Structured Encryption and
Controlled Disclosure

Melissa Chase and Seny Kamara

Microsoft Research
{melissac,senyk}@microsoft.com

Abstract. We consider the problem of encrypting structured data (e.g.,
a web graph or a social network) in such a way that it can be efficiently
and privately queried. For this purpose, we introduce the notion of struc-
tured encryption which generalizes previous work on symmetric search-
able encryption (SSE) to the setting of arbitrarily-structured data.

We present a model for structured encryption, a formal security defini-
tion and several efficient constructions. We present schemes for performing
queries on two simple types of structured data, specifically lookup queries
on matrix-structured data, and search queries on labeled data. We then
show how these can be used to construct efficient schemes for encrypting
graph data while allowing for efficient neighbor and adjacency queries.

Finally, we consider data that exhibits a more complex structure such
as labeled graph data (e.g., web graphs). We show how to encrypt this
type of data in order to perform focused subgraph queries, which are
used in several web search algorithms. Our construction is based on our
labeled data and basic graph encryption schemes and provides insight
into how several simpler algorithms can be combined to generate an
efficient scheme for more complex queries.

1 Introduction

The most common use of encryption is to provide confidentiality by hiding all
useful information about the plaintext. Encryption, however, often renders data
useless in the sense that one loses the ability to operate on it. In certain settings
this is undesirable and one would prefer encryption schemes that allow for some
form of computation over encrypted data.

One example is in the context of remote data storage, or so-called “cloud stor-
age”, where a data owner wishes to store structured data (e.g., a collection of web
pages) on an untrusted server and only retain a constant amount of information
locally. To guarantee confidentiality, the owner could encrypt the data before send-
ing it to the server but this approach is unsatisfactory because the data loses its
structure and, in turn, the owner loses the ability to query it efficiently.

To address this problem we introduce the notion of structured encryption. A
structured encryption scheme encrypts structured data in such a way that it can
be queried through the use of a query-specific token that can only be generated
with knowledge of the secret key. In addition, the query process reveals no useful

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 577 2010.
© International Association for Cryptologic Research 2010

578 M. Chase and S. Kamara

information about either the query or the data. An important consideration in
this context is the efficiency of the query operation on the server side. In fact, in
the context of cloud storage, where one often works with massive datasets, even
linear time operations can be infeasible.

Roughly speaking, we view structured data as a combination of a data struc-
ture § and a sequence of data items m = (mq,...,m,) such that ¢ encodes
the data’s structure and m represents the actual data. For example, in the case
of graph-structured data such as a social network, ¢ is a graph with n nodes
and the ith element of m is the data associated with node i. To query the data
efficiently, one queries ¢ to recover a set of pointers I C [1,n] and then retrieves
the items in m indexed by I.

At a high level, a structured encryption scheme takes as input structured data
(6, m) and outputs an encrypted data structure v and a sequence of ciphertexts
¢ = (c1,...,¢n). Using the private key, a token 7 can be constructed for any
query such that pointers to the encryptions of (m;);c; can be recovered from
and 7. Furthermore, given the private key, one can decrypt any ciphertext c;.

A certain class of symmetric searchable encryption (SSE) schemes [I8[TTIT5]
can be viewed as structured encryption schemes for the special purpose of private
keyword search over encrypted document collections. Of course, the functionality
provided by structured encryption can be achieved using general techniques like
oblivious RAMs [20], secure two-party computation [36] and fully-homomorphic
encryption (FHE) [I7]. In our context, however, we are interested in solutions
that are non-interactive and, at worst, linear in the number of data items as
opposed to linear in the length of the data. All the schemes described in this
work are non-interactive and optimal in that the query time is linear in the
number of data items to be returned.

Informally, a basic notion of security for structured encryption guarantees
that (1) an encrypted data structure v and a sequence of ciphertexts ¢ reveal no
partial information about the data m; and that (2) given, in addition, a sequence
of tokens (7,...,7) for queries q = (¢1,...,¢:) no information is leaked about
either m or q beyond what can be inferred from some limited leakage which is
a function of 4, m and q. A stronger notion, introduced in [15], guarantees that
(2) holds even when the queries are generated adaptively.

All known constructions that can be considered efficient structured encryp-
tion schemes (i.e., the index-based SSE schemes [IS[TTIT5]) reveal some limited
information about the data items and queries. In particular, for any query they
reveal at least (1) the access pattern, which consists of the pointers I; and (2)
the query pattern, which reveals whether two tokens were for the same queryt.

1.1 Applications of Structured Encryption

Private queries on encrypted data. The most immediate application of structured
encryption is for performing private queries on encrypted data. In this setting,

! While the public-key encryption scheme with keyword search of [7] yields a SSE
scheme that hides the access and query patterns, it is interactive.

Structured Encryption and Controlled Disclosure 579

a client encrypts its (structured) data (§,m) resulting in an encrypted data
structure v and a sequence of ciphertexts c. It then sends (v, ¢c) to the server.
Whenever the client wishes to query the data, it sends a token 7 to the server
which the latter uses to recover pointers J to the appropriate ciphertexts. Using
a structured encryption scheme in this manner enables the client to store its data
remotely while simultaneously guaranteeing confidentiality against the server (in
the sense outlined above) and efficient querying and retrieval. While this problem
has received considerable attention for the special case of document collections
[B3IRBBEITTIITITORBIBINT, as far as we know, it has never been considered for
other kinds of data.

Controlled disclosure for local algorithms. While the original motivation for
structured encryption was to perform private queries on encrypted data (or
more precisely, private searches on encrypted data), we introduce here a new
application which we refer to as controlled disclosure.

