

A.3.2 Computation of c(2,2)
4:3

We start now from eq. (A.32) and use the integral representation of the coefficients. We
carry out the sum over the indices, obtaining

e−
p
2 e−

q
2

n−1∑
k=2

k−1∑
j=1

(
e
pl
n e

qk
n + e

pj
n e

q(k−j)
n + e

pk
n e

q(k−j)
n

)
≈ (n− 1)f (2,2)

4:3 (p, q) , (A.41)
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where

f
(2,2)
4:3 (p, q) = e

p+q
2

(ep − 1)

[
q + p

eq+p − 1 −
q

eq − 1

]
+ e

p+q
2

(eq − ep)

[
q

eq − 1 −
p

ep − 1

]

+ e
p+q

2

(ep+q − 1)

[
q

eq − 1 −
p ep

ep − 1

]
. (A.42)

We have an integral expression for our coefficient of the form

c
(2,2)
4:3 = 28∆−4

3π4

∫ ∞
−∞

dp

∫ ∞
−∞

dq f
(2,2)
4:3 (p, q)Bp(2∆)Bq(2∆) . (A.43)

Symmetrizing the integrands in q we can obtain

c
(2,2)
4:3 = −28∆−4

6π4∆

∫ ∞
−∞

dq q2B2
q (2∆)− 28∆−2

6π2

∫ ∞
−∞

dq Bq(2∆)Bq(2∆ + 1) , (A.44)

and from here, by shifting the argument of the last beta function, we can use eq. (B.26) to
conclude:

c
(2,2)
4:3 = −28∆ [Γ (4∆ + 1)]2

2 Γ (8∆ + 2) . (A.45)

A.3.3 Computation of c(1,1,1,1)
4:4

Doing the sum like in the previous cases, we obtain:

c
(1,1,1,1)
4:4 = 28∆−8

4π8

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

dr

∫ ∞
−∞

ds f
(1,1,1,1)
4:4 (p, q, r, s)Bp(∆)Bq(∆)Br(∆)Bs(∆) ,

(A.46)

where

f
(1,1,1,1)
4:4 (p, q, r, s) = e

p+q+r+s
2

[
(p+ s)

(ep+s − 1)(ep − er)(ep − eq) + (q + s)
(eq+s − 1)(eq − er)(eq − ep)

+ (r + s)
(er+s − 1)(er − eq)(er − ep)

]

+e
p+q+r+s

2

[
eq(p+ r − q − s)

(ep+r−eq+s)(ep+r−1)(ep−eq) + eq+r(q + s)
(eq+s−1)(ep+r−1)(eq+r−1)

− (r − s)
(er − es)(eq+r − 1)(ep − eq)

]

+e
p+q+r+s

2

[
eq(p+ s)

(ep+s − 1)(eq+r−1)(eq − ep) + ep(q + s)
(eq+s − 1)(ep+r−1)(ep − eq)

+ (r + s+ p+ q)
(er+s+p+q − 1)(eq+r − 1)(ep+r − 1)

]
. (A.47)
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It is immediate to integrate over s by means of eq. (B.23). After some relabelling of the
variables we arrive at the following expression

c
(1,1,1,1)
4:4 = 28∆−8

π6

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

dr Bp(∆)Bq(∆)Br(∆)

×
[

3 e
q+r

2 Bp(∆ + 1)
(ep − er)(ep − eq) +

(
eq+r + 1

)
e
p+r

2 Bq(∆ + 1)
(eq+r − 1)(ep+r − 1) + eqBq−p−r(∆ + 1)

(ep+r − 1)(ep − eq)

+ Bq+p+r(∆ + 1)
(ep+r − 1)(eq+r − 1) + 2 ep+q e

p+r
2 Bq(∆ + 1)

(ep+q − 1)(ep+r − 1)

]
. (A.48)

We can write the Bq−p−r(∆ + 1) as Bp+q+r(∆ + 1) by sending q → −q and using the
symmetry of the beta function B−s(∆) = Bs(∆). That term then combines with the one
in which Bp+q+r(∆ + 1) is already present, after some trivial relabelling. Similarly, we can
replace (

eq+r + 1
)
e
p+r

2 Bq(∆ + 1)
(eq+r − 1)(ep+r − 1) + 2 ep+q e

p+r
2 Bq(∆ + 1)

(ep+q − 1)(ep+r − 1) →

3 e
p+r

2 Bq(∆ + 1)
(ep+r − 1) + 4 e

p+r
2 Bq(∆ + 1)

(ep+r − 1)(eq+r − 1) .

The first term is odd under (p, r) → (−p,−r), while the prefactor in the whole integral
is even due to the symmetry of the beta functions. Therefore, it will not contribute and
only the second term is relevant. Let us recap and split the integrals in a suitable way for
further manipulation,

c
(1,1,1,1)
4:4 = J1 + J2 + J3 , (A.49)

where, explicitly indicating the ∆ dependence

J1(∆) = 28∆−8

π6

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

dr Bp(∆)Bq(∆)Br(∆) 2Bp+q+r (∆ + 1)
(ep+r − 1)(ep+q − 1) , (A.50)

J2(∆) = 28∆−8

π6

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

dr Bp(∆)Bq(∆)Br(∆) 3 e
q+r

2 Bp(∆ + 1)
(ep − er)(ep − eq) , (A.51)

J3(∆) = 28∆−8

π6

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

dr Bp(∆)Bq(∆)Br(∆) 4 e
p+r

2 Bq(∆ + 1)
(ep+r − 1)(eq+r − 1) . (A.52)

Notice that the expression we have obtained for c(1,1,1,1)
4:4 , though simpler than eq. (A.46),

is ill-defined due to the appearance of spurious poles. These are not present in the original
expression, and we must remove them in order to obtain a sensible answer. We do it by
symmetrizing under the variables of integration for each of the three pieces independently.

