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Abstract. We present the set of planar graphs that always have a si-
multaneous geometric embedding with a strictly monotone path on the
same set of n vertices, for any of the n! possible mappings. These graphs
are equivalent to the set of unlabeled level planar (ULP) graphs that are
level planar over all possible labelings. Our contributions are twofold.
First, we provide linear time drawing algorithms for ULP graphs. Sec-
ond, we provide a complete characterization of ULP graphs by showing
that any other graph must contain a subgraph homeomorphic to one of
seven forbidden graphs.

1 Introduction

Simultaneous embedding enables the visualization of multiple graphs on the
same set of vertices. In order to preserve the “mental map,” graphs are overlaid
so that corresponding vertices have the same location. The mapping between
vertices may be fixed, or may not be given, or may change and dynamically
evolve as in the case of colored simultaneous embeddings [I]. To accommodate
this, we consider all possible 1-1 mappings between graphs. Embeddings that
use no edge bends and in which no pair of edges of the same graph cross are
known as simultaneous geometric embeddings [2].

Determining which graphs share a simultaneous geometric embedding has
proved difficult. While Geyer et al. [7] have shown this cannot always be done
for tree-tree pairs, the question remains open for tree-path pairs. Estrella et
al. [5] partially answer this question by characterizing the set of trees that have
a simultaneous geometric embedding with a strictly monotone path. We now
extend those results by characterizing the set of all planar graphs that have a
simultaneous geometric embedding with a strictly monotone path. The impor-
tance of this result lies in the fact that all positive results showing that certain
pairs of graphs allow simultaneous geometric embeddings rely on reducing at
least one of the graphs in the pair under consideration to a path which is real-
ized in strictly monotone fashion. Thus, our result captures the largest possible
class of graphs that can be embedded using this technique.

Rotating or stretching a drawing along a single direction does not affect cross-
ings. As a result, we assume that the path will be drawn in a zig-zag fashion
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Fig. 1. A Venn diagram of the set of graphs characterized by the seven forbidden graphs
Ts, Ty, G5, Gs, Ga, Gs, and G, in F. Graphs that do not contain a subgraph home-
omorphic to of any of these are generalized caterpillars, radius-2 stars, and extended
degree-3 spiders.

with a difference of +1 between the y-coordinates of two successive vertices. This
allows us to frame the problem of drawing the planar graph in terms of placing
the vertices along a set of parallel horizontal lines, called tracks, with one vertex
per track. For an n-vertex planar graph, we label the vertices from 1 to n in
which the label is the y-coordinate. If a planar graph has a straight-line drawing
without crossings for all n! permutations of the labels, then it has a simultaneous
geometric embedding with a strictly monotone path for any mapping.

A related problem is that of level planarity [9]. Our labeling forms a partition
of vertices into levels with one vertex per level. If we consider a graph in which
the y-coordinate of each level is distinct and all the edges are y-monotone, then
we have a level drawing. If the drawing is planar, then the graph is level planar for
that labeling. If this holds for each of the n! labelings, then the graph is unlabeled
level planar (ULP). ULP graphs are precisely those that have a simultaneous
geometric embedding with strictly monotone paths for any labeling. Hence, we
can also phrase our problem in terms of level planarity.

Any graph for which this cannot be done must have some subgraph homeo-
morphic to a forbidden graph, or obstruction, that will induce a crossing when
drawn on tracks for a particular labeling. In this paper we show that ULP graphs
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fall into three categories: radius-2 stars, generalized caterpillars, and extended
degree-3 spiders. Furthermore, we show how to simultaneously embed any ULP
graph with a monotone path in linear time. Finally, we complete the character-
ization in terms of a minimal set of seven forbidden graphs, F := {Ts, Ty, G5,

Ge, Go, Gs, G }; see Fig. [1l

2 Preliminaries

Two planar n-vertex graphs G (V, E1) and Ga(V, Es) have a simultaneous embed-
ding with mapping if they can be drawn in the xy-plane with bijection f : V +— V'
in which v and f(v) have the same zy-coordinates while maintaining the pla-
narity of each graph. If this can be done for some bijection f, then G; and
Go are simultaneously embeddable. If edges of both E; and F, are drawn with
straight-line edges, then G; and G2 have a simultaneous geometric embedding.

