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Abst rac t .  The problem of efficient implementation o{ regulated mor- 
phological operations on a serial computer is discussed, where it is as- 
sumed that arbitrary kernels may be used. The proposed approach is 
based on a compact representation of the image which is obtained by 
using directional interval coding, where the direction of the intervals is 
selected based on the image contents. This representation is particularly 
suitable for the processing of directional edge planes. By using stacked 
intervals, it is described how to obtain the result o{ a convolution which 
is based on interval coding, and thereby how to obtain an efficient im- 
plementation of regulated morphological operations. 
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1 Introduct ion 

Interval coding of binary images is simple and efficient, and is therefore used by 
many commercial standards such as the CCITT standards. A basic approach for 
the efficient processing of an image represented by interval coding is described in 
[1]. The algorithms in that paper are based on an indexing approach of the image 
elements, and include basic logical operations between two images, and basic 
morphological operations that  use either a four or an eight connected kernel. 
The algorithm in [2] extends the method described in [1] to arbitrary kernels. 
However, it does not follow the indexing approach of [1], and so it does not 
support  efficient implementation of basic logical operations between two images. 

An efficient implementation of morphological operations, which is based on 
directional interval coding, has been proposed in [3, 4]. The implementation in [4] 
is based on linked lists of directional intervals, which are obtained along four basic 
directions. This implementation is limited to basic morphological operations with 
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a 3 x 3 kernel, and does not include efficient implementation of basic logical 
operations. The implementation in [3] extends the method of [1] to support 
directional interval coding and morphological operations with arbitrary kernels. 
The extended algorithms preserve the indexing approach of [1], and so efficient 
implementation of basic logical operations between any number of images may 
be obtained. In this paper the approach of [3] is extended further to support the 
efficient implementation of regulated morphological operations. 

The following sections discuss the proposed approach in greater detail. Sec- 
tion 2 reviews the regulated morphological operations, and presents some of their 
relevant properties. Section 3 defines directional interval coding in an arbitrary 
direction. Section 4 presents algorithms for regulated morphological processing 
of images which are represented by directional intervals. The summary in Sect. 
5 concludes the paper and provides evaluation of the computational complexity 
of the proposed approach. 

2 R e g u l a t e d  M o r p h o l o g i c a l  O p e r a t i o n s  

Considering the fitting interpretation of the binary morphological erosion and 
dilation operations [5], it is possible to observe that they are based on opposing 
strict approaches. The binary dilation collects shifts for which the kernel set 
intersects the object set without taking into account what is the size of the 
intersection, whereas the binary erosion collects shifts for which the kernel set is 
completely contained within the object set without considering shifts for which 
some kernel elements are not contained within the object set. As a result of 
these strict approaches, the ordinary morphological operations are sensitive to 
noise and small intrusions or protrusions on the boundary of shapes. In order to 
solve this problem, regulated morphological operations are defined in [6, 7] by 
extending the fitting interpretation of the ordinary morphological operations. 

Defini t ion 1. The regulated dilation and erosion of the set A by the kernel set 
B with a strictness of s is defined respectively by: 

A G B _ - - { a  I @(A (l (/~)=) _> s} ; sE[1 ,  min(~A,#B)]  (1) 

A O B = _ { a  [ ~(A ~ A ( B ) = ) < s }  ; s E [ 1 , ~ S ]  (2) 

where # A  denotes the cardinality of the set A, /~ denotes the reflection of the 
set Bdefined b y / ~ - { z  1 3 b C B  : z = - b } , a n d  (B)= denotes a shift of B 
by a defined by (B)= _ {y [ 3 b E B  : y = z + b } .  

P ropos i t lon2 .  The regulated dilation and erosion may be obtained from each 
other by reflecting the kernel set and complementing the strictness relative to the 
kernel set:  

S B  v 

A O B = A @ B  (3) 

where the complement of the strictness s relative to the set B is defined by: 
s--~- # B -  s+ 1. 
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P r o p o s i t l o n 3 .  Given two sets A, B C Z 2 , the regulated dilation and erosion 
of A by B may be obtained by thresholding the linear convolution between their 
respective binary images Aft_ and B___ : 

A O S = {(k,l) (4) 

A B = {(k, 0 (5) 

where • denotes linear convolution. 

I A(k, l) • B_(k, l) > s) 

I A°(k, t) • l) < , )  

Based on the basic regulated morphological operations it is possible to define an 
extensive regulated dilation and an anti-extensive regulated erosion. By using 
the extensive operations it is possible to define idempotent regulated open and 
close operations which extend the fitting interpretation of the ordinary open and 
close operations. Further properties of the regulated morphological operations 
are discussed in [6, 7], and it is shown that they possess many of the properties 
of the ordinary morphological operations, tn particular it is shown that the ordi- 
nary morphological operations may be obtained as special cases of the regulated 
morphological operations when using a strictness of one. 