In this setting, the client not only wants to store its data remotely but expects
the server (or some third party) to perform some computation over the data.
In particular, while the client is willing to reveal the information necessary for
the server to perform its task, the client does not want to reveal anything else.
Consider, e.g., a client that stores a large-scale social network remotely and that,
at some point, needs the server to analyze a small subset of the network. If the
social network were encrypted using a classical encryption scheme the client
would have to reveal the entire network, leaking extra information to the server.
Ideally, what we want in this setting is a mechanism that allows the client to
encrypt the data and later disclose the “pieces” of it that are necessary for the
server to perform its task.

Another application of controlled disclosure is to the emerging area of (cloud-
based) data brokerage services, such as Microsoft’s Dallas [14] and Infochimps
[23]. Here, the cloud provider acts as a broker between a data provider that
wishes to sell access to a massive dataset and a data consumer that needs access
to the data. The data is stored “in the cloud” and the cloud operator manages
the consumer’s access to the provider’s data. Using controlled disclosure, the
provider could encrypt its data before storing it in the cloud and release tokens
to the consumer as appropriate. Such an approach would have several advantages
including (1) enabling the producer to get an accurate measure of the consumer’s
use of the data; and (2) ensuring the producer that the consumer can only access
the authorized segments of data, even if the consumer and the cloud operator
collude.

Clearly, if the algorithm executed by the server (or the data consumer) is
“global”, in the sense that it needs to read all the data, then controlled disclo-
sure provides no security. On the other hand, if the algorithm is “local”, in that it
only needs to read part of the data, then controlled disclosure preserves the con-
fidentiality of the remaining data. There are numerous algorithms that exhibit
this kind of local behavior and they are used extensively in practice to solve a
variety of problems. For example, many optimization problems like the traveling

580 M. Chase and S. Kamara

salesman problem or vertex cover are handled in practice using local search al-
gorithms (e.g., hill climbing, genetic algorithms or simulated annealing). Several
link-analysis algorithms for web search such as Kleinberg’s seminal HITS algo-
rithm [26] (and the related SALSA [27] algorithm) are local. Finally, the recent
work of Brautbar and Kearns on “jump and crawl” algorithms [I0] motivates
and proposes several local algorithms for social network analysis, including for
finding vertices with high-degree and high clustering coefficient.

Controlled disclosure can be viewed as a compromise between full security on
the one hand and efficiency and functionality on the other. In settings where
computation needs to be performed on massive datasets and “fully secure” solu-
tions like multi-party computation [36/19/13] and fully-homomorphic encryption
[I7] are prohibitively expensive, controlled disclosure provides a practical solu-
tion without completely compromising security.

1.2 Owur Results

Performing private queries on encrypted data is an important goal that is well
motivated by the recent trend towards cloud storage. Giving clients the means
to encrypt their data without losing the ability to efficiently query and retrieve
it provides obvious benefits to the client but also frees the cloud provider from
many legal exposures (see [212432] for discussion of these issues). It additionally
provides a mechanism by which clients from regulated industries can make use
of cloud storage (e.g., to store medical records or financial documents) while
remaining compliant.

While the recent work on searchable encryption constitutes an important step
towards this goal, we note that a noticeable fraction of the data generated to-
day is not text data. Indeed, many large-scale datasets (e.g., image collections,
social network data, maps or location information) exhibit a different and some-
times more complex structure that cannot be handled properly using searchable
encryption. To address this, we:

1. introduce the notion of structured encryption, which generalizes index-based
symmetric searchable encryption [I8/IIJT5] to arbitrarily-structured data
and propose a novel application of structured encryption (and therefore of
SSE) to the problem of controlled disclosure.

2. extend the adaptive security definition of [I5] to the setting of structured
encryption,

3. give constructions of adaptively-secure structured encryption schemes for a
variety of structures and queries including:

(a) (lookup queries on matrix-structured data) given a matrix and pair (4, j),
return the value stored at row ¢ and column j. This captures, e.g., lookup
queries on digital images or retrieval of maps.

(b) (search queries on labeled data) given a set of labeled items and keyword
w, return the items labeled with w. This captures the familiar setting
of searchable encryption. We briefly note that our construction exhibits
a combination of useful properties that, as far as we know, no previous
scheme achieves.

Structured Encryption and Controlled Disclosure 581

(c) (neighbor queries on graph-structured data) given a graph and a node i,
return all the nodes adjacent to 7. This captures, e.g., retrieving a user’s
“friend list” in a social network.

(d) (adjacency queries on graph-structured data) given a graph and two
nodes ¢ and j, return 1 if they are adjacent and return 0 otherwise.
This captures, e.g., testing whether two users are “friends” in a social
network.

While the previous constructions are useful in their own right, an important
goal with respect to structured encryption is to construct schemes that are able
to encrypt complex structures and to handle expressive queries that take full
advantage of the complexity of the data’s structure. As an example, consider
the case of web graphs (i.e., subgraphs of the Web) which are composed of pages
with both text and hyperlinks. Encrypting the pages of a web graph using a
searchable encryption scheme will only enable keyword search over the encrypted
pages. Web graphs, however, exhibit a much richer structure and we typically
want to perform more complex queries on them. Towards this goal, our final
contribution is to show how to encrypt web graphs and, more generally, what
we refer to as labeled graph data. In particular, we:

4. give a structured encryption scheme for labeled graphs that handles focused
subgraph queries. Roughly speaking, for a given search keywork, a focused
subgraph query on a web graph returns a subgraph that encodes enough
information about it to yield a good ranking of the pages for that search.
These queries are an essential part of Kleinberg’s seminal HITS algorithm
[26] (and its many successors).