For J1, after sending p→ −p, replace inside the integral,

2e2pBq+r−p (∆+1)
(ep − er)(ep − eq) →

2
3

[
e2pBq+r−p (∆+1)
(ep − er)(ep − eq) + e2r Bq+p−r (∆+1)

(er − ep)(er − eq) + e2q Bp+r−q (∆+1)
(eq − ep)(eq − er)

]
.

If we now use in the last term the following identity
1

(ep − er)(ep − eq) + 1
(eq − ep)(eq − er) + 1

(er − eq)(er − ep) = 0 , (A.53)
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we get:

J1(∆)= 2
3

28∆−8

π6

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

dr
Bp(∆)Bq(∆)Br(∆)

ep − er
× (A.54)

×
[
e2pBq+r−p(∆+1)− e2qBp+r−q(∆+1)

ep − eq
− e2rBq+p−r(∆+1)− e2qBp+r−q(∆+1)

er − eq

]
.

This formula is pole free and consequently it is well defined. Unfortunately, we were not
able to integrate it in a closed form analytically; not even by means of the manipulations
we will describe for J2 and J3. The most we managed to do is obtaining numerical results
for particular (integer or semi-integer) values of ∆. We present them after the results for
J2 and J3.

The same manipulations in J2 — symmetrizing and using (A.53) — transform the
integrand into the following pole-free form

J2(∆) = 28∆−8

π6

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

dr Bp(∆)Bq(∆)Br(∆) e
p+q+r

2

ep − eq
× (A.55)

×
[
e−

p
2Bp(∆ + 1)− e−

r
2Br(∆ + 1)

ep − er
− e−

q
2Bq(∆ + 1)− e−

r
2Br(∆ + 1)

eq − er

]
,

which, after integrating over q in the first term and p in the second one, we get

J2(∆) = 28∆−8

π6∆

∫ ∞
−∞

dp

∫ ∞
−∞

dr B2
p(∆)Br(∆) p e

r
2

(
e−

p
2Bp(∆ + 1)− e−

r
2Br(∆ + 1)

ep − er

)
.

(A.56)
This integral can be done for integer or semi-integer ∆ through the following procedure.
We will present the details for ∆ = (2k+1)/2 with k ∈ N; analogous manipulations provide
the results for ∆ = k. First of all, write the difference in the denominator as sinh((p−r)/2)
and use the symmetries of the integrand to obtain

J2

(2k + 1
2

)
= 28k−4

(2k + 1)π6

∫ ∞
−∞

dp

∫ ∞
−∞

dr
pBp

(
2k+1

2

)2
Br
(

2k+1
2

)
sinh

(
p−r

2

) (A.57)

×
[
cosh(p)Bp

(2k + 3
2

)
− cosh

(
p+ r

2

)
Br

(2k + 3
2

)]
.

Now, use the shift formula for the beta function (B.22) to write all arguments as (2k+1)/2.
The final step is the most involved one; we will illustrate it for the first term within
brackets. The basic idea is that we can decouple the p and r integrals by introducing an
extra integration variable u with a δ-function at u = (p − r)/2; so that we can write the
denominator as sinh(u/2). Writing then the δ-function by means of its integral Fourier
representation, we get, dropping the global prefactor in the previous integral∫ ∞

−∞

dξ

2π

[∫ ∞
−∞

dp p cosh(p) p2 + π2(2k + 1)2

4π2(2k + 1)(2k + 2)Bp
(2k + 1

2

)3
e−iξp

]

×
[∫ ∞
−∞

dr Br

(2k + 1
2

)
eiξr

] [∫ ∞
−∞

du
eiξu

sinh(u/2)

]
. (A.58)
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The integral over r can be done directly by using the hyperbolic representation of the beta
function in (B.21), while the one over u is just eq. (B.15). The only really challenging one
is the integral over p. We can use the expansion (B.30) to write the integrand as some
polynomial in p times cosh(p)/ cosh(p/2). The powers of p can be traded for derivatives i∂ξ
and taken outside of the integral, while using cosh(p) = 2 cosh2(p/2)− 1 we can write the
remaining integral as a combination of eq. (B.14) and eq. (B.17). All in all, the previous
expression becomes

− π2(2−3k)

28k+1(2k)!3(2k + 1)(2k + 2)

∫ ∞
−∞

dξ F
(1)
2 (ξ, k) tanh(πξ)

cosh2k+1(πξ)
, (A.59)

where F (1)
2 (ξ, k) is the result of extracting powers of p as we described

F
(1)
2 (ξ, k) =

[
k−1∏
l=0
D3

2l+1

]
D2k+1∂ξ

(
3− 4ξ2

cosh(πξ)

)
, (A.60)

and Dn is the following differential operator:

Dn ≡ −∂2
ξ + n2π2 . (A.61)

This expression can be evaluated for any non-negative integer k algorithmically and, in
particular, it is not difficult to introduce it in a standard symbolic algebra software. The
remaining integral over ξ can be done by means of the general formulas presented in
appendix B, because it is just an inverse power of cosh(πξ) times some complicated function
of ξ and hyperbolic functions cosh(αξ) or sinh(αξ).17 Alternatively, for low enough k,
Mathematica is able to do the resulting integral over ξ directly. One can show, as an
example, that for k = 0 (∆ = 1/2) the previous integral evaluates to 4π4 + 16π6/15.