3 D i r e c t i o n a l  I n t e r v a l  C o d i n g  

Given an M x N image, it is possible to scan it in an arbitrary direction ¢ 
along parallel discrete straight tine segments so that  each element of the image 
is covered by a single scan line. In the proposed approach for directional scanning 
of the image, uniform length scan lines are used, and so elements on neighboring 
scan lines may be obtained in a simple way. tn order to get uniform scan lines 
the image is zero padded appropriately. Since the scanning of an image in the 
direction of 0 is essentially the same as scanning in the direction of 0 + 180 °, the 
discussion in this paper is limited to the angular range of [-135 °, 45°). 

As described in [3], the starting point of the / - th  scan line may be obtained 
by: 

I (0, l -  max(0, .4j)) i f0 E [ - 1 3 5 , - 4 5 )  P,(I) 
( l  - max(0, Ai), 0) if 0 E [-45, 45) (6) 

where (Ai, A j)  is the difference between the ending and starting points of a 
scan line. The offset of the c-th element on a scan line may be evaluated by: 

(c, i - c - c o t ( 0 )  + 0.53) i f0 E [ - 1 3 5 , - 4 5 )  
Pd(c) = ( I - c - t a n ( 0 )  + 0.5j, c) i f0 E [-45,  45) (7) 

Based on (6) and (7), the point that corresponds to the c-th column on the 
l-th scan line, is given by: P(l,  c) = P,(l) + Pa(c). Since the length of each scan 
line is uniform, it is possible to assign a unique index to a point P(l,  c), which 
is the image point that is covered by the c-th column of the l-th scan line, by: 
IM,N,e(P(l,c))  -- l .  Ne + c ,  where c E [0, Ne - 1], l E [0, Ms - 1], and M0 and 
No denote the number of scan lines and scan columns respectively. 
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When the image elements are represented by indexes, it is possible to specify 
an interval by using its starting index Ib and its ending index It .  Since in the 
proposed approach it is required to distinguish between the starting and ending 
indexes of an interval, modified indexes that  are based on h and Ie are used for 
representing the interval. The starting index of an interval is defined as an even 
index given by b -- 2 • h ,  whereas the ending index of an interval is defined as 
an odd index given by e = 2. I~ + 1. Consequently, the interval R = (b, e) is an 
interval that  begins at the image element with an index of Lb/2j and ends at the 
image element with an index of Le/2J. The number of elements that are covered 
by the interval R - -  (b ,e) is  given by: IIRtl = (e - b+ 1)/2. 

Given a binary image A A_ it is possible to scan it and construct a set A contain- 
ing all the intervals in the image A. By using the set of intervals A, the image 
A may be obtained by UR~A R~. Conversely, given a set of intervals A that  
represents an M x N image, it is possible to reconstruct the image A by scan- 
ning an empty M x N image in the direction of the intervals, and setting all the 
elements (i, j )  = P(1, c) that  belong to an interval provided that  i C [0, M - 1] 
and j E [0, N - 1]. A situation in which an interval is not contained completely 
inside the image area may occur after processing the set of intervals. 

4 M o r p h o l o g i c a l  P r o c e s s i n g  o f  I n t e r v a l s  

This section discusses how the intervals of the result of a regulated dilation and 
erosion may be obtained by using the sets of intervals that  represent the kernel 
and the original image. As explained later, the proposed implementation uses 
shifted intervals. In order to have a uniform rule for determining a required shift 
value which does not depend on the relative location on the scan line, and in 
order to prevent the breaking of intervals into several intervals when shifting 
them, uniform scan lines have to be used. Uniform scan lines are obtained in 
directions of: - 135 °, - 9 0  °, - 4 5  °, and 0% As shown later, uniform scan lines 
contribute further to the efficiency of the operations by reducing the number of 
required shifts. Based on the above description, the discussion in this section is 
limited to intervals which are obtained by using uniform scan lines. 

4.1 T h e  I n t e r v a l s  o f  a Convolut ion 

The proposed efficient implementation of the regulated dilation and erosion op- 
erations is based on their linear filtering interpretation. Therefore, this section 
describes an efficient implementation of the convolution operation. 

