On Some Problems of Elementary and Combinatorial Geometry (*).

Pauvr ErpOs (Budapest, Hungary)

Summary. — The author disousses various solved and unsolved geomeirical problems all of which
are of a combinatorial nature. Some are of metrical character and some are more number
theoretic.

Elementary geometry has been studied for thousands of years. Nevertheless,
T hope to show in this article that the subject is full of easily stated but difficult,
unsolved problems. Most of the questions which I discuss will be of a combinatorial
nature. I certainly do not claim completeness but will mostly only discuss problems
on which I worked myself, and will try to indicate the literature of related problems.
To save space I usually do not give proofs.

1. — Let there be given n distinet points z, ..., #, in k-dimensional Euclidean
space. Denote by d(x,, #;) the distance from ; to z;. Denote by D.(#, ..., #,) the
number of distinet distances amongst z,, ..., z, and put

fe(n) = min D@, ..., ) .
Ly9es¥n

Trivially f,(n)== %1, but in the plane the situation becomes already very dif-
ficult. 1 proved

(1) (n — 1)} — 1 < fy(n) < ¢;n/(log n)t
and L. MosErR improved the lower bound to s}/29% —1. It seems certain that
f2(n) >n'"¢ for every >0 if n>m,(e) and in fact probably fy(n)>c, n/(logn)*.

The upper bound in (1) is given by the lattice points in the plane.
Denote by dy(»,;) the number of distinet distances from ;. Moser in fact proved

d LY
maxdy(z) > —=—1.
1<i<n 2( e} = 2 . 9§.

One is tempted to econjecture

da:) > ¢, '”'2/(10g ’”/)%

iMe
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(*) Entrata in Redagione il 15 gingno 1973.
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which would be a considerable strengthening of (1). I only showed

k]
S dy(w) > dnt
i=1
Assume now that the points oy, ..., #, are the vertices of a convex polygon. I made
three conjectures. My first conjecture was that in this case f(n)= [#/2], equality,
say, for the regular polygon. This eonjecture was proved by ArTMAN. Next I con-
jectured
max dy(xz,) > [@] .

1<i<n 2

As far as I know this is not yet settled. Finally I conjectured that every convex
polygon always has a vertex which does not have three vertices equidistant from it.
Danzer to my great surprise disproved this conjecture. In fact be showed that to
every k there is a convex polygon of n;, vertices so that every vertex has % other
vertices equidistant from it. Danzer’s example is not yet published. It would be of
interest to determine or estimate the smallest possible value of .

The lattice points (u, v), 1<%, v<n? show that one can give % points z,, ..., 2,
in the plane so that to every x, there are n%"#1%¢" gthers which are equidistan tfrom it.
It is not impossible that this bound is essentially best possible; in other words,
if @, ..., @, are any points in the plane then for at least one x, there are fewer than
n%OEe" noints x, equidistant from it. I can only prove this with 2x% and would
like to see this bound improved to o(x*) and beyond.

It seemed likely to me that if D,{z,, ..., »,) is small, then many of the », must
lie on a line. More precisely: 1f no % of the , are on a line, then Dy(wy, ..., %,) > & 0.

SZEMEREDI recently gave a surprisingly simple proof of this conjecture. In fact
he shows that if no & of the x,’s are on a line then

2) max dy(@;) > exn .

1<i<n

To prove (2), denote by ¥, ..., S the distinet values of the numbers d(w,, x,),
1<j<n, j+ 4 and assume that there are o values of j for which

Az, m,) = B9 .

Thus for every 4

8¢
3) SaP=n-—1.

w=1

Now if (2) would be false, then s;<e,n for every i. Thus by an elementary
inequality we obtain from (3)

8 OC“)) n
4 v} P
( ) ugl ( 2 4874
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35 ] .
(Z (ag )is a minimum if the «? are as nearly equal as pessible). From (4) we have
%=1

for sufficiently small g,
n 8 ocf,,i) ne n
®) 2205)> i 0-n()

The left side of (5) has the following geometric interpretation. Take all possible
pairs {@,, ®,) which are equidistant from one of the »,s. In view of (5) at least one
pair {(®,, z,) is equidistant from & x,’s. Thus the perpendicular bisector of (z,, )
goes through at least k z.’s. This contradiction proves our assertion.