The second term in (A.57) can be treated analogously (after separating the p and r

parts of the cosh by means of the identity for the cosh of a sum), although in this case
both the p and the r integrals have to be done by means of the expansion (B.30). The
remaining manipulations are identical, so we will just write the final result,

J2

(2k + 1
2

)
=− 1

16π6k+2(2k)!3(2k + 1)2(2k + 2)

∫ ∞
−∞

dξ tanh(πξ)

×
[

F
(1)
2 (ξ, k)

2 cosh2k+1(πξ)
− F

(2)
2 (ξ, k)

(2k)!π2k

]
, (A.62)

where F (1)
2 was presented in (A.60) and F (2)

2 is

F
(2)
2 (ξ, k) =

[(
k−1∏
l=0
D2

2l+1

)
∂ξ

( 1
cosh(πξ)

)][(k−1∏
l=0
D2

2l+1

)
D2k+1

( 1
cosh(πξ)

)]

+ 4
[(

k−1∏
l=0
D2

2l+1

)
∂ξ

(
ξ

cosh(πξ)

)][(k−1∏
l=0
D2

2l+1

)
D2k+1

(
ξ

cosh(πξ)

)]
. (A.63)

17For this one might need to express powers of hyperbolic functions in the numerator as hyperbolic
functions with different argument, e.g., 4 cosh3(x) = 3 cosh(x) + cosh(3x).
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The case ∆ = k is completely analogous, obtaining as a final result,

J2 (k) = 1
16π6k−1(2k − 1)!3(2k)2(2k + 1)

∫ ∞
−∞

dξ tanh(πξ)

×
[
G

(1)
2 (ξ, k)

2 cosh2k(πξ)
+ G

(2)
2 (ξ, k)

(2k − 1)!π2k−1

]
, (A.64)

where

G
(1)
2 (ξ, k) =

[
k−1∏
l=1
D3

2l

]
D2k∂

4
ξ

(
(3− 4ξ2) tanh(πξ)

)
, (A.65)

G
(2)
2 (ξ, k) =

[(
k−1∏
l=1
D2

2l

)
∂3
ξ (tanh(πξ))

] [(
k−1∏
l=1
D2

2l

)
D2k∂

2
ξ (tanh(πξ))

]

+ 4
[(

k−1∏
l=1
D2

2l

)
∂3
ξ (ξ tanh(πξ))

] [(
k−1∏
l=1
D2

2l

)
D2k∂

2
ξ (ξ tanh(πξ))

]
. (A.66)

We come finally to the last piece, J3. We first manipulate a bit the integrand: changing
(p, q)→ (−p,−q) and symmetrizing afterwards over p and r, the final part of the integral
becomes

4 e
p+r

2 Bq(∆ + 1)
(ep+r − 1)(eq+r − 1) → 2 e

p+q+r
2 eq/2Bq(∆ + 1)

[ 1
(er − ep)(er − eq) + 1

(ep − er)(ep − eq)

]
.

(A.67)
Applying now (A.53), symmetrizing the result over the three variables and then using (A.53)
again to write the integrand in a pole free form like in the previous J1 and J2, we get

J3(∆) =− 2
3

28∆−8

π6

∫ ∞
−∞

dp

∫ ∞
−∞

dq

∫ ∞
−∞

dr Bp(∆)Bq(∆)Br(∆) e
p+q+r

2

ep − eq
× (A.68)

×
[
e
p
2Bp(∆ + 1)− e

r
2Br(∆ + 1)

ep − er
− e

q
2Bq(∆ + 1)− e

r
2Br(∆ + 1)

eq − er

]
.

Integration over q in the first term and over p in the second one produces

J3(∆) = −2
3

28∆−8

π6∆

∫ ∞
−∞

dp

∫ ∞
−∞

dr B2
p(∆)Br(∆) p e

r
2

(
e
p
2Bp(∆ + 1)− e

r
2Br(∆ + 1)

ep − er

)
.

(A.69)
Already from the form of this integral we can see that it is very similar to J2(∆). The
technique we use is exactly the same one, so we will not give details about the intermediate
steps, but instead we will present the final result directly. We need to separate semi-integer
and integer ∆. In the first case, we have

J3

(2k + 1
2

)
= 1

6π6k+2(2k)!3(2k + 1)2(2k + 2)

×
∫ ∞
−∞

dξ

[
F

(1)
3 (ξ, k)

8
tanh(πξ)

cosh2k+1(πξ)
− F

(2)
3 (ξ, k)

(2k)!π2k coth(πξ)
]
, (A.70)
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where

F
(1)
3 (ξ, k) =

[
k−1∏
l=0
D3

2l+1

]
D2k+1∂ξ

(
1 + 4ξ2

cosh(πξ)

)
, (A.71)

F
(2)
3 (ξ, k) =

[(
k−1∏
l=0
D2

2l+1

)
∂ξ

(
ξ

sinh(πξ)

)][(k−1∏
l=0
D2

2l+1

)
D2k+1

(
ξ

sinh(πξ)

)]
. (A.72)

While for integer ∆ = k we get

J3 (k) = 1
6π6k−1(2k − 1)!3(2k)2(2k + 1)

×
∫ ∞
−∞

dξ

[
G

(1)
3 (ξ, k)

8
tanh(πξ)

cosh2k(πξ)
− G

(2)
3 (ξ, k)

(2k − 1)!π2k−1 coth(πξ)
]
, (A.73)

where

G
(1)
3 (ξ, k) =

[
k−1∏
l=1
D3

2l

]
D2k∂

4
ξ

(
(1 + 4ξ2) tanh(πξ)

