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1 Introduction

The clockwork is an ingenious device which allows to start from a fundamental theory with

no small fundamental parameters and obtain light degrees of freedom with suppressed

interactions [1–3]. Some applications of the clockwork mechanism have been worked out

in a series of recent papers [4–18].

The implementation of the clockwork mechanism can be either through a discrete

number of fields or through the presence of an extra dimension, the so-called Continuous

ClockWork (CCW). The latter provides a possible solution to the naturalness problem

affecting the Higgs sector [3] and happens to be the same as in linear dilaton duals of

Little String Theory [21, 22]. More specifically, a dilaton field S is introduced within

a five-dimensional braneworld where the fifth dimension is compactified on S1/Z2. The

action is

S =

∫
d4xdy

√
−g

{
M3

5

2

(
R− 1

3
∂MS∂

MS + 4k2e−
2
3
S

)

−e
− 1

3
S

√
g55

[δ(y)Λ0 + δ(y − πR)Λπ]

}
, (1.1)

where R is the radius of the fifth dimension, k2 parametrises the negative bulk vacuum

energy, M5 is the fundamental scale in the bulk, and Λ0 and Λπ are tensions on the brane

satisfying the relation Λ0 = −Λπ = −4kM3
5 . The resulting metric is [3]

ds2 = e
4
3
k|y| (ηmndxmdxn + dy2

)
, (1.2)
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with ηmn the flat Minkowski metric (m,n = 0, · · · , 3). Hierarchies are generated on the

y = πR brane with exponential suppressions of the form e−kπR as in the Randall-Sundrum

(RS) case [19, 20]. In addition, the y = y0 = const. sections of the CCW metric (1.2) are

flat Minkowski spacetimes rescaled by the exponential factor e
4
3
k|y0| again as in RS. Hence,

one is tempting to conclude that the generated hierarchy is exponential and therefore, with

a kR ∼ 10, a hierarchy of scales as large as 1013 can easily be generated. We will see here

that this is not true and the generated hierarchy is only power law. Indeed, in the RS

case, R denotes the compactification scale, i.e. the only physical scale besides the D = 5

Planck mass M5 and k. In the CCW case on the other hand, R is not physical in the sense

that it does not corresponds to any physical scale. The physical scale in the CCW is also

the compactification radius which, as we will see, it is proportional to the hierarchy factor

ekπR. Therefore, the generated hierarchy is much more weak now and in particular the

CCW generates only a power law hierarchy.

We will show here that the CCW can be consistently embedded in the minimal N = 2,

D = 5 gauged supergravity [23–34, 37] with a vector multiplet. The latter contains a

single scalar which is actually the CCW scalar S, with a two-parameter potential. When

one of the two parameters of the scalar potential vanishes, we get the CCW and if the

other parameter vanishes, the potential is flat. Finally, when both parameters are non-

zero, a stable minimum exists with a negative cosmological constant corresponding to the

known RS case. In all the above three case, half of the supersymmetries are preserved,

the corresponding branes are BPS and the theory on the two boundaries is just N = 1,

D = 4 supergravity. In addition, we show that the CCW can also be embedded in extended

D = 5, N = 4 supergravity with SU(2)⊗U(1) as gauge group [39] and the CCW scalar is

identified with the single scalar of the supergravity multiplet in this case. In addition, it

turns out that the parameter k in the CCW action (1.1) is just the gauge coupling of the

SU(2) group.

The paper is organised as follows: in section 2 we show how the CCW can be derived

from the gauged D = 5, N = 2 supergravity. In section 3 we construct the corresponding

BPS states and include the presence of branes in section 4. Section 5 provides a possible

M-theory embedding and section 6 some generalisations of the previous results and some

comments about the differences between the known RS-construction and the clockwork

set-up. Finally, we conclude in section 7.

2 The continuous clockwork from the gauged D = 5, N = 2 supergravity

Let us consider the minimal D = 5, N = 2 supergravity coupled to nV vector multi-

plets [23–26]. Its extension containing additional nH hypermultiplets and nT tensor mul-

tiplets has been constructed in ref. [27]. The field content of the theory is(
emµ , ψ

i
µ, A

I
µ, λ

i x, φx
)
, (2.1)

where the gravitino ψiµ and the gauginos λi x (i = 1, 2), (x = 1, · · · , nV ) are doublets under

the SU(2)R R-symmetry, AIµ (I = 0, 1, . . . , nV ) are the graviphoton and the vector of the

vector multiplets and φx are the scalars of the vector multiplet. When a U(1) subgroup of
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the full SUR(2) R-symmetry group is gauged, the bosonic part of the gauged D = 5 and

N = 2 theory is

e−1Lbos(k) =
1

2
R− 1

4
aIJF

I
µνF

J µν − 1

2
gxy∂µφ

x∂µφy

+
1

6
√

6
CIJKe

−1εκµνρσF IκµF
J
νρA

K
σ − g2P (φ). (2.2)

