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Abstract. Automatically generating assertions through static or run-
time analysis is becoming an increasingly important initial phase in many
software testing and verification tool chains. The analyses may generate
thousands of redundant assertions often causing problems later in the
chain, including scalability issues for automatic tools or a prohibitively
large amount of information for final processing. We present an algorithm
which uses a SAT solver on a bounded symbolic encoding of the program
to reveal the implication relationships among spatially close assertions
for use in a variety of bounded model checking applications. Our exper-
imentation with different applications demonstrates that this technique
can be used to reduce the number of assertions that need to be checked
thus improving overall performance.

1 Introduction

An important part of many of the approaches for increasing software quality
through formal methods is to infer potential correctness properties from a pro-
gram. Such properties can be obtained in the form of assertions from the source
code, or behavior observed during run time [19,6,17,13,24]. The assertions can
then be verified against the source code using static-analysis methods such as
model checking [5,22]. In the paper, we study how Bounded Model Checking [1]
(BMC) can be used in verifying assertions generated by automated software
analysis.

We propose a generic framework for identifying implication relations between
assertions, and study how obtaining information about the implication relation
between assertions can be used in finding redundant assertions. This knowl-
edge becomes useful when the number of assertions generated automatically
grows large. For instance, in our experiments, independently on the settings of
the assertion synthesiser, the number is typically in the order of hundreds and
sometimes much higher.

The machine-generated assertions are often redundant in the sense that a
BMC algorithm only needs to verify a subset of these assertions and can safely
skip the rest if the verification was successful. This observation opens new op-
portunities for speeding up the computationally expensive BMC algorithms.
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For example, the Daikon program invariant generator [10] might produce the
following set of assertions for a return value of a function:

A1 : assert(ret = 0);A2 : assert(ret ≤ 0);A3 : assert(ret ≥ 0);

Clearly if the assertion A1 holds then also the assertions A2 and A3 hold. In
this paper we formalize the intuition that an assertion may imply other asser-
tions and provide an algorithm and an implementation for discovering such im-
plications for programs written in the C language. In our experiments detecting
assertions that are implied to avoid redundant checking consistently decreases
the time required to compute the set of true assertions in programs where such
redundancy exists. We observe a similar positive result in a model checking ap-
proach based on function summarization [24] where the summary sizes typically
decrease by 30% as a result of our algorithm.

Our approach is ultimately based on determining whether an assertion in the
software implies another assertion using a SAT query on a propositional encoding
of the program. The number of queries in a straightforward approach would be
quadratic in the number of assertions which for realistic programs is infeasible.
To achieve a level of performance required for a practical approach we use an
analysis that is sensitive to the control flow of the program, to the SAT query, and
to the distance between assertions to filter out checks which either cannot result
or would very unlikely result in detected implications. These optimizations result
in the approach having a relatively low overhead and they do not compromise
the soundness of the verification approach.

BMC has proven particularly successful in safety analysis of software and has
been implemented in several tools, includingCBMC [4], LLBMC [18],VeriSoft [14],
and FunFrog [24]. While BMC assumes a loop-free approximation of the program,
there are several recent techniques for transforming programs into loop-free
programs which, if successful, do not sacrifice soundness or completeness of the
verification results. Examples of such techniques include unwinding assertions [4],
automatic detection of recursion depth [12], k-induction [9], and loop summariza-
tion [15]. While we believe that these techniques are compatible with our method
for computing assertion implications, we leave this study for future work.

Related Work. To the best of our knowledge both the approach for detecting im-
plications between assertions using boundedmodel checking and the use of the de-
tected implications to remove redundant assertions for enhancing bounded model
checking are new. The implementation of Daikon [10] includes an approach
for pruning dependent assertions. Our approach extends this by considering
also assertions that do not appear in the same program location, and by us-
ing propositional logic in deducing the relations between assertions. While [8]
presents several approaches for generating assertions in implicative form as
potential invariants for recursive algorithms, our goal is at removing redun-
dant implied assertions. Furthermore, [8] detects potential implications through
procedure return analysis, a straightforward static analysis, clustering, random
selection, and context-sensitive analysis, but applies to assertions at the same
program location. Yang et al. [26] further extended the idea of assertion impli-
cations to the case of software evolution (to reflect the change impact between
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program versions). In contrast to these approaches, our method uses BMC en-
coding and is able to identify redundant assertions at different program locations.
A related approach complementary to ours is presented in [16] where the idea is
to lift assertions located in the nested function calls towards the main function
to achieve verification performance speedup.