)
, (A.74)

G
(2)
3 (ξ, k) =

[(
k−1∏
l=1
D2

2l

)
∂3
ξ (ξ coth(πξ))

] [(
k−1∏
l=1
D2

2l

)
D2k∂

2
ξ (ξ coth(πξ))

]
. (A.75)

We conclude with table 1, where we show numerical results for J1 — obtained from
eq. (A.54) — as well as exact results for J2 and J3, for the smallest semi-integer and integer
values of ∆. We also compute the total value of the coefficient c(1,1,1,1)

4:4 for those cases. For
∆ = 1/2, there is a fortunate numerical coincidence, easy to discover, which allows us to
write an analytic value of the coefficient. The total value of c(1,1,1,1)

4:4 (∆ = 1/2) is twice that
of J2(1/2) to an extremely good level of precision, and this last one we know analytically.
Therefore, we conclude18

c
(1,1,1,1)
4:4 (∆ = 1/2) = 4

45 + 2
3π2 . (A.76)

Unfortunately, it is not obvious that a similar relation holds for other values of ∆. Still,
for ∆ = 1 we are reasonably confident that the numerical value obtained corresponds to

J1(∆ = 1) ?= 64
945 −

4
27π2 ⇒ c

(1,1,1,1)
4:4 (∆ = 1) ?= 64

315 . (A.77)

More generally, we do believe J1(∆) might have a reasonably simple closed form, much
like the others. This is a technically challenging problem which we leave open for further
investigation.19

18This coefficient can alternatively be read from [84] — more precisely, from the last two terms on the
right hand side of their equation (4.19). Similarly, one can also find that expression in eqs (79) and (80)
of [29]. In order to identify the exact result, it is useful to notice the following relations Cij = 2〈φi(1)φj(1)〉
and Cij = 1/sij between our coefficients and the correlators in [84] and [29] respectively. In their context,
the computation appears in the subleading contribution to the mutual information of two disjoint disks for
a free scalar in three space-time dimensions.

19It is also conceivable that all the integrals, or at least the coefficient as a whole, can be done for general
∆ in a closed form. This is what happens for the other coefficients c(4)

4:2, c
(1,1,2)
4:3 , etc.
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∆ J1 J2 J3 c
(1,1,1,1)
4:4

1/2 8
135 + 1

9π2
2
45 + 1

3π2 − 2
135 + 2

9π2
4
45 + 2

3π2 ' 0.156436

1 64
945 −

4
27π2

32
315 + 4

9π2
32
945 −

8
27π2

64
315 ' 0.203175

3/2 0.04382 10496
45045 + 32

27π2 − 10496
135135 + 64

81π2 0.399298

2 0.03827 1482752
2297295 + 256

81π2
1482752
6891885 −

512
243π2 1.005593

5/2 0.03440 1507328
793611 + 26624

2835π2 −1507328
2380833 + 53248

8505π2 2.886498

3 0.03151 1097859072
185910725 + 32768

1125π2
365953024
185910725 −

65536
3375π2 8.888975

Table 1. Values of the different terms contributing to c
(1,1,1,1)
4:4 . J1 is obtained by numerical

integration of (A.54), while J2 and J3 are obtained from the expressions (A.62), (A.64), (A.70),
and (A.73).

A.3.4 Computation of c(2,2)
4:4

Finally, we come to the coefficient (A.34). With the integral representation for the coeffi-
cients, we must perform the following sum

e−
p
2 e−

q
2

n−1∑
l=3

l−1∑
k=2

k−1∑
j=1

(
e
pl
n e

q(k−j)
n + e

pj
n e

q(l−k)
n + e

pk
n e

q(l−j)
n

)
≈ (n− 1)f (2,2)

4:4 (p, q) , (A.78)

where

f
(2,2)
4:4 (p, q) = e

p+q
2

ep − 1

[
ep (p+ q)
ep+q − 1 −

p− q
ep − eq

]
. (A.79)

The full integral form of the coefficient is

c
(2,2)
4:4 = 1

4

[
28∆−4

π4

] ∫ ∞
−∞

dp

∫ ∞
−∞

dq f
(2,2)
4:4 (p, q)Bp(2∆)Bq(2∆) , (A.80)

and the integral over q is trivial to do by means of the same tricks as in the previous cases.
The final integral to be done is

c
(2,2)
4:4 = 28∆−4

π2

∫ ∞
−∞

dpBp(2∆)Bp(2∆ + 1) , (A.81)

but this is of the form (B.25), so

c
(2,2)
4:4 = 28∆ [Γ (4∆ + 1)]2

4 Γ (8∆ + 2) . (A.82)

B Some useful integrals

We present here some very general Fourier transforms that are needed at different points
of our computations. Defining the function

fn(z) = e(a+ib)z

coshn(z) , (B.1)
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we can compute the integral over the real line for |a| < n by means of a rectangular contour,
with basis on the real line and height iπ. The only pole enclosed is that at z = iπ/2, and
the periodicity properties of the cosh allow to relate the horizontal integrals to obtain

∫ ∞
−∞

dx fn(x) =


2πiRn(a, b) sinh ((b+ ia)π/2)

cosh(bπ)− cos(aπ) , if n is even.

2πiRn(a, b) cosh ((b+ ia)π/2)
cosh(bπ) + cos(aπ) , if n is odd.