Our construction uses as building blocks some of the schemes mentioned
above. We stress, however, that it is not sufficient to use the schemes “as-is”
and we show a novel way of combining structured encryption schemes for
simple structures in order to build schemes that handle more complex data
and more expressive queries. The approach is general and can be adapted to
other complex data types.

2 Related Work

We already mentioned work on oblivious RAMs, secure two-party computation
and FHE so we restrict the following discussion to searchable and functional
encryption.

Searchable encryption. As mentioned above, structured encryption is a gen-
eralization of the notion of a secure index first proposed by Goh [I8] for the
purpose of building symmetric searchable encryption schemes [33]. In [I§], Goh
gives a formal security definition for secure indexes and a construction based
on Bloom filters. This was followed by [I1] and [I5], the latter of which gave
stronger security definitions and more efficient constructions. Our security def-
initions for structured encryption in section [generalize the ones in [I5] to
arbitrarily-structured data. Searchable encryption has also been considered in
the public-key setting [BI35/TI97IS].

582 M. Chase and S. Kamara

Functional encryption. Functional encryption [34] is a recent paradigm that
generalizes work on a variety of problems including identity-based encryption
[2906], attribute-based encryption [28/22//4], and predicate encryption [25/30].

Roughly speaking, a structured encryption scheme can be viewed as a func-
tional encryption scheme for which a token can only be used on a single cipher-
text. We provide a more detailed comparison between the two approaches in the
full version [12].

3 Notation and Preliminaries

Notation. Given a sequence v of n elements, we refer to its i*" element as v;. If
f is a function with domain & and S C U, then f[S] refers to the image of S
under f. The set of all A\ X Ay matrices over a set S is denoted ShxX2 G and
G, are the sets of all undirected and directed graphs of size n, respectively. An
undirected graph G = (V, E) consists of a set of vertices V' and a set of edges
E = {(i,j)} where i,j € V. We denote by deg(i) the degree of node . If G is
directed, then the pairs (4, j) are ordered and we refer to ¢ as the tail and to j as
the head of the edge. In addition, we denote 4’s in and out degrees by deg™ (4)
and deg™ (i), respectively.

Data types. An abstract data type is a collection of objects together with a set of
operations defined on those objects. For simplicity and visual clarity we define
data types as having a single operation but this can be extended to model data
types with multiple operations in the natural way. Formally, a data type 7 is
defined by a universe U = {Uy}ren and an operation Query : U x Q — R,
where Q = {Qk}ren is the operation’s query space and R = {Rj}ren is its
response space. The universe, query and response spaces are ensembles of finite
sets indexed by the security parameter k. In this work, we assume the universe
is a totally ordered set, and that the response space includes a special element
L denoting failure.

4 Definitions

In this section we formalize structured encryption schemes and present our main
security definition. Before doing so, however, we make explicit two properties of
structured encryption which we will make use of throughout this work.

Induced permutation. Unlike previous work on searchable encryption we choose
to include the data items (i.e., the documents in the case of searchable encryp-
tion) and their encryptions in our definitions. We prefer this approach because
explicitly capturing each component of the system can bring to light subtle in-
teractions between them. As an example, consider the correlation between the
location of the data items in the sequence m and the locations of their corre-
sponding ciphertexts in c¢. More precisely, let m be the permutation over [n] such

Structured Encryption and Controlled Disclosure 583

that for all i € [n], m; := Deck (cx(s)). We refer to 7 as the permutation induced
by m and c.

The reason most SSE constructions (with the exception of oblvious RAMs)
leak the access pattern is because 7 is the identity function. This means that in
order to (efficiently) retrieve items {m,; : ¢ € I} the server must know I. Our
constructions hide part of the access pattern essentially because they break this
correlation by inducing a (pseudo-)random permutation between m and c.

Associativity. We also make explicit a property possessed by some constructions
(e.g., the non-adaptively secure SSE construction of [I5]) that we refer to as
associativity. Intuitively, a scheme is associative if one can associate an item v;
with data item m; in such a way that a query operation returns, in addition to
the pointers J, the strings (v;);c;. We capture this by re-defining the message
space of our encryption algorithms to take, in addition to a data structure 9,

a sequence M = ((mq,v1),...,(mn,v,)) of pairs that consist of a private data
item m; and a semi-privatdd item v; . We sometimes refer to the sequences
(m1,...,my) and (v1,...,v,) as m and v, respectively.

Associativity is useful for several reasons. The most direct application is to
provide the client the ability to associate some meta-data with the ciphertexts
that may be useful to the server (e.g., file name or size). In situations where the
client wishes to grant the server access to the data, the semi-private items could
even be decryption keys for the associated ciphertexts. As we will see in Section [G]
however, associativity can also be used to “chain” structured encryption schemes
together in order to construct complex schemes from for simpler ones.

Definition 1 (Private-key structured encryption). Let .7 be an abstract
data type supporting operation Query : U x Q@ — R where R = [n] for n € N.
An associative private-key structured encryption scheme for 7 is a tuple of five
polynomial-time algorithms II = (Gen, Enc, Token, Querye, Dec) such that:

K « Gen(1%): is a probabilistic algorithm that takes as input a security
parameter k and outputs a private key K.

(v,¢) < Enc(K, 6, M): is a probabilistic algorithm that takes as input a pri-
vate key K, a data structure § of type &, and a sequences of private and
semi-private data M. It outputs an encrypted data structure vy and a sequence
of ciphertexts c. We sometimes write this as (y,c) < Encg (6, M).

T « Token(K,q): is a (possibly probabilistic) algorithm that takes as input
a private key K and a query ¢ € Q and oulputs a token 7. We sometimes
write this as T < Tokeng(q).

