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1 Introduction

Integrability is one of the key features for obtaining exact results in quantum field theory

(QFT). The most well-known example where integrability was greatly exploited is that

of the maximally supersymmetric gauge theory in four dimensions, that is N = 4 SYM.

Thanks to the AdS/CFT correspondence [1] the dynamics of N = 4 SYM can be translated

to those of an integrable two-dimensional non-linear σ-model evading thus certain no-go

theorems which forbid integrable theories in more than two dimensions. A variety of

integrability-based techniques, from the asymptotic Bethe ansatz [2] to the thermodynamic

Bethe ansatz [3] and the Y-system [4], were employed in order to determine the planar

anomalous dimensions of gauge invariant operators for all values of the’t Hooft coupling

λ = g2YMN . For further developments on integrability and the AdS/CFT correspondence

see [5] and references therein.

It is an intriguing endeavour to formulate new examples of gauge/gravity dualities

where although supersymmetry may be broken the integrability of the theories involved

will be maintained. The comments above make it clear that one starting point could be new

integrable two-dimensional field theories which can serve as the seed for such constructions.

One such direction which has attracted attention lately is the λ-deformed models of [6], as

well as generalisations in many directions [7–10].

The aforementioned constructions provide an effective and rather effortless method for

obtaining exact results in a general class of two-dimensional QFTs. The starting point of
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the construction is certain conformal field theories (CFTs) of the WZW type perturbed by

current bilinear operators with the currents belonging either to the same and/or different

groups. The essence of the method relies on the construction of the corresponding all-loop

effective actions for the deformed theories by a gauging procedure [6–10]. These effective

actions possess non-perturbative symmetries in the space of couplings [9–12].1

Combining low-order perturbation theory with the manifestation of the aforementioned

non-perturbative symmetries at the level of correlators one is able to derive exact expres-

sions for them. This program was initiated and implemented in a series of papers in which

exact expressions were obtained for many observables. In particular, when gravitational

techniques were also implemented the exact in the deformation parameters β-functions

were found [9, 11, 12, 14], with expressions for the most general case of anisotropic λ-

deformations and different WZW levels derived in [15].2 In addition, anomalous dimensions

of current [20] and primary operators [21, 22], as well as three-point correlators involving

currents and/or primary operators [21, 22] were calculated for the models of [6–9]. Further-

more, the computation of the C-function of Zamolodchikov [23], exactly in the deformation

parameter for the case of isotropic perturbations but to leading order in k, was performed

in [24] and further generalized for anisotropic λ-deformations in [25].

In a parallel development of particular importance the extension to the case where

the unperturbed CFT of a single WZW model is replaced by a coset CFT was considered

in [6, 26–28]. The deformed theory was found to be integrable when the coset is cho-

sen to be a symmetric space [26]. Subsequently, the corresponding analysis for the case

of supergroups was considered in [27]. Although integrability has not been an essential

ingredient in the computation of the β-functions and of the operators anomalous dimen-

sions, in the case of isotropic deformations the above models have been demonstrated to

be integrable [6, 8, 9, 26–28]. Note that for the special case of the isotropic deformation

based on the SU(2) group the model has been initially proven to be integrable in [29].

Furthermore, integrability was shown to persist in some other cases with more deformation

parameters [30, 31]. In addition, certain deformed models of low dimensionality have been

embedded to type-IIA or type-IIB supergravity [32–35].

An interesting relation between λ-deformations and η-deformations for group and coset

spaces was discussed in [31, 36–40]. In particular, the λ-deformed models are related via

Poisson-Lie T-duality, which has been introduced for group spaces in [41] and extended

for coset spaces in [42], and appropriate analytic continuations to the η-deformed models.

The latter were introduced in [43–45] and [46–48] for group and coset spaces, respectively.

Moreover, the dynamics of scalar fields in some λ-deformed geometries corresponding to

coset CFTs has been discussed in [49] while the relation to Chern-Simons theories was

discussed in [50, 51]. Finally, D-branes regarded as integrable boundary configurations

were introduced in the context of λ-deformations in [52].

1For isotropic λ-deformations the simplest such non-perturbative symmetry was found initially in [13]

using path integral arguments.
2The exact β-functions for CFTs deformed by operators bilinear in currents and for isotropic cases have

been obtained in the past either by field theoretical methods (resummation of the perturbation series or

the background field method) [16–19]. The results are in complete agreement.
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The models presented in [9, 10] have several virtues. They provide concrete realizations

of flows between exact CFTs in which the Lagrangian of the theory is known all the way

through from the UV to the IR fixed points. Integrability is preserved in the entire flow and

therefore these flows are called integrable. Furthermore, the construction of [10] provides

the first example in which self- and mutual-interactions between different WZW models are

present already at leading order in the deformation parameters. In this work we continue

this line of research and construct integrable multi-parameter deformations of CFTs whose

Lagrangian and RG flow equations are known to all-orders in perturbation theory. The

integrable sector will belong to the most general λ-deformed model which we construct. In

this model self- as well as mutual-interactions are present.

The plan of the present paper is as follows: in section 2, we construct the all loop

effective action of a general class of models whose UV Lagrangian is the sum of an arbitrary

number n of WZW models based on the same group G but at different levels. In general

our models depend on n2 general coupling matrices. In section 3, we consider a consistent

truncation of our models that depend on 2(n− 1) couplings, identify the non-perturbative

symmetries in the space of couplings λ̂i1 and λ̂ni and show that the theory is classically

integrable by finding the appropriate Lax connection. In section 4, we calculate the exact in

the deformation parameters β-functions of our models which can be cast in a particularly

simple and compact form. Subsequently, we determine and classify the fixed points of

the RG flow in particular those that are IR stable. Finally, in section 5 we consider non-

Abelian T-duality type limits in the case when the theory is integrable. In the last section

we present our conclusions.

