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A b s t r a c t .  This article deals with the problem of restoring and segment- 
ing noisy image sequences with a static background. Usually, motion 
segmentation and image restoration are tackled separately in image se- 
quence restoration. Moreover, segmentation is often noise sensitive. In 
this article, the motion segmentation and the image restoration parts 
are performed in a coupled way, allowing the motion segmentation part 
to positively influence the restoration part and vice-versa. This is the 
key of our approach that allows to deal simultaneously with the prob- 
lem of restoration and motion segmentation. To this end, we propose 
a theoretically justified optimization problem that permits to take into 
account both requirements. A suitable numerical scheme based on half 
quadratic minimization is then proposed and its stability demonstrated. 
Experimental results obtained on noisy synthetic data and real images 
will illustrate the capabilities of this original and promising approach. 

1 I n t r o d u c t i o n  

Automatic image sequence restoration is clearly a very important  problem. Ap- 
plications areas include image surveillance, forensic image processing, image com- 
pression, digital video broadcasting, digital film restoration, medical image pro- 
cessing, remote sensing . . .  See, for example, the recent work done within the 
European projects, fully or in part,  involved with this important  problem : A U- 
R O R A ,  N O B L E S S E ,  L I M E L I G H T ,  I M P R O O F S , .  . . Image sequence restoration 
is tightly coupled to motion segmentation. It requires to extract  moving objects 
in order to separately restore the background and each moving region along its 
particular motion trajectory. Most of the work done to date mainly involves 
motion compensated temporal filtering techniques with appropriate 2D or 3D 
Wiener filter for noise suppression, 2D/3D median filtering or more appropriate 
morphological operators for removing impulsive noise [5, 16, 17, 14, 11, 24, 7, 6]. 
However, and due to the fact that  image sequence restoration is an emerging 
domain compared to 2D image restoration, the literature is not so abundant  
than the one related to the problem of restoring just a single image. For exam- 
ple, numerous PDE based algorithms have been recently proposed to tackle the 
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problems of noise removal, 2D image enhancement and 2D image restoration in 
real images with a particular emphasis on preserving the grey level discontinu- 
ities during the enhancement/restoration process. These methods, which have 
been proved to be very efficient, are based on evolving nonlinear partial differen- 
tial equations (PDE's) (See the work of Perona & Malik [27], Nordstrhm,Shah, 
Osher & Rudin [29], Proesman et al. [28], Cottet and Germain, Alvarez et al 
[21, Cohen [8], Weickert [34], Malladi & Sethian [23], Aubert et al. [3], You et al. 
[36], Sapiro et al. [30], Kornprobst & Deriche [21, 19], . . . ) .  

It is the aim of this article to tackle the important problem of image sequence 
restoration by applying this PDE based methodology, which has been proved to 
be very successful in anisotropically restoring images. Therefore, considering the 
case of an image sequence with some moving objects, we have to consider both 
motion segmentation and image restoration problems. Usually, these two prob- 
lems are tackled separately in image sequence restoration. However, it is clear 
that these two problems must be tackled simultaneously in order to achieve 
better results. In this article, the motion segmentation and the image restora- 
tion parts are done in a coupled way, allowing the motion segmentation part to 
positively influence the restoration part and vice-versa. This is the key of our 
approach that allows to deal simultaneously with the problem of restoration and 
motion segmentation. 

The organization of the article is as follows. In Sect. 2, we make some precise 
recalls about one of our previous approach for denoising a single image [9, 3, 21] 
The formalism and the methods introduced will be very useful in the sequel. Sect. 
3 is then devoted to the presentation of our new approach to deal with the case of 
noisy images sequence. We formulate the problem into an optimization problem. 
The model will be clearly explained and theoretically justified in Sect. 3.3. The 
precise algorithm will be also given and justified. Experimental results obtained 
on noisy synthetic and real data will then illustrate the capabilities of this new 
approach in Section 4. We conclude in Sect. 5 by recalling the specificities of 
that work and giving the future developments. 