Let an n-vertex graph G(V, E) have a labeling ¢ : V + [1..n] in which ¢(u) #
¢(v) for all (u,v) € E. A horizontal line ¢; = {(z, j) |z € R} for some j € [1..n]
is track j. In a realization of G, each vertex v € V' is placed along track ¢(v) and
each edge (u,v) is strictly y-monotone. Edge bends by, bs, . .., by, may naturally
occur at any point edge (u,v) intersects a track provided ¢(u) < ¢(by) < -+ <
o(bg) < P(v) or ¢(u) > ¢(by) > -+ > ¢(br) > ¢(v) in which by is adjacent to u,
by, is adjacent to v, and b; lies between b; 1 and b; 1 for 1 <i < k.

A realization without crossings is a planar realization of G. A planar realiza-
tion with one straight-line segment for each edge (u,v) is a straight-line planar
realization of G. While any planar realization with bends can be “stretched out”
in the z-direction to form a straight-line planar realization in O(n) time as shown
by Eades et al. [], the area of the realization can become exponential.

A level graph G(V, E, ¢) is a directed graph with leveling ¢ : V — [1..k] that
assigns every vertex to one of k levels so that ¢(u) < ¢(v) for every edge (u,v).
In a level drawing all vertices in a level have the same y-coordinate and each
edge is y-monotone. If the level drawing can be drawn without crossings, then
G is level planar. The level planarity of G for a given leveling is independent of
its orientation: First take an n-vertex undirected graph G. Then label G with
labeling ¢ : V — [1..n]. Next orient each edge (u,v) of G so that ¢(u) < ¢(v) to
form the level graph G(V, E, ¢) with the leveling ¢ on n levels with one vertex
per level. Then ask is G level planar? If yes, repeat this process for all other
labelings of G. If one never encounters a level nonplanar graph, the graph G
is called unlabeled level planar (ULP). Hence, a ULP graph has a simultaneous
embedding with a strictly y-monotone path for any labeling ¢; see Fig 2l

The vertices placed along a track correspond to the levels in a level graph. An
undirected graph with a labeling ¢ has a “planar realization” if and only if the
corresponding level graph is “level planar”. These two terms are interchangeable
only if edge bends do not matter. If we need a simultaneous geometric embedding
we use the more restrictive term “straight-line planar realization”.

A chain C of G is a simple path denoted vy=vo— --- —v;. The vertices of
C' are denoted V(C). A vertex v of C is ¢-minimal (or ¢-mazimal) if it has a
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(a) (b)

Fig. 2. Simultaneous embeddings of a path and a ULP tree with and without bends

minimal (or maximal) track number of all the vertices of V(C'). Such a vertex is
¢-extreme if it is ¢-minimal or ¢-maximal.

In a graph G(V, E), subdividing an edge (u,v) € E replaces edge (u,v) with
the pair of edges (u,w) and (w,v) in E by adding w to V. A subdivision of G is
a graph obtained by performing a series of subdivisions of G. A graph G(V, E)
is isomorphic to a graph G(V, E) if there exists a bijection f : V ~— V such that
(u,v) € E if and only if (f(u), f(v)) € E. A graph G(V, E) is homeomorphic to
a graph G(V, E) if a subdivision of G is isomorphic to a subdivision of G. The
distance between vertices v and v in a graph is the length of the shortest path
from u to v. The eccentricity of a vertex v is the greatest distance to any other
vertex. The radius of a graph is the minimum eccentricity of any vertex.