2 Generalities: Lagrangian and equations of motion

In this section we construct the effective actions of our model and derive the corresponding

equations of motion.

Our starting point is to consider group elements gi, i = 1, 2, . . . , n in a semi-simple

group G and the corresponding WZW model actions Ski(gi) at levels k1, k2, . . . , kn. We

add to this the action of n PCMs which are both self and mutually interacting and are

constructed using n group elements g̃i, i = 1, 2, . . . , n belonging in the same group G.

Namely, we have that

Ski,Ei
(gi, g̃i) =

n∑
i=1

Ski(gi)−
1

π

∫
d2σ

(
g̃−1
i ∂+g̃i

)
a
Eabij

(
g̃−1
j ∂−g̃j

)
b
, (2.1)

where the Eij , i, j = 1, 2, . . . , n are generic coupling matrices and the indices a, b = 1, 2,

. . . , dim(G). In the spirit of [6, 8, 10] we gauge the global symmetry acting on the group

elements as follows: gi → Λ−1
i giΛi and g̃i → Λ−1

i g̃i, i = 1, 2, . . . , n. The resulting gauge

invariant action reads

Ski,Ei
(gi, g̃i, A

(i)
± ) =

n∑
i=1

Ski(gi, A
(i)
± )− 1

π

n∑
i,j=1

∫
d2σ

(
g̃−1
i D̃+g̃i

)
a
Eabij

(
g̃−1
j D̃−g̃j

)
b
, (2.2)
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where Ski(gi, A
(i)
± ) is the standard gauged WZW action

Ski(gi, A
(i)
± ) = Ski(gi) +

ki
π

∫
d2σ Tr

(
A

(i)
− ∂+gig

−1
i −A

(i)
+ g−1

i ∂−gi

+A
(i)
− giA

(i)
+ g−1

i −A
(i)
− A

(i)
+

)
,

(2.3)

where we have suppressed the group indices. Furthermore, the covariant derivatives were

defined as D̃±g̃i = (∂± − A(i)
± )g̃i. One may now fix the gauge in (2.2) choosing g̃i = 1 to

arrive at the following action

Ski,λij (gi, A
(i)
± ) =

n∑
i=1

Ski(gi) +
ki
π

∫
d2σ Tr

(
A

(i)
− ∂+gig

−1
i −A

(i)
+ g−1

i ∂−gi

+A
(i)
− giA

(i)
+ g−1

i

)
− 1

π

n∑
i,j=1

∫
d2σ

√
kikjA

(i)
+ λ−1

ij A
(j)
− ,

(2.4)

where we have redefined the coupling matrices appearing in the PCM models as3√
kikj λ

−1
ij = Eij + kiδij . (2.5)

In order to obtain the σ-model and to show integrability in the next section we should

integrate out the gauge fields. These are not dynamical and appear only quadratically in

the action. We cast the corresponding equations of motion into the following particularly

convenient form

g−1
i D−gi =

(
δij − λ−1

ij

√
kj
ki

)
A

(j)
− , D+gig

−1
i = −

(
δij − λ−Tji

√
kj
ki

)
A

(j)
+ , (2.6)

where as usual we have defined D±gi = ∂±gi−[A
(i)
± , gi] and where we note that the transpose

in λ−Tij , as well as the inverses refer only to the suppressed group indices and not on the

space of couplings with indices i, j.

Varying with respect to the group elements one obtains

D−(D+gig
−1
i ) = F

(i)
+− ⇐⇒ D+(g−1

i D−gi) = F
(i)
+− ,

F
(i)
+− = ∂+A

(i)
− − ∂−A

(i)
+ − [A

(i)
+ , A

(i)
− ] .

(2.7)

To proceed we find it convenient to rescale the gauge fields and define

Ã
(i)
± =

√
kiA

(i)
± . (2.8)

3To compare with the corresponding actions in [10] (see eqs. (2.1) and (2.4)) corresponding to two WZW

models self- and mutually interacting we have

E11 = E1 , E22 = E4 , E12 = E2 , E21 = E3 ,

λ11 =

√
k1
k2
λ4 , λ22 =

√
k2
k1
λ3 , λ12 = λ2 , λ21 = λ1 .

– 4 –
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Using them and substituting (2.6) in (2.7) we obtain after some algebra that

λ−1
ij ∂+Ã

(j)
− − ∂−Ã

(i)
+ =

1√
ki

[Ã
(i)
+ , λ−1

ij Ã
(j)
− ] ,

∂+Ã
(i)
− − λ−Tji ∂−Ã

(j)
+ =

1√
ki

[λ−Tji Ã
(j)
+ , Ã

(i)
− ] .

(2.9)

To present the σ-model action we introduce representation Hermitian matrices ta and define

the currents and primary field to be

Ja+ = −iTr(ta∂+gg
−1) , Ja− = −iTr(tag−1∂−g) , Dab = Tr(tagtbg−1) . (2.10)

These will be computed for the particular group elements gi in which case an extra index

i will be inserted in the above quantities. We also define the diagonal in the coupling

space matrix

Dij = Diδij . (2.11)

Then we may solve for the redefined gauge fields using (2.6) to obtain

Ã
(i)
+ =

(
λ−T −D

)−1

ij

√
kjJj+ , Ã

(i)
− = −

(
λ−1 −DT

)−1

ij

√
kjJj− . (2.12)

Note that the entries of the matrices λ−T −D and λ−1−DT are themselves matrices in the

group G. Thus, their inversion is to be understood as an inversion in the space of different

models keeping in mind that their entries are non-commutative objects.

