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Abstract: We study dynamic processes through which the scalar hair of black holes is

generated or detached in a theory with a scalar field non-minimally coupled to Gauss-

Bonnet and Ricci scalar invariants. We concentrate on the nonlinear temporal evolution

of a far-from-equilibrium gravitational system. In our simulations, we choose the initial

spacetime to be either a bald Schwarzschild or a scalarized spherically symmetric black

hole. Succeeding continuous accretion of the scalar field onto the original black hole, the

final fate of the system displays intriguing features, which depend on the initial configu-

rations, strengths of the perturbation, and specific metric parameters. In addition to the

scalarization process through which the bald black hole addresses scalar hair, we observe

the dynamical descalarization, which removes scalar hair from an original hairy hole after

continuous scalar field accretion. We examine the temporal evolution of the scalar field,

the metrics, and the Misner-Sharp mass of the spacetime and exhibit rich phase structures

through nonlinear dynamical processes.
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1 Introduction and main result

One of the fascinating questions in General Relativity (GR) is the black hole’s uniqueness

theorem, also referred to as the no-hair conjecture [1–5]. It states that the black hole

solutions are entirely characterized by three quantities, namely, the mass, electric charge,

and angular momentum. The applicability of the no-hair conjecture has been extended

to the Brans-Dicke theories, a few classes of scalar-tensor theories, and Gallilen models of

gravity [6–8]. In recent years, there has been a surge of interest in black hole solutions

in the presence of a nonlinear field. In particular, gravitational theories beyond GR or

even GR with specific matter sources were shown to evade the no-hair conjecture and

instead develop hairy black hole solutions featured by more than three quantities. Such

cases include the black holes in the presence of the Yang-Mills [9–12], Skyrme [13, 14],

conformally-coupled scalar fields [15], the dilatonic and colored black holes in the context

of the Einstein-dilaton-Gauss-Bonnet theory (EdGB) [16–20], as well as the rotating [21–23]

or shift-symmetric Galileon [24, 25] hairy black holes.

Indeed, rather rich content regarding the phase diagram has been revealed in grav-

itational systems beyond GR [26–30]. The latter is particularly interesting in theories

potentially “afflicted” by the tachyonic instability [27, 31–33], that eventually gives rise

to the Spontaneous scalarization. Among others, the mechanism typically appears in the

models containing a non-minimal coupling of a real scalar field to some source terms.
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The source terms in question could be a geometrically invariant quantity such as the

Gauss-Bonnet invariant in extended Scalar-Gauss-Bonnet theory [34–42], the Ricci scalar

for non-conformally invariant black holes [43], the Chern-Simons invariant [44], and the

Maxwell invariant FµνF
µν [45]. More recently, further developments have been carried out

on the spontaneous scalarization associated with compact objects [46–52]. The presence

of such non-minimal coupling plays the role of an effective mass in the equation of mo-

tion of the scalar field, and the tachyonic instability might be triggered when the mass

becomes negative.

On the one hand, many studies to date, for the most part, focused on the static aspect,

such as the linear (in)stability of a given (hairy) black hole spacetime. On the other hand,

the relevant processes that lead to the formation of black holes that evade the no-hair con-

jecture are dynamical ones. Specifically, the temporal evolution is involved through which

an unstable bald black hole solution in GR acquires a hair owing to the relevant scalar

perturbations, which is, by definition, dynamic in nature. Indeed, the relevant physical

process involves the entire non-perturbative evolution from the initial state to the final one.

Moreover, it is expected that the black hole hair can be either generated or deprived dynam-

ically in terms of a nontrivial time-dependent scalar field configuration outside the horizon.

Although the linear stability properties of the hairy black holes have been extensively in-

vestigated [29, 53–58], studies regarding the temporal evolution associated with the scalar-

ization furnish further information on the dynamical properties of the gravitational system

that might be otherwise hidden from the static metric solution, such as the critical phe-

nomena featured by discrete self-similarity uncovered at the threshold of the gravitational

collapse [59, 60]. Moreover, the whereabouts of the endpoint of the instability can only be

established through fully nonlinear numerical simulations. In particular, many intriguing

results are not straightforward from the viewpoint of the linear stability analysis. In this

context, the nonlinear dynamics plays an essential role for gaining a deeper insight into the

black hole scalarization and its reverse process, the so-called descalarization [61–63].

In the case where the scalar is coupled to the electromagnetic field, known as the

Einstein-Maxwell Scalar (EMS) theory, rich physics in the black hole scalarization and

descalarization mechanisms were disclosed [63–67]. More recently, novel critical phenomena

were revealed in the nonlinear dynamical processes involving accretion of scalar fields onto

black holes [64, 65]. The relevant spacetime configuration to ignite the scalarization was

scrutinized, and the critical exponents associated with the scalarization and descalariza-

tion of the phase transitions were extracted [66]. In terms of nonlinear evolutions, ref. [67]

showed the energy transition between dilaton and the Maxwell field. Besides, an effective

repulsive force between them gives rise to a nontrivial scalar profile outside the black hole

horizon. Again, nonlinear dynamical evolution is shown crucial for gaining a deeper insight

into scalarization and descalarization. Therefore, it is worth generalizing the study of non-

linear dynamics in EMS theory to other physical systems containing scalar fields coupling

with other physical sources. This can help us further to understand the underlying physics

in scalarization and descalarization and examine whether the current findings established

for EMS theory are general. In this regard, the present study is largely motivated to explore

the nonlinear dynamics in EdGB theory. Furthermore, in the literature, most studies in the
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EdGB theory have been performed regarding either the linear perturbation or the decou-

pling limit [25, 68–71]. In [68] the authors obtained the EdGB black hole and disclosed that

they are linearly stable against both axial and polar perturbations. By neglecting the back-

reaction of the scalar onto the spacetime, the scalar configuration in a Schwarzschild black

hole was numerically investigated [25]. ref. [69] also studied dynamical evolution and the

formation of scalar hair in a Schwarzschild spacetime and showed that the evolution even-

tually settles to static hairy solutions. The stability of rotating black holes in EdGB theory

was analyzed in ref. [71], which indicated that the black holes are numerically stable up to

the leading order. Nonetheless, the linear perturbation and temporal evolution in the de-

coupling limit only probe the physics of the systems with a weak scalar field. Moreover, it is

unable to adequately address the backreaction of the scalar field on the gravity sector, such

as how the scalar hair dynamically attaches to the bald black hole resulting in a hairy one,

or how the hairy of the latter is deprived owing to relevant energy injection, among others.

