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Abstract: The Karch-Randall braneworld provides a natural set-up to study the Hawking
radiation from a black hole using holographic tools. Such a black hole lives on a brane and
is highly quantum yet has a holographic dual as a higher dimensional classical theory that
lives in the ambient space. Moreover, such a black hole is coupled to a nongravitational
bath which is absorbing its Hawking radiation. This allows us to compute the entropy of the
Hawking radiation by studying the bath using the quantum extremal surface prescription. The
quantum extremal surface geometrizes into a Ryu-Takayanagi surface in the ambient space.
The topological phase transition of the Ryu-Takayanagi surface in time from connecting
different portions of the bath to the one connecting the bath and the brane gives the Page
curve of the Hawking radiation that is consistent with unitarity. Nevertheless, there doesn’t
exit a derivation of the quantum extremal surface prescription and its geometrization in
the Karch-Randall braneworld. In this paper, we fill this gap. We mainly focus on the
case that the ambient space is (2+1)-dimensional for which explicit computations can be
done in each description of the set-up. We show that the topological phase transition of
the Ryu-Takayanagi surface corresponds to the formation of the replica wormhole on the
Karch-Randall brane as the dominant contribution to the replica path integral. For higher
dimensional situations, we show that the geometry of the brane satisfies Einstein’s equation
coupled with conformal matter. We comment on possible implications to the general rule
of gravitational path integral from this equation.
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1 Introduction

The Karch-Randall braneworld [1, 2] concerns the physics of a large family of non-fine-tuned
branes embedded in an ambient AdSd+1 spacetime. It nevertheless plays a key role in the
recent progress of quantum gravity due to its doubly holographic nature [3–5]. This allows
explicit constructions of entanglement islands and the computation of the unitary Page curve
of the Hawking radiation from black holes in any dimensions. In such computations both
the black hole and the entanglement island live on the brane and the entanglement island
overlaps the black hole interior. Furthermore, important lessons about quantum gravity has
been learned from the Karch-Randall braneworld that entanglement islands can faithfully
exist only in massive gravity theories. This is motivated by the observation that the graviton
localized on the Karch-Randall braneworld is massive [5] and has been proven to be generally
true in any dimensions beyond the Karch-Randall braneworld [6, 7].

The aforementioned progress is based on the realization that Karch-Randall braneworld
provides the holographic dual of the set-up in which the entropy of the black hole radiation
can be consistently defined and hence calculated using holographic tools. This set-up
contains a black hole in a gravitational asymptotically AdSd spacetime and is coupled to a
nongravitational thermal bath on its asymptotic boundary (see figure 1(a)). The bath and
the black hole are of the same temperature and in the thermal equilibrium. However, if we
choose a proper time evolution (as indicated in figure 1(a)) then the dynamics of the black
hole and the bath system is nontrivial in which the bath is collecting the radiation from the
black hole. Hence we can compute the time evolution of the entanglement entropy of the
early time Hawking radiation from the black hole by studying a subregion R of the bath.
The bath is nongravitational so such an entanglement entropy is well-defined [8–11]. In such
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Figure 1. a) The Penrose diagram of an eternal black hole in AdSd coupled to d-dimensional baths.
We specify the two red vertical lines as the conformal boundary of the AdSd black hole. The orange
arrows are the radiation coming in and out of the black hole. We choose time evolution as indicated
in the diagram. We also specify two Cauchy slices of this time evolution as the two blue curves and
on each of them we denote the subsystem R = RI ∪ RII in red. We emphasize that the Cauchy slices
of this time evolution all go through the bifurcation horizon so they don’t touch the black interior. b)
We draw a putative configuration with entanglement island as the purple interval in the black hole
spacetime. Its causal diamond overlaps the black hole interior.

a computation, one is instructed to use the so called island rule [12, 13] aka the quantum
extremal surface prescription [14] to look for a quantum extremal surface ∂I

SvN(R) = min
∂I

Ext
(

SvN(R ∪ I) + A(∂I)
4GN

)
, (1.1)

in which SvN(R ∪ I) is the entanglement (von-Neumann) entropy of the subregion R ∪ I for
the quantum fields living in the black hole plus bath background, GN is the Newton’s constant
in the black hole spacetime and I is called the entanglement island. Using the above formula,
one shall find the formation of a nontrivial island I at late times in our chosen time evolution.
The interpretation of such a result is that at late times the entanglement wedge of the early-
time Hawking radiation R contains a disconnected region I from it. Entanglement wedge
reconstruction tells us that the physics in the island region I is fully encoded in the early-time
Hawking radiation R [9, 15, 16]. Since the (causal diamond of the) island region overlaps
with the black hole interior, one sees that the early-time Hawking radiation is indeed purified
at late times as it encodes physics in the black hole interior. Nevertheless, the application of
this island rule is extremely hard in generic situations as we don’t have a formula for the
subregion entanglement entropy for quantum fields in curved background in higher spacetime
dimensions. This is the reason why Karch-Randall braneworld is a valuable set-up as the
Karch-Randall braneworld provides a holographic model of the above set-up in figure 1(a).
In the Karch-Randall braneworld the quantum fields that live in the black hole plus bath
background is holographic so we can in principle compute SvN(R ∪ I) using holographic tools
and explicitly construct entanglement islands using the island rule Equ. (1.1).

One can naturally realize the above set-up in figure 1(a) by embedding a Karch-Randall
brane into an ambient eternal AdSd+1 black hole background (see figure 2). In this case,
the ambient black hole will induce a black hole on the Karch-Randall brane which realizes
the black hole in figure 1(a). Moreover, the Karch-Randall brane cuts off part of the bulk
(the gray region in figure 1(a)) and the leftover bulk region still has part of the asymptotic
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Figure 2. The demonstration of the Karch-Randall realization of the set-up in figure 1(a) on a
constant time slice. For simplicity we only draw the configuration on the left hand side on the bulk
eternal black hole. The dashed line is the horizon. The brane is the blue curve. The orange and
the green curves are the two candidate entangling surfaces, that calculate SvN(R) = SvN(RI ∪ RII),
among which one goes through the bulk black hole interior connecting the boundaries of RI and RII ,
and the other has two disconnected components one on each side of the bulk black hole and they end
on the brane.