Finally, substituting the values for the gauge fields in the action (2.4) we obtain the

following σ-model

Ski,λ(gi) =

n∑
i=1

Ski(gi) +
1

π

n∑
i,j=1

∫
d2σ

√
kiJi+

(
λ−1 −DT

)−1

ij

√
kjJ−j . (2.13)

This is a particularly compact form resembling the single λ-deformed model of [6]. The

above action encompasses all previous ones for λ-deformed models. Furthermore it is the

most general action that can be construct using the same group G for all couplings. A

further generalization in which a different group is associated to each WZW model can be

constructed straightforwardly.

For small entries in the matrices λij the action becomes

Ski,λ(gi) =

n∑
i=1

Ski(gi) +
1

π

n∑
i,j=1

∫
d2σ

√
kiJi+

(
λ−1

)−1

ij

√
kjJ−j + · · · . (2.14)

Note that
(
λ−1

)−1

ij
6= λij since the inverse in λ−1 is taken in the group space, and the dots

denote subleading terms in the small λ-expansion.

– 5 –
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Finally, note that in integrating out the gauge field a dilaton field is generated. The

value of the dilaton is proportional to the logarithm of the determinant of the square matrix

λ−1 −DT inverted in (2.12). Note that the dimensionally of this matrix is n dimG.

In the next section the inversion of the above matrices in the coupling space will be

done explicitly for the case of integrable models.

3 Integrable deformations

In this section we will attempt to answer the following question. For which choices of

the matrix Eabij appearing in (2.1) is the theory described by (2.13) integrable? To the

best of our knowledge we are lacking a general answer to this question even for the case

of a single group G. Nevertheless, it has been proven that there are several cases where

these theories are integrable for specific choices of the couplings matrices. Among the

single λ-deformations the first one is the case of the isotropic λ-deformation, that is when

λab = λδab [6], a second one is the case where the matrix E is of the form E = 1
t (1−ηR)−1,

where the matrix R satisfies the modified Yang-Baxter equation [44, 45]. Another case

is that where instead of the group G one has a coset with the coset being a symmetric

space [6, 26].4 Furthermore, integrability has been shown for the models of [8, 9] and [10]

representing particular cases of self- and mutual-interactions of current algebras based on

WZW models.

3.1 A truncation of our models

In what follows, we will show that the theory (2.13) is integrable in the case where the

matrices λij is of the following form

λ−1
i1 6= 0 , i = 1, 2, . . . , n−1 , λ−1

nj 6= 0 , j = 2, 3, . . . , n ,

λ−1
ij = 0 for all other entries .

(3.1)

Hence, the corresponding coupling matrices reads

λ−1
ij =


λ−1
11 0 · · · 0

λ−1
21 0 · · · 0
...

...
. . .

...

λ−1
(n−1)1 0 · · · 0

0 λ−1
n2 · · · λ−1

nn

 . (3.2)

As a result it will be shown that one obtains an integrable deformation of the Gk1 ×Gk2 ×
· · ·×Gkn depending on 2(n−1) parameters. This provides a partial answer to the question

posed in the beginning of this section. We stress that by turning on just one more coupling,

in addition to those appearing in (3.2), it will generate other couplings through quantum

corrections. Then, the theory will most likely cease to be integrable. However, we have no

proof that (3.2) exhausts all integrable cases among our general class of models.

4For the case of the anisotropic λ-deformed SU(2) model integrability was shown in [30].
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Turning to the general action (2.13), after using (3.1) and explicitly inverting the

relevant matrix in the coupling space we find that

Ski,λ(gi) =
n∑
i=1

Ski(gi) +
k1
π

∫
d2σ J1+ (λ−1

11 −D
T
1 )−1 J1−

+
kn
π

∫
d2σ Jn+ (λ−1

nn −DT
n )−1 Jn− −

1

π

n−1∑
i=2

ki

∫
d2σ J+iDi Ji−

+
1

π

n−1∑
i=2

√
k1ki

∫
d2σ Ji+Di λ

−1
i1 (λ−1

11 −D
T
1 )−1 J1−

+
1

π

n−1∑
i=2

√
knki

∫
d2σ Jn+(λ−1

nn −DT
n )−1 λ−1

ni Di Ji−

− 1

π

n−1∑
i=2

√
knk1

∫
d2σ Jn+(λ−1

nn −DT
n )−1 λ−1

ni Di λ
−1
i1 (λ−1

11 −D
T
1 )−1J1− .

(3.3)

From this point on we will focus for simplicity on the case where the couplings are

taken isotropic in the group space, that is

λabij = δabλij . (3.4)

One now encounters the following problem. By combining Ski(gi), i = 2, . . . , n−1 with the

last term in the second line of (3.3) we obtain a sum of WZW model actions S−ki(g
−1
i ), i =

2, . . . , n−1 with negative signature (this is also true for the PCM part of the action (2.1) be-

fore the gauging procedure is performed). As was pointed out in the case of two interacting

WZW models in [10] to remedy this situation one can perform the following redefinitions

of the couplings and analytic continuation in the following specified order. First define the

hatted couplings

λ̂i1 = λ11λ
−1
i1

√
k1
ki
, λ̂ni = λnnλ

−1
ni

√
kn
ki

, i = 2, 3, . . . , n− 1 (3.5)

and then flip the signs of levels and invert the corresponding group elements as

ki → −ki , gi → g−1
i , i = 2, 3, . . . , n− 1 . (3.6)

Then the action (3.3) becomes

Ski,λ(gi) =

n∑
i=1

Ski(gi)

+
k1
π

∫
d2σ J1+ (λ−1

11 1−D
T
1 )−1J1−+

kn
π

∫
d2σ Jn+ (λ−1

nn1−DT
n )−1Jn−

+
1

π

n−1∑
i=2

ki

∫
d2σ λ−1

11 λ̂i1 Ji+(λ−1
11 1−D

T
1 )−1J1−

+
1

π

n−1∑
i=2

ki

∫
d2σ λ−1

nn λ̂ni Jn+(λ−1
nn1−DT

n )−1Ji−

+
1

π

n−1∑
i=2

ki

∫
d2σ λ−1

11 λ
−1
nn λ̂ni λ̂i1 Jn+(λ−1

nn1−DT
n )−1DT

i (λ−1
11 1−D

T
1 )−1J1− .