We identify twomain approaches for synthesizing assertions for a program. The
dynamic invariant detection exploits software executions obtained, for instance,
from regression test suites, to generate likely invariants (see, e.g., [10,19,6]); while
the static invariant detection uses static analysis of the source code and sym-
bolic execution to construct potentially helpful invariants (see, e.g., the Houdini

tool [13]). For our experimentation we selected one representative assertion syn-
thesizer from both approaches: the dynamic invariant synthesizer BCT [17], and
a tool based on the CProver [4,24] framework for static invariant generation.

Finally, decreasing the sizes of function summaries computed through Craig
interpolation [7] can be done through proof compression [3] and the careful selec-
tion of interpolation algorithms [23]. This work provides an orthogonal approach
where the interpolant is optimized on a higher level by dropping unnecessary
verification conditions using domain-specific information.

This paper is organized as follows. Section 2 formalizes the bounded model
checking framework we use in the paper. Section 3 explains in detail the basic
ideas to detect implications between assertions and the techniques to implement
them. Section 4 shows the applications of the approach and the experimental
results. Section 5 summarizes the results of our work and discusses open problems
and starting points for future work.

2 Preliminaries

Our discussion is based on the unwound static single assignment (USSA) approx-
imation of the program, where loops and recursive function calls are unwound up
to a fixed limit, and each variable is only assigned once. We have implemented
the computing of assertion implications for the C language, but follow the usual
approach of presenting the theory in a simpler abstract language to render the
discussion more approachable. The USSA approximation serves as an interme-
diary step in transforming a program to a propositional formula for software
bounded model checking. It also serves as a framework for unambiguously defin-
ing the assertion implications in Sec. 3 and gives a natural interpretation for a
distance between assertions in Sec. 3.4.

The USSA approximation is heavily influenced by techniques used in software
bounded model checking (see, e.g. [4]) and consists of an ordered sequence of
assignments called instructions, guarded by Boolean valued enabling conditions:

Definition 1. An Unwound Static Single Assignment (USSA) approximation
is a finite sequence U = (S1, S2, . . . , Sn) of guarded instructions Si having the
form C → I where C is a condition, called guard, and I is an instruction.
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void main(){

int x, y, z;

x = some_value();

y = some_value();

if (x >= y){

if (y >= 0){

assert(x >= 0);

z = x + y;

assert(z >= 0);

}

}

x = some_value();

y = some_value();

z = f(x, y);

assert(z >= 0);

assert(z >= x + y);

assert(x <= z - y);

}

int f(int a, int b){

int i = 0;

while (i < a + b){

if (i < a){

i = i + a;

} else {

i = i + b;

}

}

assert(i >= a + b);

return i;

}

true → x1 := some value1; (1)

true → y1 := some value2; (2)

x1 ≥ y1 ∧ y1 ≥ 0 → assert(x1 ≥ 0); (3)

x1 ≥ y1 ∧ y1 ≥ 0 → z1 := x1 + y1; (4)

x1 ≥ y1 ∧ y1 ≥ 0 → assert(z1 ≥ 0); (5)

true → x2 := some value3; (6)

true → y2 := some value4; (7)

true → fa1 := x2; (8)

true → fb1 := y2; (9)

true → fi1 := 0; (10)

(fi1 < fa1 + fb1) ∧ (fi1 < fa1) → fi2 := fi1 + fa1 ; (11)

(fi1 < fa1 + fb1) ∧ (fi1 ≥ fa1) → fi3 := fi1 + fb1 ; (12)

(fi1 < fa1 + fb1) → fi4 := phi(fi2 , fi3 , (fi1 < fa1)); (13)

(fi1 ≥ fa1 + fb1) → fi5 := fi1 ; (14)

true → fi6 := phi(fi4 , fi5 , (fi1 ≤ fa1 + fb1)); (15)

(fi6 < fa1 + fb1) ∧ (fi6 < fa1) → fi7 := fi6 + fa1 ; (16)

(fi6 < fa1 + fb1) ∧ (fi6 ≥ fa1) → fi8 := fi6 + fb1 ; (17)