SZEMEREDI now conjectures the following generalization of Altman’s result. Let

Zyy ooy Bn, be n points no three of them on a line. Then Dy(wy, ..., ,)>[n/2] and in
faet
n
®) maz 429> 5]
1<i<n 2

Szemerédi’s proof if carried out a little more carefully gives max dy(2,) > [1[3].
E=ARN

These problems can be of course extended to k-dimensional space. The lattice
points in k-dimensional space immediately give

(7 foln) < e

and perhaps (7) is best possible. An easy induction process gives fi(n) > n® for some
g, > 0.

For k= 3 Altman proved that if z,, ..., , are the vertices of a eonvex polyhedron,
then Dy{my, ..., #,) > on. If no three of the points are on a line, perhaps the same
holds, but Szemerédi’s proof only gives Dy(w,, ...%,) > cn? which may hold for every
get of points in F,. Szemerédi’s idea easily gives Dsy(wy, ..., #,) > en if we assume
that no four points are on a plane.

Before ending this chapter I would like to state a few more questions on
Dywy,y ...y z,). Assume that no three z, are on a line and no four on a circle. What
can be said about D,(#,, ..., #,). Is it true that

9 Lim Dy(@,, ..., @x)[n =00

Assume next that no three #’s determine an isosceles triangle (i.e. assume that
for every 1<i<<j<l Dy, z;, 2,)=3). What can be said about min Dy(®,, ..., #»).
This question seems to be non trivial even for small values of » e.g. n=206. Hau-
BURGER and RuUzsa showed that in this case Dy(xy, ..., %) > 6. Similarly we can assume
Dywy, x5y 2, m) >4 or »5 and ask about min D,{z,, ..., z,). I did not investigate
any of these questions carefully and some of them may be trivial. Clearly many
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further related guestions can be asked but I leave this to the reader. By the way
if we assume Dy, @;, &y, ) =96 (for every 1<i<j<<k<lIgn) then eclearly

Dy(®yy ooy ®,) = (Z) .

P. Erpos, On sets of distances of n poinis, Amer. Math. Monthly, 53 (1946), pp. 248-250.

L. MosER, On the different distances determined by n points, Amer. Math. Monthly, 59 (1952),
pp. 85-91.

E. AvtMaxn, On a problem of P. Erdés, Amer. Math. Monthly, 70 (1963), pp. 148-157;
see also Some theorems on convexr polygons, Canad. Math. Bull.,, 15 (1972), pp. 329-340.

2. — Let there be given n distinet points in k-dimensional space whose diameter

is 1 (i.e. ax d(w;, x;) = 1). Denote by M,(n) the maximum number-of pairs satisfy-
J|E<IRY

ing d(zx;, #;) = 1 (the maximum is taken over all sets x,, ..., #, of diameter 1). Tri-
vially M,(n)=1 and ErixA PANNWITZ proved M,(n)=n. Thirty five years ago
VAzsonvyr conjectured M,(2n) = 2n — 2. This conjecture was proved independently
by GriUnBAUM, HEPPES and STRASZIEVICZ in 1956. LENzZ made the surprising obser-
vation that M,(n)>[n?/4] and I proved

; . 1 1
1) lim M(n)/n? = 3 AR
Here I mention the following classical conjecture of Borsuk: let s, be a set in
k-dimensional space of diameter 1. Is it true that s, can be decomposed into k41
sets of diameter less than 1. This is trivial for k=1 and easy for k==2. For
k=3 it was proved by EaeLESTON and later a simpler proof was found by GrUN-
BAUM and HEpPES. For k > 3 the conjecture is still nundecided.

Assume now that 1<n:1<ig: d(x;y 2;)=1. Denote by m,(n) the maximum number of
YIS

pairs satisfying d(z,, #;)==1. It is easy to see that my(n)==n—1 and my(n) << 3n.
The later inequality follows from the fact that there can be at most six points at
distance 1 from »; (otherwise 1 would clearly not be the minimum distance). m,(n) <
<< 6n since there are at most 12 points on the unit sphere so that the distance between
any two of them is 1. m,(n) < r,{n) is easy to see, but the best, value of r, is not known
for k> 3.