(J,vr) := Querye(y,7): is a deterministic algorithm that takes as input an
encrypted data structure vy and a token 7. It outputs a set of pointers J C [n]
and a sequence of semi-private data vi = (v;)ier, where I = 7w~ 1[J].

m; := Dec(K, ¢;): is a deterministic algorithm that takes as input a secret
key K and a ciphertext c; and outputs a message m;.

2 We refer to the items (vi,...,v,) as semi-private since, unlike (ma,...,my), they
can be recovered given an appropriate token.

584 M. Chase and S. Kamara

We say that II is correct if for all k € N, for all K output by Gen(1¥), for all
d € Uy, for all M, for all (v, c) output by Enc(K, 0, M), for all g € Ok, for all T
output by Token(K,q), for (J,vy) output by Querye(vy,7),

J = 7 [Query (4, q)] /\ Deck (cj) = m; for all j € [n],
where 7 is the permutation induced by m and c.

The intuitive security guarantee we seek is that (1) given an encrypted data
structure v and a sequence of ciphertexts ¢, no adversary can learn any partial
information about m; and that (2) given, in addition, a sequence of tokens

7 =(71,...,7) for an adaptively generated sequence of queries q = (q1,...,qt),
no adversary can learn any partial information about either m or q beyond what
is revealed by the semi-private data (vy,,...,vr,).

This exact intuition can be difficult to achieve and in some settings is un-
necessarily strong. Consider, e.g., the fact that the number of data items n is
immediately revealed to the adversary since it receives the ciphertexts c. Another
example is in the setting of SSE where, as discussed earlier, all known efficient
and non-interactive schemes [I8JTTIT5] reveal the access and query patterns. We
would therefore like to weaken the definition appropriately by allowing some lim-
ited information about the messages and the queries to be revealed. On the other
hand, it is not clear that such leakage is always necessary in order to achieve
efficiency (e.g., the number of data items can be easily hidden by padding) so
we prefer not to “hardcode” this leakage in our definition. To formalize this we
parameterize the definition with two leakage functions £; and Lo that capture
precisely what is being leaked by the ciphertext and the tokens.

We now present our security definition for adaptive adversaries which is a
generalization of the definition of [16]. Intuitively, we require that the view of an
adversary (i.e., the encrypted data structure, the sequence of ciphertexts, and the
sequence of tokens) generated from any adaptive query strategy be simulatable
given the leakage information and the semi-private data.

Definition 2 (CQAZ2-security). Let X' = (Gen, Enc, Token, Querye, Dec) be an
associative private-key structured encryption scheme for data of type T support-
ing operation Query : U x Q — [n], for some n € N, and consider the following
probabilistic experiments where A is an adversary, S is a simulator and L1 and
Lo are (stateful) leakage algorithms:

Reals 4(k): the challenger begins by running Gen(1%) to generate a key K. A
outputs a pair (6, M) and receives (v, c) «— Enck(d, M) from the challenger.
The adversary makes a polynomial number of adaptive queries and, for each
query q, receives a token T «— Tokeng (q) from the challenger. Finally, A
returns a bit b that is output by the experiment.

Ideals 4.s(k): A outputs a tuple (6,M). Given L£1(6,M), S generates and
sends a pair (7, c) to A. The adversary makes a polynomial number of adap-
tive queries and for each query q the simulator is given (L2(0,q),vr), where
I := Query(d,q). The simulator returns a token 7. Finally, A returns a bit b
that is output by the experiment.

Structured Encryption and Controlled Disclosure 585

We say that X is (L1, L2)-secure against adaptive chosen-query attacks if for all
PPT adversaries A, there exists a PPT simulator S such that

[Pr[Reals; 4(k) = 1] — Pr[Idealys 4 s(k) = 1]| < negl(k).

As previously discussed, the Lo leakage of our constructions mainly consists of
the query and intersection patterns. Intuitively, the query pattern reveals when
a query is repeated while the intersection pattern reveals when the same items are
accessed. The intersection pattern reveals when the same items are accessed but
not which items are accessed (i.e., their locations in m). The latter is hidden in our
definition below by applying a random permutation to the item’s locations in m.

Definition 3 (Query and intersection patterns). Let q be a non-empty
sequence of queries. For any q; € q, the query pattern QP(q;) is a binary vector
of length t with a 1 at location i if ¢ = q; and a 0 otherwise. The intersection
pattern 1P(q:) s a sequence of length t with f[I] at location t, where f is a fized
random permutation over [n] and I := Query(d, q¢).

5 Structured Encryption for Basic Structures

In this Section we present constructions of structured encryption schemes for
data with simple structures. In Section [6] we will use some of these as building
blocks to design schemes for data that exhibits a more complex structure. We
stress, however, that the constructions presented here are of independent interest.

5.1 Lookup Queries on Matrices

We describe a structured encryption scheme for matrix-structured data which
consists of an A; X Ay matrix M of pointers into a sequence of n data items
m. Here, the matrix type has universe U = [n]’\lx’\2 and supports the lookup
operation Lkp : [n]*1**2 x [\;] x [A2] — [n] that takes as input a matrix M and
a pair (o, 8) and returns M|a, f].

Matrix-structured data is ubiquitous and includes any kind of two-dimensional
data. Consider, e.g., the case of digital images which can be viewed as a pair
(M, m), where M is a matrix such that the cell at location («, 3) points to some
m; that encodes the color of the pixel at location (a, 8) in the image.

Our construction, described in Figure [Il below, is associative. At a high level,
encryption is done by (1) padding the data items to be of the same length; (2)
randomly permuting the location of the data items, (3) randomly permuting the lo-
cation of the matrix cells using a PRP; and (4) encrypting the contents of
the cells (and the semi-private data) using the output of a PRF. The purpose of
the last two steps are immediate. Steps (1) and (2) are what allow us hide part
of the access pattern by inducing a pseudo-random permutation between m and c.