(3.7)

– 7 –
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This is the final expression for the all-loop effective action of our σ-model. In what follows

we will prove that it is indeed classically integrable.

Before that, we comment on the constraints imposed by demanding a non-singular

σ-model of Euclidean signature. In order to avoid singularities the couplings λ11 and λnn
should be such that |λ11|, |λnn| < 1, the reason being that the matrix D is orthogonal and

therefore its eigenvalues lie in the unit circle. In addition, similarly to [10], it can be shown

that the signature of (3.7) is Euclidean provided that the couplings lie within the ellipsoids

defined by

∆1 = 1− λ211 −
n−1∑
i=2

ki
k1
λ̂2i1 > 0 and ∆2 = 1− λ2nn −

n−1∑
i=2

ki
kn
λ̂2ni > 0 . (3.8)

It is straightforward to show that the action (3.7) is independently invariant under the

following two non-perturbative symmetry operations, as well as under their combination

(A) : λ11 →
1

λ11
, λ̂i1 →

λ̂i1
λ11

, k1 → −k1, g1 → g−1
1 , i = 2, . . . , n− 1

(B) : λnn →
1

λnn
, λ̂ni →

λ̂ni
λnn

, kn → −kn, gn → g−1
n , i = 2, . . . , n− 1 .

(3.9)

This is a generalization of the corresponding symmetry found in [10].

Expanding (3.7) and keeping the linear terms in the couplings one obtains

Ski,λ(gi) =

n∑
i=1

Ski(gi) +
1

π

∫
d2σ
(
k1λ11 J

a
1+ J

a
1− + knλnn J

a
n+ J

a
n−
)

+
1

π

n−1∑
i=2

ki

∫
d2σ

(
λ̂i1 J

a
i+J

a
1− + λ̂ni J

a
n+ J

a
i−
)

+O(λ2) .

(3.10)

Notice the last line of (3.7) has disappeared from the small coupling expansion since it

is quadratic in the λ’s. This term, as well as the full action of (3.7) is generated when

quantum corrections at arbitrary order in perturbation theory are taken into account.

Note that there is the following interesting truncation of (3.7) which dramatically

further simplifies it. If we let λ11 = λnn = 0 then we obtain

Ski,λ(gi) = Sk1(g1) + Skn(gn) +

n−1∑
i=2

Ski(gi)

+
1

π

n−1∑
i=2

ki

∫
d2σ

(
λ̂i1 Ji+ J1− + λ̂ni Jn+ Ji− + λ̂ni λ̂i1 Jn+D

T
i J1−

)
.

(3.11)

This effective action is exact in λ and is at most quadratic in the couplings and represents

only mutual interactions between the various WZW models as depicted. It becomes linear

if we make the further truncation λ̂n1 = 0 or λ̂i1 = 0.

– 8 –
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3.2 Proof of integrability

To prove that (3.7) is integrable we write the equations of motion (2.9) for the choice of

couplings appearing in (3.1). The first equation of (2.9) can be decomposed to

λ−1
i1 ∂+Ã

(1)
− − ∂−Ã

(i)
+ =

1√
ki

[Ã
(i)
+ , λ−1

i1 Ã
(1)
− ] , i = 1, 2, . . . , n− 1 ,

λ−1
ni ∂+Ã

(i)
− − ∂−Ã

(n)
+ =

1√
kn

[Ã
(n)
+ , λ−1

ni Ã
(i)
− ] .

(3.12)

while the second one to

∂+Ã
(1)
− − λ−1

i1 ∂−Ã
(i)
+ =

1√
k1

[λ−1
i1 Ã

(i)
+ , Ã

(1)
− ] ,

∂+Ã
(i)
− − λ−1

ni ∂−Ã
(n)
+ =

1√
ki

[λ−1
ni Ã

(n)
+ , Ã

(i)
− ] , i = 2, 3, . . . , n .

(3.13)

The first line equations in (3.12) can be combined with the equation in the first line in (3.13)

to form a system depending only on the λ−1
i1 ’s but not on λ−1

ni which furthermore can be

used to solve for the n derivatives of the gauge fields, ∂+Ã
(1)
− and ∂−Ã

(i)
+ , i = 1, . . . , n− 1.

Similarly, we may use the equation in second line of (3.12) and the equations in the second

line in (3.13) to form a system of equations that depend only on the λ−1
ni ’s, but not on

the λ−1
i1 ’s. This allows to solve for the n derivatives of the gauge fields ∂−Ã

(n)
+ and ∂+Ã

(i)
− ,

i = 2, . . . , n. The two aforementioned sets of equations are decoupled. We stress that even

though in these systems the couplings λ−1
i1 completely disentangled from the λ−1

ni ’s this is

not the case in the effective action (3.7) where the last term involves both sets of couplings.

The reason is that the various gauge fields depend on all group elements gi, i = 1, 2, . . . , n.

