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1 Introduction

The AdS/CFT correspondence conjectures that certain gauge theories have a dual descrip-
tion in terms of string theories. The first case of the AdS/CFT correspondence states that
N = 4 supersymmetric Yang-Mills theory on a four-dimensional flat spacetime is dual to
type IIB superstring theory propagating in AdS5 × S5 [1]. One of the most important
features of the AdS/CFT correspondence is its integrability which in the string theory
side is associated to the existence of a Lax connection ensuring the existence of an infinite
number of conserved charges. In the case of AdS5×S5 superstring, the theory is described
by a σ-model on the supercoset PSU(2,2|4)

SO(1,4)×SO(5) [2] and the Z4-grading of the psu(2, 2|4) su-
peralgebra is an essential ingredient to get a Lax connection [3]. The same happens for
the AdS4 × CP3 superstrings [4], partially described by the supercoset UOSp(2,2|6)

SO(1,3)×U(3) [5, 6],
which also has Z4-grading and is integrable [5].

Another way to get integrable theories is to start with an integrable model and then
deformed it in such a way that integrability is preserved. This is accomplished by introduc-
ing r-matrices that satisfy the Yang-Baxter equation [7]. When applied to the AdS5 × S5

case [8, 9] the superstring will propagate on what is called a η-deformed background which
is not a solution of the standard type IIB supergravity equations [10, 11], leading to the
proposal of generalized supergravities [12, 13].

Deformations based on r-matrices that satisfy the classical Yang-Baxter equation
(CYBE) can also be considered [14]. When applied to superstrings in AdS5 × S5 [15–19]
they generate type IIB supergravity backgrounds like the Lunin-Maldacena-Frolov [20, 21],
Hashimoto-Itzhaki-Maldacena-Russo [22, 23]1 and Schrödinger spacetimes [25–28] which

1This background was also obtained as the η → 0 limit of the η-deformed AdS5 × S5 background [10]
after a rescaling [11, 24].
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were previously obtained by TsT transformations [29].2 In terms of TsT transformations,
these backgrounds can be obtained by considering two-tori with directions either along
the brane or transverse to it, or with a direction along the brane and the other transverse
to it [35]. In the first case, the two-torus along the brane will be generated by momenta
operators, which introduce noncommutativity in the dual field theory,3 while the two-torus
in the transverse space to the brane will be along the U(1) directions generated by the Car-
tan generators of the isometry group. These type of U(1) × U(1)-deformations are called
β-deformations. Now, if the two-torus has directions one along the brane and the other
transverse to it, taking a momentum and a Cartan generator, in the field theory side it
leads to dipole field theories [40, 41]. Another possibility is to take a null direction along the
brane and a U(1) direction transverse to it. This generates gravity duals of nonrelativistic
field theories which have Schrödinger symmetry [26, 42–46]. The TsT procedure in this lat-
ter case is actually a TsssT transformation called Melvin twist [28, 47]. In general, having
more than one U(1) direction in the transverse space allow us to construct the transverse
two-torus in several ways so we get different deformations or a combinations of them. These
Yang-Baxter deformations can also be applied to AdS4 × CP3 superstrings [48, 49] giving
rise to gravity duals for the noncommutative, dipole and β-deformed ABJM theory [35]. It
was also found an Yang-Baxter deformation that generates Schrödinger spacetimes which
correspond to a family of gravity duals of nonrelativistic ABJM theory [49].

In this paper we will consider the duality between type IIB superstring theory in
AdS5 × T 1,1 and N = 1 SU(N) × SU(N) Yang-Mills theory in four dimensions, also
known as Klebanov-Witten theory [50]. The internal T 1,1 manifold has SU(2) × SU(2) ×
U(1)R symmetry, instead of the SU(4)R symmetry of the AdS5×S5 case, leading to a less
supersymmetric dual field theory. It has been argued that AdS5 × T 1,1 is non-integrable
since some wrapping string configurations present chaotic behavior [51, 52].4 Even so, an
integrable Yang-Baxter deformation of AdS5 × T 1,1 was found [54] which agrees with the
gravity dual of the β-deformed gauge theory obtained by TsT transformations [55]. In this
paper we will discuss two other types of Yang-Baxter deformations generated by commuting
r-matrices. One gives rise to a background dual to a three-parameter dipole deformed
Klebanov-Witten gauge theory and the other is dual to a nonrelativistic Klebanov-Witten
gauge theory on a Schrödinger spacetime.