(fi6 < fa1 + fb1) → fi9 := phi(fi7 , fi8 , (fi6 < fa1)); (18)

(fi6 ≥ fa1 + fb1) → fi10 := fi6 ; (19)

true → fi11 := phi(fi9 , fi10 , (fi6 ≤ fa1 + fb1)); (20)

true → assert(fi11 ≥ fa1 + fb1); (21)

true → fret1 := fi11 ; (22)

true → z2 := fret1 ; (23)

true → assert(z2 ≥ 0); (24)

true → assert(z2 ≥ x2 + y2); (25)

true → assert(x2 ≤ z2 − y2); (26)

(a) C code (b) USSA approximation (bound = 2)

Fig. 1. Converting a C program into USSA

In the process of constructing the USSA approximation the program loop
conditions and branches are encoded into guards, while the rest of the encoding
consists of constructing assignments. Given an unwinding limit k, a while loop
is transformed into a chain of k nested if constructs in order to represent at
most k iterations of the loop. Similarly, recursive functions are inlined k times.
To encode values which depend on if branches and while loops we use the
phi-function, which returns its first or second argument depending on the truth
value of its third argument as follows:

phi(e1, e2, e3) =

{
e1 if e3 is true;

e2 otherwise.
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Finally, guarded assignment S can be annotated with guarded assertions of the
form A = C → assert(C′) evaluated right after S.

Instead of giving an exact definition for the process of constructing the USSA
approximation we give an artificial but illustrative example in Fig. 1 showing how
a program written in the C language, on the left, is transformed into the USSA
approximation on the right. The program consists of two functions main and
f in addition to a nondeterministically treated function some value.1 The call
from main to f is inlined on lines 10 - 22. Function input and output parameters
are assigned on lines 8, 9, and 23; and the loop inside f is unwound 2 times on
lines 11 - 15 and again on lines 16 - 20. The six assertions in C code appear on
the USSA approximation on lines 3, 5, 24, 25, 26, and 21.

Propositional Encoding. Given a USSA approximation U , the propositional for-
mula π(U) consists of the propositional encoding of all guarded assignments of
U . We extend the definition of the propositional encoding operator π to guards
C and arguments C′ of assertions A. Once the USSA approximation is converted
into a propositional formula, determining the validity of the assertions with re-
spect to the program reduces to conjoining the negations of the assertions and
then deciding the unsatisfiability of the resulting formula.

3 The Assertion Implication Relation

The aim of the techniques presented in this paper is to enable efficient analysis
of a program with respect to a large number of assertions. We are interested
in determining whether, in a given USSA approximation, there are assertions
A,A′ such that A′ holds whenever A holds in all executions of the USSA ap-
proximation. For performance reasons we do not compute the above, but instead
the assertion implication relation (AIR), which consists of a subset of such pairs
where the implication follows from the statements between the assertions A and
A′. In cases where the program contains this type of redundancy in assertions
and AIR is not empty, the information can often be used to significantly improve
the efficiency of model checking.

Definition 2. Given a USSA approximation (S1, . . . , Sn) containing two as-
sertions Ai = Ci → assert(C′

i) and Aj = Cj → assert(C′
j), we say that the

assertion Ai locally implies the assertion Aj iff 1 ≤ i < j ≤ n and the following
formula is valid:

(π(Ci) → π(C′
i)) ∧ π(Si+1, . . . , Sj−1) → (π(Cj) → π(C′

j))

An alternative way of viewing the definition is to say that Ai locally implies Aj

iff the Hoare triple

{Ci → C′
i}(Si+1, . . . , Sj−1){Cj → C′

j}
1 To simplify the discussion we ignore arithmetic overflows and underflows. However,
the implementation does not have the limitation.
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is valid. Given the valid local implication relation between assertions Ai and
Aj , we will refer to Ai as a stronger assertion, and to Aj as a weaker assertion.
Notably, this relation is transitive, but not symmetric.

We present a high-level overview of the algorithm for detecting assertion im-
plications (DAI) in Algorithm 1. The algorithm computes the AIR from a USSA
approximation provided as an input. We compute the implication relation in
two phases: (i) by detecting classes of dependent assertions AD using a syntactic
analysis on the USSA approximation first directly on the variables in the USSA
form (line 1) and then extending the variable dependency to assertions (line 2);
and (ii) by detecting implications among the elements of AD using the proposi-
tional encoding of the USSA approximation (line 3) with queries to SAT solvers.
In the following subsections we describe in details the three subroutines of the
algorithm.

