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Abstract. Prior knowledge, or bias, regarding a concept can reduce the number of examples needed to learn it. 
Probably Approximately Correct (PAC) learning is a mathematical model of concept learning that can be used 
to quantify the reduction in the number of examples due to different forms of bias. Thus far, PAC learning has 
mostly been used to analyze syntactic bias, such as limiting concepts to conjunctions of boolean prepositions. 
This paper demonstrates that PAC learning can also be used to analyze semantic bias, such as a domain theory 
about the concept being learned. The key idea is to view the hypothesis space in PAC learning as that consistent 
with all prior knowledge, syntactic and semantic. In particular, the paper presents an analysis of determinations, 
a type of relevance knowledge. The results of the analysis reveal crisp distinctions and relations among different 
determinations, aald illustrate the usefulness of an analysis based on the PAC learning model. 
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1. Introduct ion 

Bias or prior knowledge is any basis for choosing one generalization over another other than 
strict consistency with the training examples [Mitchell, 1980]. Prior knowledge regarding 
a concept can often dramatically reduce the number of examples needed to learn it. One 
common form of  bias is syntactic constraints on the concept description language. For 
example, if  a learner knows that the concept being learned is describable by a purely con- 
junctive boolean expression, a special technique for inducing such expressions can be used 
to expedite the learning. There have been many successful attempts at quantifying syntac- 
tic bias, such as [Haussler, 1988]. These approaches are based on a mathematical  model  
of  concept learning called Probably Approximately Correct (PAC) learning introduced by 
Valiant [Valiant, 1984]. For a detailed introduction to the model, see [Natarajan, 1991]. 

However, humans, and indeed some machine learning systems, draw their power not only 
from syntactic bias, but also from knowing something about the content of  the particular 
concept being learned. For example, a human learning to play a new game often uses 
his general knowledge of  competitive games to accelerate learning. Similarly, machine 
learning programs like FOCL rely on a "domain theory" to expedite learning new knowledge 
[Pazzani, 1992]. In other words, these systems exploit a "semantic bias" in addition to a 
syntactic bias. 
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Quantifying semantic bias or prior knowledge is an important problem in artificial intel- 
ligence (AI). In a recent introductory book on AI [Rich and Knight, 1991], after discussing 
Valiant's model of PAC learning, the authors of the book note (pages 482--483): 

After all, people are able to solve many exponentially hard problems by using 
knowledge to constrain the space of possible solutions. Perhaps mathematical 
theory will one day be used to quantify the use of such knowledge, but this prospect 
seems far off. 

In this paper we show that the authors' pessimism is somewhat unwarranted, and that 
semantic bias can be quantified using essentially the same PAC learning framework used 
to analyze syntactic bias. To our knowledge, the work described here--which was first 
reported in [Mahadevan and Tadepalli, 1988J--represents one of the first attempts to analyze 
semantic bias using PAC learning. Russell's work on "tree-structured bias" is another early 
example of such an analysis [Russell, 1988]. 

PAC learning is based on a paradigm wherein a teacher provides a learner with examples 
of a target function from an initially agreed upon space of possible functions. This space can 
be viewed as representing the syntactic bias of the learner. Examples are selected randomly 
according to a fixed but arbitrary probability distribution unknown to the learner. The 
task of the learner is to find with high probability a function that is a good approximation 
of the target function-hence the name "Probably Approximately Correct" learning. The 
learner prunes the function space by eliminating functions that are inconsistent with the 
examples. Learning is complete when the only functions that remain unpruned are with 
high probability good approximations of the target function. The more restricted the initial 
space of functions that contains the target function, the fewer the functions that have to be 
pruned to learn it, and hence, the fewer the examples needed to do the pruning. In general, 
the number of examples needed to learn an arbitrary function in a function space increases 
monotonically with the number of functions in the function space. 

In order to obtain broadly applicable results, any attempt to quantify semantic bias should 
be insensitive to particular ways of representing the prior knowledge. The key observation 
behind this paper is that such an analysis can be achieved by modeling knowledge abstractly 
as a space of functions of which the target function is a member. We thereby generalize 
the notion of function space in PAC learning to the set of functions consistent with all prior 
knowledge--both syntactic and semantic. 

Our results are based on the central results in PAC learning that imply that the number 
of examples needed for robust learning increases with some measure of the complexity of 
the function space. Since a reliable learning algorithm has to learn any and all functions 
consistent with its prior knowledge, our negative results, which are based on the size of the 
function space, are hard lower bounds. 1 They imply that certain kinds of prior knowledge 
are not strong enough to make a learner converge after seeing a reasonably small number of 
examples, whatever form that knowledge is represented in. In contrast, our positive results 
are constructive in that they are accompanied by polynomial-time learning algorithms. 

An analysis of the effect of a particular piece of domain knowledge on learning may 
not be useful in other domains. Hence, we analyze the usefulness of general forms of 
knowledge in a domain-independent way. In particular, this paper presents an analysis of 
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determinations, a general form of relevance knowledge. Relevance knowledge consists 
of information about the dependence among different features. A feature P is relevant to 
another feature Q if the fact that P holds for some object affects whether Q also holds for 
that object. Determinations were originally proposed by Davies and Russell [Davies and 
Russell, 1987, Russell, 1986, Russell, 1989] in the context of analogical reasoning. An 
example of a determination is the prior knowledge that "nationality" determines "language", 
that is, individuals of the same nationality speak the same language. This particular form of 
determination can be weakened in several ways. For example, another form of determination 
allows for individuals with the same nationality to speak different languages, as long as they 
share a common language. Yet another form allows for a small number of "exceptional" 
individuals who may not speak any common language, and so on. 

We analyze each of these forms of determinations. In particular, for each type of deter- 
mination, we study its effect on learning a function by comparing the number of examples 
required in the absence and presence of the determination. Several interesting facts emerge 
from the analysis. Minor changes in the definition of a determination can result in dra- 
matically different learnability properties. This allows the various determinations to be 
ranked according to their effect on the learning process. Furthermore, apparently dissimilar 
determinations are actually quite similar in terms of their effect on learning. 

We believe our theoretical results have direct relevance to implementors of practical 
knowledge-based learning systems. For example, Explanation-Based Learning (EBL) is a 
knowledge-intensive learning technique that relies on its ability to classify an instance using 
a theory of the domain [Mitchell et aL, 1986, Dejong and Mooney, 1986]. One of the open 
problems in EBL arises when the domain theory is not adequate to classify every instance 
[Mitchell et al., 1986]. Most approaches to this "incomplete theory problem" are based 
on using pre-classified training examples to expose and fill in missing parts of the domain 
theory [Hirsh, 1989, Hall, 1988, Mahadevan, 1989, Danyluk, 1989]. For example, one 
approach involves using determinations to represent gaps in the domain theory, which are 
filled by extracting implicative rules from the determinations [Russell, 1987, Mahadevan, 
1989]. A PAC analysis can be used to determine whether the gaps in a domain theory are 
"small" enough so that they can be filled with a reasonably small number of examples. 

The rest of this paper is organized as follows. Section 2 informally explains our approach 
to quantifying semantic bias. Section 3 describes the PAC learning framework. The main 
results on learnability of function spaces in the presence of the various determinations are 
given in Section 4. Section 5 discusses some implications of our formal results. Section 6 
summarizes the main results of the paper. 

2. Informal overview of the approach 

In this section we informally characterize our approach to quantifying semantic bias. Sup- 
pose an intelligent agent is faced with the task of learning from examples some unknown 
function, such as a mapping from individuals to languages. Each example describes an 
individual using a set of attributes such as his or her height, weight, nationality, place of 
employment etc., and also lists his or her language. Any information the learner has about 
the unknown function before seeing the examples is its "prior knowledge." Although prior 
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Figure 1. Reducing a function space using prior knowledge. 

knowledge can also take the form of a "simplicity" preference ordering on the functions in 
the function space, in this paper we restrict ourselves to prior knowledge which constrains 
the set of allowed functions to a subset of all possible functions. In the absence of any 
such prior knowledge about the target function, the agent can do no better than storing 
each example. This rote learning strategy becomes prohibitive if the number of individuals 
(more precisely, the number of possible descriptions of individuals) is very large. 

On the other hand, suppose the agent has prior knowledge in the form of a determination 
that any two people of the same nationality speak the same language. Given this piece 
of knowledge, the initial learning problem is now reduced to one of learning a function 
that maps nationalities to languages. If there are very few nationalities compared to the 
number of people, which happens to be true of our world, the learning problem is now a 
much simpler one. In particular, the agent can justifiably generalize from a single example: 
once it knows the language spoken by some individual of a given nationality, it can form a 
general rule stating that every individual of that nationality speaks this language. 

Pursuing the nationality example further, we note that even with the prior knowledge, the 
learning problem is not trivial since there may be many functions that are consistent with 
the knowledge. For example, the function that assigns all Americans the English language, 
the function that assigns all Americans the Spanish language etc., are all consistent with the 
prior knowledge. Generally, prior knowledge will define a space of functions, and examples 
help refine the space of functions to the one target function that the learner is supposed to 
acquire. 

Generalizing from the above example, Figure 1 illustrates the relation between the amount 
of prior knowledge available and the size of the function space. Given no knowledge, the 
space of possible functions is large, and learning requires too many examples. When some 
knowledge is available about the function being learned, the space is reduced since all 
functions that are inconsistent with the given knowledge are eliminated. 

Leaving the formal details to future sections, it will be useful here to briefly outline 
the form of our analysis. Given a particular determination, we estimate the size of the 
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function space consistent with the determination. The main result in PAC learning that we 
use is the dimensionality theorem, which relates the number of training examples needed 
for successful learning to the size of the function space [Blumer et aL, 1989, Natarajan, 
1989]. Informally, this theorem says that the number of examples sufficient for successful 
learning varies logarithmically with the asymptotic size of the function space. We apply the 
dimensionality theorem to the reduced function space consistent with the prior knowledge 
and determine bounds on the number of examples needed to learn functions in that space. If 
this bound is too high, that is, exponential in the problem parameters, then it is not feasible to 
learn that space. If this bound is reasonable, that is, polynomial in the problem parameters, 
then we conclude that it is feasible to learn this function space. 