The scalar field target space is a very special manifold, described by the cubic surface

CIJKh
I(φ)hJ(φ)hK(φ) = 1, (2.3)

where the nV + 1 coordinates hI parametrise the ambient space. Scalar target spaces

as cosets of the Jordan family together with their properties have been introduced and

discussed in refs. [23–26] and a complete classification for homogeneous scalar target spaces

is given in ref. [28]. In addition, we have that

aIJ = hIhJ + hxIh
x
J , hIx = −

√
3

2
∂xh

I(φ),

gxy = hIxh
J
yaIJ , hI = CIJKh

J(φ)hK(φ). (2.4)

The supersymmetry transformation that leave invariant the N = 2 theory are

δemµ =
1

2
εiγmψµ i,

δψµ i = Dµ(ω̂)εi +
1

4

√
1

6
ihI
(
γµ

νρ − 4δνµγ
ρ
)
F̂ Iνρεi +

1

48
γµνρε

jλ
b
iγ
νρλbj , (2.5)

− 1

12
γµνε

jλ
b
iγ
νλbj −

1

12
γνεjλ

b
iγµνλ

b
j +

1

6
εjλ

b
iγ
µλbj +

i g

2

√
1

6
P0(φ)γµδ

ijεj , (2.6)

δAIµ = −1

2
hIxε

iγµλ
x
i +

√
6

2
iψ

i
µεih

I , (2.7)

δλxi = − i
2
/̂∂φx − 1

2
εjλzjλ

y
iΩ

x
zy +

1

4
hxIγ

µνεiF̂
I
µν +

1√
2
gP x(φ)δijεj

− 1

4
√

6
iTxyz

(
3εjλ

y
i λ

z
j − γµεjλ

y
i γ

µλzj −
1

2
γµνε

jλ
y
i γ

µνλzj

)
, (2.8)

δφx =
1

2
iεiλxi , (2.9)

where hat indicates supercovariantization, Ωx
zy is the Riemannian connection on the hy-

persurface (2.3) and g is the gauge coupling. The scalar functions P0 and Px are such that

P = −P 2
0 + PxP

x, (2.10)

where

P0 = 2hIVI , Px =
√

2hIxVI , (2.11)

and VI are nV +1 arbitrary constants. The quantities aIJ , h
I , hIx, Txyz, P0, and Px satisfy a

number of constraints [23–26]. It is possible to determine the model once the data CIJK are
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given. In particular, one may define nV + 1 real variables XI and define the prepotential V

V = β3CIJKX
IXJXk, β =

√
2

3
. (2.12)

Then the matrix aIJ and hI are determined by

aIJ = −1

2

∂2

∂XI∂XJ
lnN, (2.13)

hI =
1

3β

∂

∂XI
lnV

∣∣∣
V=1

. (2.14)

Here we are interested in the simple case of a single vector multiplet couplet to D = 5,

N = 2 supergravity. In this case, (I, J = 0, 1) and XI , hI are parametrised by a single

scalar φx = φ where (x = 1). We will further take

C011 =
1

3
, (2.15)

as the only non vanishing component of CIJK , so that

V = β3X0(X1)2,

aij = diag

(
1

2(X0)2
,

1

(X1)2

)
,

hI =
1

3β

(
1

X0
,

2

X1

)
. (2.16)

The V = 1 line is then determined by

β3γ3X0(X1)2 = 1, (2.17)

which we parametrise as

X0 =
1

β
e2bφ, X1 =

1

β
e−bφ. (2.18)

The scalar target space metric turns then out then to be

gxx = hIxhJxa
IJ =

4b2

3β4
. (2.19)

By demanding gxx = 1 so that the kinetic term of the scalar φ is canonically normalised,

we find that

b = ± 1√
3
. (2.20)

We will choose b = −1/
√

3 from now on. Using that

hI =
2

3β

(
X0, X1

)
, (2.21)
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we get from eq. (2.11) that

P0 = V0e
− 2φ√

3 + V1e
φ√
3 ,

Px = −V0e
− 2φ√

3 +
1

2
V1e

φ√
3 , (2.22)

and

P = −3V1

(
V0e
− φ√

3 +
1

4
V1.e

2φ√
3

)
. (2.23)

The scalar potential turns out to be

V = g2P = −3g2V1

(
V0e
− φ√

3 +
1

4
V1e

2φ√
3

)
, (2.24)

and the bosonic part of the Lagrangian for vanishing gauge fields turns out to be

e−1Lbos =
1

2
R− 1

2
∂µφ∂

µφ+ 3g2V1

(
V0e
− φ√

3 +
1

4
V1e

2φ√
3

)
. (2.25)

The constants V0, V1 specify the theory and they can be chosen at will. For the case V0 = 0

we find that

P0 = V1 e
φ√
3 , Px =

1

2
V1e

φ√
3 , (2.26)

so that the scalar potential is written as

V = −2k2e
2φ√
3 , (2.27)

where we have defined the parameter k as

k =

√
3

8
gV1. (2.28)

Hence, eq. (2.25) is written in this case

e−1Lbos(k) =
1

2
R− 1

2
∂µφ∂

µφ+ 2k2e
2φ√
3 . (2.29)

The Lagrangian (2.29) can be written in many equivalent ways and appeared previously in

the literature. For example, it coincides with a non-critical string theory in five dimensions.