A leaf vertex is any degree-1 vertex. A caterpillaris a tree in which the removal
of all leaf vertices yields a path (the empty graph is a special case of a path).
The remaining path forms the spine. A lobster is a tree in which the removal of
all leaf vertices yields a caterpillar. A claw is a K 3, whereas, a staris a K j
for some k > 3. A double star is a star in which each edge has been subdivided
once. A radius-2 star (R-2S) is any subgraph of a double star with radius 2.
A degree-3 spider is an arbitrarily subdivided claw. The following six types of
“edges” in Fig. [} allow us to generalize a caterpillar and to extend a degree-3
spider to include cycles.

Definition 1

(a) A K3 edge is the cycle u—v—w—u on vertices {u, v, w}

(b) A Cy edge is the cycle u—s—v—t—u on vertices {u,v, s, t}.

(c) A kite edge is the cycle u—s—v—t—u with edge s—t on vertices {u, v, s,t}.

(d) A K3 edge is set of cycles u—v—w'—u with edge u—v on vertices {u,v} UW
where w' € W for some possibly empty vertex set W.

(e) A Cf edge is set of cycles u—w—v—w'—u on vertices {u,v,w} U W where
w' € W for some non-empty vertex set W.

(f) A K4 edge is the complete graph on the vertices {u,xz,y, z}.
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Fig. 3. The six types of H edges used to from a GC on the second line

Definition 2. A generalized caterpillar (GC) is a caterpillar in which each edge
u'=v' along the spine can be replaced with a K3, C; , or kite edge (and the two
edges at the end of the spine can also be replaced by a K4 edge) in which vertex
u (and v if present) replaces vertex u' (and v'); see Fig.[3

Definition 3

(a) A 1-connected extended degree-3 spider (1-CE 3-S) is a degree-3 spider with
two optional edges connecting
(i) two of three vertices adjacent to the degree-3 vertex and
(11) two of the three leaf vertices; see Fig. [{)(a).
(b) A 2-connected extended degree-3 spider (2-CE 3-S) is a cycle or a cycle with
one K3, Cy or kite edge, see Fig. [](b).
(c) A extended degree-3 spider (E 3-S) is either a 1-connected extended degree-3
spider or a 2-connected extended degree-3 spider.

These definitions allows us to make the following observation.

Observation 4. Every spanning tree of a GC is a caterpillar. Every spanning
tree of a E3-S is a degree-3 spider or a path.

S Riad A<
V ~ vl ~ ~ v: - ~ vi ~
. Kite
‘ Edge Edge Edge
1-Connected 2-Connected
(a) (b)

Fig. 4. A extended degree-3 spider is either (a) a 1-CE3-S or (b) a 2-CE3-S
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3 Graphs with Planar Realizations on Tracks

In this section we show that radius-2 stars (R-2S), generalized caterpillars (GC),
and extended degree-3 spiders (E 3-S) are level planar for any labeling. We do
this by presenting linear time algorithms for straight-line, crossings-free drawing
of any such graph on the tracks determined by its labeling. More formally, we
show that P = {G : G is a R-2S, GC, or E3-S} is ULP.

The next lemma from [5] shows this for a R-2S.

Lemma 5 (Lemma 4 of [J]). An n-vertex radius-2 star can be straight-line
planarly realized in O(n) time on a (2n + 1) x n grid for any labeling.

The following lemmas show how a GC and the two types of a E3-S also have
compact planar realizations on tracks. We give a proof sketch for the next lemma;
the full proof can be found in [@].

Lemma 6. An n-vertex generalized caterpillar can be straight-line planarly re-
alized in O(n) time within an n X n grid for any labeling.

