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Abstract. Increasingly large datasets acquired by NASA for global cli-
mate studies demand larger computation memory and higher CPU speed
to mine out useful and revealing information. While boosting the CPU
frequency is getting harder, clustering multiple lower performance com-
puters thus becomes increasingly popular. This prompts a trend of par-
allelizing the existing algorithms and methods by mathematicians and
computer scientists. In this paper, we take on the task of parallelizing the
Nonnegative Tensor Factorization (NTF) method, with the purposes of
distributing large datasets into each cluster node and thus reducing the
demand on a single node, blocking and localizing the computation at the
maximal degree, and finally minimizing the memory use for storing ma-
trices or tensors by exploiting their structural relationships. Numerical
experiments were performed on a NASA global sea surface temperature
dataset and result factors were analyzed and discussed.

Keywords: nonnegative tensor factorization, parallel computation,
data mining, global climate.

1 Introduction

Data mining techniques are commonly used for the discovery of interesting pat-
terns in earth science data. Such patterns can help to both understand and
predict changes in climate and the global carbon cycle. Regions of the earth can
be partitioned into land and ocean areas from which subregions described by an
ensemble land- or sea-based parameters are possible. Patterns within these sub-
regions are mined to reveal both spatial and temporal autocorrelation. In this
study, we sought to identify regions (or clusters) of the earth which have similar
short- or long-term characteristics. Earth scientists are particularly interested in
patterns that reflect deviations from normal seasonal variations (e.g., El Nifio
and La Nina). Interpreting these patterns can facilitate a better understanding
of biosphere processes and the effects human policy decisions at a global scale.
Such effects include deforestation, air and water quality, urbanization, and global
warming.
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Eigensystem-based analysis driven by principal component analysis (PCA)
and the singular value decomposition (SVD) has been used to cluster climate in-
dices [I4]. Unfortunately, the orthogonal matrix factors (basis vectors) generated
by the SVD are difficult to interpret and as discussed by Steinbach et al. in [I3],
stronger signals typically mask weaker signals. Among other data mining tech-
niques, (approximate) Nonnegative Matrix Factorization (NMF) has attracted
much attention since the early work of Paatero and Tapper [I1] and Lee and
Seung’s seminal paper on learning the parts of objects [9]. In NMF, an m x n
(nonnegative) mixed data matrix X is approximately factored into a product of
two nonnegative rank-k matrices, with k small compared to m and n, X ~ WH.
This factorization has the advantage that W and H can provide a physically
realizable representation of the mixed data, due to the inherent nonnegativity
constraint. Nonnegative Tensor Factorization (NTF) is a natural extension of
NMEF to higher dimensional data. In NTF, high-dimensional data, such as 3D
or 4D global climate data, is factored directly and is approximated by a sum of
rank-1 nonnegative tensors. See Figure [l for an illustration of 3-D tensor fac-
torization. Similar to NMF, we also see a quick development of NTF algorithms
[12/15] and their applications in recent years. In this research, we exploit the
nonnegative tensor factorization of multidimensional climate data in order to
capture patterns/signals not possible with traditional 2-way factor analysis.

2 Parallel Nonnegative Tensor Factorization

In nonnegative tensor factorization (NTF), high-dimensional data, such as global
sea surface temperature, is factored directly and is approximated by a sum of
rank-1 nonnegative tensors. See Figure [I for an illustration of a 3-D tensor
factorization.