Indeed, by defining the dilaton Φ and the string metric g
(σ)
µν as

Φ = −
√

3

2
φ, g(σ)

µν = e−
2
3

Φgµν , (2.30)

we may write (2.29) as

e−1LN=2
bosonic =

1

2
e−2Φ

(
R+ 4∂µΦ ∂µΦ + δc

)
, (2.31)
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where

δc = 2k2, (2.32)

is the central charge deficit. For a string propagating in D-dimensions with D < Dcrit,

δc is

δc =
2(Dcrit −D)

3α′
, (2.33)

and (2.31) describes the low-energy non-critical string effective action. Sub-critical string

theories (δc > 0) could be the result of tachyon condensation as discussed in [38]. In

addition, it has employed in ref. [43] as a gravity dual of Little String Theory. What

is more important, it is also the action that describes the bulk of the D = 5 CCW [3]

after defining

φ = − S√
3
. (2.34)

Indeed, in this case eq. (2.29) is written as

e−1Lbos(k) =
1

2

(
R− 1

3
∂µS ∂

µS + 4k2e−
2S
3

)
, (2.35)

which is precisely the continuous CCW action.

Finally, let us also mentioned that the Lagrangian (2.25) appears also in D = 5 ex-

tended supergravity [39–41]. In particular, the SU(2)⊗U(1) gauged supergravity multiplet

of the D = 5, N = 4 theory is (
emµ , ψ

i
µ, A

I
µ, aµ, B

a
µν , χ

i, φ
)
, (2.36)

i.e., it contains the graviton emµ , four gravitini ψi transforming in the fundamental repre-

sentation of the USp(4) R-symmetry group, four vector fields AIµ, aµ of the SU(2) ⊗ U(1)

gauge group, two antisymmetric gauge fields Ba
µν , four spin-1/2 fermions χi also in the

fundamental of USp(4) and one real scalar field φ. It turns out that the bosonic part of

theory for vanishing gauge fields is

e−1LN=4
bos =

1

2
R− 1

2
∂µφ∂

µφ+ gS

(
gAe

− φ√
3 + gSe

2φ√
3

)
, (2.37)

where gS , gA are the gauge couplings of the SU(2) and U(1) gauge fields respectively [39, 41].

A simple inspection of (2.25) and (2.37) reveals that the constants V0, V1 are related to the

gauge couplings gS , gA. In particular, the CCW Lagrangian (2.29) corresponds to

gA = 0, gS =
√

2 k, (2.38)

so that the CCW parameter k is identified in the N = 4 context with the SU(2) gauge

coupling. The gA = 0 in the full theory seems to be singular [39] but as it has been shown

in [42] it can be consistently be taken after appropriate field redefinitions.

– 6 –
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3 The continuous clockwork and supersymmetric backgrounds

The Lagrangian in eq. (2.2) is invariant under eight (real) supersymmetries generated by

the symplectic Majorana spinors εi. We will look for solutions here to the field equations

that preserves some supersymmetry [44–48]. The field equations turn out to be

Rµν −
1

2
gµνR = ∂µφ∂νφ−

1

2

(
(∂φ)2 − 4k2e

2φ√
3

)
, (3.1)

∇2φ+
4√
3
k2e

2φ√
3 = 0. (3.2)

In addition, the fermionic shifts for the nV = 1 model are

δψiµ = Dµε
i +

k

3
iγµe

φ√
3 δijεj , (3.3)

δλi = − i
2
γµ∂µφε

i +
k√
3
e
φ√
3 δijεj . (3.4)

We look for backgrounds with four-dimensional Poincaré symmetry, which we can express

as

ds2 = e2σ(y)
(
ηmndxmdxn + dy2

)
, (3.5)

Using the fact that for conformally related metrics g̃µν = Ω2gµν we have that

D̃µε = Dµε+
1

2
γµ

ν(∂ν ln Ω) ε, (3.6)

we find that the condition for unbroken supersymmetry (vanishing fermionic shifts) is

explicitly written as (
δikγ5σ

′ +
2k

3
ie

φ√
3

+σ
δijεjk

)
εk = 0, (3.7)