(B.2)

Here Rn(a, b) is defined as

Rn(a, b) ≡ e−i(a+ib)π/2 Res [fn(z), z = iπ/2] . (B.3)

This is a polynomial in (a, b) which can be easily computed for any n with the aid of a
symbolic algebra software. Separating real and imaginary parts, and rescaling the variables
of integration and the parameters we arrive at the general Fourier transforms for k =
1, 2, . . . ,∫ ∞
−∞

dx
cosh(αx)

cosh2k−1(γx)
eiξx = 2π/γ

cosh
(
πξ
γ

)
+ cos

(
πα
γ

)Re
[
iR2k−1

(
α

γ
,
ξ

γ

)
cosh

(
(ξ + iα) π2γ

)]
,

(B.4)∫ ∞
−∞

dx
cosh(αx)

cosh2k(γx)
eiξx = 2π/γ

cosh
(
πξ
γ

)
− cos

(
πα
γ

)Re
[
iR2k

(
α

γ
,
ξ

γ

)
sinh

(
(ξ + iα) π2γ

)]
, (B.5)

∫ ∞
−∞

dx
sinh(αx)

cosh2k−1(γx)
eiξx = 2πi/γ

cosh
(
πξ
γ

)
+ cos

(
πα
γ

)Im[iR2k−1

(
α

γ
,
ξ

γ

)
cosh

(
(ξ + iα) π2γ

)]
,

(B.6)∫ ∞
−∞

dx
sinh(αx)

cosh2k(γx)
eiξx = 2π/γ

cosh
(
πξ
γ

)
− cos

(
πα
γ

)Im[iR2k

(
α

γ
,
ξ

γ

)
sinh

(
(ξ + iα) π2γ

)]
. (B.7)

We can play the same game with

f̃n(z) = e(a+ib)z

sinhn(z) . (B.8)

In this case, there are poles lying on the contour at z = 0, iπ. We circumvent them in the
usual way, thus computing the principal value of the integrals, and obtain∫ ∞

−∞
dx

cosh(αx)
sinh2k−1(γx)

eiξx = iπ

γ
Im
[
iR̃2k−1

(
α

γ
,
ξ

γ

)
tanh

(
(ξ − iα) π2γ

)]
, (B.9)∫ ∞

−∞
dx

cosh(αx)
sinh2k(γx)

eiξx = π

γ
Re
[
iR̃2k

(
α

γ
,
ξ

γ

)
coth

(
(ξ − iα) π2γ

)]
, (B.10)∫ ∞

−∞
dx

sinh(αx)
sinh2k−1(γx)

eiξx = π

γ
Re
[
iR̃2k−1

(
α

γ
,
ξ

γ

)
tanh

(
(ξ − iα) π2γ

)]
, (B.11)∫ ∞

−∞
dx

sinh(αx)
sinh2k(γx)

eiξx = iπ

γ
Im
[
iR̃2k

(
α

γ
,
ξ

γ

)
coth

(
(ξ − iα) π2γ

)]
, (B.12)
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where, in this case,
R̃n(a, b) ≡ Res

[
f̃n(z), z = 0

]
. (B.13)

We will be interested in particular cases of the previous Fourier transforms, trivially
obtained from the previous general expressions. Let us list them here. The simplest ones are∫ ∞

−∞
dx

eiξx

cosh(x/2) = 2
∫ ∞
−∞

dx
ex/2

ex + 1e
iξx = 2π

cosh(πξ) , (B.14)∫ ∞
−∞

dx
eiξx

sinh(x/2) = 2
∫ ∞
−∞

dx
ex/2

ex − 1e
iξx = 2πi tanh(πξ) . (B.15)

Derivatives of these functions allow to include polynomials in x. As an example, we will
need the integral ∫ ∞

−∞
dx

xe
x
2

ex − 1e
iξx = π2

cosh2(πξ)
. (B.16)

We list some other relevant integrals for the computations in appendix A,∫ ∞
−∞

dx
eiξx

cosh2(x/2)
= 4πξ

sinh(πξ) ,
∫ ∞
−∞

dx
eiξx

cosh3(x/2)
= (1 + 4ξ2) π

cosh(πξ) ,

(B.17)∫ ∞
−∞

dx
eiξx

sinh2(x/2)
= − 4πξ

tanh(πξ) ,
∫ ∞
−∞

dx
eiξx

sinh3(x/2)
= −iπ(1 + 4ξ2) tanh(πξ) ,

(B.18)∫ ∞
−∞

dx
cosh(x/2)
sinh(x/2) e

iξx = 2πi
tanh(πξ) ,

∫ ∞
−∞

dx
cosh(x/2)
sinh2(x/2)

eiξx = −4πξ tanh(πξ) , (B.19)∫ ∞
−∞

dx
sinh(x/2)
cosh2(x/2)

eiξx = 4πiξ
cosh(πξ) . (B.20)

In appendix A, we follow essentially two strategies when dealing with the integrals.
Whenever we find it computationally feasible, we work with the beta functions for general
argument. When doing this, it is convenient to remember the integral representations of
the beta function defined in eq. (A.5),

Bq(∆) =
∫ 1

0
dt t∆−1(1− t)∆−1e

iq
2π log( t

1−t) = 1
4∆

∫ ∞
−∞

dx
ei

q
2πx

cosh2∆(x/2)
. (B.21)

We will refer to the first one as the logarithmic representation, while the second one will
be the hyperbolic one. From properties of the gamma function it is trivial to show that

Bq(∆ + 1) = 1
4π2(2∆)(2∆ + 1)

(
q2 + 4π2∆2

)
Bq(∆) . (B.22)

From the logarithmic representation (or from the hyperbolic one, for what matters), and
using the previous Fourier transforms, it is possible to prove a number of useful identities.
The first one is ∫ ∞