To answer these questions, one needs to investigate the nonlinear far-from-equilibrium

dynamics of scalarization and descalarization in the gravitational configurations. In fact,

some attempts have recently been made to study the nonlinear dynamics regarding theories

containing scalar fields coupling with high curvature terms [42, 72–76]. However, the emer-

gence of ellipticity in particular spacetime regions was encountered [72, 73]. In the system

evolution in the EdGB theory, such an elliptic region typically appears at the exterior of

the black hole horizon, indicating the break-down of the Cauchy problem. In other words,

it becomes rather delicate to establish a well-defined hyperbolic initial condition, and in

practice, it causes the numerical code to crash when the system involves into such regions.

In ref. [30], a new action was suggested with scalar fields coupling with both GB term

and Ricci scalar. The analysis of linear perturbation [77] to a Schwarzschild background

showed that the onset of scalarization is determined entirely by the coupling with the GB

term since the Ricci scalar vanishes. However, compared with the GB term, the Ricci

scalar term has a lower mass dimension and will contribute more to the effective mass.

Hence after the onset of scalarization, it will gradually dominate the nonlinear evolution

that determines the properties of the final phase. Moreover, ref. [78] investigated the effect

of the Ricci coupling on the hyperbolicity of linear, radial perturbations, and showed such

a theoretical framework is also advantageous in the sense that the above-mentioned elliptic

region encountered in EdBG theory is reduced. Therefore, in this work, we will employ this

general coupling between scalar fields and GB term together with Ricci scalar. We will

investigate the reasons that ignite the scalarization and descalarization in the nonlinear

physical process of scalar fields accretion onto isolated black holes. In particular, a specific

boundary condition will be adopted to avoid the nonphysical late-time decay of the scalar

field, as encountered in some numerical studies of spontaneous scalarization.

Based on the above theoretical setup, we will explore the nonlinear dynamics of the

system in an attempt to achieve a better understanding of the system’s entire phase dia-

gram. In particular, it is rather intriguing to explore scenarios from one static stable to

another static stable black hole spacetimes through the process of generation and removal

of scalar hair. As has been shown in EMS models [66], it is argued that the dynamic prop-

erties of a far-from-equilibrium system are not straightforward from the perspective of the

– 3 –



J
H
E
P
0
1
(
2
0
2
3
)
0
7
4

Figure 1. Schematic diagram for different far-from-equilibrium evolutions. The vertical axis

indicates the scalar charge, while the horizontal one denotes the Arnowitt-Deser-Misner (ADM)

mass of the static HBH solutions. The blue curve is the collection of static HBH solutions, specified

below in section 3. The point P on the horizontal axis indicates the value of the threshold mass.

An initial configuration with a mass above this threshold value will eventually evolve into a bald

black hole, while a system with a mass below it will settle down to a hairy black hole. As indicated

in the figure, the dashed curves with arrows, labeled by (a) to (d), correspond to the four different

scenarios explored in this study. The arrows indicate the directions of temporal evolution.

linear stability analysis for static black hole solutions, in the sense that the final fate of the

evolution could crucially depend on the strength of the initial perturbations. We will start

with bald black holes (BBHs) and investigate how they will evolve after the continuous

absorption of scalar fields. We will reveal physical conditions, whether and how an initial

BBH might remain bald and grow heavier, and how it can acquire scalar hair to become a

hairy black hole (HBH). These relevant processes are described below by processes (a) and

(b), respectively, in figure 1. On the other hand, we will also study the evolution of HBHs

regarding whether they may or may not keep the hair while swallowing scalar fields. As

described by processes (c) and (d) below in figure 1, an initial HBH can grow and become

more massive, but instead, it may also lose its scalar hair and become bald. Why and how

initial HBHs can have two drastically different fates worth careful investigations. We will

illustrate in our study that nonlinear dynamics reflect the underlying physics that governs

the different developments of initial BBHs and HBHs.

In the following sections, we give a detailed account of the numerical setup and simula-

tions and elaborate further on the results regarding the far-from-equilibrium gravitational

system. The remainder of the paper is organized as follows. In section 2, we introduce

the model and present the relevant equations of motion. The properties of the static HBH

solution are revisited in section 3. In section 4, the initial and boundary conditions are

elaborated. The main results of the simulations are presented and discussed in section 5.

We address the evolution of the metric and the Misner-Sharp (MS) mass. The last section

is dedicated to further discussions and the concluding remarks.
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2 Action and equations of motion

We consider the black hole spacetime setup in terms of the following action

S =
1

16π

∫

d4x
√−g

[

R− 1

2
∂µφ∂

µφ+W (φ)

(

B

2
R−AG

)

− V (φ)

]

. (2.1)

Here G = R2 + RabcdR
abcd − 4RabR

ab is the Gauss-Bonnet invariant, where R and Rab

are the Ricci scalar and tensor, while Rabcd is the Riemann tensor. The parameter B is

dimensionless while A has the dimensions of length squared, and W (φ) is a dimensionless

coupling function. Subsequently, the Einstein field equation reads

Gab = Tab, (2.2)

where

Tab =
1

2
∇aφ∇bφ− 1

4
gab∇cφ∇cφ− 1

2
gabV (φ)

−Aδcdef
ijkhR

kh
efδ

j
(agb)d∇i∇cW (φ) − B

2
(gab∇2 − ∇a∇b +Gab)W (φ), (2.3)

where δcdef
ijkh is the generalized Kronecker delta tensor. The equation of motion for the scalar

field is given by

∇a∇aφ+Wφ(φ)

(

B

2
R−AG

)

− Vφ(φ) = 0, (2.4)

where the subscript ‘φ’ denotes the derivative with respect to φ.

