

Y. Pisan et al. (Eds.): ICEC 2014, LNCS 8770, pp. 60–65, 2014.
© IFIP International Federation for Information Processing 2014

A Tool for Evaluating, Adapting and Extending Game
Progression Planning for Diverse Game Genres

Katharine Neil1,2, Denise de Vries2, and Stéphane Natkin1

1 CEDRIC-CNAM, Paris, France
katharine.neil@gmail.com, stephane.natkin@cnam.fr

2 Flinders University, Adelaide, Australia
denise.devries@flinders.edu.au

Abstract. Game progression design is a demanding, data-intensive design ac-
tivity that is typically performed by game designers without even basic compu-
tational support. To address this, a concept for tool-supported “progression
planning” has been proposed and implemented by Butler, Smith, Liu & Popovic
for the design of their educational puzzle game Refraction. Refraction is a game
that has relatively undemanding progression design needs. Further tool devel-
opment and practice-based evaluation is needed to establish whether – and if so,
how – a generic, tool-supported progression design process can address the di-
verse range of often complex progression design challenges that game designers
find themselves engaging with. In this paper we describe how we used three
game design case studies in contrasting game genres to inform the development
of a tool that adapts and extends the progression planning approach.

Keywords: game design, progression planning, design tools.

1 Introduction

Designing game progression, commonly understood as a structure consisting of serial-
ly introduced unique challenges [1], can be a demanding task for a game designer. To
design a game’s progression is to design the way that game is experienced by the
player over time; the way gameplay elements are introduced is largely responsible for
its aesthetics of pacing, challenge and variety.

Currently computational support is not used for this task, despite the increasing
importance and sophistication of progression within game design. In response to the
need for tools to aid progression design thinking, Butler, Smith, Liu & Popovic have
proposed a general architecture for “progression planning” tools which they have
implemented within their level authoring tool for their educational game Refraction
[2]. As a demonstration of this concept, the Refraction tool ably hints at its potential.
However, its strength as a tool to help solve challenging progression design problems
remains largely untested; as Butler et al acknowledge, Refraction game’s genre and
scope as a puzzle game with modest progression design needs limits its applicability
to other games.

 A Tool for Evaluating, Adapting and Extending Game Progression Planning 61

We have sought to implement, evaluate and build upon this progression planning
approach, by orienting it towards more demanding and more varied progression de-
sign problems. To this purpose we used three game design case studies in contrasting
genres, all at the early progression design phase of their development: a top-down
shooter with puzzle elements, a casual strategy game and an adventure game. In this
paper we describe how we adapted and extended Butler et al’s progression planning
concept to support progression design for these games.

2 Research Objectives

We have two main research goals for this work. The first is to evaluate and explore
how Refraction’s progression tool approach can be applied to the progression design
challenges of games other than Refraction – particularly its universality in terms of
servicing the needs of games of contrasting genres. The second, which foreshadows
the first, is to discover and reveal the ways in which Butler et al’s approach requires
adapting or extending in order to apply it. This paper focuses on the results of our
second objective.

2.1 Our Approach

There exists a wide gulf between the primitive document-editing and non-
standardised diagramming practices that many game designers currently use and the
advanced automated design and reasoning based research being applied to the prob-
lem of game design tools in the research community. While mixed initiative game
design research is exploring the potential of computers to participate in design think-
ing and serve not merely as “tool” but as collaborator or expert [3][4], practitioners
still do their design thinking typically without any computational support.

With a “first, do no harm” philosophy in mind, it is the “low-tech” elements of Re-
fraction’s progression planning tools - its simple constraints editing and visualisations
– that interest us the most. We see them as a possible first step forward from the nas-
cent formal approaches being explored within current practice, in that they support
what many designers are more or less already doing. In building upon this aspect of
the Refraction tool we also serve our aim of working at a sufficiently generic level so
as to adapt the approach to other games. Accordingly, when implementing Refrac-
tion’s approach we have in certain cases chosen to simply visualize the data and allow
the designer to conduct their own analysis and policing of design moves (as done with
pen and paper) rather than add computational support, choosing and thereby necessar-
ily restricting the form that support should take.