A practical learning technique not only needs to converge with a reasonable number 
of examples, but also needs to be computationally efficient. While prior knowledge will 
always reduce the number of examples sufficient for learning, it might sometimes increase 
the time complexity of searching for a function consistent with it [Haussler, 1988]. In those 
cases, it may be appropriate to ignore some prior knowledge and consider a bigger function 
space than is necessary, thus requiring a few more examples while gaining computational 
tractability. For each of our function spaces that can be learned with a reasonable number 
of examples, we isolate conditions under which they are learnable in reasonable time, and 
describe efficient (polynomial-time) learning algorithms for them. 

3. The PAC learning model 

In this section we give a brief overview of the relevant formal results from PAC learning. 
In particular, we will use a generalization of Valiant's original model to function learning 
studied by Natarajan [Natarajan, 1989, Natarajan, 1991]. 

3.1. Preliminaries 

Since any domain/range element of a function can be encoded as a binary string, without 
loss of generality we consider learning functions from binary strings to binary strings. An 
example of a function f is apair (x, f(x)). We assume a routine EXAMPLE, which outputs 
an example of a function f according to some fixed, but unknown, probability distribution 
Pr. In other words, the probability of a particular example (x, f(x)) being generated by a 
call of EXAMPLE is Pr(x). 

In the following, we denote the length, or the number of significant bits of string x by Ix I. 
We let ~ n  refer to the set of strings of length n and ~ *  to the set of strings of arbitrary 
length. We let Trim(w, n) denote the n-length prefix of string w E ~ * .  

Definition 1. A space of functions F is a set of functions from ~ *  to ~*.  

The following definition limits the functions being considered to those whose output is 
at most a polynomial in the size of their input. 
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Definition 2. I lk (n)  is a fixed polynomial function, called the scale-up function, the nth, 

subspace Fn o f f  = { f l , . . . ,  f i , . . . }  is {91, . . . ,  g i , . . . }  where each 9i: ~-]n ---+ ~-]k(n) is 
such that gi(Trim(w , n)) = Trim(fi(w),  k(n) ) if all w E ~-]* with the same n-length prefix 
are mapped by fi to strings with the same k(n)-length prefix, and undefined otherwise. 

A simple example will help illustrate these definitions. Assume that the task is to learn 
boolean functions. The function space B is the set of all possible boolean functions which 
output a single bit. The nth-subspace Bn is a restriction of B to functions over input bit 
strings of length n. Note that Bn has 22"~ functions. 

3.2. PAC learning 

We now formally describe the PAC learning model. For convenience, we distinguish 
learning that converges with reasonable (polynomial) number of examples, which we call 
feasible learnability, from learning that also bounds the computational time, which we call 
polynomial-time learnabiIity. 

Definition 3. A space of functions F is feasibly learnable if there exists an algorithm A 
that, given an error parameter e, a confidence parameter 5, and the problem size n, 

(i) makes calls to EXAMPLE, whose number is polynomial in n, 2~, and ½, and 

(ii) for all functions f in Fn and all probability distributions Pr, over 2n, with probability 
at least 1 - 5 outputs a function 9 such that, 

~-~Pr(x)  ~ e 
xCS  

where S = {x I x E Nn and f ( x )  ~ 9(x)}. 
We make no assumptions on the representation of g other than that there exists a 
polynomial time algorithm that, given 9 and x, outputs 9(x). 

Under the above conditions, A is called a learning algorithm for F. 

The parameter c specifies the error of the function 9 when compared to the real function 
f the learner is trying to approximate. The error is measured by the probability that f and 
9 differ on some example chosen randomly using the same distribution Pr that was used 
during the learning. Since the approximation is obtained using randomly chosen training 
examples, they might sometimes be unrepresentative, in which case the approximation 
learned from them may not be sufficiently accurate on representative test examples. A 
learning algorithm must ensure that the probability of this event is lower than the confidence 
parameter (5. 

Note that we do not require the output function g to be in Fn. In other words, we allow the 
learner to output a function which violates the prior knowledge, as long as it approximately 
agrees with the target function with a high probability on the training distribution. The 
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advantage of this definition is that it avoids the problem of having to check that 9 is consistent 
with the prior knowledge, which could sometimes be computationally complex [Haussler et 
al., 1988, Pitt and Valiant, 1988]. This definition oflearnability is also called "predictability" 
in PAC learning literature [Haussler et aI., 1988, Natarajan, 1991]. 

To study the time requirements of learning, we need to assume a representation or index 
for the functions. Since each function may have multiple names, the index maps functions 
to sets of binary strings. 

Definition 4. An index of the function space F is a function I : F ~ 2 r'*, such that 

Vf, g E F ,  i f f 7  ~ 9 , I ( f )  N I ( 9  ) = { } .  

Definition 5. A function class is said to be polynomial-time learnable if there is a learning 
algorithm that runs in time polynomial in n, the length of the shortest index of the target 

1 and 1 function f C Fn, -g ~. 

3.3. Identification and dimensionality 

The following additional definitions are needed to state the main theorems from learnability 
theory. 

Definition 6. A function f is consistent with a set of examples S i f(z,  y) E S ~ f ( x ) = y. 

Typically, learning algorithms work by guessing a function which is consistent with all 
the input examples. Following [Rivest, 1987] we call such an algorithm an identification. 
Formally, 

Definition 7. An identification 0 of a space of functions F is an algorithm that takes as 
input an integer n and a set of examples S = { (xi, Yi) }, where each x~ is of length at most 
n, and produces an output function f c F that is consistent with S, if such exists. I f  O 
runs in time polynomial in the length of its input and the length of the shortest index of the 
functions consistent with S, we say that F is polynomial-time identifiable. 

An identification for the boolean function space B will take as input many examples of the 
form (xi, yi), where xi is a bit string of length n and Yi is 0 or 1, and outputs the following 
function f .  f outputs a 1 for any input string xi in the example set such that Yi = 1, and 
outputs a 0 on all other inputs, f can be represented simply by the set of positive instances, 
that is, examples for which the output is a 1. Since f can be produced in time polynomial 
in the number of examples, B is polynomial-time identifiable. 

We now introduce Natarajan's notion of "dimension," a measure of the size of a function 
space [Natarajan, 1989]. The relationship of Natarajan's dimension to the more popular 
Vapnik-Chervonenkis dimension [Blumer et al., 1989] is discussed in [Natarajan, 1989]. 

Definition 8. The dimension Of Fn, the nth subspace ofF,  is log 2 IFnl 2 
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Definition 9. A space of functions F is of dimension D(n) if for all n, the dimension of 
Fn (the n TM subspace o fF) i s  D(n). If there is a polynomial p(n) such that D(n) <_ p(n) 
for all n, F is said to be of polynomial dimension. 

To calculate the dimension of the function space/3 in our boolean function example 
above, we note that there are 22" possible functions in Bn. Thus, the dimension of the 
function space/3 is D(n) = 2 n. Now consider a subspace B ~ of/3 in which every boolean 
function maps exactly one input string to 1, and the rest to 0. It is easy to see that there 
are only 2 n functions in/3~, one function for each input string. The dimension of this new 
function space B ~ is the polynomial D(n) = n. 

3.4. Learnability theorems 

The main results we will be using from the theory of PAC learnability can now be stated 
[Natarajan, 1989]. 

THEOREM 1 (NATARAJAN). A space offunctions F is feasibly learnable if and only if 
it is of polynomial dimension. 

THEOREM 2 (NATARAJAN). A space of functions is polynomial-time learnable if it is of 
polynomial dimension and is polynomial-time identifiable. 

Taking our boolean function example once again, since the dimension of the function 
space B is exponential, it is not feasibly learnable. But if the learner has the additional 
knowledge that the target function maps exactly one input string to 1 and the rest to 0, we 
can simply focus on the reduced function space B ~, which has a polynomial dimension, and 
feasibly learn it. B ~ is also polynomial-time learnable because the same identification that 
we discussed before for B would work for B ~ as well, and runs in time polynomial in the 
length of its input. This example clearly illustrates how a single piece of knowledge, such 
as the existence of a single positive instance for the target function, can make a dramatic 
difference to the learnability of the function space. 

The following theorem allows us to estimate the exact number of examples sufficient to 
learn a function given the dimensionality of the space containing it. 

THEOREM 3 (NATARAJAN). If DimF(n) is the dimension of a function space F, then 
any algorithm which collects and identifies a set of examples of size ~ (DimF (n) lne 2 + 
In (½)) is a learning algorithm ofF. 

The proof for the above theorem follows a similar result for concept learning given in 
[Blumer et al., 1989] or [Natarajan, 1987]. 

4. Learnability results 

This section describes the main results of this paper on quantifying relevance knowledge 
defined by various determinations. 
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4.1. Determinations 

Determinations are intended as a formalization of the notion of relevance. Intuitively, an 
attribute P is relevant to an attribute Q if the fact that P holds for some object affects whether 
Q holds of that object. For example, the fact that the attribute American-Nationality holds 
for a certain individual affects whether the attribute Speaks-English holds true for him or 
her. On the other hand, we feel reasonably certain that the Height attribute will not similarly 
affect the Speaks-English attribute. 

The simplest type of determinations are called total determinations. Russell introduced 
five types of total determination in his thesis [Russell, 1986]. The first of these is defined 
as follows: 

Definition 10. Let P(z,  y) and Q (x, z) be any twofirst-order sentences, where x represents 
the set of variables that occur free in both P and Q, while y and z represent the set of free 
variables that occur only in P and Q, respectively. We say P(x, y) ~- Q(x, z) iff 

y) A P(z, y)] Vz[Q( , z) Q(z, 

An example (which we will use as a running example throughout this paper) will help clar- 
ify the above definition. Let P(x, y) denote the predicate Nationality(x, y), which means 
that the individual x has nationality y. Also let Q (x, z) denote the predicate Language (x, z), 
which means that x speaks language z. Then, the above total determination states that if 
there exist two individuals x and w who share a nationality y, then x and w will speak the 
same set of languages. 