εi
′
+
k

3
ie

φ√
3

+σ
γ5δ

ijεj = 0, (3.8)(
δikγ

5φ′ − 2k√
3
ie

φ√
3

+σ
δijεjk

)
εk = 0, (3.9)

where εij is the SU(2) invariant antisymmetric tensor and a prime denotes differentiation

with respect to y. Then, eq. (3.8) determines the dependence of the Killing spinor on the

y-coordinate, whereas eqs. (3.7) and (3.9) as projector equations require the consistency

conditions (
δijσ
′2 − 4k2

9
e
φ√
3

+σ
εinεnj

)
εj = 0, (3.10)(

δijφ
′2 − 4k2

3
e
φ√
3

+σ
εinεnj

)
εj = 0, (3.11)

and lead to

σ′ = ±2k

3
e
φ√
3

+σ
, φ′ = ∓ 2k√

3
e
φ√
3

+σ
. (3.12)
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Solving eq. (3.12) we find

σ =
−φ√

3
=

2k

3
y, (3.13)

for increasing scale factor and conditions σ(0) = φ(0) = 0. It is straightforward to check

that the field equations eqs. (3.1) and (3.2) are satisfied as expected. Then the back-

ground is

ds2 = e
4k
3
y
(
ηmndxmdxn + dy2

)
, S = 2ky, (3.14)

where S = −
√

3φ is the CCW scalar. This is the linear dilaton solution employed in [3, 43].

The spacetime described by the metric (3.14) has a singularity at y → −∞. In the next

section, we will introduce branes at finite values of y so that the spacetime is non-singular

with boundaries.

It should be noted that this configuration is a BPS state. Indeed for static configura-

tions we may define the energy functional for the CCW background

E = −Sbosonic = e3σ

(
6σ′

2 − 1

6
S′

2
+ 2k2e2σ− 2S

3

)
− 4e3σσ′

∣∣∣∞
−∞

. (3.15)

Note that since

2k2e−
2S
3 = g2(−P 2

0 + P 2
x ), (3.16)

we can write the energy functional as

E = e3σ

{
(
√

6σ′ − gP0e
σ)(
√

6σ′ + gP0e
σ)

−
(

1√
6
S′ + gPxe

σ

)(
1√
6
S′ − gPxeσ

)}
− 4e3σσ′

∣∣∣∞
−∞

. (3.17)

The structure of the energy suggests the BPS condition

σ′ = ± g√
6
P0e

σ, S′ = ∓
√

6gPxe
σ. (3.18)

For such BPS configurations, the value of the energy turns out to be E = 0, in accordance

with the result of refs. [46, 47]. It is easy to verify that the BPS condition above is identical

to the supersymmetry preserving condition (3.12).

4 Branes in the continuous clockwork

Let us now assume that there is one direction, let say the x5 = y direction which parametrise

the circle S1/Z2. The Z2 orbifolding introduces two fixed points at y = 0 and y = πR

where r is the S1 radius. These are singular points, but we can give a physical meaning

to them by assuming that they are the location of D = 4 branes. Bulk fields have definite

Z2 parity and they can be either even (Φ(−y) = Φ(y)), or odd (Φ(−y) = −Φ(y)) under

the y → −y inversion. Therefore, odd field at the orbifold fixed points where the branes

– 8 –
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reside vanish and should not appear in the D = 4 theory on the branes. Similarly to the

bulk fields, also the supersymmetry parameters are split accordingly into half even (ε+)

and half odd (ε−) spinors. Clearly, the brane theory would be invariant only under the ε+,

i.e., only under an N = 1 supersymmetry.

In order to write a supersymmetric theory in this setup, one has to assume that the

coupling g is not continuous but it has jumps at the brane positions. In other words, we

assume that the coupling is g for 0 < y < πR whereas it is −g for −πR < y < 0. Thus, we

introduce the function ĝ(y) as

ĝ(y) = g, 0 < y < πR, ĝ(y) = −g, − πR < y < 0, (4.1)

which satisfies

∂y ĝ = 2g
(
δ(y)− δ(y − πR)

)
. (4.2)

In addition, due to eq. (2.28), we will can define k̂ =
√

8/3ĝV1, which satisfies similarly

∂yk̂ = 2k
(
δ(y)− δ(y − πR)

)
. (4.3)

The bosonic part of the supersymmetric Lagrangian on the theory is

e−1Lnew = e−1Lbos(k̂) +Aµνρσε
µνρσκ∂κk̂

− 2k
(
δ(y)− δ(y − πR)

)(
2e−1e(4)e

φ/
√

3 +
1

2
εmnpqAmnpq

)
,

where e(4) is the determinant of the induced vielbein on the branes and m,n, . . . = 0, 1, 2, 3.