2 A Variational M e t h o d  for Image Restorat ion  

In Sect. 2.1, we recall a classical method in image restoration formulated as a 
minimization problem [9, 4, 3]. Section 2.2 presents a suitable algorithm called 
the half quadratic minimization. 

2.1 A Classical Approach for Image Restoration 

Let N(x, y) be a given noisy image defined for (x, y) E/2 which corresponds to 
the domain of the image. We search for the restored image as the solution of the 
following minimization problem: 

ir~f /s ( I -  N)2d~ +ar /s r (1) 

term 1 te~m 2 
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where ar is a constant and r is a function still to be defined. Notice that  if 
r = x 2, we recognize the Tikhonov regularizs term. How can we interpret 
this minimization? In fact, we search for the function I which will be simulta- 
neously close to the initial image N and smooth (since we want the gradient 
as small as possible). However, this method is well known to smooth the im- 
age isotropically without preserving discontinuities in intensity. The reason is 
that  with the quadratic function, gradients are too much penalized. One so- 
lution to prevent the destruction of discontinuities but allows for isotropically 
smoothing uniform areas, is to change the above quadratic term. This point have 
been widely discussed [31,32, 4, 3]. We refer to [9] for a review. The key idea is 
that  for low gradients, isotropic smoothing is performed, and for high gradient, 
smoothing is only applied in the direction of the isophote and not across it. This 
condition can be mathematically formalized if we look at the Euler-Lagrange 
Equation (2), associated to energy (1): 

0 =0 
Let us concentrate on the regularization part associated to the terra 2 of (1). If 

v I  we note ~ -- Iv-~/T' and ~ the normal vector to y, we can show that:  

c~ 

where I~, (respectively I~ )  denotes the second order derivate in the direction 
(respectively ~). If we want a good restoration as described before, we would 

like to have the following properties: 

limw11__. 0 c, = limwil__.0 c~ = a0 > 0 (4) 

limww~o~ c~ = 0 and limwtl_~oo c~ = aoo > 0 (5) 

If c~ and c~ are defined as in (3), it appears that  the two conditions of (5) can 
never be verified simultaneously. So, we will only impose for high gradients [9, 
4, 3]: 

lim c n =  lim c ~ = 0  and lim (c--~V~=O (6) 
IV/I--,oo I V l l ~  Ivzl--,~ \c~/  

Many functions r have been proposed in the literature that  comply to the condi- 
tions (4) and (6) (see [9]). From now on, r will be a convex function with linear 
growth at infinity which verify conditions (4) and (6). For instance, a possible 
choice could be the hypersurface minimal function proposed by Aubert: 

r  = + x2  - 1 

In that  case, existence and unicity of problem (1) has recently been shown in 
the Sobolev space W1'1(~)[4] (See also [33]). 
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2.2 T h e  H a l f  Q u a d r a t i c  M i n i m i z a t i o n  

The key idea is to introduce a new functional which, although defined over an 
extended domain, has the same minimum in I as (1) and can be manipulated 
with linear algebraic methods. The method is based on a theorem inspired from 
Geman and Reynolds [13]. If a function r complies with some hypotheses, it 
can be written in the form: 

r = inf(dx 2 + r (7) 

where d will be called the dual variable associated to x, and where ~b(.) is a 
strictly convex and decreasing function. We can verify that  the functions r such 
that  (4) (6) are true permit to write (7). Consequently, the problem (1) is now 
to find I and its dual variable d1 minimizing the functional ~'(I,  dI) defined by: 

~(I ,  d x ) = / s ( I - N ) 2 d I ~ + ~ r / s  dilVIl2+r (8) 

It is easy to check that  for a fixed I ,  the functional Jr is convex in d1 and for a 
fixed di, it is convex in I.  These properties are used to perform the algorithm 
which consists in minimizing alternatively in I and di: 

I "+l -- argmin ~'(I,  d~) (9) 
I 

t~B+I = argmin 9w(In+l, dI) (10) 
d1 

To perform each minimization, we simply solve the Euler-Lagrange equations, 
which can be written as: 

I n+l -- N - cJdiv(@VI n+l) = 0 (11) 

d~ +1 -- r  (12) 
IVI"+ll 

Notice that  (12) gives explicitly d~i +1 while for (11), for a fixed d~, in+l is the so- 
lution of a linear equation. After discretizing in space, we have that  (I~, +l)(iJ)r 
is solution of a linear system which is solved iteratively by the Gauss-Seidel 
method for example. We refer to [20] for more details about the discretization. 