Our strategy will be to determine a Lax pair for each set of equations and then show

that the charges obtained from the first Lax pair are in involution with those obtained

from the second one, thus proving that the theory is integrable. To this end we define the

rescaled anti-commutators

[Ã
(i)
+ , Ã

(j)
− ]∗L =

1√
ki

[Ã
(i)
+ , Ã

(j)
− ] , [A

(i)
+ , A

(j)
− ]∗R =

1√
kj

[A
(i)
+ , A

(j)
− ] . (3.14)

In terms of these redefined quantities the solution to the first set of equations reads

∂+Ã
(1)
− =

1

d

n−1∑
i=1

(µi1 − λ−1
i1 )λ−1

i1 [Ã
(i)
+ , Ã

(1)
− ]∗L , µi1 =

√
ki
k1
, d = 1−

n−1∑
i=1

λ−2
i1 ,

∂−Ã
(i)
+ =

λ−1
i1

d

−d[Ã
(i)
+ , Ã

(1)
− ]∗L +

n−1∑
j=1

(µj1 − λ−1
j1 )λ−1

j1 [Ã
(j)
+ , Ã

(1)
− ]∗L

 .

(3.15)

These imply the existence of a Lax pair which is constructed by first assuming that this is

of the form

L(1)+ =

n−1∑
i=1

c
(i)
+ (z)Ã

(i)
+ , L(1)− = zÃ

(1)
− , (3.16)
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where c
(i)
+ are constants depending on the matrix of the couplings, on the WZW levels as

well as on the spectral parameter. After substituting into the Lax equation

∂+L(1)− − ∂−L
(1)
+ − [L(1)+ ,L(1)− ] = 0 , (3.17)

and using (3.15) one obtains a system n equations which arises by equating to zero the

coefficients of [Ã
(i)
+ , Ã

(1)
− ]∗L.

z

d
− 1

d

n−1∑
j=1

(c
(j)
+ λ−1

j1 ) +
(λ−1
i1 − z

√
ki)

λ−1
i1 (µi1 − λ−1

i1 )
c
(i)
+ = 0 . (3.18)

This system can be solved for unknowns c
(i)
+ , i = 1, . . . , n− 1 and its solution reads

c
(i)
+ =

λ−1
i1 (λ−1

i1 − µi1)
(λ−1
i1 − z

√
ki)

z

d+ d1
, i = 1, 2, . . . , n− 1 , d1 =

n−1∑
j=1

λ−2
j1 (λ−1

j1 − µj1)
λ−1
j1 − z

√
kj

. (3.19)

In conclusion we have shown that the equations of motion (3.15) imply the existence of a

Lax pair from which an infinite tower of conserved charges can be calculated.

In a similar manner, the second system of equations can be solved for the derivatives

of the gauge fields as

∂−Ã
(n)
+ =

1

d̂

n∑
i=2

(µni − λ−1
ni )λ−1

ni [Ã
(n)
+ , Ã

(i)
− ]∗R , µni =

√
ki
kn

, d̂ = 1−
n∑
i=2

λ−2
ni ,

∂+Ã
(i)
− =

λ−1
ni

d̂

−d̂[Ã
(n)
+ , Ã

(i)
− ]∗R +

n∑
j=2

(µnj − λ−1
nj )λ−1

nj [Ã
(n)
+ , Ã

(j)
− ]∗R

 .

(3.20)

The corresponding Lax pair will be of the form

L(2)− =

n∑
i=2

c
(i)
− Ã

(i)
− , L(2)+ = zÃ

(n)
+ . (3.21)

The flatness of this Lax pair is guaranteed when

c
(i)
− =

λ−1
ni (λ−1

ni − µni)
(λ−1
ni − z

√
ki)

z

d̂+ d̂1
, i = 2, . . . , n , d̂1 =

n∑
j=2

λ−2
nj (λ−1

nj − µnj)
λ−1
nj − z

√
kj

. (3.22)

The conserved charges obtained from (3.16) and (3.21) are in involution. This is so

because any the gauge fields appearing in (3.16) have zero Poisson bracket with any of the

gauge fields appearing in (3.21). To see this one may define, similarly to what was first

done in the Hamiltonian treatment of gauged WZW models in [53], the following dressed

currents 
(i)
± which satisfy the usual Kac-Moody algebra at level ki


(i)
+ = D+gig

−1
i +A

(i)
+ −A

(i)
− , 

(i)
− = −g−1

i D−gi −A(i)
+ +A

(i)
− . (3.23)
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Using these definitions and the constraints (2.6) one obtains


(1)
+ =

n−1∑
i=1

√
ki
k1
λ−Ti1 A

(i)
+ −A

(1)
− ,


(i)
− =

√
k1
ki
λ−1
i1 A

(1)
− −A

(i)
+ , i = 1, 2, . . . , n− 1 .

(3.24)

These can be inverted to express A
(1)
− and the A

(i)
+ ’s in terms of 

(1)
+ and the 

(i)
− ’s. In

precisely the same way the gauge fields A
(n)
+ and A

(i)
− can be expressed in terms of the

dressed currents 
(n)
− and 

(i)
+ . Due to the fact that the first set of currents has zero Poisson

brackets with those of the second set we conclude that {L(1)± ,L(2)+ }PB = 0 and as a result

the conserved charges obtained from the monodromy matrix involving the first Lax pair

are in involution with those obtained from the monodromy matrix involving the second.

This concludes the proof that the CFT deformed by the 2(n− 1) deformation parameters

λ−1
i1 , i = 1, 2, . . . , n− 1 and λ−1

ni , i = 2, 3, . . . , n is integrable.

A final comment is in order. The careful reader may have noticed that the analysis

for integrability has been done using the equations of motion (3.12) and (3.13) in which

the analytic continuation discussed in (3.6) has not been applied yet. However, one can

easily see that the analytic continuation of (3.6) can be straightforwardly be done in the

final expressions for the Lax pairs (3.16) and (3.21) once the latter are expressed in terms

of the usual gauge fields A
(i)
± and the couplings λ̂i1 and λ̂ni appearing in the σ-model (3.7).