Lookup queries are handled by sending the permuted location of a cell (which
can be recovered by the client since it stores the key to the PRP) and the output

586 M. Chase and S. Kamara

Let F : {0,1}* x {0,1}* — {0,1}* be a pseudo-random function, P :
{0,1}* x [A1] x [A2] = [A1] x [A2] be pseudo-random permutation and IT =
(Gen, Enc, Dec) be a private-key encryption scheme. Our encryption scheme
Matrix = (Gen, Enc, Token, Lkpe, Dec) is defined as follows:

— Gen(1%): generate two random k-bit strings K1, K2 and a key K3 «
IT1.Gen(1%). Set K := (K1, Ka, K3).
— Enc(K, M,M): construct a A1 X A2 matrix C as follows:
1. parse M as m and v
2. choose a pseudo-random permutation G : {0, 1}* x [n] — [n]
3. sample a k-bit string K4 uniformly at random
4. for all (o, B) € [A1] X [A2],
store (G, (i),vi) ® Fk, (, 3) where ¢ :== M[a, (], at location
(o/,8") := Pg,(a,3) in C.
If M[a, 8] = L, then (Gk, (%), vi) above is replaced with a random
string of appropriate length.
Let m™ be the sequence that results from padding the elements of m
so that they are of the same length and permuting them according to
Gk,. For 1 < j < n, let ¢; « Il.LEnck,(m}). Output v := C and
c=(ci,...,¢n).
— Token(K,a,B): output 7 := (s,a’,0'), where s := Fg,(a,() and
(o, 5) = Prcy (00, B).
— Lkpe(y,t): parse T as (s,a’,3'); compute and output (j,v) = s @
Cla,).

— Dec(K, ¢;): return m; := I1.Deck,(c;).

Fig. 1. An associative structured encryption scheme for matrices

of the PRF used to encrypt the contents (which can also be recovered since the
client stores the key to the PRF).

In Theorem [below we show that the construction above is secure against
adaptive chosen-query attacks.

Theorem 1. If F', P and G are pseudo-random and if II is CPA-secure then
Matrix is (L1, L2)-secure against adaptive chosen-query attacks, where L1 (M, M)
= (A1, A2, n,0) and Lo(M, a, 8) = (QP(e, 8), 1P (v, B)).

The proof is omitted due to lack of space but appears in [12].

5.2 Search Queries on Labeled Data

We now present a structured encryption scheme for labeled data which consists
of a “labeling” L and a sequence of data items m. Informally, a labeling just
associates a set of keywords to each data item. More formally, the labeling data
type has as universe U the set of all binary relations between [n] and W, where W
is a set of keywords. In addition, it supports the operation Search : U x W — 20"
that takes as input a labeling and a keyword w and returns the set L(w) = {i €
[n] : (i,w) € L}.

Structured Encryption and Controlled Disclosure 587

Let F: {0,1}* x W — {0,1}* and P : {0,1}* x W — {0,1}* be pseudo-

random functions and II = (Gen,Enc,Dec) be a private-key encryption
scheme. Our scheme Label = (Gen, Enc, Token, Searche, Dec) is defined as
follows:

— Gen(lk): sample two random k-bit keys K;i, K2, and generate a key
K3 « I1.Gen(1%). Set K := (K1, K2, K3).

— Enc(K, L,M): construct a dictionary T' as follows:

1. parse M as m and v.
2. choose a pseudo-random permutation G : {0, 1}* x [n] — [n]
3. sample a k-bit string K4 uniformly at random
4. for each w € W such that L(w) # 0, let £y := Pk, (w) and
store ((Grey (1), Vi)icL(w)) ® Fi, (w) in T with search key f,.
Use padding to ensure that the strings ((Gk,(4),vi)icr(w)) are all
of the same length.
Let m™ be the sequence that results from padding the elements of m
so that they are of the same length and permuting them according to
Gk, For 1 < j < n, let ¢; + II.LEnck,(mj). Output v := T and
c=(c1,...,¢n).

— Token(K,w): output 7 := (Fk, (w), Pr,(w)).

— Searche(y, 7): parse 7 as (a, 8) and compute s := T(8) ® o, where T'(5)
refers to the value stored in T with search key 5. If 8 is not in T then
output J = 0 and v; = L. Otherwise parse s as ((j1,vi,),-- -, (Jt, vi,))
and output J = (j1,...,7¢) and vi = (viy,...,Vi;).

— Dec(K,¢;): output m; := II.Deck,(c;).

Fig. 2. An associative structured encryption scheme for labeled data

Our construction, described in Figure 2] is efficient, associative and adaptively
secure and, as far as we know, is the first scheme to achieve all three properties.
It is based on the first scheme of [I5] (SSE-1) which is efficient and associative
but not adaptively securdd. The second scheme of [15], on the other hand, is
adaptively secure but is inefficient and not associative.

Our construction makes use of a dictionary which is a data structure that
stores pairs (a,b) such that given a, the corresponding value b can be recovered
efficiently. We refer to a as the “search key” and to b as the value. Dictionaries can
be implemented in a variety of ways, including using search trees or hash tables.
Intuitively, encryption proceeds as follows in our scheme. As in our previous
construction, we pad and permute the data items with a PRP G. For each
keyword w an array is constructed where each cell stores (1) a pointer j from
the set L*(w) = Gx[L(w)] and (2) the corresponding semi-private item v;. The
array is then padded up to a standard length, and encrypted using the output
of a PRF and is stored in a dictionary using as search key the output of another
PRF on the keyword. Search queries are handled by sending the search key

3 While our scheme achieves the same efficiency as SSE-1 with respect to search time,
SSE-1 is more efficient with respect to storage.

