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Abstract. The problem of detecting chemical activity in drugs from its
molecular description constitutes a challenging and hard learning task.
The corresponding prediction problem can be tackled either as a binary
classification problem (active versus inactive compounds) or as a one
class problem. The first option leads usually to better prediction results
when measured over small and fixed databases while the second could
potentially lead to a much better characterization of the active class
which could be more important in more realistic settings. In this paper, a
comparison of these two options is presented when support vector models
are used as predictors.

1 Introduction

Among supervised learning techniques developed and widely used in recent years,
support vector machines (SVM) have received considerable attention due both
to their success in solving practical problems and their mathematical soundness.
One of the distinguishing trends of SVM is their capability of generalization in
the context of hard learning problems. Consequently, the literature exhibits lots
of classification, clustering or regression problems spanning diverse application
domains that can be very conveniently solved using SVM [11213].

Data domain description, also referred to as one-class classification (OCC)
constitutes a different prediction task which consists of characterizing only one
class of objects (and consequently rejecting the rest). Depending on how the
problem is posed, the differences with regard to two-class classification can be
very subtle. The most important difference is that OCC aims at modeling a
particular class instead of separating objects from two classes which implies
modeling their discriminating boundary. One of the main consequences is the
way in which both approaches treat outliers and novelties [4].

OCC models can be learned either from examples only or both from examples
and counterexamples. In any case, the problem consists of arriving at a decision
function that covers all examples without including any other regions in the
representation space and excluding also all counterexamples, if any.
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In the particular case of support vector based approaches, several formulations
exist. In particular, One-Class Support Vector Machines (OC-SVM) [5] try to
learn a hyperplane in the Reproducing Kernel Hilbert Space (RKHS) that keeps
examples as far as possible from the origin. On the other hand, Support Vector
Data Description (SVDD) [4] consists of obtaining a kernelized hypersphere that
contains all examples. These two formulations have been shown to be equivalent
under certain circumstances [6]. In a recent work, SVDD has been extended by
introducing a separation margin between examples and counterexamples [7]. In
this way, the model not only optimally represents the class of interest but also
robustly separates both types of data at the same time.

The purpose of the present work is to study advanced OCC models on a
particular difficult task in which binary SVM arrive at very good solutions.
The goal consists of assessing possible benefits and disadvantages of using more
complex models to solve these challenging problems.

2 Learning Problem Formulations

Only the SVDD formulation and extensions are to be considered in the present
work. Assume that data belong to a d-dimensional vector space, R?. There is
also a mapping ¢, from R? to a RKHS, H, which is implicitly given by a Mercer
kernel function, k : RY x R — R2Y in such a way that k(-,-) = (6(-), ¢(-))x,
where (-, )3 is the inner product in #H [6] .

Let us suppose we have a non empty positive training set given by the
examples corresponding to the class of interest, X* = {z1,...,7¢,} and a
negative training set which consists of zero or more counterexamples, X'~ =
{Zo,41,--+,%e,+0, }- The size of the overall training set, ¥ = X* U X, is given
by ¢ = {1 +{5. Each object from X has a corresponding label, y; such that y; = 1
ifl<i</liandy, =-1if b1 <i <.

When only positive examples are to be used, SVDD tries to enclose all objects
into a minimal hypersphere in the RKHS []. The so-called soft formulation
introduces additional slack variables controlled by a penalty term to allow objects
outside the hypersphere.

The formulation of the problem using a v parameter is

41
A R
min R+ ;527 (1)
subject to: (|6 (ws) - e|* ~ R?) <&, (2)
& = 0. 3)

By introducing a Lagrange multiplier, o, for each constraint it is possible to go
from this primal formulation to its corresponding dual in which the optimization
is over a vector, « = (a1, ..., ag, ), which consists of all Lagrange multipliers in
the primal problem.
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This quadratic problem can be solved using the same methods as for binary
SVMs. Once « has been obtained, the center of the hypersphere, ¢ can be ob-
tained from the additional constraint ¢ = 51:1 a;¢(x;). Correspondingly, the
radius, R, can be obtained exactly in the same way as the bias of the linear
function is computed in the case of binary SVMs [5]. The final characterization
of the positive class is then given by the following decision function

()

f (@) = sgn (B* = |lé () = ) (6)

The basic approach can be extended by introducing negative objects (coun-
terexamples) and the corresponding constraints that keep them outside the hy-
persphere [8]. This introduces a sign (the label y;) in the constraints and a new
summation term in Eq. Il Both summation terms will be now weighted by 7,
and 1;;, respectively. v is a new parameter that controls the relative importance
of the constraint violations in both positive and negative cases which may be
very important in specific practical problems exhibiting some kind of imbalance.