boundary which models the flat nongravitational bath in figure 1(a). One usually takes
the ambient space to be described by a classical Einstein’s gravity (i.e. small curvature and
small Newton’s constant in the units that lAdS = 1). We call this the bulk description of
the Karch-Randall braneworld. Using the AdS/CFT correspondence [17–19], one can firstly
dualize the ambient space classical gravity theory to the brane plus the bath system that we
now have a highly quantum (i.e. strongly coupled) gravitational theory with matter lives on
the asymptotic AdSd black hole coupled to a nongravitational bath. This is exactly the set-up
in figure 1(a). Nevertheless, in our system, the bath is described by a d-dimensional conformal
field theory (CFTd) and the matter field on the AdSd black hole spacetime is a CFTd with a
UV cutoff [11]. We call this the intermediate description of the Karch-Randall braneworld.
Furthermore, one can dualize the resulting black hole plus bath system to a conformal field
theory with boundary (BCFTd) by dualizing the AdSd black hole to a CFTd−1 living on the
boundary of the bath CFTd. In the case of an eternal black hole as we are considering, the
resulting BCFTd system has two copies and is in the thermal-field-double-state (TFD). We
call this the boundary description of the Karch-Randall braneworld. In this description, the
entanglement entropy of the early-time Hawking radiation is translated to the entanglement
entropy of the BCFTd subregion R when the BCFTd is in the time-evolved TFD. Then one
can use the Ryu-Takayanagi conjecture in the AdS/BCFT correspondence [20–23], to compute
this entanglement entropy by looking for the Ryu-Takayanagi surface in the original ambient
space (see figure 2). There are two possible topologies of the Ryu-Takayanagi surface– one has
a single component going through the bulk black hole interior connecting the boundaries of
the subregions RI and RII (the orange surface in figure 2) and the other has two components
connecting the boundaries of RI and RII respectively to points on the brane (see the purple
surface in figure 2 for one of the components). The Ryu-Takayanagi surfaces are minimal
area surfaces and for the surface of the second type one also has to minimize its area with
respect to its ending point on the brane. The area of the surface of the first type is linearly
growing in time and the area of the surface of the second type is constant in time. Therefore,
the Hubeny-Rangamani-Takayanagi (HRT) formula [24] tells us that

SvN(R) = min
(

Ac(t)
4Gd+1

,
2Adc

4Gd+1

)
, (1.2)
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where Gd+1 is the Newton’s constant in the ambient space and A denotes the area of a
connected component of a surface. It is obvious that at late times the surface of the second
type will dominate which corresponds to the formation of entanglement island (see the purple
region on the brane in figure 2) and the minimization of the area over the ending points on
the brane, when we are searching for the surface of the second type, corresponds to the same
operation in the island rule Equ. (1.1). Hence, one can explicitly compute the Page curve of
the black hole radiation and see the formation of entanglement island in the Karch-Randall
braneworld [3–5, 25, 26] (see [11] for a review).

Nevertheless, both the island rule Equ. (1.1) in generic situations and the Ryu-Takayanagi
conjecture in AdS/BCFT Equ. (1.2) lack a derivation. The island rule can be proven
in specific low dimmensional models of the set-up in figure 1(a) which shows that the
formation of entanglement island is due to the emergence of the replica wormhole as the
dominating saddle in the path integral that computes SvN (R) [27] (see [28–46] for other
relevant works). Nevertheless, the observation that the formation of entanglement island
is due to the emergence of replica wormhole is expected to be a general mechanism. The
Ryu-Takayanagi conjecture can be proven in the ordinary AdS/CFT context by translating
the boundary replica trick calculation of the entanglement entropy to a gravitational path
integral on replicated spacetime manifolds [47].

In this paper, we provide a derivation of the Ryu-Takayanagi conjecture in AdS/BCFT
whose holographic dual is the quantum extremal surface prescription. We mainly focus on the
case that the bulk description contains an eternal AdS3 BTZ black hole [48] for which explicit
computations of the entanglement entropy of R can be performed in both the bulk and the
boundary descriptions [49, 50]. The bulk computation uses the Ryu-Takayanagi conjecture
Equ. (1.2) and it gives exactly the same answer as the computation in the boundary description
using BCFT2 techniques. We prove the validity of the Ryu-Takayanagi conjecture in this
case in the same spirit as [47] by translating the replica computation of the entanglement
entropy in the boundary description to a gravitational path integral in the bulk description
using holographic dictionary [17–19].1 Interestingly, we will see that the Ryu-Takayanagi
conjecture Equ. (1.2) is indeed true in this case and the second class of surfaces correspond
to the configuration that a single Karch-Randall brane connects the boundaries of different
replica copies of the BCFT. This corresponds to the formation of replica wormhole in the
intermediate description. We comments on generalizations of this derivation to cases with
two Karch-Randall branes in the ambient BTZ black hole spacetime, which describes the
information transfer between two black holes through a nongravitational bath [50], and
higher dimensional situations. We will see that in the higher dimensional cases the brane
obeys Einstein’s equation coupled with conformal matter which circumvents the Witten-Yau
theorem [52, 53] for the replica wormhole to be an on-shell configuration in the replica
gravitational path integral but provides nontrivial no-go theorem for the proposal from [54].

This paper is organized as following. In section 2 we review relevant previous work both
in the precise description of Karch-Randall branes and the computation of entanglement
entropy when the ambient space is asymptotically AdS3. In section 3 we provide a derivation
of the Ryu-Takayanagi conjecture in AdS/BCFT when the bulk is asymptotically AdS3 and

1See [51] for relevant discussions in different contexts.

– 4 –



J
H
E
P
0
1
(
2
0
2
5
)
0
6
3

show that the emergence of replica wormholes lies behind the formation of entanglement
islands on the Karch-Randall brane. In section 4 we comment on the generalization of the
above derivation to higher dimensional cases. We conclude our paper with discussions in
section 5. We collect useful geometric results in the appendix.

2 Review of previous work

In this section, we review the precise description of the Karch-Randall braneworld and the
computation of the entropy of Hawking radiation in the Karch-Randall braneworld using
examples when the bulk is asymptotically AdS3. Generalizations to higher dimensions are
straightforward.

2.1 The physics of the Karch-Randall braneworld

Karch-Randall braneworld concerns the embedding of a subcritical brane in an ambient
asymptotically AdSd+1 spacetime Md+1. The physics in the ambient spacetime is described
by classical Einstein’s gravity and in which the brane is a codimension one hypersurface
Md. The action of this system is given by

S = − 1
16πGd+1

∫
Md+1

dd+1x
√
−g(R − 2Λ)− 1

8πGd+1

∫
Md

ddx
√
−h(K − T ) , (2.1)

where K is the trace of the extrinsic curvature of the brane, hµν is the induced metric on the
brane, T is the tension of the brane and Λ = −d(d−1)

2l2AdS
(later we will set the AdS length scale

lAdS = 1 for convenience) is the bulk cosmological constant. The boundary condition of the
bulk metric is of the Neumann type near the boundary and the Dirichlet type near the leftover
asymptotic boundary i.e. it has a nonzero fluctuation near the brane but zero fluctuation
near the leftover asymptotic boundary. This corresponds to the fact that in the intermediate
description of the Karch-Randall braneworld the brane is the gravitational AdSd spacetime and
the leftover asymptotic boundary is the d-dimensional nongravitational bath. This system has
two sets of equations of motion– the Einstein’s equation which corresponds to the vanishing
of the bulk part of the variation of the action Equ. (2.1) and the brane embedding equation
which corresponds to the brane part of the vanishing of the variation of the same action. The
Einstein’s equation determines the background geometry of the ambient spacetime and the
brane embedding equation decides how the brane is embedded in the ambient spacetime and
thus the induced geometry of the brane. The brane embedding equaiton is given by

Khµν − Kµν = Thµν . (2.2)

Let’s consider a few explicit examples when the ambient spacetime is (2+1)-dimensional
to see how the above system operates and their physical interpretations relevant for our
later discussions.