This paper is organized as follows. In section 2 we build the coset for AdS5 × T 1,1

paying attention to the relevant subalgebras that will be used. In section 3 we discuss the
new backgrounds obtained by deforming AdS5 × T 1,1. Finally, in section 4, we discuss our
results and present future perspectives.

2It should be remarked that these deformations are generated by abelian r-matrices which, from the
TsT side, involve commuting isometries. More general r-matrices, however, are associated to non-abelian
T-dualities [30–34].

3It is argued in [36–39] that noncommutativity, in general, can be introduced by considering conformal
twists, or in terms of Yang-Baxter deformations by taking generators of the conformal algebra.

4Notice, however, that a coset construction for T 1,1 manifolds based on affine Gaudin models was found
to be integrable [53].
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2 Coset construction of AdS5 × T 1,1

The Klebanov-Witten gauge theory is obtained by putting N D3-branes on the singu-
larity of M1,4 × Y6, where M1,4 is the four-dimensional Minkowski space and Y6 a Ricci
flat Calabi-Yau cone C(X5) with base X5 [50]. Near the horizon the geometry becomes
AdS5 × X5, where X5 is a compact Sasaki-Einstein manifold, i.e., an odd-dimensional
Riemannian manifold such that its cone C(X5) is a Calabi-Yau flat manifold [56]. Tak-
ing X5 as T 1,1,5 only 1/4 of the supersymmetries are preserved so that we have N = 1
supersymmetry in four dimensions. The superpotential has a SU(2)× SU(2)× U(1) sym-
metry, with U(1) being part of the R-symmetry that gives the N = 1 supersymmetry,
and SU(2) × SU(2) being a flavor symmetry which is not included in the N = 1 super-
conformal group in four dimensions PSU(2, 2|1) [58–60]. Thus, the full isometry group is
PSU(2, 2|1)×SU(2)×SU(2). The bosonic part of the superalgebra g = psu(2, 2|1) on which
we construct the σ-model is su(2, 4) ⊗ u(1). The generators of psu(2, 2|1) can be written
as supermatrices which are formed by blocks that correspond to bosonic (diagonal) and
fermionic (anti-diagonal) generators,

M(4|1)×(4|1) =
(
so(2, 4) Q

Q u(1)R

)
. (2.1)

The isometry group of AdS5 × T 1,1 is given by the coset

AdS5 × T 1,1 ≡ SO(2, 4)
SO(1, 4) ×

SU(2)× SU(2)
U(1) , (2.2)

which is not the bosonic part of any supercoset [61, 62]. Besides that, the coset for T 1,1 does
not lead to the standard Sasaki-Einstein metric for T 1,1. This happens because neither the
bosonic subalgebra su(2) ⊗ u(1) nor the isometry group (2.2) captures the full isometries
of the theory. All this can be overcome by extending the coset (2.2) to [54]

AdS5 × T 1,1 ≡ SO(2, 4)
SO(1, 4) ×

SU(2)× SU(2)×U(1)R
U(1)×U(1) , (2.3)

where the U(1)R now appears as part of the global symmetries and a second U(1) was
added in order to preserve the number of parameters that describe the space. Thus, in
terms of this extended Z2-graded algebra, the symmetric coset for AdS5 × T 1,1 is taken as

so(2,4)⊕su(2)⊕su(2)⊕u(1) =
g(0)︷ ︸︸ ︷

(so(1,4)⊕u(1)⊕u(1))⊕

g(2)=g/g(0)︷ ︸︸ ︷(
so(2,4)⊕su(2)⊕su(2)⊕u(1)R

so(1,4)⊕u(1)⊕u(1)

)
.

(2.4)
The supermatrix has the block structure

M(8|1)×(8|1) =

 so(2, 4) 0 Q

0 su(2)⊕ su(2) 0
Q 0 u(1)R

 , (2.5)

5This space belongs to a general class of Einstein spaces called T p,q [57] described by the coset SU(2)×
SU(2)/U(1), where the U(1) is generated by pσL3 + qσR3 , where σLi and σRj are the generators of the left
and right SU(2)’s, respectively.
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where the dashed lines split the algebras corresponding to the subspaces AdS5 and T 1,1,
while the solid lines split the M8×8 and M1×1 bosonic blocks.