Proof Sketch: We obtain the cut vertices of the GC using the vertices of its
spanning tree, which must be a caterpillar by Observation [ as candidates.
With these we can draw each incident K3, C’I , kite, and K spine edge using at
most 4 x n space for each one proceeding left to right along the spine; see Fig.
If we were not constrained to an integer grid, one could place all the incident
edges with leaf vertices in a sufficiently narrow region above and below each cut

ry °
--©
'
o)
-0
°
G0
°
°
o

Fig. 5. The gray vertices are initial locations of vertices in a straight-line planar re-
alization of a GC on a 14 x 32 grid. The arrows avoid crossings or overlapping edges.
A leaf is initially placed to the right of its cut vertex except for the last one with its
leaves placed to the left. Overlaps are eliminated by moving leaves left and right, e.g.,
the leaves between v3 and v4. The K4 edges incident to v1 and v4 show initial locations
with dashed edges leading to crossings that are eliminated by switching the location
of the two incident vertices.
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vertex. Being restricted to integer coordinates, we shift the endpoint of a leaf
vertex left or right by one space as needed to avoid overlapping edges. O

Lemma 7. An n-vertex 1-connected extended degree-3 spider can be planarly
realized in O(n) time on an n X n grid for any labeling.

Proof. We show how to draw G on tracks with at most one bend per edge for a
labeling ¢. We first draw a subgraph that is a degree-3 spider T with an extra
edge in G between two of three vertices adjacent to the root vertex r (the unique
degree-3 vertex) of T'. Next, we accommodate an extra edge in G connecting two
leaf vertices of T'.

Let T be portion of the T drawn so far. We maintain two invariants:

(1) two of the leaf vertices vmin and vmax of T” are ¢-extreme and

(2) T’ only intersects the track of the third leaf vertex vyiq either to the
left or right of vyiq.

Provided these invariants hold, we keep placing the next vertex v adjacent to
Umia in T —T" one space to the left or right of T” at z-coordinate v, depending on
which side of the track of vmiq that 7’ intersects. By (2), 77 does not intersect one
side of the track of vy,;q. Whenever we draw from v to w (in this case w = viiq),
we bend the edge at (vg, ¢(w)—1) if ¢(v) < ¢(w) and at (va, ¢(w)+1) otherwise.
We keep doing this until v becomes ¢-extreme. Either vy, or vpa.x becomes
Umid. Since that vertex was previously ¢-extreme by invariant (1), 7’ now only
intersects its track either to the left or right, maintaining invariant (2).

We start drawing 7' until both invariants hold for 7". Place r at (07 (;5(7“)). Let
{u,v,w} be the neighbors of r in T. Let Umin, Vmia and vmax be these vertices
such that ¢(vmin) < ¢(Umia) < A(vmax). If ¢(vmin) < G(r) < G(Vmax), drawing
edges from r to vertices at (—1, (;5(1)min))7 (1, (;S(vmax))7 and (27 (;S(vmid)) satisfies
both invariants. In this case, we can also add a straight-line edge between any
one pair of {u, v, w}. Otherwise, suppose w.l.o.g that ¢(r) < ¢(vmin). Let {a,b,c}
be the ¢-maximal vertices of the portions of the chains in T from r to the point
each chain crosses the track of r such that ¢(a) > ¢(b) > ¢(c). Assume w.l.o.g.
that w is first vertex of the chain with a. There are two cases:

(i) If edge (v,w) is not in G, assume w.l.o.g. edge (u,w) is in G. Extend the
chain starting with uw to the right of r until it reaches a becoming vy ax-
Place v one right of ¢ with an edge bend at (vw, o(r) + 1).

(ii) If edge (v, w) is in G, then assume w.l.o.g. v is the first vertex of the chain
with b. Extend this chain to the right until it reaches b. Place u one right
of b with an edge bend at (uw7 o(r) + 1) and continue to extend the chain
to the right until it reaches a becoming vy ax.