Definition 1. Let T € RP1XP2XDs pe g nonnegative tensor and define

k
T =3 a2l oy oz,
i=1

to be in. a CANDECOMP (CP) canonical factored form, where " € RP1 ¢y ¢
RP2 and 29 € RP3 are all nonnegative. Then, a rank-k nonnegative approzi-
mate tensor factorization problem is defined as

min || — T||%, subject to T > 0. (1)
T

Given the large datasets we encounter with global climate data, our interest in
this study is to parallelize the problem posed above and distribute computations
evenly to processors in a distributed computing environment. By Definition (),
the NTF problem is posed as a non-linear optimization problem, which is not
easily parallelizable. In a naive approach, we may separate the original data cube
into 3D blocks and fit factors for each block in parallel. However, the factors from
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Fig. 1. An illustration of 3-D tensor approximate factorization using a sum of rank one
tensors

each block may not match together, which is to say, blocks along each dimension
should have an identical factor in either X, Y or Z. This almost certainly would
not be the case when we optimize for three factors individually for each block.

Nevertheless, our hope lies in the fact that a common approach in solving () is
the Alternating Least Squares (ALS) method [36], which is a special case of the
block coordinate descent method, also known as the Block Gauss-Seidel (BGS)
method [7]. At each iteration step, the BGS method (in alternating fashion)
optimizes only a subset of the variables, while keeping the rest fixed, and turns
the original non-convex problem into a sequence of convex least squares sub-
problems. In NTF, this means holding two matrix factors fixed while fitting for
the other one. Thus, the original NTF problem is transformed into three semi-
NMF (nonnegative matrix factorization) sub-problems in each iteration. Here
we use the term “semi” to represent the optimization only for one of the two
factor matrices, while assuming the other is given.

Definition 2. Given A € R™*" > 0 and W € R™** >0, a semi-NMF problem
1s defined as

mbi[né(H) =||A -~ WH||%, subject to H > 0. (2)

One important observation on () is that solving ([2]) is equivalent to solving for
each column of H independently, i.e.

min @ (h;) = |a; — Whil|%, 3)

where a; and h; are the column vectors of A and H. This provides a great
opportunity for parallelization of each semi-NMF subproblem, even though the
original NTF problem is not defined for easy parallelization.

The ALS approach splits the NTF problem () into three semi-NMF subprob-
lems, i.e. given X and Y, we solve for Z by

min(Z) = |T. - (X © Y)Z||%, (4)
where T, € RP1P2xDs i5 the unfolded tensor 7 along the z dimension and

(T.)(j—1)xDo+ti,k = tijk- X ©Y is the Khatri-Rao product of the two matrices.
Next we fix X and Z, and solve for Y by
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min®(Y) = |T, — (X © 2)Y |7, ()

where T, € RP1PsxD2 iy the unfolded tensor 7 along the y dimension and
(Ty)(k—1)xDy+i,j = tiji- Finally, we fix Z and Y, and solve for X by

min@(X) = |T, - (Z 0 Y)X |, (6)

where T, € RP2P3xD1 i5 the unfolded tensor 7~ along the z dimension and
(Ts) (k—1)%Ds+4.i = tijk-

Here we use a modified version of a Projected Gradient Descent (PGD)
method developed by Lin [I0] to solve the semi-NMF problem (2)). The pro-
jected gradient descent method is basically adding a projection function to the
regular gradient descent method.

P+ — p+[H(p) — ade5(H(p))], (7)

where the gradient is V&(H) = WTWH — WTA, and P, is the projection
function onto the nonnegative domain. Lin [I0] enhanced the performance of
the PGD method by improving the search for the optimal step size using the
Armijo rule.

Two observations can be made about the PGD method. First, to solve for H,
we only need to use two quadratic forms of W and A, i.e. WIW and WT A
and by comparing the sizes of two quadratic forms, i.e. k X k and k x n, with the
sizes of W and A, i.e. m X k and m x n, and knowing m,n > k, we can save
considerable memory required to store these matrices. Second, we can also split
W and A and compute WTW and WT A in parallel, i.e.

p p
WIW = W'W, and WA => WA,
i=1 =1

Here, W; € R™/P*k ig a block sub-matrix of W, A; € R™/P*X" ig a block sub-
matrix of A, p is the number of processors, and i =1,...,p.