Apart from keeping positive data inside the hypersphere and negative data
outside, it is possible to impose a (maximal) margin between the negative objects
and the boundary of the hypersphere. This is the rationale of the Small Sphere
and Large Margin (SSLM) approach [7]. The formulation of the corresponding
primal problem in our particular context is:

o ¢
1=~
. R2 _ 2 v . ) 7
DD D ¢
subject to ||¢ (z;) — c||2 < R*+¢, 1<i<t
I6 (x:) —cl* 2 R+ p* =&, i<i<t (8)
& >0, 1<i</

In this extended formulation, apart from the parameter v that controls how
strict the characterization must be, and the parameter ~ that controls the trade
off between positive and negative outliers, a new parameter 7 that moderates
the maximization of the margin has been introduced. The margin is represented
by a new variable, p.

These three OCC models constitute a family of predictors with increasing
level of complexity. The more complex models need more parameters and the
corresponding tuning gets harder. On the other hand, the more complex models
are able to attain better characterizations with improved separation which will
potentially lead to better generalization abilities.
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3 Drug Activity Prediction from Molecular Structure

The design of new medical drugs with desired chemical properties has a capi-
tal importance for the pharmaceutical industry. Several approaches are used in
drug discovery, which can be grouped in three main categories: random screen-
ing of a large number of compound in a blind way, structural modifications of
lead compounds and rational drug design [9]. Quantitative structure-activity
(structure-property) relationships (QSAR/QSPR) constitute a methodology in
the last category that is based on the fact that some properties of a set of
molecules change with their molecular structure and therefore it is possible to
find a relationship between this structure and the properties that the molecule
exhibits. Once this relationship has been obtained it can be used to predict the
properties of new, perhaps unknown, compounds.

Molecular descriptors used in QSAR can be empirical (derived from experi-
mental data) or nonempirical. Among the nonempirical descriptors, the so-called
topological indices have special relevance [10]. Topological indices are molecu-
lar descriptors derived from information on connectivity and composition of a
molecule and can be easily derived from the hydrogen-suppressed molecular rep-
resentation seen as a graph [11I12]. Some examples of topological indices are
the popular Kier and Hall connectivity index [I3] and Balaban index of aver-
age distance sum connectivity [I4]. In this work, a set of 116 indices has been
selected from three families considered that we will refer to as topological [17],
the above mentioned Kier-Hall and the electro-topological or charge index[16].
Some experiments have been carried out using a reduced set formed by the 62
topological indices.

To properly assess the different predictors in this context, Receiver Operat-
ing Characteristic (ROC) curves and associate performance measures have been
considered in this work [I7]. Given a particular predictor whose output consists
of a continuous value in a specified interval (as in this work), the ROC curve
is defined as the plot of the true positive rate (TP) against false positive rate
(FP) considering the threshold used in the classifier as a parameter. The so-
called ROC space is given by all possible results of such a classifier in the form
(FP,TP). The performance of any classifier (with the corresponding threshold
included) can be represented by a point in the ROC space. ROC curves move
from the “all-inactive” point (0,0) which corresponds to the highest value of
the threshold to the “all-active” point (1,1) given by the lowest value for the
threshold. The straight line between these two trivial points in the ROC space
corresponds to the family of random classifiers with different a priori probabil-
ities for each class. The more a ROC curve separates from this line, the better
the corresponding classification scheme is. As ROC curves move away from this
line, they approach the best possible particular result that corresponds to the
point (0,1) in the ROC space which means no false alarms and highest possible
accuracy in the active class.

The ROC curve is a perfect tool to find the best trade-off between true pos-
itives and false positives and to compare classifiers in a range of different situ-
ations. A common method to compare classifiers is to calculate the area under
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Fig. 1. ROC curves corresponding to the different predictors considered

the ROC curve (AUC). The value of the AUC will always be between 0.5 and
1.0, because random guessing produces the diagonal line between (0,0) and (1,1),
which has an area of 0.5. The AUC has some important statistical properties [17]
and is frequently used as a global measure of predictiveness.

4 Experimental Results

Several comparative experiments have been carried out using a wide range of
settings for the algorithms considered. Two specific datasets containing chemical
compounds have been considered. First, an small dataset of 434 compounds using
62 topological indices and exhibiting (218) or not (216) antibacterial activity
have been considered [2]. Also, a more challenging and realistic dataset with
973 compounds where 111 of them exhibit analgesic properties have been used.
In this second database, all 116 descriptors have been used to represent the
compounds [I5]. More details about data and availability are given in previous
referenced works. Moreover, the experimental protocol including coding of all
algorithms closely follows these previous studies.