Determinations can be viewed as a form of incomplete knowledge [Russell, 1987]. For 
example, from 

Nationality(x, y) ~- Language(x, z) 

and 

Nationality(John, US) A Language(John, English) 

it follows that 

VxNationality(x, US) ~ Language(x,English) 

However, just knowing that nationality determines language is not sufficient to compute an 
individual's language from his nationality. Examples are required to fill in this knowledge, 
and thus they are a source of new information (unlike the situation in EBL where examples 
are a logical consequence of the domain theory [Mitchell et al., 1986]). In general, from 
P(x, Y) >- Q(x, z) and P(A, B) A Q(A, C), the implication VxP(x, B) ---+ Q(x, C) 
follows. 
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4.2. Function space consistent with a determination 

Let P (x, y) and Q (x, z) be any two first-order formulas specified as part of a determination 
P(x,  g) >- Q(x, z), where, as before, x represents the set of free variables appearing in 
both _P and Q, and y and z represent the set of free variables appearing only in P and 
Q, respectively: For some sets I, N, and L, let 7 ) _C I × N and Q C_ N x L denote 
the extensions of the predicates P and Q respectively. Therefore, the variables x range 
ove r / ,  the variables y range over N, and the variables z range over L. In terms of the 
nationality example, I is the set of individuals, N is the set of nationalities, and L is the set 
of languages. 

We denote the set {y t P(x,  y)} by Px, and the set {~/ ] Q(x, y)} by Qx. The task 
is to learn to predict Qx, given x and Px. We view this as learning a function from 
D = {(x, Px) : x E I} to 2 L. Let F denote the set of all such functions fp, Q : D --+ 2 L 
for a given P.  The training examples consist of the input-output pairs ({x, Pz), Qx). 

Any particular relations 7 ) and Q uniquely define a function fp, Q E F such that, for 
all x E I, fp, Q((x, P~}) = Qx. A determination P(x,  y) ~ Q(x, z) can be viewed as a 
constraint on the relations 7) and Q. With every determination P(z,  y) >- Q(x, z), we can 
associate a space of functions F>_ = {fp, Q} C_ F, defined by all particular relations P and 
Q satisfying that determination. We call it the space of functions consistent with or defined 
by that determination. Formally, F>_ = {fp, Q : P(x,  y) ~ Q(x, z)}. 

An example will help clarify the above definitions. Consider the determination Nationality 
(x, y) >- Language(x, z). Let I ={Giuseppe, John, Lisa, Isabella, Mami}, N = {Italy, 
US, Japan }, and L = {Italian, English, Japanese}. Further, let 79 = {(Giuseppe, Italy), 
(John, US), (Lisa, US), (Isabella, Italy), (Mami, Japan)}. For the above P,  it is easy 
to see that Q = {(Giuseppe, Italian), (John, English), (Lisa, English), (Isabella, Italian), 
(Mami, Japanese)} is consistent with the above determination, whereas Qt = {(Giuseppe, 
Japanese), (John, English), (Lisa, English), (Isabella, Italian), (Mami, Japanese)} is not. 
The reason, of course, is that, Giuseppe and Isabella, who are both from Italy, are mapped to 
the same language by Q, but mapped to two different languages by Qq Hence the function 
fp, Q with mappings ( Giuseppe, {Italy} ) ---+ {Italian}, ( John, {US}) --~ {English}, etc. 
is in F>_, and the other function fv, Q' with mappings (Giuseppe, {Italy}) --+ {Japanese}, 
and ( Isabella, {Italy}) ~ {Italian}, etc. is not. 

As we said b,fore, the nationality determination makes the function learning problem 
feasible because it reduces the original problem of learning a function that maps individuals 
to languages, which is infeasible, to a simpler problem, namely learning a function from na- 
tionalities to languages. We can view the domain of the new function, that is, nationalities, 
as an abstraction of the domain of the old function, that is, individuals. Figure 2 illustrates 
this point, showing how individuals sharing a nationality can be abstracted by their nation- 
ality. In Figure 2, John and Lisa are grouped together as Americans, and Giuseppe and 
Isabella are grouped as Italians. Now, learning a mapping from nationalities to languages 
effectively permits us to predict a person's language by knowing his/her nationality. The 
amount of abstraction achieved by a determination depends on the number of nationalities 
and individuals, and will turn out to be the basis for our learnabilit7 results. For the above 
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Figure 2. Abstracting the domain of a function using a determination. 

determination, learning becomes feasible when the number of nationalities is much smaller 
than the number of individuals (we make this statement more precise below). 

In order to quantify the amount of abstraction achieved by a determination, we have to 
parameterize the functions. We do this by parameterizing the sizes of various components 
of the training examples, indirectly bounding the sizes of the various sets and functions 
involved. In any training example ((x, Px), Qx), we assume that txl = n, IP:~I = c, and 
IQx[ = l. Since x is any member of I,  these assumptions imply I I I <  2 ~. On the other 
band, since Px is any subset of N and Qx is any subset of L, it follows that INI _< c and 

ILl _< l. 
We make the assumption that I varies as a polynomial function of n, and is the scale-up 

function of F.  So the nth-subspace Fn of F can be defined as {9 : ~ ---+ ~-j(n) I Vx e 
1,9(x ) = f((x,  P~}), where f E F}. 

We can now get bounds on the size of the function subspace Fn as a function of n and 
1. Note that each function in i% is from I,  a set of size _< 2 n, to 2 L, a set of size < 2 t. 
Hence, in the worst case, we have IFn[ = (2z) 2", and dim(F)  = log ]Fn] = 2nl. Using 
the dimensionality theorem, F is not learnable without some additional prior knowledge, 
since it is of exponential dimension in n. 

4.3. Results on total determinations 

The first set of results concern the various types of total determinations. For each type of 
determination we compute bounds on the dimensionality of the function space consistent 
with that determination. Using the learnability theorems presented above, we can then 
determine the learnability of each space. We present detailed proofs for two cases in this 
section and refer the reader to the appendix for the rest. 

A function in the function space defined by the determination P(x, y) >- Q(x, z) is 
illustrated in Figure 3. As a generalization of the example discussed in previous section, 
individuals may have multiple P values, that is, nationalities. Each ellipse in the domain 
of the function in Figure 3 represents a nationality. Individuals who share at least one 
nationality speak exactly the same set of languages. 
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Figure 3. Part of a function in the space consistent with the ~ determination. 

The following theorem affirms the polynomial-time learnability of function spaces con- 
sistent with the total determination ~-. 

THEOREM 4 The space of functions F~_ consistent with a determination P(x ,  y) ~- 
Q(x, z) is polynomial-time learnable if Ira'~e( P)l <_ e and I~ange(O)l ___ l are poly- 
nomials in Ixl = n, 

Proof Let us define a relation R such that any two elements a and b in I are related by 
/~ iff the sets Pa and Pb are not mutually exclusive. It follows from the definition of the ~- 
determination that for any two such elements a and b, Qa = Qb. The transitive closure on R 
induces a partition of the set I .  We call each member of that partition a "continent". For any 
x and y that belong to two distinct continents, Px and Pu should be mutually exclusive, and 
hence each distinct continent must have at least one distinct nationality. Hence, [continents[ 
_< INI _< c. 

From the definition of the ~- determination, it can be seen that each member of a single 
continent has to be mapped to the same subset of L. Hence, the total number of possible 
functions is bounded from the above by the number of ways the continents can be mapped 
to subsets of L. Since the number of subsets of L is bounded by 2 z, the total number of 
functions is bounded by (2z)lc°~i~n~s[. Since ]continents I <_ INI _< c, the number of 
functions in F,~ is bounded by (2z) c. Hence, the dimension of F~_ < el. If c and l are 
polynomials in n, then by Theorem 1, F~_ is feasibly learnable since it is of polynomial 
dimension. 

BuildContinentMap (see Figure 4) takes the error parameters e, ~5, and problem size n as 
inputs, collects a large enough set of examples S, and constructs a mapping T, which is 
consistent with the examples in S, from subsets of N that correspond to continents to subsets 
of L. T is a representation of a function in F~_. If the set of P values of an individual x of 
the current example intersects with some continent w in the mapping T, then the continent 
w is merged with Px, and its image is stored as Qx. (If all the examples are consistent with 
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Function BuildContinentMap (input: e, 5, n); 
Collect l(c(n)l(n), In 2 + ln(J))  examples in S 
T : = { }  
For each example (<x, p~), Q~) E S do 

If ? T(w) such that w N P~ ¢ {} 
Then Rem, ove T(w) from T and let T(w [_J Px) := Q~ 
Else let T(P~) := Q~ 

End; 
Output T 
End BuildContinentMap; 

Figure 4. A learning algorithm for F>- 

the determination, this new image will be the same as the old image.) If there is no such 
intersection, then T maps Px to Q~. 

To find out the mapping of a new example, say (w, P~}, under the learned function, find 
any T(y), where y has a non-empty intersection with P~,. If the examples are consistent 
with the determination and with each other, all such y's should give the same result. 

T is consistent with the training examples if some function in F>_ is consistent with them. 
Note that the size of the table T never exceeds c because the number of entries in T is not 
increased unless the algorithm comes across an example with nationalities (in P~) which 
have not been seen previously. Hence, BuildContinentMap runs in time polynomial in the 
sample size and c, which are in turn polynomials in ! ,  ½ and n. Since the construction of 
T is consistent with the training examples and the determination P(x, y) >-- Q(x, z), by 
Theorems 2 and 3, it follows that F~_ is polynomial-time learnable by BuildContinentMap. 

[] 

Note that BuildContinentMap assumes that the polynomial bounds e(n) and l(n) are 
known in advance to facilitate the estimation of the number of examples sufficient for 
learning. Hence, strictly speaking, our proof of Theorem 4 is only an existence proof of a 
learning algorithm. However, it is possible to convert it into an "on-line" learning algorithm 
that does not assume the knowledge of these bounds by using the stochastic testing method 
introduced in [Angluin, 1988]. This method works by incrementally training the system 
until it correctly classifies a set of randomly drawn test examples. The number of test 
examples in each iteration must be increased by a small factor to guarantee that the total 
probability of learning a function which is not approximately correct in any iteration is 
bounded by 5. If e(n) and l(n) are polynomial functions of n, then the total number of 
training and test examples can still be shown to be polynomial in !,, ½ and n. We ignore this 
refinement in the interest of simplicity and simply note that the same argument applies to 
all of our algorithms, which assume the knowledge of various fixed polynomial functions. 