By considering a spherically symmetric system, we write down the metric ansatz in

Painleve-Gullstrand coordinates:

ds2 = −α(t, r)2dt2 + [dr + α(t, r)ζ(t, r)dt]2 + r2(dθ2 + sin2θdψ2). (2.5)

For the Schwarzschild black hole α = 1 and ζ =
√

2m/r.

To proceed further, one introduces the variables

Ψ = ∂rφ, Π = ∂tφ/α− ζΨ, (2.6)

so that the equations of motion can be rewritten as first order equations in φ,Ψ and Π as

follows

∂tφ− α(Π + ζΨ) = 0, (2.7)

EΨ ≡ ∂tΨ − ∂r[α(Π + ζΨ)] = 0, (2.8)

EΠ ≡ ∂tΠ − F (Π,Ψ, φ, α, ζ) = 0, (2.9)

where F is an expression of Π,Ψ, φ, α, ζ and that possesses a rather tedious form. The

remaining equations that only involve spatial derivatives serve as the Hamiltonian and
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momentum constraints. They can be expressed in terms of the following partial differential

equations in α and ζ

0 = (1 +AX +BY )ζ ′ +

(

ζ +AζX +B
Y

ζ

)

α′

α
+A

ζ

r

(

Ψ2Wφφ +WφΨ′
)

+
ζ

2r

+B

(

Wζ

4r
− 1

2
P − ΨWφ

2ζ
− Ψ2rWφφ

4ζ
− rWφφ

′

4ζ

)

− rV

4ζ
− 1

8ζ
(Π2 + Ψ2), (2.10)

0 =

[

1 +A
(

4Ψ + 4Pζ − 2Ψζ2
)Wφ

r
+B

(

W

2
+

ΨrWφ

4

)]

α′

α
+

ΠΨr

4ζ

−2Aζ

r
(ΠΨWφφ +WφP

′ + ΨWφζ
′) +

Br

4ζ
(ΠΨWφφ +WφΠ′ + ΨWφζ

′), (2.11)

where the prime ′ represents the derivative with respect to r. The auxiliary functions are

defined as

Wφ =
d

dφ
W (φ), Wφφ =

d2

dφ2
W (φ), X =

4ΨWφ

r
+

6ΠζWφ

r
, Y =

W

2
− rΠWφ

4ζ
.

In this paper, we consider the specific form W (φ) = −φ2/2, and for simplicity the potential

function is set to null V = 0. In the simulations, we take A = 1 and B = 5 without losing

essential physical relevance.

3 Static hairy black hole solutions

This section briefly revisits the static HBH solutions to action eq. (2.1). Such a static

solution was first derived in [30] in a diagonal metric. Here, we numerically solve the

model in Painleve-Gullstrand coordinates by manually turning off the time-dependence in

the metric ansatz eq. (2.5). The equations of motion can also be obtained by dropping

the time-dependent terms in eqs. (2.9), (2.10), and (2.11). After some straightforward

calculations, one obtains two coupled ordinary differential equations for φ and ζ, as well

as an algebraic equation for α. The boundary conditions are imposed as

α|r→rh
≃ 1 + a1(r − rh) + . . . ,

ζ|r→rh
≃ 1 + b1(r − rh) + . . . ,

and

φ|r→rh
≃ p0 + p1(r − rh) + . . .

on the black hole’s horizon. At infinity, the scalar field decays as

φ ∼ Qs/r + . . . ,

and the metric function approaches

ζ ∼
√

2m/r + . . .

The coefficients Qs and m are the spacetime’s scalar charge and ADM mass, respectively.

It is noted that the scalar charge Qs here is not associated with any conservation law but

– 6 –
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Figure 2. The relationship between the scalar charges Qs and ADM masses m of the static HBH

solutions numerically evaluated by the present model. The profiles of two static HBH solutions

indicated by filled circle and square on the curve are shown below in figure 3.

is determined by the behavior of the scalar field at a significant distance. For given rh, we

can obtain ζ and φ by the shooting method. The metric function α is then obtained as

an algebraic function of ζ and φ. After solving the equations, one can rescale α to have

α|r→∞ → 1 at infinity by the gauge freedom. We also note that the coordinates employed

in ref. [30] can be readily transformed into the static Painleve-Gullstrand coordinates, and

the obtained results are manifestly consistent.

In figure 2, we show the relation between the scalar charge Qs and ADM mass m of the

static solutions where the scalar profile does not contain any node. The relation indicated

by the blue curve was presented schematically in figure 1. As the radial coordinate r

approaches infinity, the scalar field asymptotically approaches φ ∼ Qs/r+. . . . Numerically,

the black hole’s scalarization can be triggered when the mass is below a threshold value

around mt = 1.1739457, which is consistent with the result obtained in [30]. For the black

holes with m < mt, the HBH featured by a non-trivial scalar field distribution outside the

horizon is the only stable solution. On the other hand, the corresponding stable static black

hole solution is a bald Schwarzschild one for heavier black holes whose mass is beyond this

threshold. The filled circle and square on the blue curve correspond to the HBH solutions

with the parameters m = 1.03424, Qs = 0.225 and m = 1.1594, Qs = 0.0615, whose profiles

of the metric functions and scalar fields are shown in figure 3. In figure 3, we illustratively

present the profiles for the metric functions ζb(r) and αb(r), as well as the scalar field φb(r)

of two static HBH solutions in solid (for the solution indicated by the filled square) and

dashed (for that indicated by the filled circle) curves.