2.1.1 Empty AdS3 with one brane

As a first example, let’s consider the simplest case that the bulk ambient space doesn’t contain
a black hole. In this case, the bulk geometry can be taken as in the Poincaré patch

ds2 = dz2 − dt2 + dx2

z2 , (2.3)
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Figure 3. The brane configuration in an empty AdS3. The configuration is static so we just draw a
constant time slice. The brane subtend an angle θ with the asymptotic boundary z = 0. The gray
region behind the brane (for which x < 0) is cut off by the brane.

AdS2 Mink2

(a) Intermediate Description (b) Boundary De-
scription

Figure 4. a) Intermediate description: Gravitational AdS2 coupled with a nongravitational (1+1)-
dimensional half-Minkowski bath. b) Boundary description: a BCFT2 in the ground state.

which solves the Einstein’s equation for d = 2 and z → 0 is the asymptotic boundary. The
static solution of the brane embedding equation Equ. (2.2) is (see figure 3)

z = −x tan θ , where T = cos θ . (2.4)

The intermediate description of this case is that we have an Poincaré AdS2 gravitatonal
spacetime coupled with a two-dimensional half-Minkowski nongravitaitonal bath. The matter
field in the union of AdS2 and the bath obeys transparent boundary condition near their
common boundary and is in the ground state (see figure 4(a)). The boundary description is
a (1+1)-dimensional boundary conformal field theory (BCFT2) in the ground state. This
BCFT2 lives on a half-Minkowski spacetime and its boundary is described by a Cardy
boundary state |Ba⟩ [55] whose boundary entropy is given by [20]

ln ga = cot θ

2 =
√

1 + T

1− T
. (2.5)

2.1.2 BTZ black hole with one brane

Now let’s consider the case where the bulk ambient spacetime contains an eternal BTZ
black hole. The metric is

ds2 = −h(z)
z2 dt2 + dz2

h(z)z2 + dx2

z2 , h(z) = 1− z2

z2
h

, (2.6)
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Figure 5. The brane configuration in an eternal BTZ black hole background. The configuration is
static so we just draw a constant time slice and for simplicity we only draw one exterior. The dashed
line is the black hole horizon z = zh. The gray region behind the brane is cut off by the brane.

•a •b

Figure 6. The configuration with two branes in the BTZ background. The shaded gray region is cut
off by the branes.

where the horizon is at z = zh. The static solution of the brane embedding equation
Equ. (2.2) is (see figure 5 and for details see [50]2)

x(z) = −zh arcsinh
(

z T

zh

√
1− T 2

)
. (2.7)

The intermediate description in this case is the same as figure 1(a) where now the black
hole is (1+1)-dimensional. The boundary description involves the same BCFT2 with the
boundary condition corresponds to the Cardy state |Ba⟩ as in section 2.1.1. But now there
are two copies of such BCFT2’s and they are in the thermal-field-double-state |TFD⟩ (more
details will be discussed in section 2.2.2).

2.1.3 BTZ black hole with two branes

A slight generalization of the situation in section 2.1.2 is to put two Karch-Randall branes
in the ambient BTZ black hole spacetime (see figure 6). In this case, the intermediate
description contains two (1+1)-dimensional eternal black holes coupled to each other through
strip-shaped baths (see figure 7(a)). The boundary description involves two BCFT2’s living
on strips with boundary conditions corresponding to Cardy states |Ba⟩ and |Bb⟩. The two
BCFT2’s are in the thermal-field-double-state |TFD⟩ (see figure 7(b) and more details will
be discussed in section 2.2.2).

2See [25, 56–155] for relevant follow-up works on [50].
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(a) Intermediate Description (b) Boundary Description

Figure 7. a) The Penrose diagram of the intermediate description for two branes in the BTZ black
hole background. We have two (1+1)-dimensional black holes (i.e the geometry on the two branes)
coupled to each other through strip-shaped baths (the green shaded region). The two exterior red
edges should be identified. We notice that the black hole singularities are in fact orbifold singularities
inheriting from that of the BTZ black hole but we still use waved lines to represent them. b) The
boundary description of the configuration with two branes in the BTZ black hole background. The
two strip BCFT2’s are in the thermal-field-double-state.

2.2 Computing the entropy of Hawking radiation

With the understanding that the entropy of Hawking radiation is in fact the entanglement
entropy of the bath subregion R in figure 1(a), we can try computing it in the Karch-Randall
braneworld. The nice feature of the case that the ambient bulk spacetime is (2+1)-dimensional
is that the computation can be done in both the boundary description using BCFT2 techniques
and the bulk description using the Ryu-Takayanagi conjecture Equ. (1.2) with exactly matched
answers. We will review this computation in various cases in this subsection to set up some
notations for our later discussion.

2.2.1 General idea

In quantum field theories, for states that can be prepared using path integral, subregion
entanglement entropy can be computed using the replica trick [156]. Let’s review this idea
using the ground state |0⟩ of a BCFT2 on the plane with a single Cardy boundary. The state
|0⟩ is supported on the zero time slice and we are interested in the ground state entanglement
entropy between the subregion R, which contains the boundary, and its complement R̄.

The ground state can be prepared using Euclidean time evolution from −∞ to zero
which projects all states with a nonzero overlap with the ground state to the ground state
(see figure 8(a)). Hence we will consider the BCFT2 to be living on a Euclidean half-plane

ds2 = dτ2 + dx2 = dzdz̄ , where z = τ + ix and x ≥ 0, (2.8)

for which x = 0 is the conformal boundary. Instead of considering the ground state |0⟩, let’s
consider the corresponding density matrix operator

ρ̂ = |0⟩ ⟨0| , (2.9)

which can again be prepared by a Euclidean path integral as indicated in figure 8(b).
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τ

|0⟩

(a) The Path Integral
Preparing |0⟩

ρ̂ = |0⟩ ⟨0|

(b) The Path Integral Preparing
ρ̂ = |0⟩ ⟨0|

Figure 8. a) The Euclidean path integral preparing the ground state |0⟩. The black slice is the τ = 0
slice where the state is supported. We can specify boundary values of fields ϕ(x) along the black slice if
we want to compute the ground state wavefunctional Ψgs(ϕ) = ⟨ϕ|0⟩. b) The Euclidean path integral
preparing the ground state density matrix. If one is interested in the specific element ⟨ϕ1| ρ̂ |ϕ2⟩ then
one can specify the values of the fields ϕ∗

2(x) on the blue slice and ϕ1(x) on the black slice.