As the main goal consists of an empirical comparison, a relatively wide range of
settings has been tried for all the algorithms considered. To obtain appropriately
averaged performance measures the n-fold cross validation procedure with n =
10 has been repeated four times. As a performance measure for each fold, the full
ROC curve has been computed along with its AUC measure. Both ROC curves
and AUC measures have been averaged over the different blocks in the cross
validation procedure [I7] and are shown in Figure [[l and Table 2l respectively.
Only the results corresponding to the best settings for each algorithm have been
presented. These settings for each particular algorithm and database are specified
in Table[Il For all algorithms, a Gaussian kernel has been used whose parameter
has been fixed as ¢ = 0.125 according to several previous studies using the same
databases [2].
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By observing the ROC curves obtained with the best settings for the An-
tibacterial database in Figure [l it can be seen that there is a very significant
difference between the two best algorithms (SVM and SSLM) and the rest. It is
not surprising that the SVDD algorithm gives the worst results because it does
not use negative examples. On the contrary, the poor result corresponding to the
NWSVDD method was relatively unexpected. When considering the Analgesic
database the performance of all algorithms gets significantly lower in all cases.
This is due both to the fact that the problem is considerably more difficult and
also because the database is severely unbalanced. For this database, SVDD and
NWSVDD methods give virtually the same results along the ROC curve and
SVM gives only slightly better results. The SSLM method gives the best results
except for a small range in the curve. The AUC values shown in Table 2] numer-
ically characterize the differences of performance among the different methods
over the two databases. The AUC value corresponding to the LDA method has
also been included as a baseline.

The particular AUC values obtained for each database in each of the 4 times
10 cross validation steps have been put together and a nonparametric Friedman
test followed by a post-hoc Holm test [18] has been performed. Table Blshows the
obtained average rankings and adjusted p-values when comparing each method
to SSLM. According to this, it can be said that the SSLM gives the best AUC
results at a significance level of o = 0.05.

These results illustrate the fact that OC predictors with enough information
(counterexamples) and flexibility (in particular using a margin to separate ex-
amples from counterexamples) are able to improve on good binary classifiers
(SVM). Nevertheless, the amount of improvement attained is relatively mod-
erate. Apart from this improvement on the overall performance, the one-class
predictors are interesting also because of its ability to adapt to different situa-
tions. In particular, in specific applications as the ones considered in this paper,
it is possible to adapt the predictors to specific operating ranges of the ROC
curve that correspond to specific situations. In other words, instead of looking
for a unique model that gives rise to a good ROC curve, we can learn a specific
model that is good only in a small range in the curve. This capability of the

Table 1. Best parameters for each one of the algorithms on each database

SVM SVDD NWSVDD SSLM
Antibacterial v =0.0319 v = 0.25 v = 0.0125, v = 0.25 v = 0.0001, v = 0.1, n = 50
Analgesic v=201194 v =09 vr =0.0040, v=0.35 v =0.001, v=0.9, n =40

Table 2. AUC measure for each algorithm on each database

LDA SVM SVDD NWSVDD SSLM
Antibacterial 0.966 0.976 0.686 0.871  0.985
Analgesic 0.834 0.829 0.732 0.788  0.852
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Table 3. Average rankings and adjusted p-values

Algorithm SSLM SVM LDA NWSVDD SVDD
Ranking 1.669 2256  2.513 3.825 4.737
Adjusted p-value 0.03755 0.00221 < 107*¢ <1073
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Fig. 2. Best one-class models (SSLM) obtained for each database by forcing the algo-
rithm to minimize either FP or FN rates by forcing the parameter ~y

models has not been fully exploited in this work but Figure 2l shows two specific
models specialized at the different endings of the ROC curve. In these figures
particular predictors obtained at each one of ten runs are shown along with the
corresponding averaged curves. In the case of Antibacterial database, it is pos-
sible to obtain predictors able to minimize one of the two types of errors but
at different rates. In the Analgesic database a similar behavior can be observed.
In both cases, the variability in the false negative rate is higher than the one in
false positive rate.

5 Concluding Remarks

In this work, several different one-class predictors have been applied to a partic-
ular challenging problem related to drug activity characterization. In particular,
recently proposed one-class predictors using counterexamples and a separation
margin have been shown to give very interesting solution for this kind of prob-
lems. The behavior of the different models has been characterized by their corre-
sponding ROC curves and AUC measures. Apart from the overall performance
results it has been shown that the models can be adapted to different specifica-
tions in terms of maximum rates of each type of error. Further work is currently
directed towards the specific problem of obtaining one or several one-class pre-
dictors optimized at different specific error rates.
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