4 Numerical implementation

In this section, we proceed to investigate the dynamic aspects of the HBHs. We discuss

the characteristics of the differential equations, elaborate on the initial and boundary con-

ditions, and comment on a few relevant details concerning the numerical methods.

– 7 –
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Figure 3. The spacetime configurations of the static HBHs with m = 1.03424, Qs = 0.225 (dashed

curves) and m = 1.1594, Qs = 0.0615 (solid curves), corresponding to the filled circle and square,

respectively, in figure 2. The left, middle, and right panels show the metric functions, ζ(r) and

α(r), as well as the scalar field φ(r) as functions of x/m.

4.1 Characteristics

Owing to the presence of the Gauss-Bonnet invariants in the action, such as the Horndeski

and EdGB theories [72–74, 79–81], the system of equations of motion that is initially

hyperbolic could turn into an elliptic one at some particular spacetime region. In such an

elliptic region, the theory usually suffers from a “Laplacian” or “gradient” instability [79,

80], which demonstrates that the theory eq. (2.1) does not admit a well-defined hyperbolic

initial condition. In practice, to prevent the code from breaking down, we will cast out the

elliptic region from the domain of our numerical calculations. To this end, we proceed to

study the characteristics of the system of equations for the relevant degrees of freedom in

order to monitor the entrance of the elliptic region. For a detailed pedagogical review on

the topic, the reader is referred to [82–84].

We first algebraically solve the constraint equations (2.10) and (2.11) for ∂rα and

∂rζ, and then substitute the obtained expressions into eqs. (2.8) and (2.9). Subsequently,

the two radial characteristic speeds of the scalar field φ for, respectively, the ingoing and

outgoing modes, c± = ∓ξt/ξr, are obtained by solving the characteristic equation

det

[(

δEΠ/δ(∂µΠ) δEΠ/δ(∂µΨ)

δEΨ/δ(∂µΠ) δEΨ/δ(∂µΨ)

)

ξµ

]

= 0. (4.1)

It is noted that eq. (4.1) is of quadratic form ax2 + bx+ c = 0 for the radial speeds, where

the coefficients a, b and c are governed by the metric functions α, ζ and scalar field φ. The

sign of the discriminant D = b2 − 4ac determines the character of the system of partial

differential equations eqs. (2.8)–(2.9). The spacetime region for which D > 0 corresponds

to the domain where the characteristic speeds are real and therefore, eqs. (2.8), (2.9)

are hyperbolic. On the other hand, in the region where with D < 0, the characteristic

speeds become complex (with a non-vanishing imaginary component), and subsequently,

eqs. (2.8), (2.9) are elliptic. These two regions are separated by the boundary defined by

D = 0, where the equations of motion are parabolic.

The black hole’s apparent horizon can be identified dynamically by allocating the

marginally trapped surface formed by null outgoing characteristics [85]. In Painleve-

Gullstrand coordinates, the location of such surface is determined by ζ(t, rh) = 1 with

rh being the horizon radius. For the spherically spacetime at hand, we use the MS mass

– 8 –
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to define the quasi-local mass by

MMS(t, r) = rζ(t, r)2/2, (4.2)

where r is the areal radius. It gives the total mass of the spacetime at the limit r → ∞.

Moreover, one can relate the MS mass to the charge associated with the Kodama cur-

rent [86]. The MS mass corresponds to an integral of the effective matter energy density us-

ing eq. (2.2). It is noted that the effective stress tensor Tµν does not always satisfy the usual

energy condition as the MS mass here is not necessarily a monotonically increasing function

of radial radius r. We will elaborate further on the non-monotonicity of MMS below.

4.2 Initial and boundary conditions

This section discusses the initial and boundary conditions of the numerical calculations

regarding the dynamic evolution of the system. The physical picture here is to introduce

an energy injection into an initially static black hole spacetime. The latter can be either

a bald Schwarzschild black hole or a scalarized spherically symmetric hairy one, hereafter

denoted by BBH and HBH, respectively, in the remainder of the paper. We also denote

the background metric of the initial spacetime by ζb(r) and αb(r), and the initial scalar

profile by φb(r). For an initially BBH, we have αb(r) = 1 and ζb(r) =
√

2m/r with the

mass m, while φb(r) vanishes. For an initial HBH, the initial static solutions of the metric

functions are furnished numerically.

In addition to the background scalar field φb, one introduces an energy injection

in terms of the initial perturbations denoted by φp, that is located within the range

rl < r < ru:

φp(r) =

{

am(r − rl)
2(ru − r)2 exp[− r

r−rl
− 1

ru−r ] rl < r < ru,

0 r ≤ rl, r ≥ ru,
(4.3)

where the parameter am plays the role as the amplitude of the scalar perturbation, and

we hereafter take rl = 24 and ru = 32. The initial pulse of the scalar field is spherical

symmetric distribution without any node. One further assumes the initial perturbations

are static. Using eq. (2.6), the initial auxiliary variables are given by

Ψ(t = 0, r) = ∂rφb(r) + ∂rφp(r),

Π(t = 0, r) = −ζb(r)∂rφb(r). (4.4)

We employ a stereographic projection to compactify the r coordinate as x = r
1+r/L [74].

In the radial direction, on each time slice, the physically pertinent range r ∈ [re,+∞)

corresponds to the interval x ∈ [xe, L]. In our calculations, we assume the value L = 10m.

Also, we note that the excision position re = re(t) is time-dependent, which marks the edge

below which the system of equations is elliptic, and subsequently, the corresponding space

domain is excised. Since the region inside the black hole horizon is irrelevant for the present

study, on the initial time slice, we set the excision coordinate re to be the initial black hole

horizon radius. By specifying the energy injection φ(t = 0, r(x)), Ψ(t = 0, r(x)), and

Π(t = 0, r(x)), we solve the constraints eqs. (2.10)–(2.11) in the domain x ∈ [xe, L] using

– 9 –
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Newton’s method in conjunction with the boundary conditions. Due to the gauge freedom

α → lα, t → t/l in the metric eq. (2.5), the latter are taken to be α(t = 0, r(xe)) = 1 and

ζ(t = 0, r(xe)) = ζb(r(xe)), defined at xe and t = 0. Subsequently, one obtains the metric

functions α(t = 0, r(x)) and ζ(t = 0, r(x)) for arbitrary x ∈ [xe, L] on the first time slice.