2.1 Distribution of Data

We distribute four matrices to independent processors in the following ways to
facilitate parallel I/O and computation. We divide T, by row blocks, T%,, each
block having a size of D1Ds/p x Ds. This allows for parallel loading of data.
One important observation is that we do not need to save T, and T in the
memory due to their relationships with T, stated in the following proposition
(proof is straightforward and thus omitted). These relationships will be used in
computing the quadratic forms.

Proposition 1. The relationships between Ty, T, and T, are:

1. Each column of Ty is a vectorized row block matriz of T,.
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2. Each row block matrix of T, is a transpose of the corresponding row block
matriz of T,.

We next divide X, Y and Z by row blocks, each block having a size of D;/p x
k,i =1,2,3. This allows for parallel initialization and writing of these matrices
to output. Note that if D, Dy or D3 cannot be divided by p, the last block will
have a remainder number of rows.

2.2 Parallelization of the First Semi-NMF (d])

For convenience, we represent X ©®Y by W. We first collect X; from each
process(or) to form a full X, and compute the local W; = X ©®Y;. We then locally
compute W W, and WIT,; and compute their sums (WTW and WTT,,
respectively) using the DSESUM2D subroutine provided by BLACS [4]. WTT, is
then partitioned into column blocks of a size k x D3 /p for input into the PGD
subroutine. Thus, instances of the PGD subroutine run in parallel to solve for
each block Z;. This process is illustrated in Figure 2

2.3 Parallelization of the Second Semi-NMF (&l

Here, we represent X ® Z by W. We first collect Z; from each process(or)
to form a complete Z, and since we already have the complete X within each
process(or), we can compute the complete W = X ® Z, and thereby compute
WITW. To compute WTT,;, notice that each column of T}, is a row block of T},

()

.

|

W | 4{ W, WiTs ‘

ul+
||

Fig. 2. Flowchart for the first semi-NMF subproblem () within NTF
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Fig. 3. Flowchart for the second semi-NMF subproblem (&) within NTF

and thus we can avoid saving T}, in memory and use the vectorized blocks of the
local T, to multiply with W. Because WTTyi is locally computed, it can used
by a call to the PGD subroutine. Thus, independent calls to the PGD subroutine
solve for each block Y; in parallel. This process is illustrated in Figure [3l

2.4 Parallelization of the Third Semi-NMF (6]

Here, we represent Z ©Y by W. We use the already collected complete Z and
compute Y; in order to formulate W; = Z ® Y;, which would then be used to
compute WTW. To compute W1 T,;, notice that each row block of T} is the
transpose of the corresponding row block of T, and thus we can avoid saving
T, in memory and use the row blocks of local T, to multiply with W;. We
deploy the LAPACK [I] subroutine DGEMM to avoid transposing T%,. To sum up
WiTWi and WTT,;, we divide WTT, into column blocks of a size k x D, /p and
make separate calls to the PGD subroutine. Again, these calls to PGD execute in
parallel to solve for each block X;. The flowchart for this process is very similar
to the one in Figure 2

3 Data and Experimental Results

The six climate-based indices used for this study (see Table [Il) were provided
by researchers at the NASA Ames Research Center (ARC) in Moffett Field,
CA. Pre-processing was performed to guarantee that the six variables matched
the same coordinate system and time span. Most of the values are interpolated
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Table 1. Climate variables considered in this study with adjustments (or shifts) to
enforce nonnegativity (if needed)

Name Description Adjustment

sst sea surface temperature +273.15

ndvi  normalized difference vegetation index +0.2

tem land surface temperature +273.15

pre precipitation

hg500 geopotential height (elevation) for +300
barometric pressure of 500 millibars

hg1000 geopotential height (elevation) for +300

barometric pressure of 1000 millibars

monthly averages on a uniform grid (with a slight distortion at the poles). In-
terpolation for some of the variables (such as geopotential height) necessarily
produced negative values in some of the extreme regions (where it is difficult
to sample or when surface pressureEI is below 1000 mbar). It is not uncommon
for many of the array values to be interpolated due to the sparsity of the orig-
inal samples. The Arctic region, in particular, has few weather stations so that
data values for many of the corresponding (lattitude, longitude) coordinates are
interpolated from readings taken hundreds of miles away. Simple shifts (scalar in-
crements) to these interpolated values are applied to all negative array elements
to insure that all NTF input arrays are nonnegative.