588 M. Chase and S. Kamara

(which can be recovered by the client using the key to the second PRF) and the
output of the PRF used to encrypt the array (which can be recovered using the
key to the first PRF). The efficiency of our search operation depends on how
the underlying dictionary is implemented but in this context any solution based
on hash tables is appropriate and will give search time that is O(|I|), which is
optimal.

Theorem 2. If F', P and G are pseudo-random and if II is CPA-secure then
Label is (L1, L2)-secure against adaptive chosen-query attacks, where L£1(L, M)
= (‘W|v n, E) and ‘CQ(La w) - (|I|v QP(w)v IP(w))'

The proof is omitted due to lack of space but appears in [12].

5.3 Neighbor Queries on Graphs

We now consider encryption of graph-structured data and, in particular, of
graphs that support neighbor queries. Formally, the graph type we consider
has universe Y = G,, and supports the neighbor operation Neigh : G,, x [n] — 9[n]
that takes as input an undirected graph G with n nodes and a node i and returns
the nodes adjacent to i.

Our approach here is to encode the graph as a labeling and to apply a struc-
tured encryption scheme for labeled data (such as the one described in the pre-
vious Section). Given some graph-structured data (G, m), where G = (V, E), we
construct the labeled data (L,m) such that L assigns to each data item m; a
label set corresponding to the set of nodes adjacent to the ith node. Neighbor
queries are handled by sending a token for “keyword” ¢ € V which allows the
server to recover pointers to all the data items associated with ¢ by the labeling.
Our construction is described in detail in Figure [3] below.

Let Label = (Gen,Enc, Token, Search.,Dec) be an associative struc-
tured encryption scheme for labeled data. Our scheme Graph =
(Gen, Enc, Token, Neighe, Dec) is defined as follows:

— Gen(1%): generate and output K <« Label.Gen(1%).

— Enc(K,G,M): parse M as m and v and construct a labeling L that
associates to each m; the set {j € [n] : ({,7) € E}, where E is the set
of edges in G. Output (7, c) < Label.Enck (L, M).

— Token(K,): compute and output 7 < Label. Tokenx (i).

— Neighe(7, 7): output J := Label.Search(~, 7).

— Dec(K, ¢;): output m; := Label.Deck (¢;).

Fig. 3. A structured encryption scheme for graphs supporting neighbor queries

Theorem 3. If Label is (L1, L2)-secure against adaptive chosen-query attacks,
then Graph is (L1, L2)-secure against adaptive chosen-query attacks as well.

Structured Encryption and Controlled Disclosure 589

The theorem follows by construction. Note that if Label is instantiated with the
scheme from Section 5.2 then £; leaks the size of the graph, the number of data
items and the length of the largest data item while Lo leaks the degree of the
node and the query and intersection patterns.

We now discuss a slight variation of this construction to handle incoming and
outgoing neighbor queries on directed graphs. This will be useful as a building
block for the construction we describe in Section Bl An incoming neighbor query
is: given a node ¢ return all the nodes that point to it; and an outgoing neighbor
query is: given a node ¢ return all the nodes that it points to. We stress that the
changes we describe do not affect security in any way.

Consider the scheme Graph™ = (Gen, Enc, Token, Neighe, Dec) defined exactly
as Graph except that the Enc algorithm constructs the labeling in the following
manner: instead of associating a data item m; to the set of nodes adjacent to
node i, associate m; to the nodes that are pointed to by node i. Similarly, a
scheme Graph™ can be constructed by associating to data item m; the set of
nodes that point to node 7.

5.4 Adjacency Queries on Graphs

In this Section we give a simple scheme to encrypt graphs supporting adjacency
queries based on any matrix encryption scheme. The approach is straightforward
and, at a high level, consists of encrypting the graph’s adjacency matrix. Given
data (G, m), where G = (V, E) is a directed graph of size n and each data item m;
is assigned to some edge in F, encryption proceeds as follows. We create a matrix
M that holds at location («,) a pointer to the data item associated with edge
(o, B) € V (or L when there is no such edge). We then use the matrix encryption
scheme on (M, m). Our construction is described in detail in Figure[dl

Let Matrix = (Gen, Enc, Token, Lkpe, Dec) be an associative en-
cryption scheme for matrix-structured data. Our scheme Graph =
(Gen, Enc, Token, Adje, Dec) is defined as follows:

— Gen(1%): generate and output K < Matrix.Gen(1%).

— Enc(K,G,M): construct a matrix M as follows: if (a,8) € V, then
M e, B] stores a pointer to the item assigned to edge (o, 8); if (o, B) € V
then MJa, 8] = L . Output (v, c) < Matrix.Encx (M, M).

— Token(K,1i,7): compute and output 7 < Matrix. Tokenx (%,).

— Adje(ry, 7): output J := Matrix.Lkpe (7, 7).

— Dec(K, ¢;): output m; := Matrix.Deck (¢;).

Fig. 4. A structured encryption scheme for graphs supporting adjacency queries

Theorem 4. If Matrix is (L1, L2)-secure against adaptive chosen-query attacks,
then so is Graph.

590 M. Chase and S. Kamara

Again, the theorem follows by construction. If Matrix is instantiated with the
construction from Section [(B.I] then £; leaks the size of the graph, the number
of edgesﬁ the number of data items and the length of the largest data item. Lo
leaks the query and intersection patterns.

6 Structured Encryption for Labeled Graphs

In this Section we describe an adaptively secure structured encryption scheme for
data that is both labeled and associated with a graph-structure. As an example,
consider a web graph where each page is labeled with a set of keywords (which
could be the set of all the words in the page) and points to a set of other pages.
Another example is social network data which consists of user profiles (with
some associated meta-data) that link to other users.