As we mentioned earlier, there are several types of total determinations. We now introduce 
the remaining types, and characterize when they define learnable function spaces. 
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In the real world, the assertion that Nationality(x,  y) >- Language(x, z) is too strong. 
In our toy example, if Giuseppe happens to be a national of  both US and Italy, then it 
follows that Lisa, John, Giuseppe, and Isabella should all speak both Italian and English! 
This conclusion follows even though Isabella and John do not share any nationality. One 
individual who has multiple nationalities can effectively merge all those nationalities into a 
single continent! The following total determination eliminates this problem by weakening 
the >- determination. 

Definition 11. Let P and Q be any two binary predicates. We say P(x, y) ~-v Q(x, z) iff 

vw, x[[VyP(w, y) P(x, y)] vz[Q( , ¢. Q(x, z)]] 

Nationali ty(x,  y) >-v Language(x, z) means that two individuals speak the same set 
of languages if their set of nationalities is the same. The following theorem characterizes 
the learnability of  F>_ v. 

THEOREM 5 The space of functions F>_ v consistent with P ( x, y) ~-v Q ( x, z) is not learn- 
able if I r a n g e ( P ) l  = e > O(n), where n = Ixl. However, F~_ v is polynomial-time 
learnable if c <_ (9(log n). 

Proof. Figure 5 illustrates a portion of a function in the space F~_ v. In contrast to the 
situation in Figure 3, here every subset of N can be mapped to a completely distinct subset 
of  L. Note that elements merely sharing a P value may not be mapped to the same subset 
of L, as the figure illustrates. 

In this case, given any two elements a and b in I ,  we can assert that Q~ = Qb if P~ = Pb. 
I f c  < n, then IF~_v [ is as large as the number of ways in which subsets of  N can be assigned 
elements in 2 L. This is so because every possible assignment of elements in 2 L to subsets of 
N defines a function consistent with the above determination. So, in the worst case, [F~_v I 
= (2/) 2c. ThUS dim(F>_v) = 2el. If  c > n, then dim(F>_v) = d im(F)  = 2nl. This is 
because IF>_v I < IFI, since F>_ v C F.  Thus, if c > O(n), it follows from Theorem 1 that 
F>_ v is not feasibly learnable. If e < O(log n), then dim(F>_v) = 2el <_ 2 k l°g'~l = nkl is 
a polynomial in n, and hence F>_ v is feasibly learnable. 

L 

ind iv idual~  -1 with same P value 
Figure 5. Part of a function in the space consistent with the ~v determination. 
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We describe, in Figure 6, a polynomial-time learning algorithm that collects and identifies 
a large enough set of examples in time polynomial in n when e < O(log n). It constructs a 
table T that represents a mapping from subsets of N that represent P~ to subsets of L that 
represent Q~ for all examples ((x, P~), Qx). Since all individuals x who map exactly to 
the same P~, should also map to the same Qx, this table T is guaranteed to be consistent 
with all the examples. Using T, any input (x, P~} is mapped to T(P~), or to { } i fT(Px) 
is not in T. 

The size of the table T can grow as big as the number of subsets of N. Hence the 
complexity of the above algorithm is O(¼ {2el + in ½ }). If  c grows at most logarithmically 
with n, BuildSetsOfCountriesMap runs in time polynomial with n. • 

We introduce the remaining types of total determinations below, but postpone their learn- 
ability analysis to Appendix 8.1. 

One problem that the >-v determination does not solve is when two individuals, such as 
Guiseppe and John, share a nationality. In that case, we feel confident in asserting that they 
share a language too. This is captured by the following third type of total determination: 

Definition 12. Let P and Q be any two binary predicates. We say P(x, y) >-3 Q(x, z) iff 

w ,  x[[3y P(w, y) A P(x, y)] 3z[Q( , z) A Q(x, z)]] 

In this case Nationality(x, y) >-3 Language(x, z) means that if two individuals share 
a nationality, then it can be asserted that they share a language. We prove the following 
negative result in the appendix. 

THEOREM 6 The space offunctions F>_ 3 consistent with P(x, y) >-3 Q(x, z) is not learn- 
able. 

For the case when individuals with multiple nationalities exist, it would be computation- 
ally advantageous if we could compute the set of languages of such individuals as the union 

Function BuildSetsOfCountriesMap (input: e, 6, n); 
x {2c(n)l(n)ln2 + In ½} examples in S Collect 

T:={} 
For each example ((x, Px), Qz) in S do 

If there exists no entry for Px in the table T 
Then let T(Px) := Qx; 
;; Else T(Px) must already equal Q~ if the examples are consistent. 

End; 
Output T 
End BuildSetsOfCountriesMap; 

Figure 6. A learning algorithm for F~- v and F~- c 
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of some "official" set of languages associated with each nationality. Denoting such a rela- 
tion from nationalities to languages by a second order predicate R, we have the following 
definition: 

Definition 13. Let P and Q, be any two binary predicates. We say P(x ,  y) >-R Q(x, z) iff 

3R w ,  z[Q(~, z) ~ 3riP(x, v) A R(y, z)]] 

Thus given any nationality y, the set of languages associated with y is simply {z I 
R(y, z)}. The set of languages spoken by any individual x is given by {z I P(x,  y) A 
R(y, z)}. We prove the following theorem in the appendix. 

THEOREM 7 The space of functions F~_ R consistent with a determination P(x,  y) ~-R 
Q ( x, z) is polynomial-time learnable if Irange( P ) l = e and [range( Q ) l = I are polyno- 
mials in Ill = n. 

The definition of P(x,  y) ~-R Q(x, z) above is expressed as a statement in second or- 
der logic. Russell introduced another determination which is intended to be a first order 
approximation of the previous determination. 

Definition 14. Let P and Q be any two binary predicates. We say P(x,  y) ~-<_ Q(x, z) iff 

w ,  x[[VyP(~o, y) ~ P(x, y)] ~ v~[Q(~, z) ~ Q(~, z)]] 

In terms of the nationality example, the >-c determination states that if the set of nation- 
alities of w is a subset of that of x, then the set of languages spoken by w is also a subset 
of those spoken by x. In the appendix, we show that if e _< O(log n), then the function 
class defined by the above determination is learnable in polynomial-time by the algorithm 
BuildSetsOfCountriesMap in Figure 6. Somewhat surprisingly, however, this function class 
is not learnable when e >_ O(n), even though the previous function class F>_ R it is intended 
to approximate is learnable if c <_ O(nk). 

THEOREM 8 The space of functions F>_ c consistent with P(x,  9) >'-c_ Q(x, z) is not 
learnable if Iran9e(P)l = e >_ O(n), where Ixl = n. However, F>_c is polynomial-time 
learnable if c <<_ O(log n), and Irange(Q) l = l <_ O(nk). 

4.4. Results on extended and partial determinations 

4.4.1. Preliminaries 

More often than not, real world knowledge admits exceptions. Extended and partial deter- 
minations are two types of determination knowledge that can deal with exceptions. In order 
to facilitate the analysis of such determination knowledge, we introduce a distance metric 
on function spaces. We then prove a general result regarding the learnability of function 
spaces that are "close" to other learnable function spaces in terms of this metric. 



QUANTIFYING PRIOR DETERMINATION KNOWLEDGE 85  

We begin by defining the notion of distance between two functions, a 

Definition 15. Given any two functions f : D --+ R a n d  g : D --+ R,  the distance between 
f and g is defined as: 

dist(f ,  9 ) = [{x c D I f ( x )  7 £ 9(x)} I (1) 

In other words, the distance between two functions is simply the number of domain 
elements on which the two functions disagree. We generalize this notion to function spaces 
as follows. Intuitively, the distance from a function space to another is the maximum of the 
distances from the functions in the first space to their closest neighbors in the second space. 

Definition 16. Given any two function subspaces Fn and Gn the distance from Fn to Gn 
is defined as: 

Dist (F~, G~) = Maxf~F,, {Ming~c~ dist(f ,  g)} (2) 

Note that the distance from a function subspace Fn to Gn is not necessarily the same 
as the distance from Gn to Fn. We now define a relation "p-close" between two function 
spaces that indicates that the distance between the corresponding subspaces is small. It is 
easy to see that the relation p-close is not symmetric. 

Definition 17. Given two spaces of functions F and G, we say that F is p(n)-close or 
p-close to G ifffor all n, Dist(F~, Gn) <_ p(n). 

This relation between function spaces establishes a relationship between their dimensions, 
which in turn relates the number of examples needed to learn them. 

THEOREM 9 Let F be a function space which is p(n)-close to G. Let the range of the 
functions in the two subspaces Fn and Gn be Rn. If tRn I <- 2k(n) f or some polynomial k(n), 
and the dimension of G is Dima(n) ,  then the dimension o f f  DimF(n) _< Dima(n)  + 
p(n)k(n) + rip(n) + logp(n). 

Proof Let the domain of the functions in the function subspaces F,~ and G~ be D~. As 
before, assume that IDol = 2 ~. Since F is p-close to G, Dist(F~, Gn) <_ p(n). We define 
a new function subspace E~ : D~ - + / ~  U {±}, where 3_ is some element not in R~, as 
follows. 

En = { f :  Dn --4 R~ U {±} I f maps at most p(n) elements in D,~ to R~, and the 
rest to 2}. 

Intuitively, functions in En represent the set of all possible ways in which the functions 
in Fn can differ with the functions in G,~. Note that 

[Enl= Z (2:O(2k(n))i <_p(n)(2n)P(n)(2k(~)) p(n) 
i=O 
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Hence the dimension of E, 

DimE(n) _< logp(n) + rip(n) + p(n)k(n) 

Given the spaces G~ and En, we define the product space G ,  × En as follows: 

Gn x E~ = { f  : D~ ~ Rn 139 E Gn and e E E~ such that 
Vx C I ,  if e(x) = ±  then f ( x )  = 9(x), else f ( x )  = e(x)} 

Since the functions in Fn have a corresponding function in Gn which differs from it on 
at most p(n) elements, and some function in E ,  represents all such differences, it follows 
that Gn × En includes all functions in Fn. G~ × E ,  contains at most IGnl • ]Enl many 
functions. 