In the computation of the entanglement entropy between the subregion R and its
complement R̄, we are interested in the reduced density matrix operator

ρ̂R̄ = trR |0⟩ ⟨0| , (2.10)

which is obtained from Equ. (2.9) by tracing out the degrees of freedom (i.e. possible field
values) in the region R. This can again be prepared using a Euclidean path integral on
the plane as shown in figure 9. With this density matrix equipped, we can compute the
entanglement entropy using the replica trick

SR = − tr ρ̂R̄ log ρ̂R̄ = lim
n→1

1
1− n

log tr ρ̂n
R̄

, (2.11)

for which we have assumed that the reduced density matrix operator ρ̂R̄ has been normalized
to have a unit trace. One can compute tr ρ̂n

R̄
using Euclidean path integral as indicated

in figure 10 by cyclically gluing n copies of the manifold in figure 9 to a replica manifold
M(n) and computing the Euclidean path integral on M(n). We note that the metric on the
replica manifold contains a conical singularity at the coboundary of R and R̄ but the field
is smooth on the replica manifold M(n) (for a 2d CFT such a conical singularity can be
regulated in various ways [49]). Let’s denote the Euclidean path integral over smooth field
configurations on M(n) to be ZBCFT[M(n)]. Let’s denote the half Euclidean plane with the
Cardy boundary by M then the trace of the n-th power of the normalized reduced density
matrix operator is in fact given by

tr ρ̂n
R̄
= ZBCFT[M(n)]

Zn
BCFT[M] . (2.12)

This is the key formula for later calculations and the proof of the Ryu-Takayanagi conjecture
Equ. (1.2) in AdS/BCFT using gravitational path integral.

– 9 –
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ρ̂R̄ = trR |0⟩ ⟨0|

Figure 9. The Euclidean path integral preparing the ground state |0⟩. The dashed interval denotes
the subregion R. The resulting reduced density matrix operator ρ̂R is obtained from ρ̂ = |0⟩ ⟨0| by
tracing over all possible field values ϕR in the subregion R. This operation effectively glued the black
and blue slices in figure 8(b) along the subregion R. If one is interested in the specific element of
the resulting reduced density matrix operator

〈
ϕR̄,1

∣∣ ρ̂R̄

∣∣ϕ,R̄,2
〉

then one can specify the values of the
fields ϕ∗

R̄,2(x) on the blue slice and ϕR̄,1(x) on the black slice.

Figure 10. An example of the computation of tr ρ̂3
R̄

where one starts with three copies of the manifold
appearing in figure 9 and glue them by gluing the black slice of the i-th copy to the blue slice of the
i + 1-th copy and at the end glue the black slice of the last copy to the blue slice of the first copy.
Then one obtains the replica manifold M(n) (here n = 3) and one just computes the Euclidean path
integral of the field theory on this replica manifold.

2.2.2 Boundary calculation

Now let’s apply Equ. (2.12) to compute the subregion entanglement entropy in BCFT2
for various situations.

To warm up, let’s start with the simplest case, i.e. the case we discussed in section 2.2.1
which is the boundary description of the set-up in section 2.1.1. In this case, we have
the replica manifold M(n) as the n-branched half-plane with the branching point at the
coboundary of R and R̄. Let’s define the length of the subregion R to be ℓ then the branching
point is at x = ℓ in the geometry Equ. (2.8). The fields on the replica manifold M(n) obey
a Zn symmetry which cyclically permutes the fields on different branches. Hence, one can
consider the quotient case for which the background manifold becomes M = M(n)/Zn and
the field becomes multi-valued at the original branch cut x ≥ ℓ. This is an orbifold BCFT2
for which the original Euclidean path integral over smooth configurations on M(n) is equal
to the one-point function of a twist operator Φn(z, z̄) inserted at the branching point x = ℓ

– 10 –
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Figure 11. Half-plane with a twist operator inserted at τ = 0, x = ℓ (the black dot) which creates a
branch cut for the field along x ≥ ℓ.

evaluated on M [157]. The twist operator creates a branch cut for the field along R̄ i.e.
x ≥ ℓ and it is a primary operator with conformal weights

hn = h̄n = c

24

(
n − 1

n

)
, (2.13)

where c is the central charge of the BCFT2 (see figure 11). Hence we have

SR = lim
n→1

1
1− n

ln⟨Φn(z, z̄)⟩HP , (2.14)

which can be computed using the boundary operator expansion (BOE) [49, 50] as

SR = c

6 ln
(2ℓ

ϵ

)
+ ln(ga) , (2.15)

where ϵ is a UV cutoff length scale, the boundary entropy is defined as

ln(ga)−
c

6 ln(ϵ) = lim
n→1

1
1− n

ln
(
Ba

Φn1
)

, (2.16)

and Ba
Φn1 is the boundary operator expansion (BOE) coefficient of Φn(z, z̄) into the boundary

identity operator when the boundary condition is a Cardy boundary condition denoted as a.
Now let’s consider the thermal-field-double-state |TFD⟩ of two BCFT2’s. The BCFT2’s

all have one conformal boundary a corresponding to a Cardy boundary condition. We will
label the two BCFT2’s as BCFTL and BCFTR and this is the boundary description of the
set-up in section 2.1.2. We can prepare the state |TFD⟩ using an Euclidean path integral. To
do this we firstly do a conformal transform from z = x + iτ , for which the BCFTR part of
the |TFD⟩ state is supported at the slice τ = 0 and BCFTL part is at τ = β

2 , to

w = e
2π
β

z
, w̄ = e

2π
β

z̄
, (2.17)

where β is the inverse temperature. The path integral is over the region from the τ = 0 slice
to the τ = β

2 slice clockwisely and in the w-plane can be represented as in figure 12. We want
to compute the entanglement entropy of the subregion R = RI ∪RII as indicated in the bath
of figure 1(a). By the discussion of the previous paragraph, this corresponds to the insertion
of twist operators on the w-plane [49, 50] at ∂RI and ∂RII (see figure 13). We denote the
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BCFTRBCFTL

Figure 12. The path integral preparation of the state |TFD⟩ in the w-plane. The black slices specify
the support of the state |TFD⟩.