The basis of so(2, 4)⊕ su(2)⊕ su(2)⊕u(1) that we will consider is composed of so(2, 4)
generators denoted by Γµ, Γ5, Mµν and Mµ5, µ = 0, 1, 2, 3, which, when written as super-
matrices become

Γµ =


γµ

0
0

0

, Γ5 =


γ5

0
0

0

, Mµν =


mµν

0
0

0

, Mµ5 =


mµ5

0
0

0

,
(2.6)

and su(2)⊕ su(2)⊕ u(1) generators denoted by Xa,Ya, a = 1, 2, 3 and M, with superma-
trices

Xa = − i2


0
σa

0
0

, Ya = − i2


0

0
σa

0

, M = − i2


0

0
0

1

, (2.7)

where γµ, γ5, mµν and mµ5 are the fifteen 4×4 matrices for the generators of isometries of
AdS5 (detailed in appendix A) and σa are the conventional 2× 2 Pauli matrices of su(2).
The commutation rules and supertraces are then

[Mij ,Mk`] = ηi`Mjk + ηjkMi` − ηikMj` − ηj`Mik, (2.8)

where i, j, k, ` = 0, 1, . . . , 5, and

[Xa,Xb] = ε c
ab Xc, [Ya,Yb] = ε c

ab Yc,

Str (XaXb) = −1
2δab, Str (YaYb) = −1

2δab,

Str (MM) = 1
4 ,

(2.9)

with ηij = diag (−,+,+,+,−,+,+,+,+,+).
The algebra for the global symmetry of the AdS5 space is

so(2, 4) = so(1, 4)⊕ so(2, 4)
so(1, 4) , (2.10)

with basis
so(2, 4)
so(1, 4) = span {Km} , m = 0, 1, 2, 3, 4, (2.11)

where
K0 = 1

2Γ0, K1 = 1
2Γ1, K2 = 1

2Γ2, K3 = 1
2Γ3, K4 = 1

2Γ5, (2.12)

and
Str (KmKn) = ηmn, m, n = 0, 1, 2, 3, 4. (2.13)
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The so(1, 4) generators are {M01,M02,M03,M12,M13,M23,M05,M15,M25,M35}, and an
appropriate coset representative for AdS5 is

gAdS5 = exp
(
x0p0 + x1p1 + x2p2 + x3p3

)
exp (log zD) , (2.14)

where
D = 1

2Γ5, pµ = 1
2Γµ + Mµ5 , µ = 0, 1, 2, 3. (2.15)

The T 1,1 space can be written as the coset in

su(2)⊕ su(2)⊕ u(1) = u(1)⊕ u(1)⊕ su(2)⊕ su(2)⊕ u(1)
u(1)⊕ u(1) . (2.16)

with basis
su(2)⊕ su(2)⊕ u(1)

u(1)⊕ u(1) = span {Km} , m = 5, . . . , 9, (2.17)

where

K5 =
√

2
3X1, K6 =

√
2
3X2, K7 =

√
2
3Y1,

K8 =
√

2
3Y2, K9 = 2

3H,

(2.18)

with
H = X3 −Y3 + M. (2.19)

We also have
Str (KmKn) = −1

3δmn, m, n = 5, . . . , 9. (2.20)

The generators of u(1)⊕ u(1) are {T1,T2} with

T1 = X3 + Y3, T2 = X3 −Y3 + 4M, (2.21)

where T1 generates the original U(1) in (2.2). An appropriate coset representative is then

gT 1,1 = exp (φ1X1 + φ2X2 + 2φ3M) exp (θ1X2 + (θ2 + π)Y2) . (2.22)

The coset representative that will allow use for AdS4 × T 1,1 is then

g = gAdS5 × gT 1,1 . (2.23)

The projector P2 on g(2) can be defined as

P2 (X) =
4∑

m=0

Str (KmX)
Str (KmKm)Km −

1
3

9∑
m=5

Str (KmX)
Str (KmKm)Km. (2.24)