It is easy to improve my(n) << 3n. We obtain with very little trouble that

31— oy nE << my(n) < 3n— 6, m¥% 5 61— ¢, n® < my(n) < 60— g ntE,

Perhaps
(2) Mmy(3n2+ 3n 4+ 1) = In?- 6n .

If true (2) is best possible; m,{3n*+ 3n -} 1)>9n2 -+ 3n follows if we consider the
points of a triangular lattice inside and on a regular hexagon of sidelength n,
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V. ReEvTHER, Recently conjectured my(n) = 3n— (12n— 8)}, Elemente der Math., 27 (1972),
p. 19, this conjecture was proved by HARBOTH.

Denote by P,(n) the maximum number of pairs (., ;) for which d(»,, x;) assumes
the same value (i.e. Py(n) is the maximum number of pairs (z;, ;) with say say
a(m;, @) =17.

Trivially P{(n}=n—1. For k=2 and k=3 it is surprisingly difficult to give
a good estimation for P,(n). I showed

(3) n1+c,lloglogn<P2(%) < PYCER

I expeet that in (3) the lower bound gives the right order of magnitude for P,(n),
but I was not even able to show P,(n)= o(n*?). SZEMEREDI and JOzsA just proved
this, but their ingenious proof is complicated and will appear in the proceedings of
the Keszthely meeting held in 1973.

For k=3, I showed

e, 8 loglog n << Py(n) < c,nP'® .

It is eurious that for k>4 Py(n) is easier to handle. I proved that if k== 2I,
n =0 (mod 2k), n>ny(k) then

Py = 1)

+n
For odd & the results are slightly less precise.

Let @y, ..., 1, be n points in the plane. d,, ..., d; the distinct distances determined
by the points. What are the possible values of I. Clearly fk(n)<l<(§) (fr(n) is defined
in 1), but it is not clear what are the possible values of I. I can show that thereis a ¢
so that I can take every value between en®? and (2) (I think this result fails for en®?
instead of em®?), Denote by u; the number of pairs satisfying d(z,, z,) = d;, 4, >
Z , and %, <% by the result of Eriga PANNWITZ, but ;= n
is possible e.g. » odd and the x; form a regular polygon, here of course u,=..=
= U= n. How many distinet values can the w’s take. At most » — 1, but I do
not think # — 1 can be attained for n > 4. Also what in the largest possible ¢, for

SUD e DUy Y U=

which ¥ ul>%—(?)”’ The lattice points show that ¢, can be as large as n(log n)"
ug<tn “
but it is quite possikle that for a certain y

;= o(n?)
s> n(log n)?
i.e. there are relatively few distances which occur more often than n(log n)? times,
PurpY and I considered the following questions. Let there be given # points
@y, ...y ®, in k-dimensional space. Denote by gg)(n) the maximum number of #-dime-
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sional simplices whose vertices are chosen amongst the x,’s and which all have the
same non zero r-dimensional volume. We proved

(5) c,n? loglog n < & (n) < 40 .

Probably the lower bound in (5) is not very far from the truth.

In our paper we state a few problems which ag far as T know are still unsolved.
Let #,, ..., 2, be n distinet points in the plane how many quadruplets can one form
so that not all the six distances should be different. Let us call such quadruplets
degenerate. We can show that one can give n points with e¢;n®log » degenerate
quadruplets, also that the number of degenerate quadruplets is always less than ¢; »72.
We conjectured that it is less than n3*e.

Let there be given » points in the plane. How many friangles can one have which
have the maximal (or minimal) non zero area. We only have frivial resulis: The
maximum are can ocenr at most ¢,#? times and it can oceur ¢;n times.

Let there be given » points in k-dimensional space. What is the largest set of
pairwise congruent (similar) triangles? What is the largest set of equilateral or (iso-
sceles) triangles? One specific question: By the method of Lenz one can give 3n
points in 6-dimensional space the vertices of which determine n® equilateral triangles
of size 1. One would suspeet that we can not have n®-- 1 such triangles.

P. Erp6s, On sets of distances of n points, Amer. Math. Monthly, 53 (1946), pp. 248-250.

P. Erpos, On some applications of graph theory fo geomelry, Canad. J. Math., 19 (1967),
PP 968-971; see also On sets of distances of n poinis in Buclidean space, Publ. Math., Inst.
Hungar. Acad. Sci., 5 (1960), pp. 165-169.