Algorithm 1. DAI(P)

Input: A USSA approximation P = (S1, . . . , Sn)
Output: AIR — the assertion implication relation
Data:
VD — disjoint sets of variables corresponding to the variable dependency classes;
AD — The assertion dependency relation

1: VD ← dependent variables in P (see Def. 3)
2: AD ← dependent assertions in P based on VD (see Def. 4)
3: AIR ← {(i, j) ∈ AD | implies(i, j) = true}

3.1 Detecting Dependent Variables

We say that two variables x and y are dependent when the value of x potentially
affects the value of y. The idea of variable dependencies dates back to program
slicing [25]. We adapt this notion to the USSA approximation of a program,
and create dependencies from the assignments and the guards. For example,
after the execution of a guarded assignment G → x := E, the updated value
of x may depend on the values of variables in E and G. However, due to the
final propositional encoding the assignment creates potential dependency also
from x to all the variables in E and G. To obtain an over-approximation of the
dependency relation, it is enough to assume that all the variables in a guarded
instruction depend on each other. The dependency relation is reflexive, transitive
and symmetric and therefore an equivalence relation which groups all variables
into dependency classes. This leads to the following definition of the dependency
relation:

Definition 3. Two variables x, y are said to be directly dependent if there exists
a guarded instruction S = C → I such that {x, y} ⊆ Vars(S). The general
dependency relation is the transitive closure of direct dependency.

Computing the dependency relation from the USSA form can be done efficiently
with a union-find algorithm. Furthermore, since the local implication only con-
siders guarded instructions between two assertions, it is sufficient to compute
the dependency between two assertions that are currently being checked.
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3.2 Finding Assertion Dependencies

To speed up the assertion checking by reducing the number of implication checks,
the dependency relation should be extended from variables to assertions. Two
assertions A and A′ are said to be dependent if there exists a variable x in A
and a variable x′ in A′ such that x and x′ are dependent. Unlike a variable, if
an assertion A depends on an assertion A′, and the assertion A′ depends on an
assertion A′′, this does not imply that A depends on A′′, since the dependencies
might result from variables not shared by A and A′′.

The assertion dependency relation of a USSA approximation is constructed
using a variable dependency relation (line 2 of DAI). This is an iterative pro-
cedure over the set of assertion pairs. For each pair, it explores the dependency
classes of the variables involved in the assertions. If two assertions contain vari-
ables of the same dependency class, the assertions are dependent and are going
to be included into the relation AD. The dependency of assertions is defined as
follows:

Definition 4. TwoassertionsA1 = C1 → assert(C′
1)andA2 = C2 → assert(C′

2)
are dependent if there is a variable x1 ∈ Vars(A1) and a variable x2 ∈ Vars(A2)
such that x1 and x2 are dependent.

Example 1. Based on the definitions 3 and 4, the dependent assertions in Fig. 1(b)
include assert(x1 ≥ 0) and assert(z1 ≥ 0) on lines 3 and 5; assert(z2 ≥ x2 + y2)
and assert(x2 ≤ z2 − y2) on lines 25 and 26; and assert(fi11 ≥ fa1 + fb1) and
assert(z2 ≥ x2 + y2) on lines 21 and 25. The assertions assert(z1 ≥ 0) and
assert(z2 ≥ 0) on lines 5 and 24 are not dependent since the set of common
symbols is empty (program variables x, y, and z were reassigned independently
on the previous values).

3.3 Finding Assertion Implications

In the last phase of constructingAIR, the assertion dependency relation is refined
to contain only the pairs of assertions (A,A′) such that A locally implies A′. This
is done by constructing the formula corresponding to Def. 2 and invoking the
SAT solver through the implies call on line 3 in Algorithm 1.

Example 2. The assertion implication relation computed from the USSA approx-
imation given in Fig. 1(b) consists of (assert(x1 ≥ 0), assert(z1 ≥ 0)) on lines 3
and 5, and (assert(z2 ≥ x2 + y2), assert(x2 ≤ z2 − y2)) on lines 25 and 26.