Based on the linearity of the convolution operation, we get that  the convo- 
lution between two unions of intervals is equivalent to the union of the convo- 
lution between the individual intervals. That  is: (UR.eA R,,) * (URb~S Rb) ---- 
[-JR~ e A URb e B (Ra * R~). Therefore, the convolution between the image and the 
kernel set of intervals may be obtained by processing the individual intervals 
separately. The convolution between two intervals results in a longer interval. 
However, the values along the obtained interval are not uniform, and so this 
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interval may not be specified completely by using only its starting and ending 
indexes. In order to be able to represent the result of the convolution between two 
intervals by using uniform valued intervals, which are specified by their starting 
and ending indexes, it is possible to decompose the result of the convolution into 
a sum of uniform valued intervals. That is, the result of the convolution may be 
represented by stacking several uniform valued intervals. 

Consider the convolution between an interval R~ and a shorter interval Rb. 
Based on the definitions of convolution and ordinary dilation, it is possible to 
observe that the size of the resulting non-uniform interval is given by IIR~ ® Rbl[. 
The leftmost and rightmost elements in the resulting interval have a value of 
one, the second leftmost and the second rightmost elements have a value of two, 
and so on. The maximal value in the resulting interval is given by ][Rb[[. Since 
the convolution operation is commutative, the case in which R= is shorter than 
Rb is handled similarly, where the maximal value in the resulting interval is 
given in this case by IIR=tl. Based on the above description, it is possible to 
conclude that the set of stacked intervals required for representing the result of 
the convolution between the intervals R= and Rb, has min([IR~ll, tlRbt[) intervals. 
The largest interval is given by R,~ ® Rb, and each consequent interval is shorter 
by one from each side. 

The evaluation of the dilation of the interval R~ by the interval R~, may be 
obtained by considering the interval R~ as describing a set of shifts, which is 
used by the dilation operation for generating a union of shifts of the interval R~. 
In order to be able to use the interval R~ as describing a set of shifts, the length 
of a scan line in A and B should be identical. Therefore, when assuming that 
the image is of size M x N, the kernel is of size P x Q, and that the kernel is 
smaller than the image (P < M, Q < N), the kernel should be enlarged to a size 
of M x N. This enlargement may be obtained by using the set of intervals B, as 
described in [3]. After the required enlargement, the kernel should be centered 
around its origin. When denoting the origin of the kernel by the point Po, the 
index of Po in the enlarged kernel is given by IM,N,o (Po), and so the intervals of 
the enlarged kernel should be centered by subtracting 2- IMjV,~(Po) from their 
vertices. In the following discussion we assume that B ~ represents the intervals 
of the enlarged and centered kernel, and that R~ E B'. 

Consider the dilation of the interval R= = (s~, e=) by the interval R~ = (sb, eb) 
which is obtained by taking the union of all the shifts of R= which belong to 
Rb. Based on the fact that R= and R~ are intervals that belong to a uniform 
scan line, it is possible to use only the two most extreme shifts specified by 
R~, which are the vertices of that interval. In that way, the resulting interval 
may be obtained by taking the starting index of the leftmost shift of R=, and 
taking the ending index of the rightmost shift of R~. Therefore, we obtain that 
R= @ Rb = (s~ + sb, ea + eb) - (0, 1) = R~ + R~ - (0, 1), where the subtraction 
of (0, 1) is required in order to get an odd ending index. 

By using the evaluation of R= @ Rb, the required set of stacked intervals that 
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represents the convolution between the intervals R= and Rb is given by: 

( R ~ * R b } = ( ( ~ + 2 . ( i - 1 ) , y - 2 . ( i - 1 ) )  ! ( z , y ) = R o + R b - ( 0 , 1 ) ,  

1 < i < min(ifR~tl, IIRbll)} (s) 

By using (8), the set of stacked intervals that represents the result of the con- 
volution between A and B, may be evaluated by: 

C(A,B) : { { n ~ * R b }  I R a  E A ,  Rb e B'} (9) 

where B' is the enlarged and centered kernel. 

4.2 T h e  In t e rva l s  o f  a R e g u l a t e d  Di la t ion  

Based on (4) and the construction of the convolution C(A,B), the result of 
the regulated dilation of A by B with a strictness of s may be obtained by 
locating parts of intervals that are covered by at list s intervals of the convolution 
C(A, B). In order to determine the number of intervals that cover each image 
point, it is possible to construct an ordered vector X, containing all the vertices 
of all the intervals in C(A, B), sorted in an increasing order. By scanning this 
vector from beginning to end, it is possible to construct a counter that  starts 
with a value of zero, increased by one when the beginning of an interval is 
reached (an even index), and decreased by one when the end of an interval is 
reached (an odd index). As demonstrated in [3], the number of intervals that  
contain the k-th element of the vector X (which is denoted by ink) is given by: 