Hence, the dimension of F,  

DimF(n)  = log IF,~] < log IGni + log IEnl 

_< Dima(n)  + p(n)k(n) + p(n)n + logp(n) 

We are now ready to infer the feasibility of learning in one space from the feasibility of 
learning in another space which is p(n)-close to it. 

THEOREM 10 If a space of functions F is p(n)-close to another space of functions G 
for some polynomial function p(n), and G is feasibly learnable, then F is also feasibly 
learnable. 

Proof Since G is feasibly learnable, from Theorem 1, its dimension Dima(n)  is a 
polynomial in n. From the previous theorem, it follows that F has a polynomial dimension 
as well, which implies that F is feasibly learnable. • 

Note that the above theorems do not make any guarantees about the learning time. How- 
ever, they are useful to predict the number of examples sufficient to learn a function space 
from the number of examples sufficient to learn another function space which is "close" to 
it. 

4.4.2. Extended determinations 

In many real world situations, it is difficult to find total determinations. Even in our 
nationality example, the reader might have noticed that it is not always true that all people 
with the same nationality speak the same set of languages. One would like to be able to 
tolerate a small number of "exceptions" to a total determination. Russell proposes two 
solutions to this problem: extended determinations, and partial determinations [Russell, 
1986]. We analyze the former first. 

An extended determination is like a total determination, except that one is required to see 
p examples with the same values for P and Q, in order to conclude that all elements with 



QUANTIFYING PRIOR DETERMINATION KNOWLEDGE 87 

the same value for P also have the same value for Q. An extended determination reduces to 
a total determination when p = 1. Intuitively, extended determinations represent situations 
where there are a small number of  exceptions to a total determination. 

Figure 7 illustrates a portion of  a function consistent with an extended determination. A 
set of  elements sharing a given P value all map to a given subset of  L, except for a set of 
"exceptional" individuals who map to larger subsets of L. 

We now carry out an analysis of extended determinations. Following [Russell, 1986] we 
define the notion of  an extended determination as follows: 

Definition 18. We say P(x,y) >-PB Q(z, z) iff 

W l , . . . ,  ~p, y, z[P(wl, V) A Q(~I,  z) A . . .  A P(~p,  y) 

AQ(tOp, z) A 'W 1 ¢ 1/3 2 A 1131 ~;~ 

~3 A . . .  A ~ - 1  ¢ ~p] ~ Vx[P(z, V) ~ Q(x, z)] 

For example, Nationality(s, y) >-PE Language(s, z) means if p or more distinct people 
are American, and they all speak English, then every American will speak English. Clearly, 
when p = 1, this reduces to the determination >-, and as p grows larger the statement 
becomes weaker. The question naturally arises: how large can p get without sacrificing 
learnability. To answer this question, we first relate p to the distance between the function 
subspaces of F>_~ and F>_ R. 

L e m m a  1. Let79 C I × N and Q c I x L. I f  ILl < Z, and IN[ ~ c then the function 
space F~_~ consistent with the determination P(z ,  y) ~-~ Q(z ,  z) is cl(p - 1)-close to the 
function space F>_ n consistent with P ( z ,  y) ~R  Q(z ,  z). 

Proof Please see Appendix 8.2. 

We are now ready to establish the learnability of the corresponding function space. 

Exceptions 

Figure 7. Part of a function in the space consistent with an extended determination. 
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THEOREM 11 The function space F~_ ~ consistent with the determination P(x, y) ~-PE 
Q(x, z) is polynomial-time learnable if ]range(P)l = c, Iran9e(Q)l = l, and p are 
polynomials in ]x I = n. 

Proof The feasible learnability of F~_~ follows from Theorem 10, and the fact that F~_~ 

is cl(p - 1)-close to F~_ R, which is feasibly learnable. Please see Appendix 8.2 for a 
polynomial-time learning algorithm. • 

Our learnability result essentially states that as long as the number of exceptions permitted 
by the extended determination is low (that is, polynomial in n), the function space defined 
by it is polynomial-time learnable. 

4.4.3. Partial determinations 

A partial determination is similar to an extended determination in that it tolerates a small 
number of exceptions to a total determination. A partial determination is introduced through 
a probability measure, d(P, Q), which is an empirical estimate of the relevance of one 
attribute P to another attribute Q [Russell, 1986]. This measure is also similar to the 
"uniformity" measure discussed in [Davies, 1988]. 

Consider two relations P and Q as before, where P C_ I x N and Q c_ I x L. Let us 
denote the set {x ] P(x,w)} by p g l .  For each w such that IP ll > 1, d(p lQ) is 
defined as follows: 

d(P(~I,Q) = 
1 ) 

,eR,7~jcR:l ~ I%1 
(3) 

If we interpret P as Nationality and Q as Language, then essentially d(P(, 1, Q) is 
measuring the extent to which the languages spoken by individuals belonging to nationality 
w overlap. If they all speak the same set of languages, d(Pg 1, Q) is 1, and if there is no 
overlap, then d(Pfz 1, Q) is 0. 

Now we define d(P, Q) as the average of the above metric over all possible range values 
of the relation P. 

E ~ N  ~nd IR,:,'I>I d(PgL Q) 
d ( P , Q ) =  I{w G N : Ipwl] > 1}] (4) 

In general, d(P, Q) is intended to capture the probability that two randomly chosen 
individuals with the same P value have the same Q value. Note that if we have a total 
determination P >- Q, d(P, Q) = 1. If P and Q are uncorrelated, then d(P, Q) is just the 
probability that two randomly chosen individuals have the same Q value. Thus, intuitively 
d(P, Q) is a measure on how relevant P is to making predictions about Q. A good discussion 
of how this measure is related to other metrics for relevance in statistics, such as correlation, 
is given in [Davies, 1988]. desJardins considered the task of predicting the value of a target 
feature Q from a single input feature P, which is assumed to be statistically correlated to 
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Q, making some strong assumptions on the distribution of the input and output features 
[desJardins, 1989]. In the spirit of our previous results, we derive distribution-independent 
sufficient conditions for learnability which rely on the asymptotic growth rate of d(P, Q) 
with the size of the learning problem. 

Definition 19. We say that P(x,  y) partially determines Q(x, z) (written as P(x ,  y) ~-~ 
o~(n) Q(x, z)) if there is apolynomial c~ in n, such that d( P, Q) > 1 - -Tw-, where Ixl < n. 

Figure 8 illustrates a portion of a function in the function space F~_~. Most members 
of I with a given P value get mapped to a particular subset of L (shown by the shaded 
region in Figure 8), while there is a set of"exceptions," who get mapped to arbitrary subsets 
of L. Our results imply essentially that partial determinations define learnable function 
spaces as long as the number of such exceptions remains bounded by a polynomial in n. 
Also, note the difference between Figure 7 and Figure 8. In the former, which describes 
a function consistent with an extended determination, exceptional individuals must map 
to subsets of L that include the corresponding maps of normal individuals. In the case of 
partial determinations, there is no such restriction. 

If P partially determines Q, then it can be shown that the resulting function space F~_7, is 

2c9"/c~-close to F~_, and hence is feasibly learnable. But first, we need an auxiliary lemma 
that allows us to infer a lower bound on d(Pg 1, Q) for any w E N from the lower bound 
on d(P, Q). 

Lemma 2. I f  P C_ [ x N and Q c_ I x L are such that P(x,y) ~-~ Q(x, z), then for all 
c Ns.t. [P I I > 1, d(P I,Q) >_ 1 

Proof Please see Appendix 8.3. 

Lemma 2 is used to prove the following: 

Exceptions 

Figure 8. Part of a function in the space consistent with the ~v determination. 
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Lemma 3. The space of functions F>_ ~ consistent with P ( x, y) >- ~, Q ( x, y) is 2c21c~-close 
to the space F>_ consistent with P(x ,  y) ~- Q(x, z). 

Proof Please see Appendix 8.3. 

Now we can state the main theorem of this section. 

THEOREM 12 The space of  functions F>_% consistent with P(x ,y )  >--~, Q(x,y)  is 
polynomial-time learnable, if [range( P) l = c, Irange(Q)l--Z, and ~ are polynomials in 
Ix l  = n .  

Proof Feasible learnability follows from the above lemmas and the Theorem 10. Please 
see Appendix 8.3 for a polynomial-time learning algorithm • 

There are some interesting points to note regarding the above analysis. The strategy 
used to prove the above results, based on a distance metric on function spaces, reveals 
relations between the various determinations not obvious from their respective definitions. 
For example, the positive results on both the partial and the extended determinations are 
due to the proximity of their function spaces to that of a learnable total determination. If we 
interpret d(P, Q) as the probability of the predicate P totally determining Q, P partially 
determines Q means that this probability can be made arbitrarily close to 1, by increasing 
n. Our results show that for learning to be effective, it is not necessary for P to totally 
determine Q. It suffices if the probability of this can be made asymptotically close to 1. 

Interestingly, the notion of partial determination seems similar to the e-semantics, pro- 
posed by Pearl to give probabilistic semantics to default logic [Pearl, 1988]. 4 Here default 
rules are interpreted to be sentences which are true with a probability 1 - e, where e can 
be made arbitrarily small. A sentence is true under this semantics if it can be inferred 
with probability I - O(e) in all distributions which are consistent with the input defaults. 
Viewed in this vein, if P partially determines Q, a default inference of a Q value might be 
sanctioned for an individual with a known P value; however, this default will have to be 
over-ridden if there is extra-evidence to suggest that the real Q value of this individual is 
different from that of "normal" individuals. 

4.5. A summary of  learnability results 

Table 1 summarizes our results. The table characterizes the number of examples sufficient 
to learn the function spaces defined by the different types of determinations under various 
conditions on their parameters. The table also specifies if and when the function space 
defined by each determination is polynomial-time learnable. 

Min(x, 9) denotes the minimum ofx  and y. Note that in the case of the >-v determination, 
since the number of functions consistent with it could not be more than IF I, we need to 
take the smaller of the dimensionalities computed with and without the determination 
knowledge. In the case of the >-c_ and >-3 determinations, the dimensionality lies between 
the two expressions shown enclosed by square brackets. 