−∞
dp
e
p±q

2 (p± q)
ep±q − 1 Bp(∆) = 4π2Bq(∆ + 1) , (B.23)
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which follows directly from eq. (B.16) after introducing the beta function integral repre-
sentation. From eq. (B.15) we similarly obtain∫ ∞

−∞
dp

e
p±q

2

ep±q − 1 Bp(∆) = ± q

2∆Bq(∆) . (B.24)

It is also straightforward to obtain the identity∫ ∞
−∞

dq Bq+Q(∆)Bq+Q̄(∆̄) = 4π2BQ−Q̄(∆ + ∆̄) , (B.25)

Finally, a bit more involved is the following result∫ ∞
−∞

dq q e−
q
2B2

q (∆1)Bq(∆2) = −
24−2∆1−2∆2π4Γ

(
∆1 + 1

2

)
(Γ (∆1 + ∆2))2

Γ (∆1) Γ (∆2) Γ
(
2∆1 + ∆2 + 1

2

) . (B.26)

It can be proved to be valid by considering the integral

I(α) =
∫ ∞
−∞

dq eiαqB2
q (∆1)Bq(∆2) , (B.27)

which can be integrated over q and one of the variables appearing in the representation of
the beta function straightforwardly for Im(α) ∈ (−1/2, 1/2). Using the trick presented in
appendix B of [85], taking −i∂α to recover the q term in the integrand of eq. (B.26), and
approaching α → i/2 from below, it is possible to reproduce the value of the integral in
terms of gamma functions.

This last computation shows very clearly that things become arbitrarily involved when
one starts adding beta functions and/or more complicated prefactors. At some point in
the computation of the c(1,1,1,1)

4:4 coefficient in appendix A, we were not able to carry out
the integrals in full generality, for any value of ∆. In those cases, we will need to restore
to another approach, still able to generate results for integer or semi-integer ∆, but in an
algorithmic way. This approach is therefore well-suited for implementation in a standard
symbolic algebra software, and it is based on the following observation. For a = 0, the
Rn(a, b) notably simplify,

R2k+1(0, p/π) = − i

(2k)!π2k

k−1∏
l=0

(
p2 + (2l + 1)2π2

)
, (B.28)

R2k(0, p/π) = − ip

(2k − 1)!π2k−1

k−1∏
l=1

(
p2 + 4l2π2

)
. (B.29)

From the hyperbolic representation of the beta function, it is then immediate to obtain

Bp

(2k + 1
2

)n
= π(1−2k)n

22kn(2k)!n

[
k−1∏
l=0

(
p2 + (2l + 1)2π2

)] 1
coshn(p/2) , (B.30)

Bp (k)n = π2(1−k)n

2(2k−1)n(2k − 1)!n

[
k−1∏
l=1

(
p2 + 4l2π2

)] pn

sinhn(p/2) . (B.31)

It is also possible to obtain these results by repeated application of (B.22), knowing the
seed values

Bp(1/2) = π

cosh(p/2) , Bp(1) = 1
2

p

sinh(p/2) . (B.32)
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C Identifying the leading scaling in the lattice

N = 2 Blocks R2[1/x] R2[1/x2] R2[1/x3] N = 3 R2[1/x2] R2[1/x3] R2[1/x4]
L× L 0.99759 1. 0.99772 0.99387 0.99994 0.99229
Circles 0.99761 1. 0.99770 0.99378 0.99995 0.99239
L× 2L 0.99763 1. 0.99769 0.99366 0.99996 0.99252
L× 4L 0.99764 1. 0.99768 0.99350 0.99997 0.99269
L× 6L 0.99764 1. 0.99767 0.99345 0.99997 0.99275

N = 4 Blocks R2[1/x3] R2[1/x4] R2[1/x5] N = 5 R2[1/x4] R2[1/x5] R2[1/x6]
L× L 0.99630 0.99974 0.99479 0.99726 0.99884 0.98852
Circles 0.99613 0.99975 0.99498 0.99655 0.99920 0.98984
L× 2L 0.99589 0.99977 0.99524 0.99599 0.99960 0.99103
L× 4L 0.99558 0.99978 0.99555 0.99474 0.99987 0.99268
L× 6L 0.99546 0.99978 0.99567 0.99422 0.99993 0.99326

N = 6 Blocks R2[1/x5] R2[1/x6] R2[1/x7]
L× L 0.99903 0.99968 0.99665
Circles 0.99873 0.99979 0.99716
L× 2L 0.99944 0.99955 0.99598
L× 4L 0.99812 0.99987 0.99791
L× 6L 0.99903 0.99981 0.99686

Table 2. We show the values of the coefficient of determination, R2, of different fits to the
long-distance results obtained for IN , with N = 2, 3, 4, 5, 6, for a free scalar field in the lattice.
In each case, we consider sets of N identical entangling regions (squares, disks and increasingly
thinner rectangles) placed on a regular N -gon arrangement. R2 is computed for fits of the form
IN ∼ (1/x)α with α = N − 1, N,N + 1.

In this appendix we present a table with the coefficient of determination R2 obtained from
different linear fits to the continuum lattice results for IN in the case of the free scalar in
the long-distance regime. We do this for the scaling predicted from our general discussion
as well as for the immediately greater and the immediately smaller power. In all cases, we
observe that the scaling predicted by eq. (4.11) is strongly favoured.

D Analytic mutual-information toy models

In this appendix we present two toy models which resemble the mutual information re-
sults corresponding to free scalars and fermions, respectively, while allowing for analytic
calculations. For both models, we present analytic formulas for the mutual information
corresponding to the different shapes considered in section 4.3.