Finally, the AIR defines an assertion implication graph representing all re-
vealed implication relationships between the guarded assertions. More formally,

Definition 5. Given a USSA approximation U = (S1, . . . , Sn), the assertion
implication graph of U is a graph GU = (V,E) where

V = {Ai ∈ U | Ai is an assertion}
and

E = {(Ai, Aj) | Ai locally implies Aj in U}.
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The algorithms proposed in this section are able to detect implications of
assertions only in forward direction (i.e., the assertion on the left-hand side of
an implication should be located before the assertion on the right-hand-side ac-
cording to the USSA approximation). However the algorithms might be adapted
to deal also with reverse direction. The next subsection will consider other opti-
mizations making the approach applicable in practice.

3.4 Further Optimizations

Given a USSA approximation with k assertions, if Algorithm 1 identifies all
assertions as dependent, the total number of assertion implication checks is k(k−
1)/2. For USSA approximations containing thousands of assertions this number
can be prohibitively large. On the other hand, if an assertion implication check
needs to be performed between two assertions, one of which is close to the
beginning of the USSA approximation and the other which is close to the end
of the USSA approximation, the resulting formula might be very large. This
often results in the check being computationally expensive. In the experiments
we use a threshold to skip checking dependencies of assertions if there are more
than n instructions between them in the USSA approximation. For example,
none of the pairs of assertions (line 3 and 24; line 3 and 25; line 5 and 26)
will be checked for a threshold 5. In our applications this does not break the
soundness of the approach, since checking a subset of pairs of assertions will just
under-approximate the assertion implication graph. In case when an assertion
implication remains undetected, the approach will need to perform more work
compared to the case when the assertion implication would have been discovered.

4 Applications

Algorithm 1 returns the assertion implication relation AIR, which then can be
used for various BMC applications that deal with large sets of assertions. In
this section we present two of those applications, namely Optimizing Assertion
Checking Order and Assertion Implication Checking in Function Summarization.

We will study two research questions related to two different applications of
assertion implication checking in this section.

R1 In the first application a BMC tool checks the validity of a set of assertions.
We determine whether the number of verification runs can be reduced by
skipping assertions whose validity is implied by already performed checks
and AIR.

R2 In the second application a BMC tool constructs function summaries based
on a set of assertions. We study whether excluding weak assertions using
AIR reduces the size of function summaries.

Implementation. We implemented the approach for detecting assertion implica-
tions (DAI) as a preprocessor for the FunFrog [24] tool. FunFrog is built on
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top of CBMC [4], features interpolation-based function summarization (see the
description in Section 4.2) for C programs, and uses the OpenSMT solver [2]
for solving propositional formulas and interpolation.

The tool uses the CProver
2 framework. In particular, it accepts a precom-

piled goto-binary, a representation of the C program in an intermediate goto-
cc language which is further unwound to create the USSA approximation. The
analysis is then conducted on this USSA approximation. For each pair of as-
sertions being checked, the analysis identifies the USSA steps corresponding to
the assertions and the instructions between them. The USSA form is then bit-
blasted and sent to OpenSMT for solving. FunFrog was run with the default
configuration which employs for instance an implementation of slicing [24].

We evaluated the performance of FunFrog+DAI in summarization-based
BMC on a range of academic and industrial benchmarks widely used in model
checking experiments. The assertions for the benchmarks were obtained from the
user, the BCT dynamic assertion generator [17] that internally usesDaikon [10],
and static invariant synthesizers implemented in FunFrog [24]. In the rest of
the section, we describe the details of both applications and provide experimental
evidence of the positive effect from using DAI.

4.1 Optimizing Assertion Checking Order

Dynamic analysis tools such as Daikon are often used for producing assertions.
Such tools observe program behavior to form a set of the expressions over values
of the program variables, which is then turned into a set of assertions V . Since
the assertions are obtained by monitoring the execution of the program over
a limited set of input parameters, there is no guarantee that such assertions
hold for every execution of the program. BMC is used in [20] to check which
of those assertions hold. While precise, a model checking run might consume a
significant amount of time and require high amounts of memory. Therefore any
optimization in the process immediately renders the technique more applicable
to a wider set of benchmarks.