3 The Case of Noisy Images Sequences 

Let N(x, y, t) denotes the noisy images sequence for which the background is 
assumed to be static. A simple moving object detector can be obtained using a 
thresholding technique over the inter-frame difference between a so-called refer- 
ence image and the image being observed. Decisions can be taken independently 
point by point [10], or over blocks in order to achieve robustness in noise influ- 
ence [35]. More complex approaches can also be used [26, 1, 15, 22, 5, 16, 17, 14, 
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11, 24]. However, in our application, we are not just dealing with a motion seg- 
mentation problem neither just a restoration problem. In our case, the so-called 
reference image is built at the same time while observing the image sequence. 
Also, the motion segmentation and the restoration are done in a coupled way, al- 
lowing the motion segmentation part  to positively influence the restoration part  
and vice-versa. This is the key of our approach that  allows to deal simultaneously 
with the problem of restoration and motion segmentation. 

We first consider that  the data is continuous in time. This permit  us to 
present the optimization problem that  we want to study (Section 3.1). In Sect. 
3.2, we rewrite the problem when the sequence is given only by a finite set of 
images. This leads to the Problem 2 that  will be rigorously justified in Sect. 3.3. 
The minimization algorithm and its stability are demonstrated in Sect. 3.4. 

3.1 An Optimization Problem 

Let Nix,  y, t) denotes the noisy images sequence for which the background is 
assumed to be static. Let us describe the unknown functions and what we would 
like them ideally to be: 

(i) B(x, y), the restored background, 
(ii) C(x, y, t), the sequence which will indicate the moving regions. Typically, 

we would like that  C(x, y, t) = 0 if the pixel (x, y) belongs to a moving object 
at t ime t, and 1 otherwise. 

Our aim is to find a functional depending on B(x, y) and C(x, y, t) so that  
the minimizers verify previous statements. We propose to solve the following 
problem: 

Problem 1. Let N(x ,y , t )  given. We search for B(x,y)  and C(x,y, t )  as the 
solution of the following minimization problem: 

inf(f/C'(B-N)2d$-2dt§ B,C 
te m i 2 

ter~l 3 

where r and r are convex functions that comply conditions (4) and (6) , and 
~,, ~[~, c~ are positive constants. 

Getting the minimum of the functional means that  we want each term to be 
small, having in mind the phenomena of the compensations. 

The te rm 3 is a regularization term. Notice that  the functions r162 have 
been chosen as in Sect. 2 so that  discontinuities may be kept. 

If we consider the te rm 2, this means that  we want the function C(x, y, t) to 
be close to one. In our interpretation, this means that  we give a preference to the 
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background. This is physically correct since the background is visible most of 
the time. However, if the data N(x, y, t) is too far from the supposed background 
B(x, y) at time t, then the difference (B(x, y) - N(x, y, t)) 2 will be high, and to 
compensate this value, the minimization process will force C(x, y, t) to be zero. 
Therefore, the function C(x, y, t) can be interpretated as a movement detection 
function. Moreover, when searching for B(x, y), we will not take into account 
N(x, y, t) if C(x, y, t) is small (term 1). This exactly means that B(x, y) will be 
the restored image of the static background. 

3 .2  The  Temporal  Discretized Problem 

In fact, we have only a finite set of images. Consequently, we are going to rewrite 
the Problem 1, taking into account that a sequence S(x, y, t) is represented dur- 
ing a finite time by T images noted Sl(X, y) , . . .  , S T ( X ,  y). Using these notations 
for N(x, y, t) and C(x, y, t) permits to rewrite the Problem 1 in the following 
form: 

Problem 
C 1 , . . .  , C T as the solution of the following minimization problem: 

T T 

B,C1,... ,CT = h = l  
�9 S �9 �9 

i te2m 2 
T 

h----1 

ter~m 3 

This is the problem that we are going to study. 