D.1 EMI model

The mutual information is a positive semi-definite quantity for general regions and theories,
I2 ≥ 0. On the other hand, as we mentioned in the introduction, the tripartite information
does not have a definite sign and, in fact, there exist theories for which I3(A1, A2, A3) ≥ 0
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and others with I3(A1, A2, A3) ≤ 0, corresponding to “subextensive” and “superextensive”
mutual informations, respectively. On the other hand, a theory with a vanishing tripartite
information for arbitrary regions, I3(A1, A2, A3) = 0 for all A1, A2, A3, would have a mutual
information which is extensive in its arguments, since in that case I2(A1, A2 ∪ A3) =
I2(A1, A2) + I2(A1, A3).

Interestingly, imposing I3(A1, A2, A3) = 0 for general regions along with the set of
known axioms satisfied by mutual information in a relativistic QFT, strongly restricts the
form of the mutual information in general dimensions. The result defines the so-called
“Extensive Mutual Information” (EMI) model. Further imposing conformal invariance,
the expression for its mutual information is fully determined up to a global multiplicative
constant and reads [39]20

IEMI(A1, A2) = 2κ(d)

∫
∂A1

dσ1

∫
∂A2

dσ2
(n1 · n2)(n̄1 · n̄2)− (n1 · n̄2)(n̄1 · n2)

|x1 − x2|2(d−2) , (D.1)

where κ(d) is such (positive) constant and n̄1 and n1 are unit vectors orthogonal to the
surface and to each other, n1 · n̄1 = 0. For fixed time slices, one can choose n1 = n2 = t̂

and the integrand reduces to −(n̄1 · n̄2)/|x1 − x2|2(d−2).
In spite of its simplicity, the EMI model produces physically reasonable results in

general dimensions [13, 53, 58, 59, 88, 89]. Such results are rather similar to the free fermion
ones and, in fact, the EMI model exactly coincides with a free massless fermion in d =
2 [90].21 On the other hand, using the long-distance expansion of the mutual information
to bootstrap its putative operatorial content, it has been shown that the EMI model cannot
describe the mutual information of any actual CFT in higher dimensions [24].22 Still, as
we have said, the EMI model produces reasonable results which tend to resemble the free
fermion ones in most situations, so we find it useful to include its predictions in the present
cases. In particular, in general dimensions the long-distance expression for the EMI model
for two regions in the same time slice takes the universal form

IEMI(A1, A2)
r�RA1,A2= 4κ(d)(d− 1)(d− 2)vol(A1) · vol(A2)

r2(d−1) + . . . (D.2)

which is the same scaling as the one corresponding to a free fermion.

Disk regions. The result for the mutual information of two identical disks of diameters
R and separated a distance r in the three-dimensional EMI model can be extracted from
the result presented in [24], where it was computed in the more general case of boosted
spheres in general dimensions. Defining r as the distance between disks such that r → 0

20One can also arrive at the EMI formula by assuming the Rényi twist operators to be exponentials
of free fields [86]. The EMI model formula can also be interpreted naturally as a “partial entanglement
entropy” [87].

21Besides, as shown in [24], the result for the mutual information of two arbitrarily boosted spheres in
the EMI model exactly matches the contribution from the free fermion leading conformal block in general
dimensions. However, it does not contain all the rest of conformal blocks present in the free fermion theory.

22This implies that the set of known axioms satisfied by EE in QFT is incomplete.

– 58 –



J
H
E
P
0
3
(
2
0
2
3
)
2
4
6

when the disks touch at a point and x ≡ r/R, one finds

IEMI(A1, A2) = 2π2κ(3)

[√
x(2 + x)− 2x(2 + x)(1 + x−

√
x(2 + x))

]
x(1 + x)(2 + x) . (D.3)

In the almost-touching regime, as well as in the long-distance one, one finds

IEMI
x→0=
√

2π2κ(3)√
x

− 4π2κ(3) +O(
√
x) , (D.4)

IEMI
x→∞=

π2κ(3)
2x4 −

2π2κ(3)
x5 +O(1/x6) . (D.5)

On the other hand, the EE disk coefficient F0, which we use to normalize our curves in
section 4.3, is given for the EMI model by F EMI

0 = 2π2κ(3).

Rectangle regions. Let us now consider the other case of interest for us, which corre-
sponds to two identical rectangles of sides ξR×R separated along theX direction a distance
r — measured between the rightmost edge of the left rectangle and the leftmost edge of the
right one. In the r → 0 limit, the two rectangles would touch each other. The boundary of
the leftmost rectangle is defined as ∂A = {[X, 0], X ∈ [0, ξR]; [X,R], X ∈ [0, ξR]; [0, Y ], Y ∈
[0, R]; [ξR, Y ], Y ∈ [0, R]}. The boundary of B is obtained by shifting the resulting figure
along the X axis a distance ξR + r, ∂B = {[X, 0], X ∈ [ξR + r, 2ξR + r]; [X,R], X ∈
[ξR+ r, 2ξR+ r]; [ξR+ r, Y ], Y ∈ [0, R]; [2ξR+ r, Y ], Y ∈ [0, R]}.