Given the USSA approximation U of a program that contains a set of asser-
tions V ⊆ U , let GU = (V,E) be its assertion implication graph. We propose to
traverse GU during the BMC run to minimize the search for holding assertions
and avoid checking all assertions one by one. Our solution is based on the two
following ideas: 1) If an assertion Ai is proven to hold, all weaker assertions Aj

(i.e., {Aj ∈ V | (Ai, Aj) ∈ E}) are implicitly proven to hold. 2) If an assertion
Ak is proven to fail, all stronger assertions Aj (i.e., {Ak ∈ V | (Aj , Ak) ∈ E})
are implicitly proven to fail.

We further expand these ideas into the two complementing strategies for
the efficient detection of assertions which hold in the program. We denote the
nodes of GU that do not have incoming edges as {As}. These correspond to
the strongest assertions in the program. Similarly, we denote the edges with no

2 http://www.cprover.org/

http://www.cprover.org/
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Table 1. Verification of a set of assertions by FunFrog and FunFrog+DAI. The
timing values are given in seconds.

Bench #USSA Steps #Asserts #Checks Strategy #DAI Impl DAI Time FunFrog+DAI FunFrog

token ring 11769 108 34 F 90 36.5 312.4 498.0
mem slave 2843 146 116 F 61 24.6 70.9 108.9
ddv 537 152 103 F 93 14.9 162.1 240.2
diskperf 1730 192 34 B 172 75.8 65.5 332.5
s3 1733 131 47 B 265 4.4 20.6 55.5
cafe 2686 146 101 B 97 42.2 216.3 301.8

outgoing edges as {Aw}, and these correspond to the weakest assertions in the
program.

In the first (forward) strategy, a BMC tool traverses GU starting from {As}
in the depth-first order. For each assertion node Ai, if there exists a holding
predecessor Aj , the BMC tool concludes that Ai also holds. Otherwise, it verifies
the program with respect to Ai. This strategy is efficient in cases when there are
many holding assertions in the program.

Example 3. Given the USSA approximation in Fig. 1(b) and its assertion implica-
tion graph, in the forward strategy, a BMC tool starts with checking the assertion
assert(x1 ≥ 0) on line 3 and proves that it holds. Then, the tool skips checking
assertion assert(z1 ≥ 0) on line 5. Next, the tool proves assert(z2 ≥ x2 + y2) on
line 25 and skips checking assert(x2 ≤ z2 − y2) on line 26. To terminate model
checking, the tool iteratively checks assertions assert(fi11 ≥ fa1 + fb1) on line 21
and assert(z1 ≥ 0) on line 24. The forward strategy results in checking 4 of 6 as-
sertions. We expect the overall performance speed up to be approximately 30%.

In the second (backward) strategy, a BMC tool traverses GU in reverse, start-
ing from {Aw}. For each assertion node Ak, if there exists a failing successor
Aj , the BMC tool concludes that Ak also fails. Otherwise, it verifies the pro-
gram with respect to Ak. This strategy is efficient in cases when there are many
assertions which fail in the program.

Example 4. Given the USSA approximation in Fig. 1(b) and its assertion im-
plication graph, in the backward strategy, a BMC tool explicitly checks all 6
assertions. Since all assertions hold in the given example, this strategy does not
produce any performance speed up.

Experiments. We report the effect of DAI on the assertion checking in Table 1.
In the experiment we are given a benchmark (represented as a USSA form with
the corresponding #USSA Steps) and a set of assertions (#Asserts). First,
FunFrog+DAI constructs the AIR (that reveals DAI Impl implications and
takes DAI Time (excluded from FunFrog+DAI)). Then, FunFrog+DAI

proceeds to assertion verification following one of the two strategies (Strategy
= F (forward) or B (backward)), in which #Checks was actually performed.
Finally, we compare the time spent on verification by FunFrog+DAI with the
time needed to verify each assertion by the vanilla FunFrog. The assertions for
these benchmarks come from the BCT tool.



196 G. Fedyukovich et al.

Fig. 2. The assertion implication relation for benchmark instance mem slave. Note that
the figure only contains assertions that imply another assertion.

In all our benchmarks FunFrog+DAI is able to reduce the total number of
checks needed to perform the verification. In the best case scenario we observe
run times that are more than two times faster than the vanilla FunFrog (see,
diskperf). Note that for benchmarks containing many redundant assertions it
is possible to detected more implications than the number of existing assertions
in the code. For example, the benchmark instance s3 has 131 assertions but over
200 implications. We illustrate the redundancy of assertions in Fig. 2 showing the
assertion implication relation computed for the benchmark instance mem slave.