3 Method

It was not practical to use the Refraction progression planning tool itself as a starting
point for our work, as it is integrated with the game’s level editor and generation

62 K. Neil, D. de Vries, and S. Natkin

system. We began, therefore, by building our own progression planning tool based on
Refraction’s approach. We then adapted and extended our tool with a view to simul-
taneously servicing the specific needs of three game design case studies. These case
studies were all at the early progression design point of their design cycle. The games
have been under development by the primary author of this paper for between six
months and three years. The designs represent three game genres: a casual strategy
game, an adventure game and a top-down shooter. Usefully, these genres vary quite
markedly in the nature of their progression. Servicing these contrasting design needs
helps enforce a degree of universality in our tool design. Our games cannot be repre-
sentative of all game genres, however, and like Refraction’s system, the design of our
tool was inevitably driven by the needs of specific games rather than the needs of all
possible games. Intuitively, the progression planning requirements of all three of our
games go beyond the concept-based progression units used for the Refraction game.
Most notably, unlike Refraction the games are all, to some degree, non-linear in their
progression structure. This feature invokes the challenge of how to plan progression
that does not take the form of linear sequence.

4 System Model

Here we describe our tool and how it builds upon, modifies and extends the model
used by Refraction’s progression planning tool.

Fig. 1. System model

Our system, inspired by Refraction’s, comprises constraints, plan and idea reposi-
tory components (see Fig. 1). While our system performs a similar role, our differing
workflow approach is manifest in some important functional differences. Refraction’s
system uses its simple constraints calculations to drive generative features and
analyze design moves, generating the progression plan and, optionally, the levels
themselves. Our system removes the generative features and much of the automated
analysis performed by their system, and instead focuses on presenting and organizing
the results of our calculations to the designer. Most notably, our system, created to

 A Tool for Evaluating, Adapting and Extending Game Progression Planning 63

serve all three of our case studies, does not include a procedural level generation sys-
tem or an integrated level editor. We have replaced this component with a designer’s
notebook style feature for storing and tagging ideas, design patterns and work-in-
process levels, which can then be filtered according to data created in the progression
plan component. We have also extended the constraints and progression plan compo-
nents, adding additional calculations and visualization features, including a graph
traversal algorithm to the progression plan component in order to apply constraints to
non-linear level progressions.

4.1 Progression Constraints Component

As in Refraction’s tool, our progression constraints component allows the game de-
signer to create game elements and constraints by defining some elements as explicit
prerequisites and co-requisites of other elements. An element can be as concrete and
quantifiable as an ammo pickup, for example; or a quality the level might contain like
“intense combat”. As well as providing a matrix-style editor, the tool automatically
infers transitive prerequisites (as does Refraction’s tool). This is a non-trivial calcula-
tion for a designer to perform manually.

Graph and Matrix Interfaces
To this component we have added an editable graph-based view as an alternative to
the matrix view. We chose to include a graph-based view upon discovering that the
progression plan for our adventure game could be in fact better described and sup-
ported by taking the form of progression constraints, leaving the progression structure
itself for managing the higher level episodic narrative. As in matrix view, graph edges
are automatically added when constraints are transitively inferred by the tool. This
kind of computational support is useful for managing the binary but complex progres-
sion logic of an adventure game.

4.2 Progression Plan Component

Graph Interface
The most signification modification we have made to Refraction’s approach is ex-
panding the progression plan out from their linear table form into a graph-based editor
and analyzer. A graph allows for games that have a non-linear progression structures
to be modeled. The designer uses the graph interface to create levels or mission stages
as nodes and define connections between them as edges. He or she can select a node
in the graph to edit the properties of the associated level.