4 RG flow equations and fixed points

4.1 The RG flow equations

In this section we will first calculate the running of the couplings in the case of the inte-

grable deformations presented in the previous section. We will need the system of RG flow

equations for the running of the couplings of the anisotropic λ-model [12]

βAB =
dΛAB

dt
=

1

2k
N (Λ)AC

DN (ΛT )BD
C , (4.1)

where t = lnµ2, µ being the energy scale and where

N (Λ)AB
c = (ΛAEΛBDfEDF − fABEΛEF ) gFC ,

g̃AB = (I− ΛΛT )AB , gAB = (I− ΛTΛ)AB .
(4.2)

In what follows each of the capital indices of (4.1) will be split in two, that is A = (ia),

where i, j, k = 1, 2, . . . , n − 1 enumerate the different groups while a, b, c = 1, . . . , dim(G)

denote as usual group indices. Furthermore, in order to take into account for the different

levels ki of the WZW models, one should set k = 1 in (4.1) and rescale the structure

constants of each group as fABC = f(ia)(ib)(ic) = fabc/
√
ki. All structure constants that

do not have the indices enumerating the different groups equal are set, of course to zero.
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Finally, the coupling constants matrix λAB can be read from (3.10). It reads

Λij =



λ11 0 · · · 0

λ̂21

√
k2
k1

0 · · · 0

...
...

. . .
...

λ̂(n−1)1

√
kn−1

k1
0 · · · 0

0 λ̂n2

√
k2
kn
· · · λnn


. (4.3)

Keeping in mind that the couplings of the first column in (4.3) decouple from the ones in

the last row of the same equation we focus on the first column and rename λ11 by λ1 and

similarly λ̂i1 by λi, where i = 2, 3, . . . , n−1.5 Then the non-zero components of Nia,ibjc(Λ)

and N1a,1b
ic(ΛT ) are

Nia,ib1c(Λ) =
λi√
k1∆

(
ki
k1
λi − 1)fabc , i = 1, 1, . . . , n− 1,

N1a,ib
1c(Λ) =

λ1λi
√
ki

k1∆
fabc , i = 2, 3, . . . , n− 1

Nia,jb1c(Λ) =
λiλj

√
kikj

k
3/2
1 ∆

fabc , i 6= j, i, j = 2, 3,
. . . , n− 1 ,

(4.4)

where

∆ = 1−
n−1∑
i=1

ki
k1
λ2i , (4.5)

is the same quantity, called ∆1 in (3.8), after the renaming of the couplings we mentioned.

Furthermore,

N1a,1b
ic(ΛT ) =

λi
√
ki

k1∆

λi∆− 1 +

n−1∑
j=1

kj
k1
λ3j

 fabc , i = 1, 2, . . . , n− 1. (4.6)

Notice that Nia,jbkc(Λ) = −Njb,iakc(Λ) and Nia,jbkc(ΛT ) = −Njb,iakc(ΛT ). Using the ex-

pressions above we finally obtain for the running of the couplings the following formula

βi = − cG
2k1

λi(1− λi)(λi∆− Z)

∆2
, i = 1, 2, . . . , n− 1 , (4.7)

where

Z =

n−1∑
i=1

ki
k1
λ2i (1− λi) . (4.8)

We note that despite of the privileged rôle of λ1 in the action (3.7) (see also (3.10))

the β-functions for all couplings are on equal footing and can be obtained from a single

expression (4.7). This fact will allow us to fully determine the fixed points of the RG-

flow in the next sections. Furthermore, the β-functions in (4.7) are invariant under the

non-perturbative symmetry of (3.9).

Finally, similar expressions hold for the running of the couplings λ̂ni. The same is true

for the analysis following in this section.

5It turns out that the form of the matrix Λ in (4.3) is preserved under the RG-flow equation (4.1).
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4.2 Fixed points

We now determine the fixed points of the RG flow equations (4.7). Each fixed point belongs

to one of the following classes. Each class is characterised by three integers (n1, n2, n3),

obeying the condition n1 + n2 + n3 = n− 1. By n1 we denote the number of the couplings

that are set to zero, that is λmi = 0, i = 1, 2, . . . , n1. These couplings can be distributed

randomly among the complete set of the n−1 couplings. By n2 we denote the number of the

couplings that are set to one, that is λpi = 1, i = 1, 2, . . . , n2. Finally, by n3 we denote the

number of couplings that are neither zero nor one, i.e. λqi 6= 0, 1, with i = 1, 2, . . . , n3. By

subtracting pairwise the equations in (4.7) it is straightforward to see that all the λqi which

are neither zero nor one should be equal to each other, that is λqi = λ∗, i = 1, 2, . . . , n3.

Then the quantity ∆ becomes

∆ = 1− ρ

k1
− ζ

k1
λ2∗ , ρ =

n2∑
i=1

kpj , ζ =

n3∑
i=1

kqj . (4.9)

As a result the vanishing of the bracket in (4.7) implies

λ∗ =
k1 − ρ
ζ

. (4.10)

We will assume in the rest of our analysis that n3 > 1 since it turns out that this should

be the case for the existence of physical IR stable fixed points.

Let us note that each of the distinct classes of fixed points characterised by (n1, n2, n3),

that obey the condition n1 + n2 + n3 = n− 1 has
(n− 1)!

n1!n2!n3!
different members.

4.3 The stability matrix

We evaluate the stability matrix for each of the fixed points given by (4.10). This will

allow us to determine the relevant and irrelevant directions of each of the fixed points and

identify the fixed points which are IR stable.