P. ErpOs - G. PurDY, Some emtremal problems in geomelry, J. Combinatorial Theory, 10
(series A) (1971), pp. 246-252, see also a fortheoming paper of Purdyin Discrete Mathematies.

For further literature on results quoted in this chapter see Proc. Symp. in Pure Math,,
Vol. VII, Convexity, Amer. Math. Soc., (1963), in particular the paper of L. DANzZER, B. GRUN-
BAUM and V. KLEE, Helly's theorem and its relatives, pp. 101-180 and B. GriynBAUOM, Borsuk’s
problem and related gquestions, pp. 271-284.

3. — Denote by f(n; k) the smallest integer so that any set of f(n; k) points in
k-dimensional space contains a subset of # points any two distances of whieh are
distinet. It is not hard to see that f(n; k) << n™ but I do not know the best exponent ¢;,.
I conjectured

fin; 1) = (1 + o{1))n2.

TUrAN and I proved f(n;1)> (1 o(1))n* and recently KoMros, SULYOK and SzEME-
REDI proved by a very ingenious and general number theoretic argument that f(n;1) <
< en?, their proof is not yet published and will appear in Acta Math. Sci. Hungar.

Iproved f(3,2)=17 and Croft proved f(3,3)=9 (i.e. 9 7points in Fuclidean
3-space always contain three points which do not form an isosceles triangle). STRAUS
and I proved f(n; k) < ¢, our proof is not yet published. Probably lim f(n; k)'*=1,
but we have not been able to prove this even for n=3,
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L. M. Xerry raiged the following question. Let g(n; k) be the largest integer so
that there are g(n; k) points in k-dimensional space which determine at most » distinet
distances. STrAUS and I proved g(n; k)< &7 our proof is not yet published.
g(n; k) > ok® is easy and perhaps lim g(n; k)/k" exists. ¢(2;1)=3 is trivial,
9(2;2)=1>5 is easy and Crorr proved ¢(2;3)= 6. The 2° vertices of the k-dimen-
sional eube determine k distinet distances, thus g(k--1; k)>2*. It would be in-
teresting to get a good upper bound for g(k4 1, k).

I proved that if sis a set of power m in k-dimensional space then s has a subset s;
of power m so that any two distnces of s, are distinet. This completely fails in Hilbert
space. KAKUTANI and I constructed in Hilbert space a set of power ¢ so that all the
distances are rational. Also one can construct in Hilbert space a set of power ¢ all
triangles of which are isosceles and acute angled. P6sA disproving a conjecture of mine
constructed in Hilbert space a set s of power ¢ so that all subsets s, ¢ § of power ¢
have an infinite subset s, any two points of which are equidistant. PosA uses 2% =N, .

H. T. Crort, 9 point and 7 point configurations in 3-space, Proc. London Math. Soc., 12
(1962), pp. 400-424,

P. Erpos - P. Turix, On the problem of Sidon in additive number theory and on some related
problems, Journal London Math. Soe., 16 (1941), pp. 212-215.

P. Erpos, Some remarks on set theory, 11, Proe. Amer. Math. Soc., 1 (1950), pp. 127-141.

L. M. Kriry - E. A. NorpuaUs, Distance sets in melric spaces, Trans. Amer. Math. Soc.,
71 (1951), pp. 440-456, see p. 451.

4. — Let there be given n points in the plane not all on a line. Is it true that
there always is a line which goes through precisely two of the points? Such a line is
called an ordinary line. This beautiful question was posed in 1893 by SYLVESTER and
nobody solved it at that time. I rediscovered the question in 1933 and communi-
cated it to T. GALLAI who soon found a simple proef. Other proofs were found later
the simplest in my opinion is due to L. M. Krrry. This question and its generaliza-
tions have a large literature a small part of which I try to give at the end of this
paragraph.

Dr Bruirn and I conjectured that if f(n) is the minimnm number of ordinary li-
nes determined by » points then f(n) tends to infinity. This conjecture was proved
by Morzkin and later L. M. KLy and W. MosgR proved f(n)>[3n/7], equality for
n="T. MOTZKIN conjectured that for n > n, f(n)>n/2 and observed that for even
# there is equality.