• •
RI RII

(a)

• •

(b)

Figure 13. a)The path integral preparation of the |TFD⟩ state in the w-plane. The two solid black
slices specifies the time-evolved state on which we show the subregions RI and RII in red. The twist
operators are inserted at the black dots. b) The insertion of twist operators comes from the replica
path integral and creates the branch cuts as indicated by the weaved lines.

two insertion points as wL = −e
ℓ 2π

β
−iτ 2π

β and wR = e
ℓ 2π

β
+iτ 2π

β where the Euclidean time τ

is related to the Lorentzian time t as τ = it. Hence we have

SR = lim
n→1

1
1− n

ln⟨Φn,L(z, z̄)Φn,R(z, z̄)⟩TFD , (2.18)

for which the two-point function can be computed on the w-plane as the ground state
two-point function

⟨Φn,L(z, z̄)Φn,R(z, z̄)⟩TFD =
∣∣∣∣dw

dz

∣∣∣∣2hn

w=wL

∣∣∣∣dw

dz

∣∣∣∣2hn

w=wR

⟨Φn(wL, w̄L)Φn(wR, w̄R)⟩ . (2.19)

As a result, for holographic BCFT2’s, we have [49, 50]

SR = min
[

c

3 ln

βe
2πℓ

β cosh 2πt
β

ϵπ

,
c

3 ln

β(e
4πℓ

β − 1)
2ϵπ

+ 2 ln(ga)
]

, (2.20)

where the first candidate result under minimization is the bulk-channel result and the second
is the boundary-channel result. In each channel we only have to consider the contribution
from the identity operator in the operator product expansion which is a property of a
holographic BCFT.

The last case we will consider is the thermal-field-double-state |TFD⟩ of two BCFT2’s
where the two BCFT2’s both involve two conformal boundaries corresponding to Cardy
boundary conditions a and b. This is the boundary description of the set-up in section 2.1.3.
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BCFTRBCFTL

Figure 14. The path integral preparation of the state |TFD⟩ in the w-plane. The black slices specify
the support of the state |TFD⟩.

• •
RI RII

(a)

• •

(b)

Figure 15. a)The path integral preparation of the |TFD⟩ state in the w-plane. The two solid black
slices specifies the time-evolved state on which we show the subregions RI and RII in red. The twist
operators are inserted at the black dots. b) The insertion of twist operators comes from the replica
path integral and creates the branch cuts as indicated by the weaved lines.

Let the distance between the two boundaries be L. The state |TFD⟩ can be prepared in
the same way as in the one boundary case by conformally transforming from z = x + iτ to
w = e

2π
β

z (see figure 14). The entanglement entropy calculation is also the same as in the
last paragraph. Nevertheless, now due to the appearance of another boundary the result
is different [50]. For a holographic BCFT we have

SA = min
[

c

3 ln

β(e
2πℓ

β − 1
2ϵπ

+ 2 ln(ga) ,
c

3 ln

2e
4πℓ

β cosh 2πt
β

ϵπ

 ,
c

3 ln

β(e
2πL

β − e
2π
β

(2ℓ−L))
2ϵπ


+ 2 ln(gb)

]
, (2.21)

where the new candidate under the minimization compared with Equ. (2.20) corresponds to
the boundary channel operator product expansion associated with the second boundary.
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a

θ

•0

•

x

z
ℓ

R

I

Figure 16. The computation of SR using RT conjecture for the ground state. The dashed blue curve
is the RT surface and the purple region I on the Karch-Randall brane is the entanglement island of
the bath region R in the intermediate description.

2.2.3 Bulk calculation

We can also compute the subregion entanglement entropies in section 2.2.2 in the corresponding
bulk descriptions using the Ryu-Takayanagi conjecture Equ. (1.2). These computations were
performed in detail in [49, 50] with the results exactly matching Equ. (2.15), Equ. (2.20)
and Equ. (2.21). Here we review relevant geometric aspects for our later discussion of the
replica wormholes.

In the simplest case we considered, i.e. the ground state of a BCFT2 with single Cardy
boundary a, the bulk description is as in figure 3. The entanglement entropy SR can be
computed by looking for a minimal area surface connecting ∂R to the Karch-Randall brane
in the bulk description. One also has to minimize the area over the ending point on the
brane which as we discussed corresponds to implementing the quantum extremal surface
prescription in the intermediate description. The resulting configuration is shown in figure 3.
The nice feature of this example is that there exists entanglement island even without a black
hole and its very existence is guaranteed by the nonzero value of the entanglement entropy
SR. Hence we can see that entanglement island is an essential element in holography.

In the case of two BCFT2’s with single Cardy boundary in the thermal-field-double-
state |TFD⟩, the bulk description contains a BTZ black hole and a Karch-Randall brane
as indicated in figure 5. The computation of the subregion entanglement entropy using the
Ryu-Takayanagi conjecture Equ. (1.2) is essentially the same as in figure 2. Nevertheless, as
we have seen in section 2.2.2, it is important to perform the conformal transform Equ. (2.17)
for the replica computation of the entanglement entropy in the boundary description. For
the sake of later convenience, here we discuss the corresponding transformation in the bulk
description. In the bulk, we start from the Euclidean BTZ metric

ds2 = h(z)
z2 dτ2 + dz2

h(z)z2 + dx2

z2 , h(z) = 1− z2

z2
h

, (2.22)

for which τ is periodic with a period β = 2πzh as the inverse temperature. A Karch-Randall
brane is embedded as

x(z) = −zh arcsinh
(

z T

zh

√
1− T 2

)
. (2.23)

The following bulk coordinate transformation corresponds to the boundary conformal trans-
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z

Figure 17. The configuration of the Karch-Randall braneworld Equ. (2.26) in the geometry Equ. (2.25).
The brane is the red spherical cap and the interior of the cap is removed from the bulk geometry. The
|TFD⟩ is supported at the zero time τ = 0 slice which is the dashed black line.

form Equ. (2.17)

z′ = z

zh
e

z
xh , w = e

x+iτ
zh

√
h(z) , (2.24)

which transforms the metric Equ. (2.22) to

ds2 = dz′2 + dwdw̄

z′2
. (2.25)

Near the conformal boundary z′ = ϵ → 0, the transformation Equ. (2.24) is exactly the
boundary conformal transform Equ. (2.17). Moreover, the fact that field theory in the
w-plane is in the ground state exactly matches the result Equ. (2.25) that the bulk metric
is now empty AdS3. Under the above coordinate transformation the Karch-Randall brane
Equ. (2.23) is now embedded in Equ. (2.25) as

1
1− T 2 = ww̄ +

(
z′ + T√

1− T 2

)2
, (2.26)

which is a spherical cap (see figure 17) and near the conformal boundary z′ = ϵ → 0 it is
exactly ww̄ = 1 which matches with figure 13.

The case where the boundary description involves two BCFT2’s each with two Cardy
boundaries a and b in |TFD⟩ state is pretty much the same as the one boundary case except
now the bulk description contains two branes both of which are spherical caps in the geometry
Equ. (2.25). Moreover, the Ryu-Takayanagi surface can now end on either of the two branes
which reproduces exactly Equ. (2.21) [50].