What can we take away from these results in Table 1 ? 
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First, the results characterize some conditions under which the determinations define 
learnable function spaces. Obviously, the table is not exhaustive in terms of conditions-- 
for example, what happens to the learnability of F~_ v, if we further require that every 
individual can only belong to a constant number of nationalities? 5 The table gives us the 
sufficient conditions for feasible learning when different determination-based theories are 
available. It is important, particularly when interpreting the negative results, to note that 
the results are tied to the assumptions underlying the PAC learnability model. For example, 
the non-learnable spaces may turn out to be learnable for some specific "easy" distributions 
of examples. 

Second, the results specify the amount the input needs to be abstracted for the function 
learning problem to be feasible. For example, for the >-R determination, a logarithmic 
reduction is sufficient (in terms of the nationality example, the number of nationalities needs 
to be a logarithm of the number of people). On the other hand, for the ~-v determination, 
a doubly logarithmic reduction is needed. Interestingly, for the ~-3 determination, even a 
doubly logarithmic reduction is insufficient to make the learning feasible. 

Third, the results also give us some insight into the relations between the various deter- 
minations. For example, it is interesting to note that the function space that corresponds 
to ~-R is learnable under much weaker conditions than that of its first-order approximation 
;"-_C. 

Finally, the results on extended and partial determinations are interesting because they 
allow a small number of exceptions to total determinations without sacrificing the learn- 
ability. Determinations of this form are more suitable to the real world domains since there 
are usually a number of exceptions to any rule in such domains. 

Table 1. A summary of learnability results. See text for explanation. 

Determ. Dimension [Examples[ needed P-time learnable gf 

P >-- Q <_ cl ~{e/In 2 + In 1} c < O(n k) 

P >'-R Q cl ~{cl In 2 + In 1} c < O(n k) 

P ;"-v Q Min[2Cl, 2 ~/] ~ {Min(2Cl,2nl)ln2+ln ½} c < O(logn) 

P ~c_ Q [2C/2l, Min[2Cl, 2nl]] ¼{2C/ln2 + In ½} e _< O(logn) 

P ;'-3 Q [2n( l -1 ) ,  2nl] l { 2 n l l n 2 + l n ½ }  NotLearnable 

P ~-PE Q <_ cl + e t2 (p -  1)+ l { (e t  + e /2(p-  1) + e l n ( p -  1)+ e <_ O(n k) 
cln(p - 1) q- log(cl(p - 1)) log(e/(p - 1))) In 2 + In 1} 

P >.-~ Q < cl + 2e212a+ ¼{(el + 2e2/Za + 2e2lan+ c < O(n k) 
2eZlan + log 2c2la log 2e2la) In 2 + In ½} 
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5. Discussion 

The main lesson of this work is that PAC learning can be used to quantify semantic bias 
by analyzing the learnability of a hypothesis space consistent with all prior knowledge-- 
syntactic and semantic. What this work suggests is that in some cases semantic bias can 
be as effective as syntactic bias in making the learning task tractable. In this section we 
discuss some implications of our analysis for knowledge-based learning. 

5.1. Syntactic and semantic biases 

Traditionally, PAC learning has focused on constraining learning by providing the learner 
with a syntactically defined space of functions. For example the class of k-CNF boolean 
formulas, which is defined as the set of conjunctions of at most k disjuncts, is known to 
be learnable [Valiant, 1984]. Semantic bias allows one to make finer distinctions between 
the objects of the same syntactic type. For example, it allows us to talk about something 
being a function of one attribute rather than another, which cannot be done with purely 
syntactic constraints. However the price paid is that the semantic bias can be very domain- 
specific and an algorithm to implement an arbitrary domain-specific bias may be of no use 
in another domain. The problem, then, is to identify general classes of semantic bias more 
expressive than syntactic bias. Such semantic bias should be describable by a small set of 
parameters which can be explicit inputs to the learning algorithm. Determinations are good 
examples of such semantic bias in that they can be parameterized by a set of attributes that 
determine the target function. This allows the same learning algorithm to be applicable to 
many domains, in spite of the domain-specific nature of the particular determinations such 
as nationality determines language. 

Note, however, that our work is agnostic about whether prior knowledge should be declar- 
atively represented in the system. The analysis holds whether or not this is the case. In 
[Russell and Grosof, 1989], the benefits of declarative bias are eloquently argued, while in 
[Brooks, 1991] the necessity of any declarative representations in reasoning and learning is 
seriously questioned. The problem is that declarative representations of prior knowledge, 
while being more flexible, might introduce computational intractability. The question of 
what part of the knowledge must be declaratively represented and how, must be resolved 
using considerations of computational complexity in addition to the needed generality and 
flexibility of learning. In the case of determinations, it suffices to declaratively represent 
the attributes in the determination. Our algorithms do not require the first order logic 
representations of the various determinations. 

5.2. Tree-structured bias 

Our results suggest that knowledge-based learning is not automatically immune to the ob- 
served statistical limitations of inductive learning systems [Dietterich, 1989]. The analysis 
of the kind performed here can help the designer of a learning system decide whether some 
existing prior knowledge is adequate, or if more knowledge is needed to make learning 
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feasible. It might also suggest the need for learning from additional sources of informa- 
tion such as "membership queries," when learning from random examples alone is not 
computationally tractable [Angluin, 1988]. 

It may not always be realistic to find a small number of relevant attributes that can 
determine a target function. Russell showed that if the learner has a set of determinations 
structured as a tree, the number of examples needed to learn a target function is significantly 
reduced even while the total number of relevant attributes is large [Russell, 1989]. Tree- 
structured bias consists of a tree of attributes such that each attribute at a node is determined 
by at most a small constant number (k) of other attributes, which are represented as its 
children. At the root of the tree is the target attribute, whose value is to be predicted, and at 
the leaves are the input attributes, whose values are given. The learning problem is made 
difficult by the fact that the non-root internal nodes that represent "intermediate" attributes 
are not observable during the training or testing. 

Note that it is logically sound to replace the tree of determinations with a single "flat" 
determination that says that the target attribute is determined by the input attributes. How- 
ever, Russell showed that the tree structure provides additional bias so that a function class 
which is not feasibly learnable with the flat determination might still be learnable with the 
tree of determinations. 

Learning with tree-structured bias from classified random examples is reducible to learn- 
ing arbitrary boolean formulas [Pitt and Warmuth, 1990], which in turn is reducible to some 
apparently hard cryptographic problems such as inverting the RSA cryptosystem [Kearns 
and Valient, 1989]. However, there is an efficient learning algorithm for boolean functions 
that obey tree-structured bias if the learner is also allowed to query the output of the target 
function for any arbitrary input, i.e., ask "membership queries" [Tadepalli, 1993]. This 
algorithm was implemented as a program called TSB and was shown to learn the target 
functions consistent with a determination tree of a few dozen nodes to almost 100% accu- 
racy with a modest number of examples and queries [Tadepalli, 1993]. A knowledge-free 
induction program (ID3) using the same data could only achieve a maximum of 75% ac- 
curacy. This shows the power of the tree-structured determination knowledge in reducing 
the number of training examples needed for learning, and the usefulness of membership 
queries in effectively exploiting this knowledge. 

5.3. Learning prior knowledge 

We could also consider the possibility of the system interactively learning the necessary 
prior knowledge, perhaps by asking a domain expert directed questions. In the language 
domain, for example, it makes sense to ask, "do you know any attribute that determines 
language?" This is a more useful question to ask than "what language does Giuseppe 
speak?" because an affirmative answer to the first question greatly reduces the difficulty of 
the learning problem. Thus, our work can provide guidance as to what questions to ask in 
a new domain to facilitate further knowledge acquisition. 

One could also consider learning prior knowledge from examples and some weaker prior 
knowledge. For example, under some conditions, "nationality determines language" might 
be learned by knowing that "some attribute determines language." 



94 s. MAHADEVAN AND P. TADEPALLI 

However, prior knowledge cannot be considerably weakened without sacrificing learn- 
ability. To see this, assume that there is some knowledge K (such as a mapping from 
individuals to languages) which is not feasibly learnable from prior knowledge P~o~ak, but 
is feasibly learnable given a stronger piece of prior knowledge Pst~o~g. Let us consider 
the possibility of first learning P~tro~g from Pweak, and then learning K. If Ps~rong c a n  

be learned feasibly from Pw~ak and examples, then since K can be feasibly learned from 
Pstro~g, P~tro~g + K can be feasibly learned from P~ak .  This means that K itself can 
be feasibly learned from Pw~k, which we know is impossible. Hence P~t~o,~g must not 
be learnable from P ~ k -  A corollary of this is that if something is not learnable from a 
state of tabula rasa, then any prior knowledge that makes such learning feasible is itself not 
learnable from a state of tabula rasa. 

Another approach for acquiring prior knowledge might be through some other means of 
learning: by being told, for example. However, the results of [Natarajan and Tadepalli, 
1988] show that this approach too suffers from the same information theoretic limitations. 
Simply stated, the set of all possible functions is too large to be learned from a reasonable 
number of bits whether these bits are interpreted as examples or domain theory or knowledge 
or bias. 

Thus, we must conclude that although some forms of prior knowledge might be learnable, 
not all forms are, and that what can be feasibly learned is, indeed, limited. 

5.4. Application to knowledge-based learning systems 

Our work provides a way to analyze the convergence of techniques for completing partial 
domain theories. For example, PED is a technique that extends EBL to partial domain 
theories containing determinations by using classified training instances to extract im- 
plicative rules from the determinations [Mahadevan, 1989]. PED relies on the fact that 
if instances P(A, B) and Q(A, C) of a determination P(x, y) >.- Q(x, z) can be proven 
from a training instance, then the definition of a determination sanctions adding the rule 
P(x, t3) ~ Q(x, C) to the domain theory. Our results can be used to distinguish situations 
when PED can feasibly complete a partial theory from those when it cannot. 

For example, if the determinations in a domain theory are all of the first type (that is, 
P >- Q ), and instances of the predicates in a determination can always be derived from 
a given training instance, and [range(P)l and trange(Q)[ are polynomial in n for every 
determination, then our results imply that PED can fill in the gaps in the domain theory 
from a polynomial number of training instances. 

5.5. Application to speedup learning 

Interestingly, the analysis of the kind performed above can also be carried out for speedup 
learning systems like the EBL systems. In these systems, the problem is to compute an 
operational (efficient) specialization of an intractable domain theory from examples. Since 
the original domain theory of the system is "complete" in the sense that the examples, and 
the final result of learning are deductive consequences of the domain theory, it might seem 
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that they require a radically different kind of analysis. However, as we show below, a 
simple re-interpretation of the task of these systems suffices to allow exactly the same kind 
of analysis. 