Let’s split the index i = (m, a, α) in such a way that

λm = 0 , m = 1, 2, . . . , n1 ,

λa = 1 , a = 1, 2, . . . , n2 ,

λα = λ∗ =
k1 − ρ
ζ

, α = 1, 2, . . . , n3 ,

(4.11)

Then at the FPs we have the following relations

∆ =
ζ

k1
λ∗(1− λ∗) , Z = λ∗∆ . (4.12)

Furthermore, the derivatives of ∆ and Z evaluated at the FPs read

∂m∆ = ∂mZ = 0

∂a∆ = −2
ka
k1
, ∂aZ = −ka

k1
,

∂α∆ = −2
kα
k1
λ∗ , ∂αZ =

kα
k1
λ∗(2− 3λ∗) ,

(4.13)
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The non-zero entries of the stability matrix defined as Hij = ∂jβi|FP are given by

Hmn =
cG
2k1

λ∗
∆
δmn , Hab =

cG
2k1

1− λ∗
∆

δab ,

Hαβ = − cG
2k1

λ∗(1− λ∗)
∆2

(
∆δαβ −

kβ
k1
λ∗(2− λ∗)

)
,

Hαa = − cG
2k1

λ∗(1− λ∗)
∆2

ka
k1

(1− 2λ∗) .

(4.14)

Note that Hαa = 0, so that the stability matrix is not a symmetric one. Clearly the part of

this matrix corresponding to the n1 values λm = 0 decouples. For the eigenvalue problem

for the rest of the stability matrix we clearly obtain a matrix of the form(
A 0

B C

)
=

(
1 0

0 C

)(
A 0

C−1B 1

)
. (4.15)

Specifically, we have the matrix elements Aab = Hab −Eδab already in diagonal form with

E appearing in the left hand side of (4.15) being an eigenvalue of the stability matrix. The

matrix Cαβ = Hαβ − Eδαβ is of the form c1δαβ − c2kβ and as a result its determinant is

equal to cn3−1
1 (c1− ζc2). Furthermore, the second matrix in the right hand side of (4.15) is

triangular. The vanishing of the determinant of the matrix in (4.15) gives the eigenvalues

of the stability matrix, as well as the corresponding degeneracies

Deg = n1 : H0 =
cG
2k1

λ∗
∆
,

Deg = n2 : H1 =
cG
2k1

1− λ∗
∆

,

Deg = n3 − 1 : H∗ = − cG
2k1

λ∗(1− λ∗)
∆

,

Deg = 1 : H1∗ =
cG
2k1

ζ

k1

λ2∗(1− λ∗)
∆2

.

(4.16)

These eigenvalues and their degeneracies will be instrumental below in determining the

physical IR stable fixed points of the RG flow.

4.3.1 IR stable fixed points

It turns out that in order to have a Euclidean signature for the metric, the constant ∆

should be positive leading to the following condition

0 < λ∗ < 1 ⇐⇒ ρ < k1 < ρ+ ζ . (4.17)

As mentioned before we will only consider cases with n3 > 1. In addition, physical fixed

points cannot have λ1 = 1 since the σ-model action (3.7) is in that case singular.

We are primarily interested in identifying the physical IR stable points, that is the ones

which have all eigenvalues of the stability matrix positive. The condition (4.17) guaranties

that H0 > 0 and H1 > 0. However, the third eigenvalue in (4.16) is negative, i.e. H∗ < 0
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and therefore we should necessarily have n3 = 1 so that this eigenvalue is non-existing.

Finally, the positivity of the last eigenvalue H1∗ is also guaranteed by (4.17).

The condition n3 = 1 means that there is a single coupling that is not zero or one.

Keeping in mind that λ1 6= 1, there are two cases. In the first one let λ1 = 0 and a single

λa = λ∗. Then also ζ = ka. The condition (4.17) implies that ρ < k1 < ρ+ ka. The second

case is when λ1 = λ∗. In this case λ1 = 1−ρ/k1 which holds automatically since according

to (4.17). Also, in this case ζ = k1. We conclude that there is a multitude of fixed points

the number of which depends on the relative ordering of the levels ki. It would be certainly

interesting to study the structure and properties of the corresponding CFTs.

5 The non-Abelian T-duality limit

When some of the λ’s approach unity then we get a singularity in the manifold. Then a

zoom in procedure maybe applied as in [6]. We will not discuss this for the most general

action (2.13) but for (3.7) corresponding to integrable models.

In that case near λ11 = 1 or near λnn = 1 we get a singularity in the manifold.

However, one may zoom in by taking simultaneously the large k1 and kn limits. Then we

expand for k1, kn � 1 as follows

λ11 = 1− 1

2ζ1k1
+ · · · , g1 = I +

i

2ζ1

(v1)at
a

k1
+ · · · ,

λnn = 1− 1

2ζnkn
+ · · · , gn = I +

i

2ζn

(vn)at
a

kn
+ · · · ,

(5.1)

where ζ1 and ζn are new coupling parameters. This leads to the following expressions for

the currents and the operators Di

Ja1± =
1

2ζ1

∂±v
a
1

k1
+ · · · , (D1)ab = δab +

1

2ζ1

(f1)ab
k1

+ · · · , (f1)ab = fabcv
c
1 ,

Jan± =
1

2ζn

∂±v
a
n

kn
+ · · · , (Dn)ab = δab +

1

2ζn

(fn)ab
kn

+ · · · , (fn)ab = fabcv
c
n ,

(5.2)

In this limit the action (3.7) becomes

S=
n−1∑
i=2

Ski(gi)

+
1

2πζ1

∫
d2σ ∂+v

a
1(1+f1)

−1
ab ∂−v

b
1+

1

2πζn

∫
d2σ ∂+v

a
n(1+fn)−1

ab ∂−v
b
n

+
1

π

n−1∑
i=2

kiλ̂i1

∫
d2σ Ji+(1+f1)

−1∂−v1+
1

π

n−1∑
i=2

kiλ̂ni

∫
d2σ ∂+vn(1+fn)−1Ji−

+
1

π

n−1∑
i=2

kiλ̂i1λ̂ni

∫
d2σ ∂+vn(1+fn)−1DT

i (1+f1)
−1∂−v1 .