Each parameter (from Table [I]) is defined by a 3-way array or datacube of
dimension 720 x 360 x 252. The first two dimensions correspond to longitude
and latitude coordinates, respectively, and the third dimension represents the
month of reading. The time dimension spans from January 1982 to December
2002 for a total of 252 months (i.e., 21 years).
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Fig. 4. Computation speedup of the parallel NTF algorithm

! Such was the case for the New Orleans area during hurricane Katrina.
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Fig.5. (a) Global map of sea surface temperature patterns, (b) monthly variations
of sea surface temperature patterns, (c) yearly variations of sea surface temperature
patterns
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All computations were performed on a Sun Fire X4600 M2 with 16 AMD
2.8GHz cores and 32GB of RAM. The original MATLAB®NTF codes were
rewritten in C++ and compiled with several libraries including LAPACK [I],
ScaLAPACK [2], BLACS [4], BLAS [5] and MPICH [g].

3.1 Speedup of the Parallel Computation

We use a simulated datacube in the size of 600 x 400 x 200 to evaluate the speedup
of the parallel NTF computation, by setting the number of processors at 1, 2,
4, 8 and 10. The size was deliberately chosen to be multiples of the number of
processors to avoid any inconvenience in data distribution. The leftmost graph of
Figure [ shows the total computation time used for 100 iterations of the parallel
NTF algorithm, taken from the processor that finishes last. The rightmost graph
of Figure [ shows the corresponding speedup. A sublinear speedup was achieved
for 2 to 8 processors with an approximate peak speedup of 6.8 (among all runs
with up to 10 processors).

3.2 Clustering Global Climate Data

The sea surface temperature parameter, originally in MATLAB®format, was
partitioned into four sections and written in ASCII format for parallel reads
by four different processes. The original data cube was first reshaped into a
259200 x 12 x 21 array, and after removing sections corresponding to land-based
coordinates the resulting data cube was 176876 x 12 x 20. We also removed the
last year data of data to make the time dimension a multiple of 4 for convenience.

Our intent was to extract typical monthly variation patterns in the second
(tensor) factor, typical yearly variation patterns in the third factor and their
corresponding global maps in the first factor. All three factors are shown in
Figure[dl and they are sorted by the norm of the CP tensor from the greatest to
the smallest in order to rank significance. We note that in FigureBlb, the results
in the last month are replicated at month 0 to reflect a full cycle.

The second factor represents El Nifio, which has a characteristic peak in the
winter and its global map shows a dark red tongue-shaped area off the coast
of Ecuador. A yearly warming trend is observed in the fourth factor, mostly in
the northern hemisphere and around the northern Pacific coastal area of China
and Russia, and also to the northern Atlantic coastal area of the United States
and Canada. It is also of interest to note that the last pattern shows some clear
seasonal variations mostly along coastal areas (see the isolated red regions).

4 Conclusions

In this study, the nonnegative tensor factorization (NTF) method as a data min-
ing tool is parallelized with the purpose of efficiently processing large datasets
encountered in earth science. The parallel algorithm exploits the structural
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relationships between matrices used in the original NTF algorithm for data dis-
tribution, memory savings and even computation task distribution. It is specif-
ically applied to NASA-provided global land- and sea-based climate data with
interesting results presented and analyzed for global sea surface temperature, in
particular. Although not reported in this work, additional parallel NTF experi-
ments using different combinations of the climate variables listed in Table [l have
been conducted. We expect to report on the results of clustering multiple land-
and sea-based parameters in the near future.
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