2. Let N1,. . .  ,NT be the noisy sequence. We search for B and 

(14) 

3.3 A Theoretical ly Justified Method  

This section briefly describes the mathematical background of the Problem 2. 
We will restrict ourself to very general considerations. A complete more theoret- 
ical version is now submitted [18]. Notice however that mathematical tools are 
general and often used in image processing problems. 

The proper space to study the Problem 2 is the space of bounded variations, 
usually noted BV(~)[12]. This space can be considered as a natural extension 
of the classical Sobolev space wi'1(f2) -- {u c L I (~ ) /Vu  E Ll(f2)}. It can be 
defined by: 

BV(~2) = {u E Ll($2)/Du E / ( ; 2 ) }  

where Du stands for the distributional derivative of u and M(f2) the measure 
space. It is usually used for proving results in image processing since it permits 
to have jumps along curves which is not possible for functions in W 1'1 ($2). We 
have the following proposition : 



554 

Proposit ion 1. The minimization Problem 2, posed over the space B V (  ~ )  T+I 
admits a solution in that space. Moreover it is enough to consider the functions 
(B, C1, .., CT) such that: 

mB _<B _< MB 

O <_ Ch <_1 for h =  l . .T  

rob = i n f  Nh(X, y) 
he[O..T],( z,y )e S~ 

where MB = sup Nh(X, y) ' 
he[O..T],( x,y)e S2 

(15) 

(16) 

(17) 

This remark will be important  for the numerical algorithm. 

3.4 The Minimization Algorithm 

This section is devoted to the numerical study of the Problem 2. If we t ry  to 
solve directly the Euler-Lagrange equations associated to (14), we will have to 
cope with non linear equation. To avoid this difficulty, we are going to use the 
same techniques as developed in the Sect. 2.2. The idea is to introduce dual 
variables as defined in (7) each time it is necessary. This is the case for the 
T + 1 restoration terms (terra 3). Consequently, we introduce the T + 1 dual 
variables noted dB, de1 , . . .  , dOT associated respectively to B,C1 , . . .  , CT. Using 
same arguments as in Sect. 2.2, we will solve, instead of Problem 2, the following 
problem: 

P r o b l e m  3. Let NI , .  �9 �9 , NT the noisy sequence. We search for B,dB, C1,. �9 �9 , CT 
and do1 , . . .  ,dcT as the solution of the following minimization problem: 

T 

B , C 1  , . . .  , C T  = 

+ a [ , / a  [dslVBI2ds + ~l(dB)] dJ2 

T 

h = l  

(18) 

We will note in the sequel $(B,  dB, Ch, dch) the corresponding functional. The 
main observation is that the functional E is quadratic with respect to B,C1, . .  �9 , CT, 
and convex with respect to dn and (dc,.)h=l..W. 
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Given the initial conditions 0 0 0 (B , dB, Ch, d~h ), we iteratively solve the follow- 
ing system : 

B n+l = argmin E(B, d~, C~, d~h) (19) 
B 

d~ +1 = argmin E(B n+l , riB, C~,  d~h ) (20) 
dB 

C~ +1 = argmin E ( B  n+l  , d~ +1 , Ch ,  d~,) (21) 
Ch 

: E/B n+l d n+l C "+1 d ~ (22) d n+l argmin ~ , B , h , Ch) Ca 
d c  h 

Equalities (21)-(22) are written for h = 1..T. The way to obtain each vari- 
able like described in (19)-(22) consists in solving the associated Euler-Lagrange 
equations. As we are going to see, the dual variables d~ +1 and ,+1 (dc , )h=I . .T  are  

given explicitly, while B n+l a n d  (C~+I)h_--I..T are solutions of linear systems. 
This linear systems will be solved by an iterative method like Gauss-Seidel's. 
Equations are: 

T 
--~ g-*n2(i~n+l --  Nh) -- aDdiv(d~VS "+1) = 0 (23) v h kL, 

h=l  

_ vBn+l l )  (24) 
[VBn+l[ 

~ + 1  [a c _~_ ( B n + l  _ Nh)2] _ ar -- 2a~div(amchVC~+l ) = 0 (25) 

d n + l -  r  (26) 
Ivc +ll 

We next prove that  the algorithm described by (23) to (26) is unconditionally 
stable. 