Suppose that an EBL system is given examples by a teacher, who generates solutions using 
an operational specialization of a domain theory which is tuned to the training distribution 
of problems. Before the learning begins, what does the learner know about this operational 
form of the domain theory in the teacher's mind? Only that it should be entailed by its 
domain theory. In other words, it has no knowledge of the particular operational version of 
the domain theory, although it knows the domain theory ! The examples provide the learner 
new information about the teacher's knowledge, even if they do not provide new information 
about the domain. In other words, although the domain theory may be "complete" in 
the sense that any output of the learner must be sound with respect to the initial domain 
theory, it is too weak to predict which of the many possible deductive consequences of the 
domain theory the teacher has in mind. We can view this situation as learning a particular 
operational version of the domain theory, which the teacher is trying to communicate to the 
learner through examples. 

Thus, we can interpret the different operational versions of the domain theory that a 
speedup learning system might potentially learn as its "hypotheses" about the teacher's 
knowledge. However, only one of these possible hypotheses (functions) is correct, and 
the task is to find an approximation to the correct function with a high probability. Prior 
knowledge can help constrain this space of possible hypotheses and reduce the number of 
examples needed for convergence. 

In [Tadepalli, 1991], an analysis similar to that we used in this paper was carried out 
for EBL systems when the hypotheses are in the form of sets of macro-operators. The 
learning algorithm exploits a piece of domain knowledge called "serial decomposability" 
[Korf, 1985]. This property is relevant to problem solving domains whose states can be 
represented as discrete valued feature vectors. A domain is said to be serially decomposable 
if there is an ordering ~ of its features such that the effect of any operator (and hence a 
macro-operator) on a feature is a function of, (or is determined by), only that feature and the 
features that come before it in ~ [Korf, 1985]. If the set of solvable problems in a serially 
decomposable domain is closed under the operators, then all solvable problems in that 
domain can be efficiently solved using Korf's macro table algorithm. This algorithm solves 
a problem by sequentially taking each feature in the order defined by ft to its goal value 
using a macro-operator. The previously achieved subgoals may be temporarily clobbered 
while solving the next subgoal, but they will all be reachieved at the end of application of 
the macro-operator. 

The analysis of [Tadepalli, 1991] assumes that the teacher gives examples of problem 
solving traces generated using Korf's macro table algorithm with the feature ordering ft, 
which is known to the learner. Since ft defines which features of the initial state determine 
the value of a given feature of the final state, the knowledge of f~ makes it possible to 
generalize the solution sequence to macro-operators by ignoring all the irrelevant features 
in the initial state. In the absense of this prior knowledge, the learner has to search in 
the space of all possible feature orderings for an ordering that is consistent with all the 
input examples. This not only increases the hypothesis space and hence the number of 
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training examples needed for convergence, but also makes the search computationally more 
demanding. Thus, similar to determinations, the knowledge of serial decomposability 
allows the learner to effectively generalize from fewer examples in some domains. 

6. Conclusions and future work 

This paper employed the PAC learning framework to analyze the effectiveness of various 
forms of prior knowledge in learning. We showed that it is possible to use PAC learning to 
analyze the effectiveness of semantic prior knowledge as well as syntactic prior knowledge, 
by viewing the prior knowledge as constraining the function space to that which is consistent 
with it. We used this approach to analyze various forms of determination knowledge. 
The analysis revealed surprising differences and similarities between the different kinds 
of determinations. While some kind of determinations make polynomial-time learning 
possible, some forms of determinations still require exponential number of examples. The 
analysis also shows similarities between two seemingly different determinations: partial 
and extended determinations. 

Our work describes one way to do a representation-independent quantified analysis of 
determination knowledge. A similar analysis might be carried out for other forms of 
incomplete knowledge, and constitutes an important direction for future work. Application 
of PAC learning model to systems that learn from intractable and inconsistent domain 
theories is another interesting avenue to explore. 

By applying the tools of computational learning theory to a more knowledge-intensive 
form of learning than it is usually applied to, our work shows how PAC-learning can form 
a theoretical basis for a unified view of learning. Analyses of this kind might also help us 
understand the structure of various kinds of knowledge and its relationship to the structure 
of the complexity classes. 

Appendix 

In what follows, we make the usual assumptions on the bounds of various sets: II[ _< 2 '~, 
IN[ <_ eand ILl < l. 

To~Ide~rmina~ons 

THEOREM 6 The space offunctions F~_ 3 consistent with P(x,  y) ~- 3 Q(x, z) is not learn- 
able. 

Proof This determination says that if two individuals share a P value then they also share 
a Q value. We prove that F~_~ is not learnable by constructing a space F "  of exponential 
dimension which is consistent with this determination. Let c = Irange(P)[ = 1 and 
l = [range(Q)[ > 1. Let i be an element in L such that Vx in I ,  i E Qx. Now for every 
element b in I we can choose to define the set Qb in exactly 2 t-1 ways, since QD = {i} tA L ' 
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Function BuildNationalitiesMap (input: e, 6, n); 
1 ln(~)) examples in S ;  Collect -2 (c(n)l(n) In 2 + 

T := {}; 
For each example ((x, P~), Q~) in S do 

For each P '  c P~ do 
If  there is an entry T(P' )  = z 

Then let T ( P ' )  := z N Qx 
Else let T(P' )  := Q~ 

End; 
End; 
Output T 
End BuildNationalitiesMap; 

Figure 9. A learning algorithm for F>- R 

where L '  is any subset of L -  {i}. Hence d im(F")  _> 2n(l - 1), and F~_ 3 is not learnable 
even if c = 1. III 

THEOREM 7 The space of functions F~_ R consistent with a determination P(x,  y) ~-R 
Q(x, z) is polynomial-time learnable if I r a n g e ( P ) l  = c and I range (Q) l  = l are polyno- 
mials in ]x I = n. 

Proof >-R determination says that there is a relation R from N to L such that Qx for 
any x c I is the set {z lP(x  , y) A R(y, z)}. This implies that, given the relation 7 ~, the 
relation Q from I to L can be computed from R. Hence, an upper bound on the number of 
mappings from N to 2 L also gives an upper bound on the number of mappings from I to 
2 L. Since INI = c, and [2 L ] = 2 t, this upper bound is (2z) c. Hence dim(F>_) ___ el. If  e 
and I are polynomials in n, then by the dimensionality theorem F>_ is learnable since it is 
of at most polynomial dimension. 

F~_ R is in fact polynomial-time learnable since it is polynomial-time identifiable by the 
program BuildNationalitiesMap in Figure 9. The program returns a table T that represents 
a mapping from N to subsets of L. T maintains, for each member of N,  the largest possible 
subset of L that it can map to while being consistent with all the previous examples. Initially, 
each member of Px has no T-image, and Qx is made its T-image. Subsequently, a new 
T-image is computed as the intersection of the current T-image and Qx. It is easy to see 
that this maintains the required semantics for T and runs in time polynomial in n, l, and e. 

T can be viewed as a representation of functions in F~_R. Any input (x, Px) will be 
mapped to { zlz e T(y)  and y E Pz }. II 

THEOREM 8 The space of functions F~_c consistent with P(x,  y) ~c_ O(x, z) is not 
learnable if ]ran9e(P)] = e >_ O(n), where Ix[ = n. However, F~_c is polynomial-time 
learnable if c < O(log n), and Irange(Q)l = l < O(nk). 
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Proof This determination constrains functions from D ---+ 2 L in the following way: 
given any two elements a and b in I ,  if Pa C Pb, then it must be that Qa c_ Qb. It 
follows that if there exist a and b in I such that P~ = Pb, then Q~ = Qb. Hence, this 
determination is stronger than ~-v, and hence, is learnable whenever F~_ v is learnable. 

We prove that it is not learnable under significantly weaker conditions by constructing a 
space of functions F ~ of exponential dimension consistent with the above determination. 
We construct F ~ as follows. Assume that c = 2n. For any b in I ,  if Pb is of size greater 
than e/2, then define Qb = L. If  Pb is of size less than c/2, then define Qb = {}. If  Pb 
is of  size exactly c/2, then let Qb be any arbitrary subset of L. It is easy to verify that F ~ 
is consistent with the above determination. Since there exist at least 2 c/2 subsets of N of 
size c/2, and since we can assign each of them to subsets of L in 2 Z ways, the number of 

functions in F '  is at least (21) 2c/~. Hence d i m (F ' )  > 2c/2l = 2nl. 

Next we have to show that when c < O(log n), F>_~ is polynomial-time learnable. For 
this, we simply note that F>_c C_ F>_ v. Since F>_ v is learnable in polynomial-time by 
BuildSetsofCountriesMap (cf. Figure 6) when c < O(log n), F>_c is also learnable by the 
same algorithm. 

Extended determinations 

L e m m a  1. Let 7 ~ C_ I × N and Q c_ I × L. If ILl <_ l, and INI <_ c then the function 
space F ~  consistent with the determination P(x, y) ~-PE Q(x, z) is cl(p-1)-close to the 
function space F~_~ consistent with P(x, y) ~- a Q(x, z). 

Proof Let f be any function in the nth-subspace of  F~_~. We show that there is a function 

g in the nth-subspace of F~_ n such that d is t ( f ,  9) is at most el(p - 1). 

Let P and Q be the predicates corresponding to f .  T is a partial function from N to 2 L 
defined as follows. 

T(y) :=  {z I there are p distinct elements xi c I such that P(xi, y) A Q(xi, z)} 

By the definition of extended determination, if T(y) is defined for some y E N,  then for 
all x E I such that P(x, y), Q~: must include T(y). 

If  we define 9((x, P~)) to be Uv~p,, ~ T(y), it then follows that for any function f E F>_~, 

f ((x,  P~:)) must include g((x, P~)). 
Furthermore, treating T as a representation of  the relation R C_ N x L as defined by the 

determination F>_ R, 9 can be seen to be a member of F>_ R . 
We now estimate dis t ( f ,  9). Let us call each x on which f and 9 disagree, an exception. 