Let there be given n points in the plane no » — k are on s line. I conjectured that
these points then determine at least ckn lines (where ¢ is an absolute constant inde-
pendent of k and n). Some very precise results in this direction were obtained by
Kerry and MosER.

GRAHAM conjectured that if there are given any » points in the plane not all on
a line. Then the lines determined by the points never have property B (i.e. every
subset of the » points which meets all the lines contains all the points on at least one
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of the lines). This conjecture was recently proved by M. O. RaBIN and independently
by MorTzkiN.

I then asked the following questions. Does there exist for every & a set of points
in the plane so that if one colors the points by two colors in an arbitrary way, there
always should be at least one line which contains at least k points and all whose points
have the same color. GRAHAM and SELFRIDGE gave an affirmative answer for k= 3,
but the cases k> 3 seem to be open.

TH. Motzrix, The lines and planes connecting the poinis of a finite set, Trans. Amer. Math.
Soe., 70 (1951), pp. 451-464. For further literature see e.g. B. GrinsauM, Convex polylopes,
p. 404, Pure and Applied Math., Vol. XVI, Interscience John Wiley and sons and Hadwiger
Debrunner and Klee, Combinatorial geometry in the plane, Holt, Rinehart and Winston.

See also B. GrinBAUMS, Arrangements and spreads, Amer. Math. Soc. Providence, 1972,
and a fortheoming paper of 8. BURR, B. GrunBAUM and N. J. A. SLoaNE. These papers contain
many very interesting unsolved problems and very extensive references. In fact the shortness
of this chapter is due to the fact that I can refer to these beautiful papers.

5. — In1931 Miss E. Kumin agked the following question: Is it true that for every &
there is an n, so that if there are given n points in the plane no three on a line one
can always find % of them which determine the vertices of a convex k-gon?. She
proved s, ==5, MAKAT and TURAN showed n;= 9. SZEKERES conjectured s, ==2F2-1-1,
this is open for k>6.

Szexkeres and I proved

2k—4
M 2t 1ams ()

The proof of the lower bound contains some minor inaccuracies, which were all cor-
rected by KAUBFLEISCH.

SzexERES and I proved that if there are given 27 points in the plane then there
are always three of them which determine an angle > n(1—1/n). A previous result of
SzEKERES shows that this result is best possible since to every & > 0 he constructs 2»
points so that all the angles are less than w(1—1/n)4- . For m points 2% < m <
< 27+ we do not have such sharp results, also there are few precise results in higher
dimensions. I conjectured that 2”1 1 points in #-dimensional space always deter-
mines an angle greater than =/2. This conjecture was proved by DANZER and GRUN-
BAUM. CROFT proved that 6 points in 3-space always determine an angle >n/2. It
is easy to see that this result is best possible.

L. Danzer - B. GriwsavM, Uber zwei Probleme bezOglich konvexen Kéirper von P. Erdds and
V. L. Klee, Math. Zeitschrift, _9 (1962), pp. 90-99. P. Erpos - G. SzerEerEs, On some
exiremum problems in elementary geomelry, Ammales Univ. Sci. Budapest, 3-4 (1960-61),
pp. 53-62,
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6. — Before ending this paper I would like to state a few miscellaneous problems
and conjectures. HEILBRONN posed more than 20 years ago the following problem.
Let there be given n points in the unit square. Put

Ay(n)=max min A, ..., o)
where A(z,, ..., %) is the area of the convex hull of @, ..., #,: It is easy to see that
As{n) > e jn? Ag(n) < ¢,/n is obvious. The first non-trivial result was due to XK. F.
RoTE who proved
Cy
Agln) < ——y.,
+(n) n(log log n)*
Recently W. Scumior proved (Journal London Math. Soc., 1972) that A,{n) <
< ay/n{logn)t and very recently Roth proved Ay(n)<es/n*.

It would be very interesting to decide whether 4,(n) << ¢,/n?is true. In his paper
W. ScaMipT consfructs » points in the unit square so that

Ag(n) > csnf .
Perhaps for every %

Ay(n) > ck/nl+1/(k~2) .

SoEMIDT points out that the proof of A4,(n)=o(1/n) presents difficulties. It seems
of course that A,(n)=o0(1/n) for every k.