Then the action of the theory is written as

S =

∫
M4×S1/Z2

d4xdyLnew, (4.4)

is supersymmetric. Indeed, (4.4) is invariant under the supersymmetry transformations

δ̂(ε), which are the transformations eqs. (2.5)–(2.9) with the coupling g replaced with

ĝ and

δ̂Amnpq = − 1√
6
εiγ[mnpψ

i
q]P0 + iεiVIγ[mnA

I
pψ

i
q] +

i√
2
εiγmnpqλ

i
xP

x,

δ̂k̂ = 0. (4.5)

Now the condition on backgrounds that preserve some supersymmetry is the vanishing of

the fermionic shifts which gives(
δikγ5σ

′ +
2k̂

3
ie

φ√
3

+σ
δijεjk

)
εk = 0, (4.6)

εi
′
+
k̂

3
ie

φ√
3

+σ
γ5δ

ijεj = 0, (4.7)(
δikγ

5φ′ − 2k̂√
3
ie

φ√
3

+σ
δijεjk

)
εk = 0. (4.8)
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The above equations have a solution if the consistency condition(
δijσ
′2 − 4k2

9
e
φ√
3

+σ
εinεnj

)
εj = 0, (4.9)(

δijφ
′2 − 4k2

3
e
φ√
3

+σ
εinεnj

)
εj = 0, (4.10)

(since k̂2 = k2) is satisfied. Hence, we find that in order to have some unbroken supersym-

metry, the scalars σ and φ should obey

σ′ = ±2k

3
e
φ√
3

+σ
, φ′ = ∓ 2k√

3
e
φ√
3

+σ
. (4.11)

We may choose the branch σ = −φ/
√

3, and then from eq. (4.6) and eq. (4.8) we find

σ =
−φ√

3
=

2k

3
|y|, (4.12)

for σ(0) = φ(0) = 0. Therefore the background is

ds2 = e
4k
3
|y|
(
ηmndxmdxn + dy2

)
, S = 2k|y|, (4.13)

where S = −
√

3φ is the CCW scalar. Note that the this background breaks half of the

supersymmetries. Indeed, from eq. (4.6) for example, we get that εi should satisfy

(1 + γ5)εi = 0 (4.14)

which means that out of the 8 real component εi only 4 real components are non zero, and

therefore, the boundary branes beaks half of the supersymmetries. The remaining 4 real

component εi form a complete spinor in D = 4 and preserve N = 1 local supersymmetry

on the D = 4 boundary branes. The spectrum of the boundary theory can easily be found.

The low-energy four-dimensional theory is obtained by the dimensional reduction of

the five-dimensional fields. In particular, the five dimensional gravity and vector multiplets

(eaµ, ψ
i
µ, Aµ), (Bµ, λ

i, φ), (4.15)

will split as

(eam, e
5
m, e

5
5, ψ

L
m, ψ

R
m, Am, A5), (Bm, B5, λL, λR, φ). (4.16)

These fields fill the graviton and two vector massless multiplets of the four-dimensional

N = 2 theory as

N=2 graviton︷ ︸︸ ︷(
gmn
ψRm

)
︸ ︷︷ ︸
N = 1 graviton

(
gm5

ψLm

)
︸ ︷︷ ︸
N = 1 gravitino

,

N=2 vector multiplet︷ ︸︸ ︷(
Am
ψL5

)
︸ ︷︷ ︸
N = 1 vector

(
g55, A5

ψR5

)
︸ ︷︷ ︸
N = 1 chiral

,

N=2 vector multiplet︷ ︸︸ ︷(
Bm
λL

)
︸ ︷︷ ︸
N = 1 vector

(
φ, B5

λR

)
︸ ︷︷ ︸
N = 1 chiral

.(4.17)
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In (4.17) above, we express theN = 2 multiplets in terms of theirN = 1 content. The linear

dilaton background beaks the N = 2 to N = 1 supersymmetry and the fields (4.16) are

arranged in representations of the unbroken N = 1 supersymmetry. In particular, we will

have a massless N = 1 graviton, the N = 1 gravitino will eat the vector multiplet and will

become massive and similarly the vector in the last multiplet will eat the chiral and become

massive as well. Therefore, the four-dimensional N = 1 spectrum will contains a massless

graviton multiplet (2, 3/2), a massive gravitino multiplet (3/2, 1, 1, 1/2) and a massive

vector multiplet (1, 1/2, 1/2, 0) preserving the original 12B + 12F degrees of freedom.

5 M-theory embedding

Let us recall some well-known results of the compactification of M-theory on a Calabi-Yau

three-fold CY3 [49–51], parametrised by complex coordinates zi (i = 1, 2, 3) and with Hodge

numbers h(1,1) and h(2,1) and intersection numbers CIJK , where (I, J,K = 1, · · · , h(1,1).