While the constructions from the previous Section can be used to encrypt
this type of data, the queries they support (i.e., keyword search, adjacency, and
neighbor queries) are limited in this setting since they are only relevant to part of
the data’s structure. Indeed, if we were to encrypt a web graph using a scheme
for labeled data, then we could only perform keyword search. Similarly, if we
were to use a graph encryption scheme that supports only neighbor queries then
we could only retrieve pages that are linked from a particular page. But web
graphs, and labeled graph data in general, exhibit a much richer structure and
ideally we would like to design schemes that support more complex queries that
take advantage of this structure.

Focused subgraph queries. One example of complex queries on web graphs are
focused subgraph queries. These queries are an essential part of a certain class
of search engine algorithms which includes Kleinberg’s seminal HITS algorithm
[26] and the SALSA algorithm [27]. At a high level, they work as follows. Given
a keyword w a keyword search is performed over the web pages. This results in
a subset of pages called the root graph. A focused subgraph is then constructed
by adding all the pages that either link to pages in the root graph or are linked
from pages in the root graph. An iterative algorithm is then applied to the fo-
cused subgraph which returns, for each page, a score that quantifies its relevance
with respect to keyword w. The key property of these “link-analysis” algorithms
(and the reason for their success) is that they take advantage not only of the
information provided by the keywords associated with the pages, but also of the
implicit information embedded in the graph structure (i.e., the links) of the web
graph.

Our approach. At a high level, our approach is to decompose the complex struc-
ture into simpler structures (e.g., in the case of a web graph into its graph and
its labeling) and then use different structured encryption schemes to handle each
“sub-structure”. We note, however, that the sub-structures cannot be handled

* The number of edges can be hidden by padding m with n? — |E| random strings
whose lengths are distributed similarly to real data items.

Structured Encryption and Controlled Disclosure 591

in isolation. In particular, for this approach to work the individual schemes have
to be combined in a particular way. This is where we make essential use of asso-
ciativity, which will allow us to “chain” the schemes together in order to obtain
the functionality we want (this technique will be illustrated in our discussion
below).

Our construction. We now illustrate our second approach for the case of web
graphs but note that our construction applies to any labeled graph data. A
detailed description of our construction is given in Figure Bl We note that it is
not associative. A web graph will be viewed as a tuple (G, L, m), which consists
of a directed graph G € G,, of size n, a labeling L over a keyword space W, and
text pages m. The graph G encodes the link structure of the web graph and
the labeling assigns keywords to each pageﬁ. The focused subgraph operation
Subgraph : G,, x W — G<,, takes as input a directed graph G of size n and a
keyword w and returns the subgraph G(w) that consists of (1) the nodes 4 in
L(w); (2) any node that links to the nodes in L(w); and (3) any node that is
linked from the nodes in L(w).

Our construction makes use of three structured encryption schemes: Label
that supports search over labeled data, Graph™ that supports incoming neighbor
queries over graph-structured data, and Graph™ that supports outgoing neighbor
queries over graph-structured data. We stress that Label must be associative.
Given a web graph (G, L, m) we encrypt (G, m) using both Graph™ and Graph ™,
resulting in ciphertexts ¢t and ¢~. Now, for each node i in G, we generate a pair

of tokens (;7,7,7). We then use Label to encrypt (L, m) using the token pairs
(7;F,7;7) as semi-private data (recall that Label is associative). We then output
the encryption c' of (L, m).

A focused subgraph query on keyword w is handled as follows. A token 7' «—
Label. Tokeng (w) is generated and sent to the server. When used with the cipher-
text c', this token will reveal to the server (1) pointers to all the (encrypted) web
pages labeled with keyword w; and (2) for each of these encrypted pages ¢;, the
semi-private information which consists of tokens (Tj+, 7;). For each encrypted
page, the server can then use the token pairs with ciphertexts cj' and c; tore-

cover pointers to any incoming and outgoing neighbors of page c;.

Theorem 5. If Label, Graph™ and Graph™ are respectively (stateless) (L}, L})-
secure, (L7,L3)-secure and (L], L5)-secure against adaptive chosen query
attacks, then the scheme described above is (L1, La)-secure against adaptive
chosen-query attacks, where
£1(G,L,m) = (£} (L, m), £{ (G, m), L5 (G, m))
and
/ : s
£2(G, Lyw) = (£5(L,w), (£5(Gs1))) gy (€2 (Go1) iy) -

The proof is omitted due to lack of space but appears in [12].

5 If we wish to perform full-text search then the labeling can simply assign a page to
all of its words.

592 M. Chase and S. Kamara

Let Label = (Gen, Enc, Token, Searche, Dec) be an encryption scheme for
labeled data, Graph™ = (Gen,Enc, Token, Neighe,Dec) and Graph™ =
(Gen, Enc, Token, Neighe, Dec) be graph encryption schemes that support
neighbor queries. Our scheme LabGraph = (Gen, Enc, Token, Subgraph., Dec)
is defined as follows:

— Gen(1%): generate three keys Ki <+ Graph™.Gen(1%), K, «
Graph™.Gen(1%) and K3 « Label.Gen(1%). Let K = (K1, K2, K3).
— Enc(K, G, m):
1. compute (v, c™) m),
2. compute (v, m),
3. for 1 <i<n,
(a) compute 7;" « Graph™.Tokenx, (i),
(b) compute ;< Graph~.Tokenk, (4),
4. let L be the labeling generated from all the words in m (i.e., each
m; is labeled with the words it contains) and let v = {(t],¢;):},
5. compute (7', c¢') < Label.Encg, (L, M), where M is composed of m
and v,
6. output v = (y*,77,4") and ¢ = (c¢*,c 7,).
— Token(K,w): output 7 < Label.Token g, (w).
— Subgraphe(y, 7):
1. compute (J',vr) := Label.Search(v', 7)
2. forall j € J,
(a) compute J;r = Graph"’.Neigh(*y'*',Tj*),
(b) compute J; := Graph™.Neigh(y~, 7),

3. output J = (J', (J7, 7))

()
— Dec(K,¢;): return m; := I1.Deck,(c;).