Place w at (—1, ¢(w)) and extend the chain to the left until it becomes vmin.
Edge (u,w) or (v,w) can be drawn with a straight-line edge since u or v is one
right of r. In both cases, invariants (1) and (2) hold; see Fig. [6l

If an edge connects two leaf vertices to form a cycle C' in T, we first draw
subtree T in which two leaf vertices Cmin a0d Cpax OF T are the ¢-extreme vertices
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(a) (b) (©)

Fig. 6. Examples of three 1-CE3-Ss on 16 x 16 grids. The only difference is the edge
between one pair of the three vertices adjacent to the root. If this edge is incident to
u, the first vertex along chain with the vertex a, case (i) applies as in (a) and (b).
Otherwise, case (ii) applies as in (c).

of C. The above algorithm ensures the other chain of T only intersects the
tracks of cpin and cpax to the right or left, blocking one direction, but not both.
Whichever ¢pin Or Cpax is leftmost or rightmost of ’f’, say that cpiy, is rightmost,
we extend the rest of C' from ¢y, right until reaching v adjacent to ¢pax. Then
we draw an edge from v to ¢pax with a bend at (v,;7 O(Cmax) — 1). a

We next give a similar realization of a 2-C E 3-S with bends—the difference being

that most edges are straight except for one or two edges that might require a
bend.

Lemma 8. An n-vertex 2-connected extended degree-3 spider can be planarly
realized in O(n) time on an n X n grid for any labeling.

Proof. Let ¢ be a labeling of a 2-CE3-S G. If G is merely a cycle C, then C
can be planarly realized on an n x n grid with one edge bend. Begin with the
¢-maximal vertex vy at the first position and proceed left to right placing each
subsequent vertex in the cycle one to the right of the previous one until reaching
the last vertex vy that is also adjacent to v1. The edge v1—vy requires only one
bend directly above vy routing the edge above all the other vertices.

By Definition Bl a 2-CE 3-S is at worst a cycle with a kite edge between v and
v with common neighbors {s, ¢} connected by edge s—t such that ¢(s) > ¢(t). If
s and t are ¢-extreme, then we can draw the cycle without ¢ starting from s and
ending with v as above and place t below s drawing the straight edges s—t and
t—u. Then we draw t—v with a bend directly below v and route the edge below
all the others; see Fig. [fa). Otherwise, either s or ¢ is not ¢-extreme in which
case the other ¢-extreme one is used to draw the cycle so as to not end with u or
v; see Fig. [[(b). Suppose that s is not ¢-maximal, then ¢ can be placed directly
below s and the three additional edges can be added as straight edges. a

We can remove the bends on the edges by stretching the layout which yields the
next corollary; the full proof can be found in [6].
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(b)

Fig. 7. Planar realizations of two 16-level 2-CE 3-Ss on 16 x 16 grids illustrating the
two cases in which s and ¢ are ¢-extreme

Corollary 9. An n-vertex 1-connected extended degree-3 spider with radius r
can be straight-line planarly realized in O(n) time on an O(r!3") x n grid for
any labeling, whereas, an n-vertex 2-connected extended degree-3 spider can be
straight-line planarly realized in O(n) time on an n? x n grid for any labeling.

Combining Lemmas Bl [0 [7l B and Corollary @ we have our first theorem.

Theorem 10. Any graph from P has a simultaneous geometric embedding with
a strictly monotone path for any labeling.

4 Forbidden Graphs

We give seven forbidden graphs F := {T3, Ty, G5, G, Go, Gs, G} that do
not always have a simultaneous geometric embedding with a strictly monotone
path; see Fig.[8l For each we provide a labeling that forces self-crossings. As noted
previously for a given labeling, a graph has a straight-line planar realization if
and only if it also has a planar realization that allows edge bends provided the
edges remain strictly monotone [4]. Hence, it suffices to only consider straight-
line edges in this section.

v i X

Fig. 8. The seven forbidden graphs of F
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(@) G; (b) Gg () G, (@) G, (e) Gs

Fig.9. Labelings that force self-crossings for Gs, Gs, Go, Gk, and Gs

Lemma 11. There exist labelings that prevent each graph in F from having
planar realizations on tracks.