In principle there would be 16 contributions to the mutual information coming from
the 4 × 4 pairings of segments from the two rectangles. However, observe that 8 of them
vanish, corresponding to segments perpendicular to each other. It is not difficult to see
that the remaining contributions can be written as

IEMI(A1, A2) = −2κ(3) [2∆1 + ∆2 + ∆3 + 2∆4 + 2∆5] , (D.6)

where

∆1 = ∆[R, 0, R, r + ξR] , ∆2 = −∆[R, 0, R, r + 2ξR] , ∆3 = −∆[R, 0, R, r] , (D.7)
∆4 = ∆[ξR, ξR + r, 2ξR+ r, 0] , ∆5 = −∆[ξR, ξR + r, 2ξR+ r,R] , (D.8)

and we defined
∆[α, β, γ, χ] ≡

∫ α

0

∫ γ

β

dx1dx2
χ2 + (x1 − x2)2 . (D.9)

Performing the integrals and simplifying a bit, one finds the final result

IEMI = 4κ(3)

[
arccot(x)

x
− 2 arccot(x+ ξ)

x+ ξ
+ arccot(x+ 2ξ)

x+ 2ξ − 2(x+ ξ) arctan(x+ ξ)

+ x arctan(x) + (x+ 2ξ) arctan(x+ 2ξ)− log
[

(x+ ξ)4(1 + x2)(1 + (x+ 2ξ)2)
x2(x+ 2ξ)2(1 + (x+ ξ)2)2

]]
,

(D.10)
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where we defined x ≡ r/R. For almost-touching rectangles and in the long-distance regime
one finds, respectively,

IEMI
x→0= k

(3)
EMI

x
+ 8κ(3) log x+ g(ξ) +O(x) , (D.11)

IEMI
x→∞=

8κ(3)ξ
2

x4 −
32κ(3)ξ

3

x5 +O(x−6) , (D.12)

where k(3)
EMI = 2πκ(3) is the coefficient appearing in the entanglement entropy of a strip

region, g(ξ) is a complicated function of ξ and ξ2/x4 in the second expression is the product
of the areas of the two rectangles A,B divided by their separation to the fourth power,
ξ2/x4 = area(A)area(B)/r4, as expected from the general formula, eq. (D.2).

D.2 MEMI model

A simple modified version of the EMI model can be constructed such that the long-distance
scaling reproduces the one corresponding to a free scalar field. This “Modified” EMI
(MEMI) model is defined, in the case of a fixed time slice, by a mutual information of
the form

IMEMI(A1, A2) = 2µ(d)

∫
∂A1

dσ1

∫
∂A2

dσ2
1

|x1 − x2|2(d−2) , (D.13)

where µ(d) is a positive constant. It is easy to see that, for long separations, this behaves as

IMEMI(A1, A2)
r�RA1,A2= 2µ(d)

area(∂A1) · area(∂A2)
r2(d−2) , (D.14)

which is indeed the same scaling as for the free scalar. Note that this formula seems
problematic in the case of regions A1, A2 which have very small volumes but are bounded by
finite area surfaces. In that situation, one would expect the mutual information to vanish,
a behavior which is not reproduced by eq. (D.14), since µ(d) is a fixed constant. In other
words, the MEMI model does not obey the monotonicity property of the mutual information
and thus, it can not describe an actual mutual information for general geometric regions.

On the other hand, interestingly, we have verified that the MEMI model for the case of
disjoint spheres is proportional to the conformal block of an intermediate scalar operator
with scaling dimension d − 2. In those cases the MEMI model can thus be interpreted as
the resumed contribution of the replica primary operator φiφj and its descendants to the
mutual information of a theory with a free scalar φ in its spectrum. A similar statement
holds for the EMI model, where the associated replica operator is the conserved current
ψ̄iγµψj associated to a free fermion [24]. It would be interesting to explore the extent to
which similar statements might exist for higher spin generalizations or interacting fields.
Another unusual feature of the MEMI model is that the universal term in the EE of a
disk region turns out to vanish for this model, i.e. FMEMI

0 = 0. Hence, when presenting the
results for this model we will normalize the mutual information in a way such that at short
distances the result tends to the free scalar one (in the main text, we denote the model
with such normalization by MEMI?).
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Disk regions. In the case of two identical disks of diameters R separated a distance r
defined as in the EMI case above, we have for the MEMI model

IMEMI =
2π2µ(3)

(x+ 1)
√
x(x+ 2)

. (D.15)

For small and large separations one finds, respectively,

IMEMI
x→0=
√

2π2µ(3)√
x

−
5π2µ(3)

√
x

2
√

2
+O(x3/2) , (D.16)

IMEMI
x→∞=

2π2µ(3)
x2 −

4π2µ(3)
x3 +O(1/x4) . (D.17)

Rectangle regions. Following analogous steps to the EMI model ones, one can also
obtain the mutual information corresponding to two rectangle regions of sides ξR × R in
the MEMI model. The final result reads

IMEMI = 4µ(3)

[
+ arccot(x)

x
+ 2 arccot(x+ ξ)

x+ ξ
+ arccot(x+ 2ξ)

x+ 2ξ − 2(x+ ξ) arctan(x+ ξ)

+ x arctan(x) + (x+ 2ξ) arctan(x+ 2ξ) + log
[

(x+ ξ)4

(1 + x2)(1 + (x+ 2ξ)2)

]

+ 2
∫ ∞

0
dt tet

[
x

e2tx2 + 1 −
2ξ + x

e2t(x+ 2ξ)2 + 1

] ]
. (D.18)

This behaves respectively, in the almost-touching and long-distance regimes as

IMEMI
x→0= k

(3)
MEMI

x
+

2πµ(3)
ξ

log x+ g̃(ξ) +O(x) , (D.19)

IMEMI
x→∞=

8µ(3)(1 + ξ)2

x2 −
16µ(3)ξ(1 + ξ)2

x3 +O(x−4) , (D.20)

where g̃(ξ) is some complicated function of ξ.
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