3 Replica wormholes in the Karch-Randall braneworld

In the previous section we see that in the case where the bulk description is asymptotically
AdS3 with Karch-Randall branes and the associated boundary description is a BCFT2, the
computations of the subregion entanglement entropy SR using the BCFT2 techniques on
the boundary and the Ryu-Takayanagi conjecture Equ. (1.2) in the bulk give exactly the
same answers in various situations. In this calculation, the entanglement island naturally
emerges on the Karch-Randall brane.

In this section, we give a proof of the Ryu-Takayanagi conjecture Equ. (1.2) in the
above context following the work [47, 158, 159]. Our strategy is to translate the boundary
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replica path integral Equ. (2.12) into a bulk gravitational path integral using the holographic
dictionary then evaluate it using the saddle point approximation to first order in (n − 1)-
expansion and finally derive a formula for SR following Equ. (2.11).

3.1 Replica wormhole and the Ryu-Takayanagi conjecture

We want to compute the subregion entanglement entropy SR of the thermal-field-double-
state in the case as shown in figure 13. Using the holographic dictionary of the Karch-
Randall braneworld we can map the replicated boundary partition function into a Euclidean
gravitational path integral

ZBCFT[M(n)] =
∫

∂M(n)
d+1=M(n)

D[g]e−S = Zgrav[M(n)] , (3.1)

where the gravitational action S is given by Equ. (2.1), the bulk manifold M(n)
d+1 should

have the conformal boundary as the replica manifold M(n) together with Karch-Randall
branes M(n)

d whose asymptotic boundary ∂Md is the same as ∂M(n) and we are integrating
over smooth metric configurations, i.e. summing over smooth bulk geometries, as the field
configurations on the boundary manifold M(n) are smooth. The gravitational path integral
can be computed using the saddle point approximation as the bulk gravitational theory is
classical, i.e. GN is small. As a result, one has

ZBCFT[M(n)] = Zgrav[M(n)] = e−S[g0] , (3.2)

where the metric g0 is smooth and satisfies the bulk Einstein’s equation

Rµν − 1
2gµνR = −Λgµν = d(d − 1)

2 gµν , (3.3)

and the brane satisfies the brane embedding equation Equ. (2.2). Since the boundary manifold
M(n) has the replica symmetry Zn, one expects this symmetry to extend into the bulk. So
the bulk metric g0 has a Zn symmetry, the boundary restriction of which is the boundary Zn

symmetry. Let’s denote the bulk manifold with metric g0 as Mn
d+1. When we are computing

the on-shell action S[g0] we can consider instead n copies of the quotient manifold

M̃d+1 = Mn
d+1/Zn , (3.4)

which nevertheless contains a conical singularity corresponding to the locus of the Zn fixed
points in Mn

d+1. We want to evaluate S[g0] to first order in (n − 1). Let’s denote the metric
of the quotient manifold Equ. (3.4) as g̃0. The conical singularity is a codimension-two
bulk minimal surface γ homologous to R [47]. When there are multiple such surfaces one
should take the one for which the on-shell action is smallest which is due to the saddle
point approximation we are using. In Einstein’s gravity this conical singularity can be taken
as a cosmic brane with tension

Tn = 1
4Gd+1

(
1− 1

n

)
. (3.5)

Hence we have

S[g0] = nS[g̃0] +
A(γ)
4Gd+1

n − 1
n

, (3.6)
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where A(γ) is the area of the codimension-two minimal area surface γ. Here we notice that
g̃0 depends on n and when n = 0 g̃0 is just the Euclidean metric Equ. (2.22). Since the
Euclidean metric Equ. (2.22) solves the bulk Einstein’s equation, it is a stationary point
of the action S[g] so any variation around it wouldn’t contribute to the action S[g] to the
first order of the variational parameter. In our case, the variational parameter is (n − 1)
so to first order in (n − 1) we have

S[g̃0] = S[gEBTZ] . (3.7)

Therefore, we have

S[g0] = nS[gEBTZ] +
(

A(γ)
4Gd+1

n − 1
n

)
+O((1− n)2) , (3.8)

where the minimal area surface γ now lives in the bulk geometry Equ. (2.22) and is homologous
to R. As a result, we have

SR = − tr ρ̂R̄ log ρ̂R̄ = lim
n→1

1
1− n

log tr ρ̂n
R̄

,

= lim
n→1

1
1− n

Zgrav[M(n)]
Zgrav[M(0)]n

,

= lim
n→1

1
1− n

e
−nS[gEBTZ]+ A(γ)

4Gd+1
1−n

n
]

e−nS[gEBTZ] ,

= A(γ)
4Gd+1

.

(3.9)

Nonetheless, in the above discussion we haven’t carefully treat the Karch-Randall brane. We
notice that there are two possible phases of the Karch-Randall brane in the manifold M(n)

d+1.
The first phase has n-disconnected components (see figure 18) and the second phase has a
single component connecting the Cardy boundaries of the boundary replica manifold M(n)

(see figure 19). In the former case the conical singularity γ stays in the bulk connecting
the two boundaries of ∂R (the orange curve in figure 2) and in the later case the conical
singularity γ extends to the brane as there also exist Zn fixed points on the brane so γ has
two disconnected components connecting the two boundaries of ∂R to the brane (the green
curve in figure 2). Thus, we in fact have

S(R) = min
(

Ac

4Gd+1
,
2Adc

4Gd+1

)
, (3.10)

which is exactly the Ryu-Takayanagi conjecture Equ. (1.2). Moreover, we notice that when
we are looking for γdc we should also minimize its area over its possible ending points on the
brane which is again according to the saddle point approximation we are using.

As a summary, we see that we can in fact prove the Ryu-Takayanagi conjecture Equ. (1.2).
In the proof we see that the emergence of the disconnected Ryu-Takayanagi surface is due
to the connected phase of the Karch-Randall brane in the replica path integral. When
the connected phase dominates, the fixed point locus of the bulk Zn symmetry extends to
the brane which explains why the Ryu-Takayanagi surface could end on the brane. In the
intermediate description of the Karch-Randall braneworld this is exactly the formation of the
replica wormhole (see figure 19) and as a result the entanglement island as explained in [27].
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Figure 18. The disconnected phase of the Karch-Randall brane in the replica path integral for
n = 4. The green surfaces are asymptotic boundaries of the bulk and the red spherical caps are
the branes. The bulk region inside the spherical caps is cut off. In the boundary, the black slice in
the i-th component should be glued to the blue slice in the (i + 1)-th component and the orange
slice of the i-th component should be glued to the purple slice of the (i + 1)-th boundary. For the
sake of convenience we in fact drew the case for the state |TFD⟩ without any time evolution. The
time-evolved case is easy to visualize according to figure 13 but hard to draw here.