k c ( X ,  4) = k - 2. E ~ : I ( ~  rood 2). 
By using the counter C(X', k), it is possible to obtain the intervals of the 

regulated dilation with a strictness of s, by scanning the ordered vector X from 
beginning to end, and looking for intervals that  begin at an element m~ for which 
C(X,  i) = s and end at the first element mj after mi for which C(Z,  j) = s - 1. 
When scanning X from beginning to end, the value of C(X-, i) = s is obtained 
at the beginning of an interval, and so m~ is an even index, while the value of 
C ( X , j )  -- s -  1 is obtained at the end of an.interval, and so m/is an odd index. 
Hence, the set of intervals that  represents the image obtained by the regulated 
dilation of A by B__ with a strictness of s~ may be evaluated by: 

:D'(A,B) = {(m/,mj) I m~,mj E X ,  i < j ,  C ( X , i - 1 ) = s - 1 ,  

c ( x , i )  : s ,  c ( x ,  j )  : 8 - 1 ,  vk  e [i + 1, j - 1] : c ( x ,  4) > s }  ( lo)  

where it is assumed that C(X,  O) = O. 

4.3 The  Intervals  of  a R e g u l a t e d  Eros ion 

An efficient implementation of the regulated erosion, which is based on the pro- 
cessing of intervals, may be obtained by using the complement of the image and 
the reflection of the kernel in (5) in a way similar to the one described for the 
regulated dilation. However, since in an ordinary line-drawing image the number 
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of intervals in a complemented image is larger than the number of intervals in the 
original image, the obtained implementation will be less efficient. Alternatively, 
when using (3), it is possible to obtain a more efficient implementation of the 
regulated erosion by: 

E~(A, B) = ~Y--~(A, 2~) (11) 

In order to evaluate the regulated erosion E~(A, B) by (11), the convolution 
v 

C(A, B) should be obtained. Based on the definition of reflection, the index of a 
reflected element is obtained by inverting the sign of the original index. When 
reflecting an interval Rb, in addition to the sign inversion of the starting and 
ending indexes, the reflection causes the starting index to become the ending 
index of the reflected interval, and the ending index to become the starting index 
of the reflected interval. When exchanging the starting and ending indexes of 
an interval, in order to obtain its reflection, the starting and ending indexes 
of the reflected interval should be converted to be even and odd respectively. 
Therefore, the ending index of the original interval should be decreased by one 
(before inverting its sign), and the starting index of the original interval should be 
increased by one (after inverting its sign). Following the above description, we get 
that the reflection of an interval Rb is given by/~b = (--eb + 1,--sb + 1), and so the 
intervals of the reflected kernel given by: B" = ( ( - e b + l ,  - s b + l )  I (sb, eb) 
B'}. The convolution C(A, B) may be obtained by using B" instead of B' in (9). 

5 S u m m a r y  

The table in Fig. i summarizes the computational complexity evaluation of the 
proposed operations, where a detailed description of this evaluation may be 
found in [8]. In this table it is assumed that the image is in the size of M x M, 
the kernel is in the size of P × P, and that the number of intervals in the image 
and the kernel is m and p respectively. In the evaluation of the basic logical 
operations, it is assumed that there are n images. 

The ratio between m and M, and between p and P, depends on the contents 
of the image. When considering the processing of ordinary maps and line-drawing 
images, it is possible to assume that r~ and M have the same order of magnitude, 
and that p and P have the same order of magnitude. Since in most applications 
P << M and n << M, in such a case we get that the computational complexity 
of a straightforward implementation reduces to O(M2), whereas the computa- 
tional complexity of the proposed approach reduces to O(m). It should be noted 
that in addition to its reduced computational complexity, the proposed approach 
reduces significantly the memory requirements of the application. When process- 
ing large maps/documents, which were scanned with a fine resolution, in several 
different color layers, a reduction in the memory requirements of the application 
is essential. This reduction becomes even more important when considering the 
directional decomposition of each image into several directional edge planes as 
proposed in [9, 10]. 
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(a,) (b) (c) (d) (e) 
Intersection Complement Dilation ConvolutioW Dilation 

Union Erosion Erosion 
XOR (Ordinary) (Regulated) 

Straightforward O(nM~) O(M 2) O(P2M~) O(P~M2) O(P~M2) 
Implementation 

Efficient O(nmlognt  O ( m + M s )  O(pmlogp) O(pPm) O(pPmlogpP)  
Implementation 

Fig. 1. Summary of the computational complexity of the proposed operations. 
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