By substituting ζ(t = 0, r(x)) back into eq. (4.2), one obtains the MS mass of the entire

spacetime at the initial time M∞ = MMS(t = 0,+∞). We note that the initial excision

point and the horizon is merely a choice, that does not leads to any physical implication.

For the subsequent time slices, we solve for the metric functions α and ζ by imposing

the boundary conditions at the spatial infinity. Again, we take α(r → ∞) = 1 by exploiting

the gauge freedom. Also, to improve the stability of the solution ζ at large r (or x), one

introduces a new variable η = ζr1/2. The boundary condition for η at infinity is then

recognized to be
√

2M∞ which is a conserved quantity during the temporal evolution.

To evolve the variables φ, Π and Ψ in time using eqs. (2.8)–(2.9), we use a fourth-order

finite difference method to evaluate spatial derivatives and a fourth-order Runge-Kutta

method in the time direction. Once α, ζ φ, Π, and Ψ are obtained, one utilizes eq. (4.1)

to monitor the radial characteristics. If the elliptic region forms, one casts it out from the

domain of interest and redefines the range [xe, L] for the next time slice. In practice, the

numerical calculations turn out to be rather time-consuming for the initial scalar pulse to

reach the spacial infinity. The Courant-Friedrichs-Lewy condition is set to 0.25 in our simu-

lations. It is also worth mentioning that the scalar field falls off at infinity according to the

form φ ∼ Qs/r, and therefore we take the value of rφ(r) at the large r as the scalar charge.

5 Numerical results

In this section, we present the numerical results on the dynamics of the gravitational

systems, such as the evolution of the metric functions, scalar charge, and the MS mass,

and discuss their physical relevance. As shown above, in figure 1 of section 1, we will

consider four different scenarios, elaborated in the following subsections. For an initially

BBH, the metric function are taken as αb(r) = 1 and ζb(r) =
√

2m/r. Depending on the

mass of the initial black hole, when compared to the threshold value, the initial scalar

perturbations might trigger the gravitational system to evolve into different final states.

For an initial HBH, we also consider two different values for the initial black hole mass. As

will be demonstrated below, using an appropriate amount of energy injection, the system

might evolve into either an HBH with less scalar hair or a BBH with a mass slightly more

significant than the threshold value mt. The latter case corresponds to a process where

the hair of an HBH is deprived, and the system eventually settles down to a BBH. For the

parameters concerned in our work, the hyperbolicity of the equations for the physically

relevant region remains intact during the process of evolution, and the excision, therefore,

does not lead to any physical implication.

5.1 Route (a): BBH to BBH

We first present the results on black hole evolution as indicated by route (a) introduced

in section 1. Without loss of generality, we take the mass of the initially static black hole
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Figure 4. The temporal evolutions of the scalar field for an initial BBH with a mass beyond the

threshold value. Left panel: spatial distribution of the scalar field φ at different time slices. Right

panel: the scalar charge Qs as a function of t− rp at large rp.

to be m = 1.3 beyond the threshold value. The amplitude of the scalar perturbations is

chosen to be am = 3 × 10−5. As a result, the initial scalar perturbations contribute a

fraction δmφ/m ≃ 10−3 of the total mass of the spacetime. The calculations are carried

out by using n = 211 + 1 spatial grids.

The numerical results are shown in figure 4. The left panel gives the spatial profiles

of the scalar field at various time instants during the evolution, and the right panel shows

the scalar charge as a function of time, evaluated at given spatial coordinates rp = 500 and

rp = 600. At the initial stage of the dynamical process, part of the scalar field propagates

towards the black hole horizon as the magnitude of the scalar field temporarily increases

in the vicinity of the horizon. Subsequently, as the scalar field interacts with the black

hole, it is absorbed by the horizon. As a result, the strength of the field decreases in time

near the horizon and eventually vanishes. On the other hand, a small fraction of the scalar

perturbation moves outward. Meanwhile, the magnitude of the initial pulse is suppressed

in time until it entirely disperses to infinity. From the left panel of figure 4, we see that

at t/m = 242 scalar field mostly vanishes over the entire spatial range, which is almost

identical to the profile at the later time t/m = 747. The above results are obtained for

calculations using different magnitudes of the perturbations and initial masses beyond the

threshold. Therefore, we conclude that the initial scalar field perturbations vanish for the

first scenario by either being absorbed by the horizon or dispersing to infinity. The resultant

spacetime settles down to a Schwarzschild BBH. We noted that this is consistent with the

results shown in the right panel of figure 4. The given coordinates rp = 500 and rp = 600

can be numerically consider as “infinity”. The displacement rp in time ensures that the

peak of the curve would be placed near the origin. One observes that the scalar charge Qs,

as a function of time, asymptotically vanishes at both infinities. As the perturbations are

initially static, it gives rise to a mostly vanishing initial scalar charge. During the evolution,

the scalar charge oscillates. As the scalar field dissipates, the scalar charge asymptotically

vanishes, indicating that the black hole’s final state is free of any scalar hair.

5.2 Route (b): BBH to HBH

We proceed to discuss the scenario regarding the dynamic process of scalarization as the

route (b) indicated in section 1. In order to illustrate the results, we take the mass of the
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threshold value. Left panel: spatial distribution of the scalar field φ at different time slices. Right

panel: the scalar charge Qs as a function of t− rp at large rp.
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Figure 6. The calculated evolutions of the metric function ζ (left), MS mass MMS (middle) and

f = Rµν l
µlν (right) as functions of the rescaled radial coordinate x/m for various time slices.

initial BBH to be m = 1, below the threshold value. Again, the amplitude of the scalar

perturbations is chosen to be am = 3 × 10−5. Also, the calculations are carried out by

using n = 211 + 1 spatial grids.