Proof. The labelings of Tg and Ty were shown not to have planar realizations
in [5]. We need to do the same for the labelings of the remaining five graphs in
F given in Figure

Let C denote the chain a—b—c—d—e, which is highlighted in each of the graphs
in Figure[d Observe that ¢(a) > ¢(d) > ¢(c) > ¢(b) > ¢(e) in which C forms an
backwards ‘N’. If the rest of C intersects the track of ¢ only on the left or right of
¢, then some part of the chain a—b—c must cross the chain c—d—e. Hence, we only
need to consider embeddings in which ¢ lies between the edge a—b and d—e, i.e.,
one of those edges intersect the track of ¢ to the left, while the other intersects
on the right. To avoid a self crossing of C', a=b must intersect the tracks of ¢ and
d on the same side of both vertices. The same goes for the d—e intersecting the
tracks of b and ¢ on the same side. So we can assume w.l.o.g. that a—b intersects
the tracks of ¢ and d to the their left while d—e intersects the tracks of b and ¢
to the their right as is the case in all the figures.

For G5, ¢ and d being on the same side of a—b means that the edge b—d
must also lie between the two edges. The only question is whether b—d intersects
the track of ¢ to the left or right. If it is to the left, then b—d must cross a—c,
otherwise, it must cross c—e as in Fig. [@(a).

For Gg, from the assumptions, the edge c—f either crosses

(i) a=b if it intersects the track of b to the left since c is right of a-b,
(ii) d—e if it intersects the track of e to the right since c is left of d—e,
(iil) b—e otherwise since it must intersect the track of b to the right and e to
the left as in Fig. Q(b).

In G,, Gs and G, for c—=f and c—g to avoid crossing C, c—f must intersect
the track of d to the left while c—g must intersect the track of b to the right.
Since ¢(f) > ¢(a) > ¢(e) > ¢(g) in G, and G, c—f must intersect the track
of a to the right while c—¢g must intersect the track of e to the left. However, in
Gs o(a) > ¢(f) > ¢(g) > ¢(e) so that a—b must intersect the track of f to the
right while d—e must intersect the track of g to the left.
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This means in G, for a—e to avoid crossing C, as in Fig. B(c), it must either
intersect the track of d to the right in which case it must cross c—f or b to the
left in which case it must cross c—g.

This also means in G, if b—d intersects the track of ¢ to the right as in Fig.0Ql(d),
it will cross ¢—g. Otherwise, b—d will cross c—f.

Finally, in Gs if f—g intersects the track of ¢ to the right as in Fig. @(e), it
will cross c—=d—e. Otherwise, f—g will cross a—b—c. O

Corollary 12. A graph containing a subgraph homeomorphic to a graph in F
does not have a simultaneous geometric embedding with a strictly monotone path
for all labelings.

Proof. We provide a labeling ¢ of a graph G containing a subgraph homeomor-
phic to a graph G € F. Let h be the homeomorphism that maps an edge in G
to a path in G and a vertex in G to the endpoint of such a path in G. Label
the vertices of G using the appropriate labeling ¢’ from Lemma [[I] that forces
a self-crossing in G. We maintain the same relative ordering of the labels in G
as in G. In particular, we want ¢(h(u)) < ¢(h(v)) if and only if ¢/ (u) < ¢'(v)
for each edge (u,v) in G. For each path h((u,v)) = py,.) = vi=va= =), in G
that corresponds to an edge (u,v) in G, we want ¢(v1) < ¢p(va) < --- < H(vy)
if ¢'(u) < ¢'(v). We can assign the other vertices of G' not in the image of h
arbitrary labels. Then every edge (u,v) in G corresponds to a strictly monotone
path p(, ) in G preserving the nonplanarity of the realization of G. O

5 Completing the Characterization

The next lemma shows that the seven forbidden graphs of F are minimal; the
removal of any edge from any of the seven yields a graph from P.

Lemma 13. Fach forbidden graph is minimal, in that the removal of any edge
yields one or more GCs, R-2Ss, or E 3-Ss.