Figure 19. The connected phase of the Karch-Randall brane in the replica path integral for n = 4.
The green surfaces are asymptotic boundaries of the bulk and the red surface is the brane. The bulk
region inside the brane is cut off. In the bulk, the fix point locus of the Zn symmetry extends to the
brane. The two black dots indicate the fixed points of Zn symmetry on the brane. In the boundary,
the black slice in the i-th component should be glued to the blue slice in the (i+1)-th component and
the orange slice of the i-th component should be glued to the purple slice of the (i + 1)-th boundary.
For the sake of convenience we in fact drew the case for the state |TFD⟩ without any time evolution.
The time-evolved case is easy to visualize according to figure 13 but hard to draw here.
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3.2 The existence of the replica wormhole

In section 3.1 we see that the possible existence of the replica wormhole proves the emergence
of the disconnected Ryu-Takayanagi surface and hence the formation of entanglement island
on the brane. Nevertheless, since we are using the saddle-point approximation to compute
the replica gravitational path integral, we also have to show that the connected phase of the
Karch-Randall brane is consistent with the bulk Einstein’s equation.

Let’s fix metric to the Fefferman-Graham gauge [160] by considering the following form
of the bulk metric

ds2 = dr2 + ḡab(x, r)dxadxb , where a, b = 1, 2 , (3.11)

for which the asymptotic boundary is r → ∞ where ḡab decays as3

ḡab(x, r) ∼ e−2r , (3.12)

and the Karch-Randall brane is located at a constant-r slice r = rB.4 Now using the results
in the section A, the brane embedding equation Equ. (2.2) reads

1
2∂rḡab(x, rB)−

1
2Tr(ḡ−1∂rḡ)(x, rB)ḡab(x, rB) = T ḡab(x, rB) , (3.14)

which reduces to

−1
2Tr(ḡ−1∂rḡ)(x, rB) = 2T (3.15)

by taking the trace. Then combining Equ. (3.15) with Equ. (3.14) we get

∂rḡab(x, rB) = −2T ḡab(x, rB) . (3.16)

The bulk Einstein’s equation Equ. (3.3) reads (d = 2)

Rµν − 1
2gµνR = gµν . (3.17)

We are interested in the constraint it imposes on the geometry of the Karch-Randall brane,
so we will evaluate the Einstein’s equation at r = rB . Using the results in section A, we have

∂r

(
Tr(ḡ−1∂rḡ)

)
(x, rB) + 4T 2 = 4 ,

R̄ab(x, rB) = −2ḡab(x, rB) +
1
2∂2

r ḡab(x, rB) ,
(3.18)

where we have used Equ. (3.15). We can simplify the first equation using Equ. (3.15) by
noticing that

∂r

(
Tr(ḡ−1∂rḡ)

)
(x, rB) = −Tr(ḡ−1∂rḡḡ−1∂rḡ) + Tr(ḡ−1∂2

r ḡ) ,

= −8T 2 + Tr(ḡ−1∂2
r ḡ) ,

(3.19)

3The other part of the asymptotic boundary r → −∞ is cut off by the Karch-Randall brane.
4More precisely, we in fact expect in our case the the fall of behaviour of ḡab goes as

ḡab(x, r) ∼ cosh2 rg
AdSd
ab + O(e−4r) , as r → ∞ , (3.13)

where in the current case we have d = 2.
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which implies that

Tr(ḡ−1∂2
r ḡ)(x, rB) = 4(1 + T 2) . (3.20)

Taking the trace of the second equation among Equ. (3.18) we have

R̄(x, rB) = −2(1− T 2) . (3.21)

Moreover, in (2+1)-dimensional situations Equ. (3.20) in fact implies that

∂2
r ḡab(x, rB) ∝ ḡab(x, rB) , (3.22)

with an x-independent proportionality coefficient 2(1 + T 2).5 As a result, we have

R̄ab(x, rB) = −(1− T 2)ḡab , (3.23)

which is the same as Equ. (3.21) because in (1 + 1)-dimensions the Einstein tensor is
constantly zero. Since the Karch-Randall brane is subcritical, i.e. |T | < (d − 1), which for
d = 2 reads |T | < 1, we have from Equ. (3.23) that the brane geometry is a hyperbolic
Einstein manifold. In our current case the brane is two-dimensional and such a geometry
can be constructed as quotient of the upper-half-plane by a Fuchsian group. This proves
the existence of the connected phase of the Karch-Randall brane under the constraint of
the bulk Einstein’s equation.

In summary, in this subsection we proved that the existence of the connected phase of
the Karch-Randall braneworld is consistent with the bulk Einstein’s equation. Our proof
relies on deriving the induced gravitational equation obeyed the brane geometry from the
bulk Einstein’s equation and showing that this equation has a connected multi-boundary
solution. However, it is not very clear how one can prove the same result from purely bulk
perspective even for this d = 2 case. One might argue that for d = 2 all solutions of the bulk
Einstein’s equation can be constructed by cutting and paste as there is no local graviton so
one can easily construct multi-boundary bulk geometries. Nevertheless, the above intuition
wouldn’t straightforwardly work where there is a Karch-Randall brane in the bulk. One can
see this difficulty in two ways. Firstly one can try to solve the brane embedding equation
Equ. (2.2) in such a multi-boundary bulk geometry, however it is not very clear if there exists
a static solution of the brane embedding equation without a detailed calculation. Secondly,
one can try to do the cutting and paste together with the Karch-Randall brane and in this
approach one has to show that the resulting configuration of the brane is necessarily smooth,
i.e. the cutting and paste wouldn’t create spikes along the brane. One way to answer the
question in the second approach is to derive the induced gravitational equation obeyed by
the brane geometry and show that a smooth multi-boundary solution exists and this is
basically what we did in this subsection. We will leave a detailed study of this question
from the bulk perspective to future.

5This is because of the fact that we are considering pure Einstein gravity in the bulk. This implies that the
bulk geometry is always maximally symmetric. Hence the tensor indices of all curvature tensors are carried by
the metric.
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3.3 Generalization to BCFT2 with two boundaries

The above consideration in this section can be easily generalized to the case of the |TFD⟩
state of two BCFT2’s each with two Cardy boundaries a and b i.e. the case in figure 15.
In this case, there are three possible phases of the Karch-Randall branes for the saddle
point of the replica gravitational path integral: 1) Both the branes corresponding to the
Cardy boundary a and b are disconnected; 2) The brane corresponding to Cardy boundary
a is connected and the brane corresponding to Cardy boundary b is disconnected; 3) The
brane corresponding to Cardy boundary a is disconnected and the brane corresponding to
Cardy boundary b is connected. We note that there is no phase in which both the branes
corresponding to the Cardy boundaries a and b are connected as then there is no enough
boundary place i.e. ∂R for the bulk Zn fixed point locus to terminate.6 Hence in the case in
figure 15 the bulk calculation of SR involves three possible phases of the Ryu-Takayanagi
surface: 1) γc connecting the two components of ∂R through the bulk not touching the
branes; 2) γa

dc connecting ∂R to the brane corresponding the the Cardy boundary a; 3) γb
dc

connecting ∂R to the brane corresponding the the Cardy boundary b. As it was shown in
detail in [50], this reproduces the answer Equ. (2.21).