The numerical results are shown in figures 5–7. In figure 5, the left panel gives the

spatial profiles of scalar field at various time instants during the evolution, and the right

panel show the scalar charge as a function of time, evaluated at given spatial coordinates

rp = 800, rp = 900, and rp = 1000. Triggered by the initial perturbations, the strength of

the scalar field grows in time in the vicinity of the horizon. The scalar field saturates and

converges to a well-defined distribution as the time increases. Numerically, the solution

becomes time independent before t/m = 177, as the curves at the time instants t/m = 360

and 2496 overlap entirely with that at t/m = 177. The dynamic process is recognized

as spontaneous scalarization, and the resultant scalarized black hole solution is a static

HBH. On the other hand, one may also investigate the evolution of the scalar charge. This

is evaluated and shown in the right panel of figure 5 at three different radial coordinates

rp ≈ 800, 900, and 1000. It is observed that the scalar charge oscillates and then increases

in time until it eventually converges to a given value Qs ≈ 0.23. The latter is consistent

among the results evaluated at different radial coordinates.

From the left plot of figure 6, one observes that the spacetime metric remains un-

changed mainly during the scalarization. This is partly attributed to the fact that the

energy associated with the initial scalar perturbation counts only a tiny fraction, approxi-

mately the order of 10−3, of the mass of the initial BBH. From the inset of the left panel,
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Figure 7. The spatial profile of the scalar field φ, as a function of x/m, for the static HBH solution,

compared against that as the final state resulting from the dynamic scalarization process. The inset

gives the difference ∆φ.

we see that ζ slightly increases over the course of the scalarization. This implies that the

radius of the apparent horizon, which satisfies ζ(t, r) = 1, also increases slightly, in agree-

ment with the black hole area theorem. The middle panel shows the temporal evolution

of the MS mass MMS(t, x). The MS mass evaluated at the horizon, MMS(t, xh), indicates

the mass of the black hole. This implies that the black hole mass increases and saturates

before the instant t/m = 177, consistent with the behavior of the black hole horizon. Also,

the derivative of MMS(t, r) with respect to the radial coordinate r could be associated with

the energy density of the scalar field. For a given time slice, MMS(t, r) is not a monotonical

function. Therefore, it implies that the energy density of the scalar field outside the black

hole horizon is not positive everywhere.

The null convergence condition (NCC) is the geometric interpretation of the null en-

ergy condition that requires Rµν l
µlν > 0 for an arbitrary null vector lµ. It plays an essential

role in the laws of black hole mechanics and dynamical horiozn [87–89], and the topological

censorship theorems [90, 91]. For the in-going null vector la = (1,−α(t, r)(1+ζ(t, r)), 0, 0),

the NCC implies f = Rµν l
µlν = 2α[∂tζ + (ζ + 1)2∂rα]/r ≥ 0. The right panel of figure 6

shows the scalar f = Rµν l
µlν at different time slices. We note that the region where NCC

is violated roughly coincides with where the energy density becomes negative. Mathemati-

cally, by definition, the NCC or the tt component of the effective energy-momentum tensor

(cf. eq. (26) of [72], also see discussions in refs. [73, 92–94]) receive a contribution associ-

ated with the Gauss-Bonnet scalar that might become negative, which plays an essential

role during the spontaneous scalarization process. The above results are general for BBH’s

initial state, where the initial black hole mass is below the threshold value.

In figure 7, we compare the obtained spatial profiles of the scalar field between the static

HBH solution and the asymptotic solution as the final state of the dynamic scalarization

process. The two profiles are in satisfactory agreement. In the inset we show the difference

of ∆φ = |φstatic − φdynamical|, which is less than e−7. This coincidence shows that the

far-from-equilibrium evolution indeed converges to the static scalarized black hole as the

final stage of the evolution. On the other side, it ascertains the precision of our numerical

implementation.
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Figure 8. Left: the deviation of the MS mass as functions of x/m, evaluated at different time

instants. Middle: the deviation of the scalar field as functions of x/m, evaluated at different time

instants. The deviations are evaluated with respect to their values of the initially static HBH. Right:

the scalar charge as a function of (t−rp)/m, evaluated at given radial coordinates rp = 747 and 860.

5.3 Route (c): HBH to HBH

The third scenario deals with an initial HBH whose mass is (sufficiently) smaller than

threshold value. Without loss of generality, the following results are obtained by taking

value m = 1.03424. Again, one perturbs such a spacetime configuration by introducing

scalar perturbations governed by eq. (4.3) with an amplitude am = 3×10−5. In particular,

we utilize the static solution presented by the dashed curves in figure 3 as the initial

configuration of HBH. The strength of the scalar field at the horizon reads φh = 0.18, and

the scalar charge is found to be Qs = 0.2045.

We note that the MS mass of the entire spacetime can be viewed as a summation of

two parts, namely, the mass of the black hole and that of the scalar field. In this regard,

during the dynamic evolution triggered by the perturbations of the scalar field, the total

MS mass is modified due to two factors, namely, the variation of the MS mass of the black

hole and that of the scalar field. Therefore, to present our results more transparently, we

will show the deviation of the MS masses associated with the black hole and scalar field

from their respective values of the initially static HBH solution. To be specific, we compute

∆MMS = MMS(t, x) − MMS
b (x), ∆φ = φ(t, x) − φb(x), where MMS

b is the MS mass of the

initially static HBH spacetime. These results are shown in figure 8.