Proof. Showing that the removal of any edge from Ty or Ty yielded a caterpillar,
radius-2 star, or degree-3 spider, all members of P, was done in [5]. For Gj
in which a=b=d—e-c—a, a=b—c—a, b—c—=d=b, c=d—e—-c all form cycles shown in
Fig. Ba), the removal of edges b—c or c—d forms a 2-CE 3-S, while removing of
any other edge forms a GC. For Gy in which b—e—d—c forms a 4-cycle shown
in Fig. @(b), the removal of any edge leaves a GC. For G, shown in Fig. fl(c),
the removal of c=f or c—g leaves a E 3-S. Removing any other edge yields a GC.
For G, in which b—c=d=b forms a 3-cycle shown in Fig. @(d), the removal of
c—f or c—g leaves a 1-CE 3-S, while removing any other edge leaves a GC. For
Gs in which ¢=f—g—c forms a 3-cycle shown in Fig. @(e), the removal of ¢=b or
c—d leaves a GC and a lone edge. Removing a—b, d—e, or f—g leaves a GC, and
removing c—f or c¢—g leaves a degree-3 spider. g

Finally, the next theorem completes our characterization.
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Theorem 14. Fvery connected graph either contains a subgraph homeomorphic
to one of the seven forbidden graphs of F, or it is a generalized caterpillar,
radius-2 star, or a extended degree-3 spider, which form the collection of graphs
P that have simultaneous geometric embeddings with strictly monotone paths for
any labelings, the set of ULP graphs.

Proof Sketch: We sketch out the proof here; the complete proof can be found
in [6]. The high-level proof idea is to use induction on the number of edges in
which we have as an inductive hypothesis that any connected graph with fewer
than m edges that does not contain one of the seven forbidden subgraphs of F is
a GC, a R-2S, or a E3-S. As a base case are all connected graphs with two edges,
which is only the path of length 2, which is clearly a GC. Let G(V, E) be some
connected graph then with m edges. Remove a single edge e to form G’ = G—{e}
and the inductive hypothesis holds for G'. We then need to consider all the ways
of adding back in the edge e to form G’ showing that no matter what G is a
GC, a R-2S, or a E3-S or contains a copy of one of the seven graphs of 7. 0O

6 Previous and Future Work

Level planar graphs are historically studied in the context of directed graphs,
which restricts the types of levelings that can be assigned. Additionally, they are
generally considered in the context of a particular leveling such as ones given by
hierarchical relationships with an emphasis on minimizing the number of levels
required to maintain planarity. In contrast, our application of level planarity has
been in terms of the underlying undirected graph with one vertex per level with
no consideration given to minimizing levels.

Many of the problems regarding level planarity have been addressed, including
the ability to recognize a level planar graph and produce an embedding in linear
time [QT0]. However, all of these results are for a particular leveling and do
not generalize to the context of considering the level planarity of all the level
graphs induced by all possible n! labelings of a given undirected graph. Running
either of these linear time algorithms for each possible level graph leads to an
exponential running time. Using our approach we achieve this in linear time.

We gave a characterization of ULP graphs akin to Kuratowksi’s characteriza-
tions of planar graphs [I1]; we provided a forbidden set of graphs F that play
the same role with respect to ULP graphs that K5 and K3 3 play with respect to
planar graphs. Just as Kuratowksi’s theorem states that a graph is planar if and
only if it does not contain a subgraph that is a subdivision of K5 or K33, we
show a graph is ULP if and only if it does not contain a subgraph homeomorphic
to a forbidden graph of F.

The analogue of Kuratowksi’s theorem for level planar graphs are minimum
level non-planar patterns [8]. These are based on the characterization of hierar-
chies by Di Battista and Nardelli [3]. Unlike our characterization, these patterns
are not solely based upon the underlying graph, but also upon the given leveling.
The same graph with two different levelings that is level non-planar for each may
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very well match two distinct patterns since the reasons that a crossing is forced
in each can be entirely different.

Estrella et al. [5] presented linear time recognition algorithms for the class of

ULP trees. Providing the equivalent algorithms for general ULP graphs remains
for future work.
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