4.2 Assertion Implication Checking in Function Summarization

FunFrog is an incremental model checker that maintains a set of function
summaries in order to speed up consequent verification runs and checking cor-
rectness of software upgrades [11]. FunFrog relies on partitioning the assertion
set V into smaller disjoint subsets {A}k0 . Each set Ai ⊆ V is then checked with
a separate run of the model checker. FunFrog encodes the program into the
USSA approximation (see Sec. 2 and Fig. 1). FunFrog conjoins the USSA ap-
proximation with disjunction of the negations of the assertions a ∈ Ai to be
checked. The resulting BMC formula φi is then bit-blasted and sent to the SAT
solver. If it is proven that φi is unsatisfiable then the program is correct with
respect to Ai and the proof of unsatisfiability can be used to over-approximate
function behaviors by means of Craig interpolation.

In propositional logic, for every unsatisfiable pair of formulas (A,B) there
exists an interpolant I that can be constructed from the proof of unsatisfiabil-
ity [21] and has the properties that A → I and I ∧ B is unsatisfiable [7]. For
each function call f and the set of assertions Ai, we define the BMC formula
φi as φi ≡ Af ∧ BAi , where Af encodes the function call f and BAi encodes
the rest of the program and the assertions from the set Ai. Given a proof of
unsatisfiability, we use an interpolating solver to generate the function summary
for the function call f as an interpolant If , such that Af → If .

While verifying the program with respect to another set of assertionsAj 	= Ai,
the BMC formula φj is constructed in such a way that the precise encoding of
function calls is replaced by a function summary. By construction, a summary
is accurate enough to prove the set of assertions Ai. However, for Aj , it may
contain infeasible error paths due to the over-approximating nature of Craig
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interpolants. In this case, φj is satisfiable, and FunFrog identifies the sum-
maries responsible for the satisfiability. To continue the verification, FunFrog
needs to replace responsible summaries by the precise function representations.
It is worthwile to try to avoid this scenario through better organization of the
checking since the procedure is computationally expensive and requires another
FunFrog iteration. On the other hand, if φj is unsatisfiable then the substi-
tution of summaries was sufficient to prove Aj . In such cases verification with
summaries is often faster than with the exact encoding. Independently of the
result of the SAT solver, the size and the logical strength of Craig interpolants
in φj affect the verification behavior of FunFrog [23].

The assertion implication graph GU = (V,E) can be used to reduce the size
of function summaries. We propose to construct each subset {A}k0 of V while
traversing GU . The method is based on the following observation. If each as-
sertion A ∈ Ai is implied by some assertion A′ ∈ Aj then the summaries con-
structed from BMC formula φj will be sufficient to prove both Aj and Ai. On the
other hand, if no implication is found between assertions A ∈ Aj and A′ ∈ Ai

then there is no guarantee that the summaries constructed from φj will be suf-
ficient to prove Ai. We propose to use the AIR to identify the set of strongest
assertions and perform the verification only on this set. As a result we expect
to obtain a strong summary that due to the simplicity of the resulting formula
will be more compact (as our following experimental results confirm).

Example 5. Consider the example in Fig. 1. There are six assertions, which can
be verified one by one3, having been partitioned into singleton sets. Two of them
(A1 and A2 at lines 3 and 5 respectively) are located before the function f is
called, and do not rely on the function behavior. After one of them is verified, the
summary of function f is going to be created. A likely summary of function f with
respect to the assertions A1 and A2 is simply the formula If,A1 ≡ If,A2 ≡ true.

There are three assertions after call to f. Once they are verified, the sum-
mary reflects the behavior of f (lines 24, 25, 26): (A3): true → assert(z2 ≥ 0),
(A4): true → assert(z2 ≥ x2 + y2), (A5): true → assert(x2 ≤ z2 − y2). For exam-
ple, after verifying assertion A3, the summary of function call f should reflect
that the return value of the function f is never negative, i.e., If,A3 ≡ fret >= 0.
In the next run, while verifying assertion A4, the function call f is replaced by
the previously computed summary If,A3 which relates the returned variable and
a constant 0. Since A4 relies on a more sophisticated relation over the return
value and the values of input/output parameters, this substitution is likely to
lead to a spurious counterexample and, consequently, to an expensive further
refinement, i.e., repeating verification from scratch.