Applied to A = g−1dg, the Maurer-Cartan one-form, we get

P2 (A) = EmKm, m = 0, 1, . . . , 9, (2.25)

– 5 –
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with

E0 = dx0

z
, E1 = dx1

z
, E2 = dx2

z
, E3 = dx3

z
, E4 = dz

z
,

E5 = 1√
6

sinθ1dφ1, E6 =− 1√
6
dθ1, E7 =− 1√

6
sinθ2dφ2, E8 =− 1√

6
dθ2,

E9 =−1
3 (cosθ1dφ1+cosθ2dφ2+dφ3) . (2.26)

Then, we can compute the AdS5 × T 1,1 metric from

Str (AP2 (A)) = EmStr (AKm) , m = 0, . . . , 9 , (2.27)

to get
ds2 = ds2

AdS5 + ds2
T 1,1 , (2.28)

where
ds2
AdS5 = 1

z2

(
−dx2

0 + dx2
1 + dx2

2 + dx2
3 + dz2

)
, (2.29)

and
ds2
T 1,1 = 1

6
(
dθ2

1 + sin2θ1dφ
2
1

)
+ 1

6
(
dθ2

2 + sin2θ2dφ
2
2

)
+1

9 (cos θ1dφ1 + cos θ2dφ2 + dφ3)2 ,
(2.30)

where (θ1, φ1) and (θ2, φ2) parametrize the two spheres of T 1,1 and 0 ≤ φ3 ≤ 2π.
The metric (2.30) was first obtained in [63] and describes the basis of a six-dimensional

cone. It can be understood as the intersection of a cone and a sphere in C4 such that its
topology is S2 × S3, and that the metric is a U(1) bundle over S2 × S2. Besides that,
SO(4) ∼= SU(2)× SU(2) acts transitively on S2 × S3 and U(1) leaves each point of it fixed
so that T 1,1 is described by the coset (SU(2)× SU(2)) /U(1).

3 Yang-Baxter deformed backgrounds

In this section we present some r-matrices satisfying the CYBE and build the corresponding
deformed background identifying its gravity dual. As mentioned before, the background
can be deformed partially by choosing generators on each subspace. The bosonic Yang-
Baxter deformed action is [8]

S = −1
2

∫
d2σ

(
γαβ − εαβ

)
Str (AαP2 (Jβ)) , (3.1)

where A = g−1dg ∈ g, γαβ is the worldsheet metric and εαβ is the Levi-Civita symbol. P2
was defined in (2.24) and the deformed current one-form is

J = 1
1− 2ηRg ◦ P2

A, (3.2)

where η is the deformation parameter. The dressed R operator Rg is defined as

Rg (M) = Ad−1
g ◦R ◦Adg (M) = g−1R(gMg−1)g. (3.3)

– 6 –
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Moreover, we can compute P2 (J) in (3.1) by defining the action of P2 as

P2 (A) = EmKm, P2 (J) = jmKm. (3.4)

The coefficients jm can be calculated from

jm = EnC m
n , (3.5)

where the matrix components C n
m are those of

C = (I− 2ηΛ)−1 . (3.6)

The matrix Λ has components defined as

P2 (Rg (Km)) = Λ n
m Kn. (3.7)

Then, from (3.1), we can read off the metric and the B-field as [49]

ds2 = Str (AP2 (J)) = jmStr (AKm) = EmC n
m Str (AKn) , (3.8)

B = Str (A ∧ P2 (J)) = −jm ∧ Str (AKm) = EmC n
m ∧ Str (AKn) . (3.9)

The three-parameter β-deformed of T 1,1 was obtained in [54] by a Yang-Baxter defor-
mation and in [55] by a TsT transformation in perfect agreement. In this case the r-matrix
was

r = µ1X3 ∧M + µ2M ∧Y3 + µ3X3 ∧Y3. (3.10)

In the following subsections we will introduce two more r-matrices and the corresponding
deformations they produce.