The D = 5 bosonic degrees of freedom will come from the bosonic fields of 11D super-

gravity, namely, the metric gMN and the totally antisymmetric three-form AMNK . After

compactification on CY3, the D = 5 spectrum consists of a complex axion Aijk = εijkχ,

a real axion dual to the fields strength of the three-form Aµνρ, the CY volume det gij ,

h(1,1)−1 real Kähler moduli gij , h(2,1) complex scalars (gij , Aijk) and h(1,1) abelian vectors

Aµij . These fields are paired with fermions to form supermultiplets of the D = 5, N = 2 su-

pergravity in the following way. One of the h(1,1) vectors is the graviphoton which together

with the graviton gµν form the supergravity multiplet. The remaining vectors together

with the scalars gij form h(1,1) − 1 vector multiplets. The fields (det gij , a, Aijk) form the

universal hypermultiplet and finally the fields (gij , Aijk) form h(2,1) hypermultiplets. We

are interested here for the scalars in the vector multiplets which are just the Kähler moduli

tI . The latter can be defined after expanding the Kḧler form J on the CY3 into the basis

of the fundamental 2-forms JI as

J = tIJI . (5.1)

This definition of tI specifies them as the size of the 2-cycles of the CY3. The D = 5,

N = 2 vector couplings are determined by first introducing the superpotential V as

V = CIJKt
ItJ tK , (5.2)

which defines the very special geometry [28]. Then, the independent scalar degrees of

freedom are determined by the constraint

V = 1, (5.3)

and the Kähler moduli can be identified with the functions hI . In general, the scalar moduli

space is of the form

MV = SO(1, 1)⊗ SO(1, n− 1)

SO(n− 1)
, n = h(1,1) − 1. (5.4)
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With n = 2, which is the case we are considering here, the moduli space is simply SO(1, 1)

parametrised by the single scalar φ. A simple model with n = 2 is the two-parameter

model with prepotential in the large volume limit

V = 9(t1)3 + 9(t1)2(t2) + 3(t1)t2)2. (5.5)

Defining

h1 = t1, (h2)2 = 9(t1)2 + 9(t1)(t2) + 3(t2)2, (5.6)

we have

V = h1(h2)2, (5.7)

which is the model we considered in section 2.

6 Generalisations and some general considerations

Let us now generalise our previous findings and assume that both V0 and V1 in section 2

are non-vanishing. In this case the functions P0 and P1 are written in terms of the S field

defined in eq. (2.34) as

P0 = V0e
2S
3 + V1e

−S
3 ,

Px = −V0e
2S
3 +

1

2
V1e
−S

3 , (6.1)

whereas the potential turns out to be

V = −2k2
(

4V0e
S
3 + V1e

− 2S
3

)
, k =

√
3

8
gV1. (6.2)

Then, in terms of a new coordinate r defined by

dr = eσ(y)dy, (6.3)

the BPS conditions (3.18) turn out to be

dσ

dr
= ± g√

6
P0,

dS

dr
= ∓
√

6gPx, (6.4)

and they are explicitly written as

dσ

dr
= ± g√

6

(
V0e

2S
3 + V1e

−S
3

)
, (6.5)

dS

dr
= ∓
√

6g
(
− V0e

2S
3 +

1

2
V1e
−S

3

)
. (6.6)

There are three distinct cases, depending on the values of the parameters V0 and V1:

• V0 = 0: this is the case we discussed above and corresponds to the linear dilaton case

and to the CCW.
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• V1 = 0: for this choice of the parameters, k = 0, the potential V = 0 and the theory

is of no-scale type [35–37]. Eq. (6.6) is written in this case as

dσ

dr
= ± g√

6
V0e

2S
3 ,

dS

dr
= ±
√

6gV0e
2S
3 . (6.7)

The solution to eqs. (6.7) that satisfies also Einstein equations is in this case

σ =
1

4
ln
(
C0 + γ r

)
+ σ0 (6.8)

S = ±3

2
ln
(
C0 + γ r

)
, γ =

√
8

3
gV0, (6.9)

where C0 and σ0 are constants. Then the metric turns out to be

ds2 = r1/2 ηmndxmdxn + dr2, (6.10)

after appropriate redefinition and the coordinates and takes the conformaly flat form

ds2 = (1 + µy)2/3
(
ηmndxmdxn + dy2

)
, (6.11)

where µ a mass scale. There is a singularity at r = 0 (or y = 0). This singularity is

harmless if we assume that y parametrise S1/Z2 with y0 = 0 ≤ y ≤ yπ = πR. In this

case we find the background metric

ds2 =
(

1 + µ|y|
)2/3 (

ηmndxmdxn + dy2
)
, µ > 0, (6.12)

which is supported by an energy-momentum tensor of the form

Tmn = ηmn

(
Λ0δ(y − y0) + Λπδ(y − yπ)

)
, Tm5 = T55 = 0, (6.13)

where

Λ0 = − 2µ

M3
5

, Λπ =
1

M3
5

2µ

1 + µπR
. (6.14)

This is the energy-momentum tensor of a planar branes sitting at y = y0 and y = yπ
with corresponding tensions Λ0 and Λπ.