4 Comments on the higher dimensional cases

In higher dimensions the replica calculation of the entanglement entropy still follows from
Equ. (2.11). Nevertheless, due to the lack of local conformal symmetries for higher dimensional
CFT’s the |TFD⟩ state cannot be prepared by a path integral on a plane. So the situation
will be more complicated.7 However, the essential idea in the above section wouldn’t change
i.e. the Ryu-Takayanagi surface ending on the brane corresponds to the dominance of the
connected phase of the Karch-Randall brane in the replicated gravitational path integral.

Let’s take the bulk to be (d+1)-dimensional. To understand the constraint from the bulk
Einstein’s equation to the brane geometry, let’s evaluate the bulk Einstein’s equation

Rµν − 1
2gµνR = d(d − 1)

2 gµν , (4.1)

on the brane using the Gauss-Codazzi relations

R̄µν = Rµν + Rρσnρnσnµnν − Rρµnρnν − Rρνnρnµ − Rρµσνnρnσ + KµνK − Kρ
µKρν , (4.2)

where R̄µν is the Ricci curvature of the induce metric on the brane and nρ is the unit normal
vector of the brane. As a result, we have

R̄µν = −dgµν + dnµnν − Rρµσνnρnσ + KµνK − Kρ
µKρν ,

= −dḡµν − Rρµσνnρnσ + KµνK − Kρ
µKρν .

(4.3)

6This is nevertheless possible if the the subregions RI and RII in figure 15 are intervals each with two
boundaries away from the Cardy boundaries a and b.

7Though, the TFD state for which the modular Hamiltonian is a boost operator can be prepared by a path
integral on the plane.
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Then we can use the brane embedding Equ. (2.2) to simplify Equ. (4.3)8 as

R̄µν = −dḡµν − Rρµσνnρnσ + T 2 1
d − 1 ḡµν ,

= −(d − 1)2 − T 2

d − 1 ḡµν − ḡµν − Rρµσνnρnσ .

(4.4)

where the brane tension is subcritical |T | < (d − 1). Let’s define the traceless tensor
ḡµν +Rρµσνnρnσ as T m

µν , then we see that Equ. (4.4) is in fact the same as Einstein’s equation
with negative cosmological constant coupled with conformal matter. Moreover, if the bulk
geometry is maximally symmetric then T m

µν = 0 and the brane will be an Einstein manifold.
This is consistent with our result in Equ. (3.23) as when d = 2 the bulk geometry is always
maximally symmetric.

In higher dimensions (d ≥ 3), the Witten-Yau theorem [52, 53] says that when T m
µν = 0

there is no multi-boundary solution of Equ. (4.4) if the asymptotic boundary of the Karch-
Randall brane has nonnegative scalar curvature. Hence we see that for a maximally symmetric
bulk spacetime the connected phase of the Karch-Randall brane contradicts the bulk Einstein’s
equation. As a result, in empty AdSd+1 bulk one cannot have a brane connecting multiple
disconnected boundary submanifolds. This is a no-go theorem to the proposal in [54].

Nevertheless, in our case we are performing the replica gravitational path integral so
the smooth ambient bulk spacetime cannot be maximally symmetric as a smooth maximally
symmetric ambient bulk spacetime is necessarily empty AdSd+1 which doesn’t satisfy the
replica boundary condition. As we have discussed that from the brane perspective, when
the bulk is not maximally symmetric the induced gravitational theory on the brane has
nontrivial matter source which breaks one of the assumptions of the Witten-Yau theorem.
Hence we can see that the Witten-Yau theorem doesn’t forbid the existence of the connected
Karch-Randall brane as a saddle of the replica gravitational path integral. Interestingly, this
is also the spirit of the wormhole constructions in [161].

5 Discussions and conclusions

In this paper, we provide a derivation of the Ryu-Takayanagi conjecture in the AdS/BCFT
correspondence which was intensively used in the computation of the Page curve and construc-
tion of entanglement island in the Karch-Randall braneworld. The derivation translates the
replica path integral computation of the entanglement entropy into a bulk gravitational path
integral. The bulk contains a Karch-Randall brane. Interestingly, the replica gravitational
path integral can be dominated by different phases of the Karch-Randall brane. In general,
there are two phases– the disconnected phase and the connected phase. In the disconnected
phase the Karch-Randall brane contains n-disconnected components (n is the replica number)
and in the connected phase the Karch-Randall brane only has one connected component and
it has n disconnected asymptotic boundaries. In the intermediate description of the Karch-
Randall braneworld, the disconnected phase is in fact a replica wormhole and it corresponds
to the formation of entanglement island on the brane. Moreover, we notice that the connected
phase of the Karch-Randall brane as a saddle of the replica gravitational path integral doesn’t

8We should note that we used two different notations for the brane induced metric ḡµν and hµν .
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contradict the Witten-Yau theorem but Witten-Yau theorem does forbid the existence of such
connected saddle for the non-replicated gravitational path integral. The later observation
provides a no-go theorem for the proposal in [54] for a large class of situations. Moreover, we
notice that in our case the n boundary replica are in fact coupled to each other as they are
glued into a single manifold M(n) so one does expect the gravitational dual of their boundaries
can be a connected geometry i.e. a connected Karch-Randall brane. This is consistent with
lessons from string theory [162, 163] and is opposed to the calculations in [164–169] in which
bulk geometries connecting disconnected and decoupled asymptotic boundaries are included
into the gravitational path integral. We also notice that it is straightforward to extend our
work to the cases where the bulk contains higher curvature terms [170–172] and the brane
contains DGP [11, 173, 174] and other higher derivative terms [26].
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A Some geometric results

In this appendix, we collect some useful geometric results for the studies in the main text.
We are concerned with the geometric properties of following metric

ds2 = dr2 + ḡab(x, r)dxadxb , where a, b = 1, · · · , d . (A.1)

The nonvanishing components of the Christoffel symbol Γµ
νρ are

Γr
ab = −1

2∂rḡab , Γa
rb = Γa

br = 1
2 ḡac∂rḡbc , Γa

bc = Γ̄a
bc , (A.2)

where Γ̄a
bc is the Christoffel symbol of ḡab. The nonvanishing components of the extrinsic

curvature of the constant-r slices are

Kab =
1
2∂rḡab . (A.3)

Hence we have

Γr
ab = −Kab , Γa

rb = Γa
br = Ka

b . (A.4)

The components of the Ricci tensor are

Rrr = −∂rK − KabKab ,

Rra = Rar = ∇̄bK
b
a − ∂aK ,

Rab = R̄ab − ∂rKab − KKab + 2KacK
c
b .

(A.5)
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