3.1 Dipole deformed Klebanov-Witten theory

Let us first consider an Abelian r-matrix like

r = p2 ∧ (µ1X3 + µ2Y3 + µ3M) , (3.11)

where X3, Y3 and M are the Cartan generators of su(2)⊕su(2)⊕u(1) and µi, i = 1, 2, 3, are
the deformation parameters.6 In this case (3.11) combines generators of both subspaces,
which will lead to a deformation of the entire AdS5 × T 1,1 background. The nonzero
components of Λ n

m in (3.7) are

Λ 5
3 = −Λ 3

5 = − 1√
6
µ1 sin θ1

z
,

Λ 7
3 = −Λ 3

7 = 1√
6
µ2 sin θ2

z
,

Λ 9
3 = −Λ 3

9 = 1
6

(µ3 − 2µ1 cos θ1 − 2µ2 cos θ2)
z

,

(3.12)

6The deformation parameter η can always be absorbed in the r-matrix such that it is present in the µi’s.
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while the nonzero elements of C n
m , from (3.6), are

C 0
0 = C 1

1 = C 2
2 = C 4

4 = C 6
6 = C 8

8 = 1,
C 3

3 =M,

C 3
5 = −C 5

3 =Mf1,

C 3
7 = −C 7

3 = −Mf2,

C 3
9 = −C 9

3 =Mf3,

C 5
5 =M

(
1 + f2

2 + f2
3

)
,

C 5
7 = C 7

5 =Mf1f2,

C 5
9 = C 9

5 = −Mf1f3,

C 7
7 =M

(
1 + f2

1 + f2
3

)
,

C 7
9 = C 9

7 =Mf2f3,

C 9
9 =M

(
1 + f2

1 + f2
2

)
,

(3.13)

where
M−1 = 1 + f2

1 + f2
2 + f2

3 , (3.14)

with

f1 =
√

2
3
µ1 sin θ1

z
, f2 =

√
2
3
µ2 sin θ2

z
,

f3 = µ3 − 2µ1 cos θ1 − 2µ2 cos θ2
3z .

(3.15)

The deformed metric can be obtained from (3.8)

ds2 = 1
z2

(
−dx2

0+dx2
1+dx2

2+Mdx2
3+dz2

)
+ 1

6
(
dθ2

1 +M
(
1+f2

2 +f2
3

)
sin2θ1dφ

2
1

)
+ 1

6
(
dθ2

2 +M
(
1+f2

1 +f2
3

)
sin2θ2dφ

2
2

)
+M9

(
1+f2

1 +f2
2

)
(cosθ1dφ1+cosθ2dφ2+dφ3)2

+
√

6M
9 f3 (f1 sinθ1dφ1+f2 sinθ2dφ2)(cosθ1dφ1+cosθ2dφ2+dφ3)

−M3 f1f2 sinθ1 sinθ2dφ1dφ2,

(3.16)

and the B-field from (3.9),

B = −M3z
(
2f3 cos θ1 −

√
6f1 sin θ1

)
dx3 ∧ dφ1

− M3z
(
2f3 cos θ2 −

√
6f2 sin θ2

)
dx3 ∧ dφ2

− 2M
3z f3dx

3 ∧ dφ3.

(3.17)

– 8 –
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It is worth mentioning that the choice of generators in (3.11) is dictated by the place
where we want put the two-tori from the TsT perspective. In the present case we have one
coordinate in AdS5 and a combination of the U(1)’s in T 1,1. The resulting metric (3.16)
has deformations along the x3-direction in AdS5 and along the angles φ1, φ2 and φ3 in T 1,1.

3.2 Nonrelativistic Klebanov-Witten theory

In order to construct this deformation we must write the AdS5 space in light-cone coordi-
nates. Thus, the coset representative is now

gAdS5 = exp
(
x−p− + x+p+ + x1p1 + x2p2

)
exp (log zD) , (3.18)

with

p± = 1√
2

(p0 ± p3) , x± = 1√
2

(
x0 ± x3

)
, (3.19)

while for the T 1,1 we keep the same form as in (2.22). The AdS5 metric is then

ds2 = 1
z2

(
−2dx+dx− + dx2

1 + dx2
2 + dz2

)
, (3.20)

while the T 1,1 metric is given by (2.30).
Let us now consider the r-matrix (3.11) with p2 replaced by p−,7

r = p− ∧ (µ1X3 + µ2Y3 + µ3M) , (3.21)