By the definition of T and F>_~, each (y, z) s.t. y E N and z c L can contribute at m o s t p -  1 
exceptions. If  more than p - I members of I map to the same y E N and the same z c L, 
then T(y) will include z, which will be reflected in 9. Hence the number of  exceptions, 
dist (f, 9 ) <- cl ( p -  1 ), which implies that the function space F>_ ~ is cl (p - 1) -close to F>_ R. 



QUANTIFYING PRIOR DETERMINATION KNOWLEDGE 99 

Function BuildNationalitiesAndExceptionsMap (input: e, (5, n); 
Collect ¼ { (c(n)l(n) + c(n)12(n)(p(n) - 1) + c(n)l(n)n(p(n) - 1)+ 

log(c(n)l(n)(p(n) - 1)))In 2 + in ½} examples in S 
T:=E::{} 
For each example ((x, Px), Qx) in S do 

For each y in P~ do 
;; T(y) C_ Q~: if the example set is consistent with the determination. 
For each z in Qx - T(y) do 

If I E ( y , z ) l  > p - 1, Then 
~ Let T(y) := T(y) U{z} 

E(y,  z) := {} 
Else E(y,  z) := E(y, z) U({x, Px}, Q~) 

End 
End 

End 
Output T and E 
End BuildNationalitiesAndExceptionsMap 

Figure 10. A learning algorithm for F~_J~ 

THEOREM 11 The function space F>_~ consistent with the determination P(x,  y) ~-PE 
Q(x, z) is polynomial-time learnable if  I ra~g~(P) l  = ~, Ira~g~(Q)l  = l, and p are 
polynomials in Ixl = ~ .  

Proof By Theorem 9 and Lemma 1, the dimension of F~_~ is at most 

Dim~_R(n ) + cl(p - 1) • 1 + cl(p - 1) • n + log(cl(p - 1)) 

Since Dim~_~ (n) is at most cl, by Theorem 3, it can be feasibly learned by identifying a 
set of 

1-{ (cl + c l ~ ( p - 1 )  + c l n ( p -  l) + l °g (c l (p -  l))) ln2 + ln ~ 

examples. 
The procedure BuildNationalitiesAndExceptionsMap (see Figure 10) collects that many 

examples, and constructs the mapping T from N to 2 L defined in the previous proof, and 
also builds a table E of exceptions indexed by nationalities and languages. Whenever the 
number of exceptions for a nationality y and language z exceeds p -  1, then T(y) is updated 
to include z, and the exceptions are removed. 

Assuming that c, l, and p are polynomials in n, it can be easily seen that the above pro- 
gram runs in time polynomial in the required parameters. Since the size of exceptions table 
does not exceed p for any nationality language pair (y, z), T and E represent a function 
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consistent with the determination P ~-) Q and with the examples. Hence, BuildNation- 
alitiesAndExceptionsMap is a polynomial-time learning algorithm for F>_~. The tables T 
and E are used to predict Qx for a given example as follows: first look up the particular 
example in the exceptions table E (for each y E P~ and z E L). If it is not in this table, 
then return the union of all T(y) such that y E P~. • 

Partial determinations 

L e m m a  2. If P q I x N and Q c I x L are such that P(x,y) >-~ Q(x, z), then fbr all 

Proof We prove this result by contradiction. Assume that there is some w ~ E N such that 

IP ,ll > l andd(P(,,1,Q) < 1 c~(~)2-. . Let 

cev :  IP ll > 1}1 =c '  

Note that c' _< INI = c. Since d(P(o 1, Q) _< i for all W, from the definition of d(P, Q), it 
follows that 

( 1 -  c~(n)~ --Trr-, + ( c ' -  1) ca(n) 
d(P,Q) < c' = 1  - c'2 n (5) 

Since P(x, y) ~-~ Q(x, z), we have 

d ( P , Q ) > I -  2-- W- 

Combining the above two inequalities, we get 

> ca(n) 

which leads to a contradiction. 

Lemma  3. The space of functions F~. 7, consistent with P(x, y) ~- ~, Q(x,y) is 2c21c~-close 
to the space _P'>_ consistent with P(x, y) ~- Q(x, z). 

Proof We prove this result by contradiction. Assume that F~_7, is not 2c2/c~-close to F~-. 
Then it follows that there is some function f in F~-7, such that for all functions g in/P~_, 

dist(f~ 9) > 2c21(~. 
Let us denote the restriction of f and g to the elements of P ~  1 by f~ and g~ respectively. 

Let w ~ E N be such that dist(fio,, gw,) > dist(f~o, 9~), for all w E N. It is easy to see 
that 

d is t ( f ,g)  < Z d i s t ( f ~ , g ~ )  <_ c* dist(f~,,g~,) 
~O 
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We can combine the above two inequalities to obtain 

2c21c~ 
dist(f~,,9~o,) > - 2cla 

C 

We now show that the above is not possible, which implies that 

Vf  E F ~ , V g  E F~_,Vw E N, dis t ( f~,g~)  < 2clc~ (6) 

Note that for any g E F~_, g~, should map all the elements x in Pw/1 to the same set 
L ~ _C L. I f  f~, were to differ from all such g~o, by more than 2elc~, then, for any set 
L ~ C_ L, there are more than 2cla elements in p ~ l  that are not mapped to L ~ by f .  It 
then follows that for each i E P~L 1, there are more than 2ela elements j E Pwr 1 such that 
Qj = rio, ((j, Pj}) is different from Qi = fw' ((i, Pi)). At least for half such pairs (i, j ) ,  
Qj  ~ Qi. Each such pair contributes at most 1 - } to the numerator of  d(Pw, 1 , Q). Thus, 

we get the following upper bound for d(P~,, 1, Q). 

d(P51, Q) 
IP~:[ ([PG,1[- 1) -IPG,1] 2clo~½} 

]P~:I (IP~-,ll - 1) 
COL col 

< 1  ([PG,1I - 1 ) IPG, II = 1 

(7) 

From Lemma 2, we know that 

COL 
d(Pw, 1 , Q) > 1 -- 2-- ~. 

Combining the above two inequalities, we get I P~, i [ > 2 ~, which leads to a contradiction. 
Hence dist(f~,,,  g~, ) < 2ela, and d i s t ( f ,  g) <_ 2e2la. I 

THEOREM 12 The space of functions F~_3 consistent with the partial determination 
P(x ,  y) ~-~ Q(x, y) is polynomial-time learnable, if Irange(P)l = c, [range(Q)l = l, 
and a are polynomials in Ixl = n. 

Proof Instead of directly learning the set of  functions F~_7~, our algorithm learns a superset 

of  functions which are 2c2la-close to F~_. 
By Theorem 9 and Lemma 1, the dimension of F~_~ is at most 

Dim~_ (n) + 2 c 2 l a ,  l + 2e21a * n + log2e2la 

Since Dim>- (n) is at most el, by Theorem 3, it can be feasibly learned by identifying a set 
of  

{ 1} l_e (el + 2c212a + 2c21an + log 2c21a) In 2 + in 

examples. 
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Function FindMinimalExceptionsMap (input: e, & n); 
Collect l {(c(n)l(n) + 2c2(n)l~(n)c~(n) + 2c2(n)l(n)c~(n)n+ 

log 2c2(n)l(r~)~(n))In 2 + in 1} examples in S 
T : = E : = N : = { } ;  
Score(*, *) := 0; 

;; Compute the scores and initialize T(w) 
For each ((y, Py), Qy) E S do 

For each w E Py do 
Score(w, Qy) := Score(w, Qy) + 1; 

r (w)  := O; 
End; 

End; 
;; Store T-images as the Q values that maximize their Score 

For each (w, Z) for which Score is computed, do 
If T(w) = {} or Score(w, Z) > Score(w, T(w)) Then 

T(w) := Z; 
End; 

;; Store the exceptions in E 
For each ((y, Py), Qy) E S do 

For each w E Py do 
If T(w) ~ Qy and E(y) is not already stored 
Then let E(y) := Qv 

End; 
End; 
Output T and E 
End FindMinimalExceptionsMap 

Figure 11. A learning algorithm for ,w>~ 

FindMinimalExceptionsMap (see Figure 11) collects that many examples, and identifies 
it in time polynomial in n, 1 and ½. The idea of this learning algorithm is to build a table 
T from N to subsets of L, to represent the "normal" mappings, and store the examples that 
do not obey this mapping in an exceptions table E. 

Note that all the "normal" mappings from y E I whose P values have some w E N in 
common should map to the same subset of L. The algorithm considers each w E N, and 
builds the Table T, which maps each w E N to a subset Z of L such that the number of 
exceptions (x, Px) which do not map to that subset, even while w E Px, are minimized. 
This is done by computing Score(w, Z) for each w E N, and each relevant Z C_ L, which 
indicates the number of members of P g  i whose Q values coincide with Z. The Z C_ L that 
maximizes Score(w, Z) is stored in T(w). For each w E N all members of p,~-a whose 
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Q values do not coincide with T(w) are considered "exceptions" and their Q values are 
stored in E. 

Since the target function satisfies the partial determination F~_7,, from Equation 6 in the 
proof of Lemma 3, the number of actual exceptions for each w E N is upper-bounded by 
2clo~. Since our algorithm minimizes the number of exceptions in each p g i  with respect 
to the examples, the number of exceptions stored in E for each w must also be < 2elee. 
Hence the maximum size of E is upper-bounded to 2c 21c~, ensuring that the output function 
represented by T and E is 2e2/c~-close to some function in F~_. 

It is easy to see that the above program runs in time polynomial in n, _1, and ½ if c and l 
are bounded by polynomials in n. The tables T and E are used to predict Qx for a given 
input (x, Px) as follows: First look up E for the particular example. If it is not in this table, 
then return T(y) for some y E Px. [] 
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Notes 

1. Negative results using the PAC learning model should be interpreted as "worst-case" theorems similar to the 
NP-completeness results in computational complexity theory. 

2. From now on, we use log for log 2 and In for log e. 

3. The definitions below assume that D, R, Fn, and Gn are all finite. 

4. We thank one of the reviewers, who pointed this out. 

5. As the reader might have guesssed, the function space is learnable if the number of nationalities is bounded 
by a polynomial in n, and not learnable otherwise. 
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