At the beginning of the evolution, t/m = 0, ∆MMS vanishes near the horizon, as

expected. In other words, in this region, the geometry is determined by the black hole,

which is consistent with the vanishing ∆φ in the vicinity of the horizon shown in the middle

panel. It is also in accordance with the observation that ∆MMS oscillates in the region

where the initial pulse of the scalar perturbations is injected. As the radial coordinate

goes to infinity, ∆MMS approaches a constant, which corresponds to the total MS mass

of the entire initial spacetime in the presence of the scalar perturbations. Numerically,

the difference ∆MMS(t = 0,∞) evaluated at infinity is a positive but small value. This

indicates that the scalar perturbations give a positive overall correction to the mass of the

entire spacetime, although the mass density, which is proportional to the derivative of MS

mass in r, could become negative in specific regions.

As time proceeds, the MS mass evaluated at the horizon increases slightly. This can

be attributed to the absorption of a small fraction of the scalar field by the black hole

horizon. On the other hand, the initial perturbations in the MS mass dissipate while
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Figure 9. The temporal evolutions of the relevant metric functions. Left: the deviation ∆ζ of the

metric function ζ from that of the initial HBH metric, evaluated as a function of x/m for different

time instants. Middle: the logarithmic deviation ln |∆ζ| of the late-time asymptotic metric function

ζ from that of a static BBH of the same mass, evaluated as a function of x/m. The solid black

curve shown in the inset gives the initial profile of α, while the blue dashed one corresponds to its

value at t/m = 2180. Right: the radius of black hole horizon as a function of t/m.

propagating towards the spatial infinity. The above observation regarding the propagation

of the initial pulse is confirmed by the evolutions of the scalar profiles ∆φ as presented in

the middle panel of figure 8. At an early instant, approximately t/m = 59, the scalar field

near the horizon decreases and attains the most minor (positive) value (while the deviation

is negative). Then, it slightly bounces back and saturates before t/m = 208. For the

final state HBH solution, the condensation of the scalar field becomes less significant when

compared with the initial HBH metric. This is, again, in accordance with the asymptotic

value of the scalar charge Qs evaluated in the right panel. After some initial oscillations,

the scalar charge converges to a smaller value Qs = 0.2033. The calculations carried out

by choosing different values of rp are in reasonable agreement.

5.4 Route (d): HBH to BBH

This subsection explores the scenario where a stable HBH loses its scalar hair due to scalar

perturbations. To this end, we consider an initial HBH with the mass m = 1.17379, which

is slightly below the threshold mt. The scalar pulse is then introduced according to the

form given by eq. (4.3), where the amplitude is taken to be am = 9 × 10−5. During

the process, the scalar hair of the HBH is deprived. Meanwhile, the mass of the resultant

spacetime increases and converges to m = 1.18661, slightly above the threshold. Therefore,

the resulting BBH is stable, consistent with the findings in [30]. One observes that the

scalar pulse contributes about one percent of the mass of the entire spacetime.

The initial configuration of metric functions ζb(r) and αb(r), and the scalar field φb(r)

of the static HBH (not shown) are mainly similar to those presented above in figure 3. It

is noted that in Painleve-Gullstrand coordinates, for a BBH metric, one has α = 1. From

the scalar field distribution shown in the right panel, one finds the scalar charge to be

Qs = 0.0064.

The temporal evolutions of relevant metric quantities due to the energy injection are

given in figure 9. In the left panel, we show the deviation of the metric function ζ(t, r)

from that of the initial HBH, ζb(r), evaluated as a function of x/m for different instants of

time. The black solid curve essentially describes the deviation from ζb(r) due to the energy

injection of the initial scalar pulse. As time processes, the pulse decays as the metric func-
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Figure 10. The evolution of MS mass MMS and the scalar f = Rµν l
µlν . Left: the MS mass as a

function of x/m, evaluated at different time instants. Middle: the MS mass as a function of t/m

evaluated at the horizon. Right: the scalar f = Rµν l
µlν as a function of x/m, evaluated at different

time instants.

tion ζ(t, r) becomes smoother. At late times, it eventually converges to a given form where

ζ(t, r) monotonously grows for smaller x. The above asymptotic form, numerically evalu-

ated at a sufficiently large instant t/m = 2180, is then compared against the corresponding

BBH of the same mass, as presented in the middle panel for the metric functions ζ and α.

It is observed that the two profiles mostly coincide, where the difference is shown to be less

than e−24, from which one concludes that the final stage of the evolution is identical to a

Schwarzschild BBH. The right panel gives the black hole horizon rh versus time. At early

times, the size of the black hole horizon experiences some oscillation, and then it saturates

at around t/m ≃ 200. To elaborate on the nonmonotonic evolution of the apparent horizon,

we proceed to investigate the MS mass. Figure 10 explores the evolutions of MS mass MMS

and the scalar f = Rµν l
µlν as functions of the radial coordinate and time. From the left

panel, one observes that the initial pulse in the MS mass owing to the scalar perturbations

propagates dissipatively toward the infinity. As the MS mass evaluated at the horizon indi-

cates the mass of the black hole, it is studied in more detail in the middle panel. One finds

that the MS mass at the horizon also oscillates for the time interval 12 < t/m < 18, after

which the MS mass converges to the value of the resulting BBH. It is noted that the above

time interval coincides with the arrival of the scalar pulse. Therefore, such a nonmonotonic

behavior of black hole mass might be interpreted as the scalar field extracting energy from

the black hole, as the scalar pulse destabilizes the metric. As discussed in the case of the

route (b), this corresponds to the region where the energy density of the scalar field is nega-

tive. Moreover, one observes that the NCC is transiently violated in two spacetime regions

from the right panel. As the scalar pulse destabilizes the metric near the horizon, NCC

is temporarily violated. Also, small regions of violation are observed, coinciding with the

process when the initial scalar perturbations propagate outwardly to the spatial infinity.