where X3, Y3 and M are Cartan generators of the algebra. Taking the same steps as in
the previous case we find that the nonzero components of Λ n

m are

Λ 5
0 = Λ 0

5 = 1
2
√

3
µ1 sin θ1

z
,

Λ 7
0 = Λ 0

7 = − 1
2
√

3
µ2 sin θ2

z
,

Λ 9
0 = Λ 0

9 = 1
6
√

2
µ3 − 2µ1 cos θ1 − 2µ2 cos θ2

z
,

Λ 5
3 = −Λ 3

5 = 1
2
√

3
µ1 sin θ1

z
,

Λ 7
3 = −Λ 3

7 = − 1
2
√

3
µ2 sin θ2

z
,

Λ 9
3 = −Λ 3

9 = 1
6
√

2
µ3 − 2µ1 cos θ1 − 2µ2 cos θ2

z
,

(3.22)

7In this case we identify x− ∼ x− + 2πr−, such that p− = i∂x− can be interpreted as the number
operator p− = N/r−. Moreover, if we consider x+ to be the time then p+ is the energy [64].
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while the nonzero elements of C n
m are now

C 1
1 = C 2

2 = C 4
4 = C 5

5 = C 6
6 = C 7

7 = C 8
8 = C 9

9 = 1,
C 0

0 = 1 + f2
1 + f2

2 + f2
3 ,

C 0
3 = −C 3

0 = −
(
f2

1 + f2
2 + f2

3

)
,

C 0
5 = C 5

0 = f1,

C 0
7 = C 7

0 = −f2,

C 0
9 = C 9

0 = f3,

C 3
3 = 1−

(
f2

1 + f2
2 + f2

3

)
,

C 3
5 = −C 5

3 = −f1,

C 3
7 = −C 7

3 = f2,

C 3
9 = −C 9

3 = −f3,

(3.23)

where

f1 = 1√
3
µ1 sin θ1

z
, f2 = 1√

3
µ2 sin θ2

z
,

f3 = 1
3
√

2
µ3 − 2µ1 cos θ1 − 2µ2 cos θ2

z
.

(3.24)

The deformed metric is then

ds2 = 1
z2

(
−2dx+dx− + dx2

1 + dx2
2 + dz2

)
− 2M

dx2
+

z2 + ds2
T 1,1 , (3.25)

where now
M = f2

1 + f2
2 + f2

3 , (3.26)

while the deformed B-field is

B = − 2
3z
(√

2f3 cos θ1 +
√

3f1 sin θ1
)
dx+ ∧ dφ1

− 2
3z
(√

2f3 cos θ2 +
√

3f2 sin θ2
)
dx+ ∧ dφ2

− 2
√

2
3z f3dx+ ∧ dφ3.

(3.27)

The first two terms in (3.25) is the metric of a Schrödinger spacetime.8 The choice of
generators in (3.21) is very similar to the one in (3.11). Now, however, the two-tori defined
by the TsT transformation takes the x− coordinate and a combination of the internal
U(1)’s in T 1,1 and does not introduce any noncommutativity in the dual field theory. The
metric (3.25) coincide with the Sch5 × T 1,1 obtained in [47] for µ1 = n1/2, µ2 = n2/2 and
µ3 = −n3, where ni (i = 1, 2, 3) are the deformation parameters.

8The Schrödinger symmetry is the maximal symmetry group of the free Schrödinger equation. It is
the nonrelativistic version of the conformal algebra [42, 43]. This symmetry is realized geometrically as
Schrödinger spacetimes.

– 10 –



J
H
E
P
0
2
(
2
0
2
1
)
1
2
6

The Schrödinger spacetime in (3.25) has dynamical exponent two [44, 45].9 Schrödinger
backgrounds with dynamical exponent z are argued to be integrable for z = 1, 2, 3, and
non-integrable for z = 4, 5, 6 [65]. It has been argued that there are several nonrelativistic
gravity duals with Schrödinger symmetry [64]. The number of Sch5 × T 1,1 spaces is equal
to the degeneracy of a scalar harmonic function Φ(`1,`2,r)

(0) on T 1,1, with quantum numbers
(`1, `2, r), for which the Laplace-Beltrami equation is −∇2Φ(`1,`2,r)

(0) = λ(`1,`2,r)Φ
(`1,`2,r)
(0) with

λ(`1,`2,r) = 6
(
`1 (`1 + 1) + `2 (`2 + 1)− r2/8

)
.10 Since `1, `2 label standard spherical har-

monics on the S2’s of T 1,1 the multiplicities of Φ(`1,`2,r)
(0) are (2|`1|+ 1) and (2|`2|+ 1) [64].