• Both V0 and V1 different from zero: in this case, for V0, V1 > 0, we find that there

is a local maximum of the potential corresponding to the AdS5 or RS-background

with cosmological constant Λ = −4k2
√
V0V1. The background is written in conformal

coordinates as

ds2 =
1

(1 + µ|y|)2

(
ηmndxmdxn + dy2

)
, (6.15)

where µ =
√
−Λ/6.
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Let us now deconstruct the S1/Z2 direction for the simple model of an scalar and a

U(1) theory on a background of the form

ds2 = a2(y)
(
ηmndxmdxn + dy2

)
. (6.16)

and with action

S = −1

2

∫
d4x

∫ yπ

y0

dy

{
a3(y)(∂µφ)2 +

1

2
a(y)F 2

µν

}
= −1

2

∫
d4x

∫ yπ

y0

dy

{
(∂mφ)2 +

1

2
F 2
mn + a3(∂ya

−3/2φ)2 + a(∂ya
−1/2Am)

}
, (6.17)

where we have assumed Dirichlet conditions for Ay and a(y) = (1 + µ|y|)1/3. After dis-

cretising the y direction with y = ja, y0 = 0, yπ = Na, we may write the action as

S = −1

2

∫
d4x

{
N∑
j=0

[
(∂mφj)

2 +
1

2
F 2
jmn

]

+
1

a

N−1∑
j=0

{
[φj − qj+1φj+1]2 +

[
Anj − q1/3

j+1An,j+1

]2
}}

, (6.18)

where

qj =

(
a(j)

a(j + 1)

)3/2

. (6.19)

This is the form of a deconstructed theory [52–55]. For the model with V1 = 0 we find that

qj+1 =

(
jµyπ +N

(j + 1)µyπ +N

)3/2

. (6.20)

Similarly, deconstructing the S1/Z2 direction y for the RS, we arrive at the same eq. (6.18)

with

qj+1 =

(
(j + 1)µyπ +N

jµyπ +N

)3

. (6.21)

Therefore, only the linear dilaton background when deconstructed gives a side-independent

q for flat boundary branes [3, 4]. In fact it can be proved that this is the only case with

a site-independent q-factor. Indeed, solving the recurrence eq. (6.19) with initial condition

a(0) = 1 and constant q (q0 = q1 = · · · , qN = q), we find

a(j) = q−
2
3
j . (6.22)

In the continuum limit, we get then

a(y) = e
2
3
ky, (6.23)

where k = (log q)/3, i.e. the CCW metric. In other words, only the CCW has a site

independent q-factor. However, site-dependent q has appeared also in CCW with curved

boundary branes [4, 15].
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Let us now calculate the D = 4 Planck mass MP

M2
pl = 2M3

5

∫ yπ

0
a3(y)dy =



M3
5

k

(
e2kyπ − 1

)
V0 = 0 (CCW-linear dilaton),

M3
5 yπ(µyπ + 2) V1 = 0 (no-scale),

M3
5

µ

2 + µyπ
1 + µyπ

V0 6= 0 and V1 6= 0 (RS).

(6.24)

The compactification radius rc turns out to be

rc =

∫ yπ

0
a(y)dy =



3

2k

(
e

2kyπ
3 − 1

)
V0 = 0 (CCW-linear dilaton),

3

4µ

{
(1 + µyπ)4/3 − 1

}
V1 = 0 (no-scale),

1

µ
ln(1 + µyπ) V0 6= 0 and V1 6= 0 (RS).

(6.25)

Then, in terms of the physical rc scale, the D = 4 Planck mass is written as

M2
pl =



M3
5

k

{(
1 +

2k

3
rc

)3

− 1

}
V0 = 0 (CCW-linear dilaton),

M3
5

µ

{(
1 +

4µ

3
rc

)3/2

− 1

)
V1 = 0 (no-scale),

M3
5

µ

(
1− e−µrc

)
V0 6= 0 and V1 6= 0 (RS).

(6.26)

If expressed in terms of the physical radius rc only in the RS compactification the planckian

mass has an exponential dependence. In all other cases, and above all in the CCW, there

is only a power-law dependence. This is analogous to what happens in inflationary models,

where an exact exponential expansion in the scale factor is obtained if the energy density

of the universe is dominated exactly by a cosmological constant, while a power-law, but

still accelerated, expansion can be obtained as long as the equation of state has an index

smaller than −1/3.