«— Grapht.Encg, (G,
G

c
¢) < Graph™.Enck, (G,

Fig.5. A structured encryption scheme for web graphs supporting focused subgraph
queries

7 Conclusions and Future Directions

Several interesting future directions are suggested by this work. The most im-
mediate is whether efficient and non-interactive structured encryption can be
achieved while leaking less than the query and intersection pattern. The con-
struction of efficient dynamic structured encryption schemes (i.e., that allow
for updates to the encrypted data) is another direction left open by this work.
Of course, the construction of schemes that handle other types of structured
data and more complex queries on the data types considered here would also be
interesting.

Acknowledgements

We are grateful to Kristin Lauter for encouragement during the early stages of
this work, to Sherman Chow and Satya Lokam for useful discussions regard-
ing graph encryption and to Susan Hohenberger for insisting on a thorough

Structured Encryption and Controlled Disclosure 593

comparison with functional encryption. We are also grateful to Adam O’Neill
for several helpful discussions on functional encryption. Finally, we thank Emily
Shen and Charalampos Papamanthou for useful feedback on the manuscript and
the anonymous reviewers for helpful suggestions.

References

10.

11.

12.

13.

14.

15.

. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Lee, J.M.,

Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency prop-
erties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 205-222. Springer, Heidelberg (2005)

Bardin, J., Callas, J., Chaput, S., Fusco, P., Gilbert, F., Hoff, C., Hurst, D., Ku-
maraswamy, S., Lynch, L., Matsumoto, S., O’Higgins, B., Pawluk, J., Reese, G.,
Reich, J., Ritter, J., Spivey, J., Viega, J.: Security guidance for critical areas of
focus in cloud computing. Technical report, Cloud Security Alliance (April 2009)
Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535-552.
Springer, Heidelberg (2007)

. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-

tion. In: IEEE Symp. on Security and Privacy 2007, pp. 321-334 (2007)

Boneh, D., di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506-522. Springer, Heidelberg (2004)

Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-229. Springer, Heidelberg (2001)
Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith, W.: Public-key encryption that
allows PIR queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
50-67. Springer, Heidelberg (2007)

Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535-554. Springer, Heidel-
berg (2007)

Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290-307.
Springer, Heidelberg (2006)

Brautbar, M., Kearns, M.: Local algorithms for finding intersting individuals in
large networks. In: ICS (2010)

Chang, Y., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Toannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442-455. Springer, Heidelberg (2005)

Chase, M., Kamara, S.: Structured encryption and controlled disclosure. TACR
ePrint report (2010), http://eprint.iacr.org

Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: STOC 1988, pp. 11-19 (1988)

Micrsoft Corp. Codename “Dallas”,
http://www.microsoft.com/windowsazure/dallas

Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: Improved definitions and efficient constructions. In: ACM CCS 2006, pp.
79-88 (2006)

http://eprint.iacr.org
http://www.microsoft.com/windowsazure/dallas

594

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

M. Chase and S. Kamara

Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: Improved definitions and efficient constructions. Journal version (under
submission) (2010)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM STOC
2009, pp. 169-178 (2009)

Goh, E-J.: Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography
Archive (2003), http://eprint.iacr.org/2003/216

Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM
STOC 1987, pp. 218-229 (1987)

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the ACM 43(3), 431-473 (1996)

Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270-299 (1984)

Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89-98 (2006)
Infochimps, http://www.infochimps.org

Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R. (ed.) FC 2010
LNCS, vol. 6054, pp. 136-149. Springer, Heidelberg (2010)

Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146-162. Springer, Heidelberg (2008)

Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: SODA 1998,
pp. 668-677 (1998)

Lempel, R., Moran, S.: SALSA: The stochastic approach for link-structure analysis.
ACM Transactions on Information Systems 19(2), 131-160 (2001)

Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457-473. Springer, Heidelberg (2005)
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47-53. Springer, Heidelberg
(1985)

Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
0. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457-473. Springer, Heidelberg (2009)
Shi, E., Bethencourt, J., Chan, T., Song, D., Perrig, A.: Multi-dimensional range
query over encrypted data. In: IEEE Symp. on Security and Privacy 2007, pp.
350-364 (2007)

Soghoian, C.: Caught in the cloud: Privacy, encryption, and government back doors
in the web 2.0 era. Journal on Telecommunications and High Technology Law 8(2)
(2010)

Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted
data. In: IEEE Symp. on Research in Security and Privacy 2000, pp. 44-55 (2000)
Waters, B.: Functional encryption: An overview and survey slides. Presented at
Crypto in the Clouds Workshop. MIT, Cambridge (2009)

Waters, B., Balfanz, D., Durfee, G., Smetters, D.: Building an encrypted and
searchable audit log. In: NDSS 2004 (2004)

Yao, A.: Protocols for secure computations. In: FOCS 1982, pp. 160-164 (1982)

http://eprint.iacr.org/2003/216
http://www.infochimps.org

	Structured Encryption and Controlled Disclosure
	Introduction
	Applications of Structured Encryption
	Our Results

	Related Work
	Notation and Preliminaries
	Definitions
	Structured Encryption for Basic Structures
	Lookup Queries on Matrices
	Search Queries on Labeled Data
	Neighbor Queries on Graphs
	Adjacency Queries on Graphs

	Structured Encryption for Labeled Graphs
	Conclusions and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