P r o p o s i t i o n  2. Let ~'2 d be the set o/ pixels ( i , j )  in 9 and let Qd be the space 
o/functions (B, C1 , . . . ,  Cw) such that,/or all pixels (i,j) 6 J'2 d we have: 

mB _< B < MB (27) 

0 <_ Ca <_ 1 /or h = 1..T (28) 

T 

0 < < ch < T (29) 
h=l  

mB = in/(~,v) Nh(x,y) Tar 
(30) where MB sup (x,y) Nh(x,y) ' m~ = ---- ac + (MB -- roB) 2 + 4 

h = l . . T  

Then, for a given (B n, C[, . . .  , C~) in Qd, there exists a unique 
( B  n + l ,  c ~ + l , . . .  , C~ "{-1) in 6 d such that (23)-(26) are satisfied. 

The proof is based on the application of the fixed point theorem. We refer to 
[20] for more details. Anyway, let us remark that  the boundaries (27) and (28) 
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can be justified if we consider the continuous case (see (17)). As for condition 
(29), it is also very natural if we admit the interpretations of the variables Ch : 
if this condition is false, this would mean that  the background is never seen at 
some points which we refuse. 

To conclude this section, we will notice that if c~ -- 0, the functions (C~ '+l)h=l..w 
are in fact obtained explicitly by: 

C•+I = OLc 

ac q- (B n+l - Nh) 2 (31) 

As we can imagine, this case permits important reduction of the computational 
cost since T linear systems are replaced by T explicit expressions. We will discuss 
in Sect. 4 if it is worth regularizing or not the functions Ca. 

4 T h e  N u m e r i c a l  S t u d y  

This section aims at showing quantitative and qualitative results about this 
method. Synthetics noisy sequences will be used to estimate rigorously the ca- 
pabilities of our approach. The purpose of Sect. 4.1 is the quality of the restora- 
tion. The Sect. 4.2 is devoted to the movement detection and its sensibility with 
respect to noise. We will conclude in Sect. 4.3 by real sequences. 

4.1  A b o u t  t h e  R e s t o r a t i o n  

To estimate the quality of the restoration, we used the noisy synthetic sequence 
presented in Fig. 1 (a)(b) .  Figure 1 (c) is a representation of the noisy back- 
ground without the moving objects. We mentioned the value of the Signal to 
Noise Ratio (SNR) usually used in image restoration to quantify the results 
quality. We refer to [21] for more details. We recall that  the higher the SNR is, 
the best the quality is. Usually used to extract the foreground from the back- 
ground, the median (see Fig. 1 (d)) appears to be inefficient. The average in time 
of the sequence (see Fig 1 (e)), although it permits a noise reduction, keeps the 
trace of the moving objects. The Fig. 1 (f) is the result that  we obtained. 

r To conclude that  section, let us mention that  we also tried the case ac = 
0, that  is to say we did not regularized the functions Ca. The resulting SNR 
was 14, to be compared with 14.4 (a~ ~ 0). This leads to the conclusion that  
regularizing the functions Ca is not very important. However, this point has 
to be better investigated and more experimental results have to be considered 
before to conclude. 

4.2 T h e  Sens i t i v i ty  of  Ob jec t  D e t e c t i o n  W i t h  R e s p e c t  to  Noise  

In this section, we aim at showing the robustness of our method with respect 
to noise. To this end, we choose a synthetic sequence where an object (denoted 
@) is translating on a uniform black background (See Fig. 2). Both kind of 
noise have been experimented : Ganssian and uniform. The Ganssian noise is 
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Fig. 1. Results on a synthetic sequence (5 images) (a) Description of the sequence 
(first image) (b) Last image of the sequence (c) The noisy background without any 
objects (d) Mediane (e) Average (f) Restored background ( ~  r 0) 

Fig. 2. The original synthetic sequence used for tests. A white object (noted | is 
translating from left to right. 35 images axe available. 