Our background has11 Φ = 2Mz2 and −∇2Φ(`1,`2,r)
(0) = 12Φ(`1,`2,r)

(0) , so that (`1, `2, r) takes
two values, (1, 0, 0) and (0, 1, 0). Then the total degeneracy of Φ(0) is six so that we have
a family of six Sch5 × T 1,1 spacetimes [64]. This kind of spacetimes was recently studied
in [67, 68].

4 Conclusions

In this paper we have derived the metric and the B-field for the gravity duals of the
dipole-deformed and the nonrelativistic Klebanov-Witten theory as Yang-Baxter deforma-
tions. We made use of an extended coset description of AdS5 × T 1,1 which simplified
the computation of the undeformed background and its deformation. We considered two
abelian r-matrices with three-parameter satisfying the classical Yang-Baxter equation. The
first r-matrix was composed by a momentum generator in AdS and a combination of the
three U(1)’s generators of the internal space which lead to the gravity dual of the dipole-
deformed Klebanov-Witten theory which should be obtained by TsT transformation of the
AdS5× T 1,1 background. In second case we have also a momentum operator in AdS and a
combination of the three U(1) generators in T 1,1. It produced the Sch5× T 1,1 background
which, having Schrödinger symmetry, corresponds to the nonrelativistic Klebanov-Witten
theory [45].

The next step is to compute the RR fields of the deformed backgrounds. To get them
we have to consider the fermionic sector as in [19]. The fact that we have not included
the fermionic sector of the supercoset does not mean that we are unable to check the
supergravity equations for the new backgrounds. Since the r-matrices that we used in the
bosonic background are abelian they satisfy trivially the unimodularity condition, which
is a sufficient for the background to satisfy the supergravity equations [12, 13, 33].

Another interesting case which deserves further study is the dual of the dipole defor-
mation of N = 1 SU(N)× SU(N) Yang-Mills theory as well as its nonrelativistic limits.

9The dynamical z factor is the exponent in the power of the radial direction in the z−2zdx2
+ term. To

have Schrödinger symmetry we must have z = 2. The relativistic symmetry corresponds to z = 1.
10The harmonic function is denoted in general as Φ(`1,`2,r)

(q) , where `1, `2 are labels for the SU(2)’s, and r
and q are U(1) charges [58, 66].

11In [47], the harmonic function Φ is defined as the non-negative length square of the Killing vector K
on T 1,1, Φ = ‖K‖2 = gijKiKj with i, j = 1, 2, 3, where K = (µ1∂φ1 , µ2∂φ2 , µ3∂φ3 ).

– 11 –



J
H
E
P
0
2
(
2
0
2
1
)
1
2
6

A A basis for so(2, 4) algebra

Let us choose the following representation for γµ

γ0 =
(

0 σ3
−σ3 0

)
, γ1 =

(
0 −iσ2
iσ2 0

)
,

γ2 =
(

0 iσ1
−iσ1 0

)
, γ3 =

(
0 I2
−I2 0

)
,

(A.1)

and

γ5 =
(
I2 0
0 −I2

)
. (A.2)

We can also define
mµν = 1

4 [γµ, γν ] , mµ5 = 1
4 [γµ, γ5] , (A.3)

and

pµ = 1
2γµ −mµ5,

kν = 1
2γµ +mµ5,

D = 1
2γ5. (A.4)

The conformal algebra SO(2, 4) is then

[mµν ,mρσ] = ηµσmνρ + ηνρmµσ − ηµρmνσ − ηνσmµρ,

[mµν , D] = 0,
[D, pµ] = pµ,

[D, kµ] = −kµ, (A.5)
[kµ, pν ] = 2ηµνD + 2mµν ,

[mµν , pρ] = −ηµρPν + ηνρPµ,

[mµν , kρ] = −ηµρkν + ηνρkµ.
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