Similarly, after successful verification of A4, a new summary If,A4 is gen-
erated. The summary relates the return value and the values of input/output
parameters (i.e., If,A4 ≡ fret ≥ fa + fb). After two iterations, the resulting
summary of f is a conjunction If,A3,A4 ≡ If,A3 ∧ If,A4 . In the next run, while

3 We intentionally chose only holding assertions to demonstrate how summary con-
struction and its usage works.
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Table 2. Creation of function summaries by FunFrog and FunFrog+DAI. The
timing values are given in seconds.

Benchmark #USSA Steps #Asserts #DAI Impl DAI Time #V #Cl #V’ #Cl’
floppy 15076 721 134 26.38 228357 11973 228659 12879
diskperf 6000 47 7 0.083 150413 49362 162902 83625
gd simp 673 21 5 0.138 6091 15420 12119 33504
two expands 183 4 1 0.033 735 1221 1087 2277
p2p joints 759 146 24 1.71 158034 452427 307897 902016
goldbach 7502 1344 65 25.82 6159 13455 13237 34689

verifying assertion A5, the function call f is replaced by If,A3,A4 . Since A5 is
essentially the same as A4, this substitution should be sufficient, so no refinement
is needed to complete verification.

In this example, assertion implication checking can be used to simplify the
model checking process in two ways. First, the AIR reveals that A4 → A5,
i.e., it is enough to show that A4 holds to show that A5 also holds. Second, no
dependency is detected between A3 and A4, suggesting that no matter in which
order the two are checked, it is likely that a refinement is needed afterwards. In
order to avoid the expensive refinement procedure, it makes sense to combine
the two assertions into a single verification run.

Experiments. Table 2 reports statistics on constructing function summaries
with FunFrog when DAI was used as a preprocessor. Similarly to the experi-
ment from Sec. 4.1, we are given a benchmark (with the size of #USSA Steps)
and a set of assertions (#Asserts). First, FunFrog+DAI constructs the AIR
(with DAI Impl relations). Then FunFrog+DAI obtains the set of strongest
assertions to be encoded to the BMC formula, solved and used to create function
summaries. Finally, we calculate the total number of variables and clauses in the
resulting summary formula (#V and #Cl respectively). We compare these val-
ues with the ones collected after the vanilla FunFrog run (FunFrog time, #V’
and #Cl’ respectively). For these benchmarks we obtained the assertions using
the cprover library underlying FunFrog.

The experimentation demonstrates that on our benchmark set the proposed
approach improves the performance and the effect of BMC in the context of
interpolation-based function summarization. Using particular optimization tech-
niques (i.e., threshold for assertion locations and timeout for implication checks),
in many cases it was possible to reduce the overhead of performing the impli-
cation checks. Note that at least in these benchmarks the construction of AIR
requires a considerably smaller amount of time than needed for the actual as-
sertions checking in the classic BMC approach.

5 Summary and Future Work

We presented a simple but effective approach to reveal the implication relation-
ships between spatially close assertions. This technique addresses the problems
arising from large number of redundant assertions in bounded model checking
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and, as our experimentation on benchmarks containing redundant assertions
demonstrates, in many cases reduces the total verification time. We observe a
similar positive result in a model checking approach based on function summa-
rization, where the summary sizes typically decrease by 30%.

As a potential future optimization we consider improving the condition in
Def. 2. A propositional encoding π considers the instructions between a pair of
assertions but does not take into account the variables assigned with equal values
before the first assertion. For instance, in Fig. 1(b), assert(fi11 ≥ fa1 + fb1) and
assert(z2 ≥ x2 + y2) on lines 21 and 25 imply each other, but the implication
between them can be proved only if two additional assignment instructions (on
lines 8 and 9) are added to the SAT-query. While including all the USSA program
to every implication query would likely be overly expensive, including parts of
this information to the checking process would potentially increase the number
of detected implications and pay off as a result of decreased assertion checks.

The assertion implication checking could be further improved heuristically
by using more intelligent ways of ordering assertion implication checking. One
approach for ordering the checking is to identify likely implications, as discussed
in [8]. Another interesting source of assertions that is not discussed in this work
is to consider also semantical properties of pointers and stack contents. However
for this to work in practice it is likely that an alias analysis should be performed
as a preprocessing step to reduce the number of assertion candidates.
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