Game Elements List
Alongside the graph interface we display a list of all game elements. Any element in
the list may be selected and added to the level’s game elements list. The elements in
the list are displayed differently, according to their eligibility for use in the currently
selected level: eligible, ineligible and potentially eligible. Eligibility is based on the

64 K. Neil, D. de Vries, and S. Natkin

constraints defined using the Progression Constraints component: it is calculated us-
ing a graph traversal algorithm (our progression plan analyzer) to determine whether a
given element satisfies the constraints governing the level. The inclusion of the “po-
tentially eligible” type is due to the non-linear progression structure. It services the
case where one or more, but not all, paths leading to the level satisfy the constraints
associated with the listed element. Being “potentially eligible” may render the ele-
ment appropriate or inappropriate for inclusion in the selected level, depending on the
nature of the game or the element itself. The designer is left free to make an informed
decision as to whether they wish to include the element based on this contextual in-
formation.

Level Game Elements
The level’s game elements list is where the designer defines the contents of the level,
using game elements from the game elements list. The designer may simply indicate
the presence of a concept used (e.g. “ranged combat”) or they may specify the number
of instances of the element in the level (e.g. 5 ammo pickups).

Progression Histories
A designer may wish to know which game elements the player has experienced or has
potentially experienced by the time they reach the selected level, based on the content
of the levels that may or must be completed prior to it. This can be viewed for all
possible paths to the level, or for a single path selected in a “Paths to selected level”
list. For example, the designer might see that the player has encountered a minimum 4
ammo pickups but potentially a maximum of 16. Selecting a path also highlights all
the levels along that path in the graph view.

Graph Element Visualization
Refraction’s tool includes a constraint editor and visualizer that plot the density and
frequency of elements in the progression plan, in order to regulate progression con-
siderations such as game pacing. In line with our approach, our tool computes this for
the purpose of visualization only: we highlight all nodes of the progression graph that
contain a selected game element, thus affording the designer a broad overview of
where instances of a given element are used in their game.

4.3 Filtered Design Notebook Component

Our third component of the system, as noted above, is an alternative to Refraction’s
integrated level editor. Design process is commonly understood to be notoriously
non-linear.1 Here we provide a home for level design fragments or design patterns
that do not yet have a home within the progression plan itself. Ideas can be tagged
with one or more of the game elements it includes, and the notebook can be filtered

1 According to Donald Schon, “unpredictability is a central attribute of design - it is not nec-

essarily the defining one, but it is important. It means that there is no direct path between the
designer's intention and the outcome”[5].

 A Tool for Evaluating, Adapting and Extending Game Progression Planning 65

by the level’s game elements list to display all ideas that contain only the game ele-
ments relevant to that level.

5 Conclusion

We have found that is possible to apply, adapt and extend Butler’s progression plan-
ning approach to other game genres, by using three contrasting case studies with con-
crete progression planning challenges to discipline and inform this process. It being
unlikely that we have anticipated all the needs of our three design case studies, further
additions and modifications will probably need to be made during this process. Our
next step is practice-based evaluation: we will integrate the tool into the progression
design process of our three case studies, and diarize the experiences of the designer
for analysis. This analysis will then be used towards developing a generic tool-
supported progression design process that can be refined and tested with a wider
group of designers and design cases.

References

1. Juul, J.: The open and the closed: Games of emergence and games of progression. In:
Mäyrä, F. (ed.) Computer Games and Digital Cultures Conference Proceedings, pp. 323–
329. Tampere University Press (2002)

2. Butler, E., Smith, A., Liu, Y., Popovic, Z.: A mixed-initiative tool for designing level pro-
gressions in games. In: ACM Symposium on User Interface Software and Technology
(2013)

3. Khaled, R., Nelson, M.J., Barr, P.: Design metaphors for procedural content generation in
games. In: Proc. SIGCHI Conf. Hum. Factors Comput. Syst., CHI 2013, p. 1509 (2013)

4. Smith, G., Whitehead, J., Mateas, M.: Computers as design collaborators: Interacting with
mixed-initiative tools. In: Proc. Work. Semi-Automated ...(2011)

5. Winograd, T.: Bringing design to software. ACM Press (1996)

	A Tool for Evaluating, Adapting and Extending Game Progression Planning for Diverse Game Genres
	1 Introduction
	2 Research Objectives
	2.1 Our Approach

	3 Method
	4 System Model
	4.1 Progression Constraints Component
	4.2 Progression Plan Component
	4.3 Filtered Design Notebook Component

	5 Conclusion
	References