Therefore, we see that only in the case of the RS we have an exponential dependence

of the D = 4 Planck mass on the compactification radius. In the other two cases, the

dependence is just power law [56]. However, it is interesting that although we have one

extra dimension and the D = 4 Planck mass would expected to depend only linearly on the

compactification radius, in the case of the CCW a much stronger cubic dependance (as if we

have two additional hidden dimension) and a fractional dependence in the complementary

case. In addition, for values of M5 and k

M5 ∼ 10 TeV, k ∼ 1 TeV, (6.27)

the compactification radius turns out to be

rc = 1 GeV−1, (6.28)
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which is about a tenth of the proton size. In the limit of large compactification radius rc,

the D = 4 Planck mass scales as

M2
pl ≈



M3
5

k

(
2k

3

)3

r3
c V0 = 0 (CCW-linear dilaton),

M3
5

µ

(
4µ

3

)3/2

r3/2
c V1 = 0 (no-scale),

M3
5

µ
V0 6= 0 and V1 6= 0 (RS).

(6.29)

In the other limit krc � 1 or µrc � 1 all models satisfy the usual M2
pl ≈ M3

5 rc relation.

The dependence of the masses KK states on rc is peculiar for the CCW. A massless scalar

φ obeys the equation

2φ = 0, (6.30)

which on the CCW background (4.13) is explicitly written as

∂m∂
mφ+ 3σ′∂yφ+ ∂2

yφ = 0. (6.31)

We may express φ as φ(x, y) = eipmx
m
e−

3
2
σψ(y) where ψ satisfies

ψ′′ −
(

9

4
(σ′)2 +

3

2
σ′′
)
ψ = p2ψ, (6.32)

and therefore, the KK states are the eigenvalues of the

ψ′′n −
{
k2 + 2kδ(y)− 2kδ(y − yπ)

}
ψn = −m2

nψn. (6.33)

Then even eigenfunctions ψn satisfy the boundary condition

ψ′n − kψ
∣∣
y=0,yπ

= 0. (6.34)

The boundary condition at y = 0 leads to

ψn =
1

Nn

{
cos(

√
m2
n − k2|y|)− k√

m2
n − k2

sin(
√
m2
n − k2|y|)

}
, (6.35)

whereas the condition at y = yπ gives

sin(
√
m2
n − k2yp) = 0, (6.36)

from where the KK spectrum [43]

m2
n =

n2π2

y2
π

+ k2, (6.37)

follows. The same spectrum is also found for odd eigenfunctions with Dirichlet boundary

conditions. In terms of the compactification scale, the KK masses are expressed as

m2
n =

4k2π2n2

9 log(1 + 2krc/3)2
+ k2. (6.38)
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Note that in the krc � 1 limit we get the usual scaling of the KK masses with rc

m2
n ≈

π2n2

r2
c

+ k2, (6.39)

whereas in the opposite limit krc � 1 we get

m2
n =

4k2π2n2

9 log(2krc/3)2
+ k2. (6.40)

The shift in the KK mass spectrum by k2 is due to the minimal coupling of the scalar to

gravity. For a conformally coupled scalar in five dimensions,

2φ− 3

16
Rφ = 0, (6.41)

we find that on the CCW background where

R = −16e−2σ/3k
(
k + 2kδ(y)− kδ(y − yπ)

)
, (6.42)

eq. (6.33) is written simply as

ψ′′n = −m2
nψn, (6.43)

and the KK spectrum turns out then to be (with Neumann boundary condition)

mn =
2πk n

3 log(1 + 2krc/3)
. (6.44)

7 Conclusions

We have studied the CCW model in a D = 5, N = 2 supergravity framework. The minimal

embedding requires one D = 5 vector multiplet, the scalar of which is the CCW scalar.

After gauging the SU(2) R-symmetry of the N = 2 theory, a two-parameter potential for

the scalar emerges.

This potential accommodates three-models, the RS model when both parameters are

non-vanishing, the CCW when one parameter vanishes and a third model when the second

parameter vanishes and leads in fact to a vanishing potential. For the CCW in particular,

we have shown that it preserves half of the supersymmetries and therefore, the D = 4

effective theory is D = 4, N = 1 supergravity. We have also shown that, when the D = 5

theory has D = 4 boundary branes, these branes do not break completely supersymmetry,

but for the CCW background only half of the supersymmetries are broken. Hence, again

the boundary theory is N = 1 D = 4 supergravity.

We have calculated the compactification radius of these models and when the D = 4

Planck mass is expressed in terms of the compactification radius, it follows that only

the RS model has an exponential dependence on the latter. The other two models, the

CCW and the third model have a power law dependence on the compactification radius.

However, in the case of the CCW, the D = 4 Planck mass dependence is quite strong on
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the compactification radius in the sense that it scales with the cube of it and not linearly

as it would be expected for one extra dimension. Thus, it seems that the CCW looks as

if there were three extra dimensions. We have also calculated the masses of the KK states

for a scalar in CCW background and we found that they depend on the inverse of the

logarithm of the compactification scale.
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