The results of the evolution of the scalar field are presented in figure 11. The left and

middle panels show the evolution of the scalar profile as a function of the radial coordinate

at early and late times. The black solid curve gives scalar field at t = 0, which consists

of two parts, namely, φ = φb + φp. As time increases, part of the scalar field propagates

towards the horizon while the other part travels outward. As shown in the left panel, in the

vicinity of the horizon, the distribution of the scalar field essentially remains the same until

the arrival of the scalar pulse at about t/m = 13. Moreover, as the scalar pulse reaches the
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Figure 11. The evolution of the scalar field. Left and Middle: the profiles of the scalar field,

calculated at different time instants. Right: the scalar charge Qs as a function of (t − rp)/m,

evaluated at rp = 747 and 846, respectively.

horizon, it destabilizes the spacetime configuration, as the strength of the scalar field raises

temporarily. After a period of transient oscillations, during which the black hole partly ab-

sorbs the scalar field, the evolution leads to a significant suppression. Eventually, the scalar

field vanishes identically from the entire spatial domain, as indicated by the right panel.

The temporal evolution of the scalar field discussed above can also be seen by studying

the scalar field evaluated at the black hole horizon as a function of t/m. In the vicinity of

the horizon, one finds that the scalar field first experiences a sharp rise at the arrival of

the ingoing scalar pulse, which triggers the instability of the spacetime. As the black hole

begins to absorb the scalar field, the magnitude of the oscillations φh quickly decreases and

eventually vanishes. Subsequently, the resulting black hole is deprived of the scalar hair.

The right panel, we show the scalar charge as a function of time for a given large radial

coordinate. It is observed that the scalar charge also oscillates in the wake of the arrival

of the ingoing scalar pulse. Subsequently, it decays and eventually vanishes, agreeing with

the above discussions.

6 Concluding remarks

In this work, we numerically investigated the far-from-equilibrium evolutions through which

the scalar hair might be generated or deprived for the black holes in a gravitational theory

where the Gauss-Bonnet and Ricci invariants are coupled to a scalar field. In particular, we

have explored dynamics of scalar field and spacetime in four distinct scenarios as indicated

in figure 1, disclosing the process of the scalar hair condensing onto the bald black hole to

make the black hole become hairy, and how a hairy black hole loses its hair transiting to a

bald one. According to route (a), given an initial BBH with a mass beyond the threshold

value, an injection of a scalar pulse may trigger a dynamic process through which the bald

black hole swallows a fraction of the scalar perturbations and evolves into a heavier BBH.

Route (b) simulates the dynamical process of spontaneous scalarization. In other words,

an initial BBH with a mass below the threshold can be destabilized and evolve due to

the interaction between the scalar perturbations. The black hole can eventually acquire

non-trivial scalar hair onto the horizon. We observed that the MS mass does not increase

monotonously as a function of the radial coordinate, which is primarily related to the region

where the quantity f = Rµν l
µlν becomes negative as the NCC is violated. The MS mass
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evaluated at the black hole horizon increases in time monotonously, indicating that the

black hole absorbs part of the scalar perturbations while the black hole radius increases.

As is illustrated by route (c), for an initial HBH with a mass below the threshold value, an

injection of a scalar pulse can cause the black hole swallows part of the scalar perturbations

and evolves into a heavier black hole with less scalar charge. For route (d), by injection

of strong enough energy into the gravitational system, the MS mass of the spacetime rises

above the threshold while the black hole swallows its scalar hair. As a result, the hair of

the initial HBH is deprived, and the system evolves into a heavier stable BBH. The present

study revealed the rich underlying physics regarding the far-from-equilibrium evolution of

gravitational systems. This further exhibits that instead of the linear analysis, nonlinear

dynamics is effective and powerful to disclose the final fate of the evolution, which crucially

depends on the initial spacetime configuration and the strength of the perturbations [66].

The appearance of ellipticity in the model seems to imply some unphysical degree of

freedom. For instance, a ghost might be referred to when the system is either characterized

by unbound energy, such as Ostrogradsky instability in higher-order theories, or gauge-

dependent quanta, such as QCD ghost. In practice, for the former case, one can explicitly

remove the particular degree of freedom, while these ghosts are not malicious for the latter.

For partial differential equations, ellipticity is primarily indicated by the complex-valued

characteristics. As the coefficients of the equation in question are functions of spacetime co-

ordinates, specific spacetime regions might be elliptic, which is notably coordiante indepen-

dent. In those regions, the system’s dynamics cannot be posed as a well-defined Cauchy ini-

tial value problem, and one lost the notion of “time direction”. The corresponding treatment

is also twofold. As proposed in [73], the first possible solution is to eliminate such region

from the underlying system in consideration. In other words, one effectively removes the un-

physical dynamics and the associated degree of freedom from the equations of motion. The

second possibility is that the ellipticity is benign. As for the present study, it is always hid-

den inside the horizon. As a result, the latter does not lead to any observable implication.

In our scheme, the initial scalar pulse possesses a positive amount of energy, and

numerically, the ADM mass of the resultant black hole spacetime is consistently found to

increase. As a result, all the arrows in figure 1 are directed to the right. This leads to the

following question: even though the event horizon area always grows, is it possible that the

mass of the scalar hair radiates away so fast that the total mass of the resulting static HBH

spacetime decreases? If the above scenario stands true, the arrow might be directed to the

left, as the system involves in time. Even though this was not observed in our numerical

approach, from the theoretical perspective, the question is relevant in its own right. Also,

in the calculations, we have fixed the coupling constants A and B to simulate the far-from-

equilibrium evolutions. It would be rather interesting to study further how these coupling

constants influence the dynamical process. Besides, for the potential V (φ), we have chosen

a specific form of the coupling function W (φ). It is not clear how the specific form of

the potential would affect the underlying physics. In practice, the hyperbolicity of the

equations of motion has not posed a severe problem due to the specific metric parameters.

It will also be interesting to investigate further the parameter space, for which the system

of equations of motion of the relevant theory dynamically loses the hyperbolicity.

– 18 –
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