Ganssian Noise 
a SNR(Nh) a(B) | [] 
0 0 0 0 0 
5 14.7 0.9 0 0 
10 9.2 1.8 0 0 
15 6.2 3.0 0.1 0 
20 4.5 4.5 1.5 0.7 
25 3.3 6.3 4.9 3.2 
30 2.4 8.4 9.5 7.6 

] Uniform Noise 
% SNR(Nh) a(B) | 
iO 0 0 0 
J 5 6.8 0.3 2.9 
10 4.3 0.4 5.5 
15 3.3 0.6 8.5 
20 2.3 0.7 11.0 
25 2.0 1.5 14.1 

[] 

0 
2.2 
4.5 
6.7 
8.6 
10.8 

Table 1. Quantitative measures for tests about robustness to noise (Gaussian and 
uniform). SNR(Nh)--signal to noise ratio for one image of the data. a(B)=root of the 
variance of the restored background | of bad detections for the moving 
object EJ=percentage of bad detections for the background. See also Fig. 3 for two 
examples for equivalent noises. 
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characterized by its variance a (the average equals to zero), while the uniform 
noise is defined by a percentage of modified pixels . We recall that a uniform 
noise of X% means that X% of pixels will be replaced by a value between the 
minimum and the maximum value of the image with a uniform distribution. 
Results are reported in Tab. 1 and Fig. 3. Notice that we also wrote the root 
of the variance of the restored background B which is a good indicator here for 
estimating the accuracy, since the ideal image is a constant image. 

The criterion used to decide whether a pixel belongs to the background or 
not is : if Ch (i, j) >threshold, then the pixel (i, j) of the image number h belongs 
to the background. Otherwise, its belongs to a moving object. The threshold has 
been fixed to 0.25 in all experiments. 

Finally, notice that same parameters (c~, ~r c~ r) have been used for all ex- 
periments. Generally speaking, we remarked that the algorithm performs well 
on a wide variety of sequences with the same set of parameters. 

4.3 Some Real  Sequences 

The first real sequence is presented in Fig. 4 (a). A small noise is introduced by 
the camera and certainly by the hard weather conditions. Notice the reflections 
on the ground which is frozen. We show in Fig. 4 (b) the average in time of 
the sequence. The restored background is shown in Fig. 4 (c). As we can see, it 
has been very well found and enhanced. Figure 4 (d) is a representation of the 
function Ch where moving regions have been replaced by the original intensities. 

The second sequence is more noisy than the first one. Its description is given 
in Fig. 5 (a). To evaluate the quality of the restoration, we show a close-up of the 
same region for one original image (see Fig. 5 (b)), the average in time (see Fig. 
5 (c)) and the restored background B (see Fig. 5 (d)). The detection of moving 
regions is displayed in Fig. 5 (e). Notice that some sparse motion have been 
detected at the right bottom and to left of the two persons. They correspond to 
the motion of a bush and the shadow of a tree due to the wind. 

5 C o n c l u s i o n  

We have presented in this article an original coupled method for the problem 
of image sequence restoration and motion segmentation. This original way to 
restore image sequence has been proved to give very promising result. To com- 
plete this work, several ideas are considered : use the motion segmentation part 
to restore also the moving regions, think about possible extensions for non-static 
cameras. This is the object of our current work. 
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Fig.  3. Results about noise robustness. First row : gaussian noise of variance 20. Second 
row : uniform noise of percentage 10. Left and Right : images from the sequence. Middle 
: function Ch. 

Fig.  4. (a) Description of the sequence (55 images available). Two people are walking 
from top to bot tom (b) The average over the time (c) The restored background B (d) 
Using function Ch, we replaced moving regions by the data intensity. 
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Fig. 5. (a) Description of the sequence (12 images available) (b) Zoom on a upper 
right part of the original sequence (without objects) (c) Zoom on the mean image (d) 
Zoom on the restored background B (e) The function Ch thresholded (f) The dual 
variable dch. 
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