(5.3)

Note that Euclidean signature imposes a constraint on the parameters

ζ1 > 0 , ζn > 0 , ζ1

n−1∑
i=2

λ̂2i1 < 1 , ζn

n−1∑
i=2

λ̂2ni < 1 . (5.4)
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This σ-model represents the interaction of (n−2) WZW models for a group G with two non-

Abelian T-duals of the PCM for the same group which in turn interact among themselves.

We note that the σ-model (5.3) being the limit of (3.7) is itself integrable. The original

action whose non-Abelian T-dual is (5.3) is that of interacting PCMs.

An interesting limit of (5.3) arises if we take the remaining levels ki →∞ as

gi = I + i
xai ta√
ki

+ · · · , λ̂i1 =
ζi1√
ki
, λ̂ni =

ζni√
ki
,

ki →∞ , i = 2, 3, . . . , n− 1 .

(5.5)

Then (5.3) becomes

S=
1

2π

n−1∑
i=2

∂+x
a
i ∂−x

a
i

+
1

2πζ1

∫
d2σ ∂+v

a
1(1+f1)

−1
ab ∂−v

b
1+

1

2πζn

∫
d2σ ∂+v

a
n(1+fn)−1

ab ∂−v
b
n

+
1

π

n−1∑
i=2

ζi1

∫
d2σ ∂+xi(1+f1)

−1∂−v1+
1

π

n−1∑
i=2

ζni

∫
d2σ ∂+vn(1+fn)−1∂−xi

+
1

π

n−1∑
i=2

ζi1ζni

∫
d2σ ∂+vn(1+fn)−1(1+f1)

−1∂−v1 .

(5.6)

This represents the mutual interactions of (n−2) dimG free fields with the two non-Abelian

T-duals of PCM for a group G and is also integrable. We may clearly simply even further

by consistently taking ζi1 = 0 or ζni = 0.

6 Discussion and future directions

We have construct the all loop effective action of a general class of models whose UV

Lagrangian is the sum of an arbitrary number n of WZW models based on the same group

G, but at different levels. Although the complete effective action can be quite involved, at

the linear level the theory is driven away from the conformal point by operators bilinear in

the WZW currents. These current bi-linears involve currents belonging to both the same

and different CFTs. Hence we have self- as well as mutual interactions of current algebra

theories in their most general form. In general our models depend on n2 general coupling

matrices. We considered a consistent truncation of our models that depends on 2(n − 1)

couplings and showed that the theory is classically integrable by finding the appropriate

Lax connection. Turning on even one more coupling will generate other couplings through

quantum corrections and the theory will most likely cease to be integrable. Subsequently,

we proved that the theory possesses certain non-perturbative symmetries in the space of

couplings λ̂i1 and λ̂ni and calculated the exact in the deformation parameters β-functions

of our models which can be cast in a particularly simple and compact form. This fact

allowed us to fully determine and classify the fixed points of the RG flow in particular

those that are IR stable. Last but not least we consider non-Abelian T-duality type limits

in the case when the theory is integrable.
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A number of open questions remain to be addressed. Given that our models provide

concrete realizations of integrable flows between exact CFTs it would be interesting to

elucidate the nature and symmetries of the corresponding IR stable CFTs. Furthermore,

one could exploit the aforementioned non-perturbative symmetries that our models enjoy to

compute the all-loop anomalous dimensions of current operators, as well as that of primary

operators in a similar manner to that in [7, 14, 20–22, 24]. One could also calculate the

exact in the deformation parameters C-function of the models presented here as was done

in [24] for simpler cases. In that respect the general results in [24] should be a useful

starting point.

Another direction would be to consider the case where more of the couplings are non-

zero, as well as the case where each of the WZW models is based on a different group.

It is notable that in the latter case all formulae of section 2 will still be valid after slight

modifications. In addition, one could search for integrable deformations in these more

general cases. Compared to the integrable models presented in this work, we expect an

even richer structure of the RG equations to be unveiled. Recently, a class of integrable

models consisting of N coupled principal chiral models each with a WZW term and based

on the same group G was presented in [54]. The construction was based on an association

of integrable field theories with affine Gaudin models having an arbitrary number of sites.

It would be interesting to see if these models bear any relation to the ones constructed in

this work (see also [10]) or to the models with N sites firstly presented in [7].

Our approach is valid to all orders in the deformation parameters but only to leading

order in the 1/k expansion, i.e. for large levels of the WZW action. One may wonder

of how corrections of order 1/k2 or higher may be computed. Although constructing

the 1
k corrections to the effective action of the present work seems a hard task, one may

resort to the higher order derivative β-functions of the σ-model. This will be helpful in

computing corrections to the β-functions of the deformation parameters using gravitational

methods and also in discovering the corrected version of non-perturbative symmetries of

the type (3.9). In addition, we may compute the subleading terms in the 1/k expansion of

the β-functions, as well as of the anomalous dimensions of operators using CFT techniques.

Finally, one could try to embed our models to solutions of type-IIB or type-IIA supergravity

(for n = 2, 3 and small rank semisimple groups) and/or construct the corresponding η-

deformed integrable models.
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