AxNiNG and I proved the following theorem. Let there be given an infinite set
of points in the plane. Assume that the distance between every two of them ig in-
tegral. Then the points are on a line. ULAM agked the following question: Is there
an infinite set in the plane which is everywhere dense so that the distance between
every two of its points is rational? The answer it probably no but the proof seems
to be nowhere in shight. It is known if one can find 6 points in the plane no three
on a line no four on a circle so that all the distances are integral. Recently HARBOTH
found such a set of five points. Let & be a denumerable graph with the vertices
@y, By, .... What is the necessary and sufficient condition on G that there should exist
a set of points #,, #,, ... in the plane no three on a line so that the distance between z;
and x; is an integer if and only if x,; and #; are joined in & by an edge. I proved that
if G contains a K(3;N,) (i.e. a complete bipartite graph with 3 white and N, black
vertices) then this is impossible. It is possible (but I doubt it) that if & does not
contain a K(3;¥,) then such a set z,..., exists. If we further assume that the
set @y, ..., in the plane does not contain four points on a circle we may get a com-
pletely new situation.

Denote by F(n) the smallest integer for which one can color the points of n-dimen-
sional space by F(n) colors so that two points of the same color never have distance 1.
NELSON conjectured F(2)=4. W. and L. MosER proved F(2)>4 and it is known
that F(2)<6. In this connection L. MoSER asked the following question: let s be a
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measurable set situated in a cirele of radius r (v large) and no two points of r are at
distance 1. Is it true that the measure of s is less than nr/4. Equality for r=1.
For large », F(n) and related problems are studied in a recent paper of LARMAN and
RoGERS, F(n) > cn? is the best lower bound known. F(r)> (1-+ ¢)* would follow
fro the following combinatorial conjecture: Let |8|=n 4,c8, 1<i<k. Assu-
methat 4,N A; never has size [n/4]. Then k < {2 — ¢;). More generally I conjec-
ture that for every % > 0 there is an £ > 0 so that if [Sj=1n, 4,c8, I<i<k, k>
> (2 —¢)* then for every », mm<<r<<n{}—n) there are two integers 1<i<j<k
so that |4,M A;|=r.

V. T. B6s and I proved that if there are n4+ 1 ftriples in a set S of = ele-
ments, then there are always two of them whose intersection is a singleton, for
n =0 (mod 4) this is best possible. The simple proof can be left to the reader. We
?: ;) then for
gome 1<i<<j<k, |4;,N A;{=1. This conjecture if true is certainly best possible.

To see this consider the (n —2

conjectured that if 1>3, 4,c8, 1<i<k, [4:|=1, n>ny(l), k>(

l— 2
porved our conjecture for I=4 the unpublished proof iz not very simple. The
cases >4 are open.

The following problem is due to Frsus-ToéTH: Let there be given n points a4, ..., %,
in the plane. Assume their minimum distance is 1. Minimize

E dwy, xy)

Ii<isn

) I-tuples containing two fixed elements of §. KarToNa

FEIES-TOTH conjectures that the minimum is assumed if the z,s are the vertices
of a triangular lattice.

In a recent paper several collaborators and I studied the following problem: A
finite set § in n-dimensional space is called Ramsey if for every k there is a finite set §
in m-dimensional space m = my(8, n, k) so that if we color the points of 8§ by %
colors, there always is a monochromatic set congruent to 8. We prove in our first
paper that if 8 is 2 rectangular parallelepiped then it is RaMsgy. On the other hand
not every set is RAMSEY; we show that a RAMSEY set is spherical (i.e. lies on a sphere).
The simplest unsolved problem is whether every non-degenerate triangle is RAMSEY.
Another problem is the following: Color the points of the plane by two colors. Is
it true that all triangles can be monochromatically imbedded with the possible excep-
tion of at most one equilateral triangle. Many further problems will be stated in
our papers on this subject.

K. F. RorH, On o problem of Heilbronn, 111, Proc. London Math. Soc., 25 (1972), pp. 543-549

P. ErDp0s, Integral distances, Bull. Amer. Math. Soec.

P. Erpds - R. L. Gragsam - P. MontgomerY - B. L. RormscEiLp - J. Spexcer - E. G.
StravUs, Buclidean Ramsey Theovems, J. Combinatorial Theory, 14 (1973), pp. 341-363,
two further papers of the same title and by the same authors will apper in the Proe. of the
Keszthely meeting held in 1973.



