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Abstract. The communication problem is to select a minimal set of placed 
sensor devices in a service area so that the entire service area is accessible by 
the minimal set of sensors. Finding the minimal set of sensors is modeled as a 
vertex-cover problem, where the vertex-cover set facilitates the 
communications between the sensors in a multi-hop fashion keeping in mind 
the limited communication range and battery lifespan of all sensors. The vertex-
cover is a subset of the coverage set of sensors; therefore, we transform the 
search space from a continuous domain into a discrete domain. We encoded the 
vertex-cover problem into the evolutionary domain, where the objective 
function is to select a minimal set of sensors out of the coverage sensors to act 
as the vertex-cover set so that its communication range covers all the coverage 
sensors. The experimental results demonstrate the feasibility of our 
evolutionary approach in finding minimal vertex cover set, which is less than 
37% of total sensors used as communication sensors, in under 14 seconds with 
100% coverage of the sensor nodes in wireless sensor network. 

Keywords: Wireless sensor network, communication, vertex cover, discrete 
space, optimization, evolutionary approach. 

1   Introduction 

The wireless sensor network (WSN) has emerged as a promising platform to monitor an 
area with minimal human interventions. Advancements in low-power micro-electronic 
circuits, wireless communications, and operating systems have made WSN into feasible 
platforms that are used in many applications. Initially, the WSN applications were 
dominated and funded by the military applications, such as monitoring the activity in a 
battle field. Now, many civilian applications, such as environmental and habitat 
monitoring have emerged to benefit from the usage of WSN. 

There are two core problems that should be considered by deployment of any 
wireless sensor networks. These problems are the coverage and communication 
problems. The coverage problem is to place sensor devices in a service area so that 
the entire service area is covered. In a previous work [17], we proposed a heuristic 
model that maps the coverage problem into two sub-problems: floorplan and 
placement, which are mimicking the placement and integration modules of integrated 
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circuit (IC) into a circuit board. The floorplan problem is to divide the circuit board 
into well-defined geometric cells, and then the placement problem determines the best 
cells to place the IC modules into them with minimal total wire connections. A 
combined optimization of floorplan and placement was coded in an evolutionary 
approach and found good coverage solutions as defined by the measure of quality of 
coverage [18]. 

In this work we focus on the communication problem, which will assume that 
sensor networks consist of two types of sensor devices. The first type of sensors 
(coverage sensors) is responsible for sensing/monitoring the surrounding 
environment, and generates data packets periodically. Those are the sensor devices 
that we got as a result of applying our evolutionary coverage algorithm. They are also 
responsible for forwarding the data they receive from other sensors towards a second 
type of sensors (named communication sensors). Communication sensors are respon-
sible for collecting all the data generated by the coverage sensors. Communication 
sensors have sufficient processing capability and more power supply that make their 
communication ranges cover the whole service area. One of the challenges imposed 
by such sensor networks, is the communication sensor placement problem. We define 
the communication sensor placement problem as how to select the minimal number of 
communication sensors out of the set of the coverage sensors while maximizing the 
communication range of the communication sensors in the service area taking into 
consideration the traffic intensity distribution in the area.  Communication sensors 
have significant impact on sensor network performance. Despite its significance, 
results on this problem remain limited, particularly theoretical results that can provide 
performance guarantee. 

In this work, we develop a heuristic algorithm that is based on the vertex cover 
approach. The vertex cover problem is the optimization problem of finding a vertex 
cover of minimum size in a graph, where we assume that each vertex cover represents 
a communication sensor and the covered nodes are the rest of the coverage sensors. 
Finding the minimum vertex cover is an NP-complete problem. However, by using 
some heuristics we can obtain a vertex cover set, which is in the worst case at most 
twice that of the optimal. Our algorithm provides solutions specifying coverage 
sensors that can be used as communication sensors and minimizes the number of the 
communication sensors, while providing a satisfactory quality of service to the users. 
This is accomplished by trying to cover the largest set of the coverage sensors, and 
hence covering a maximum possible part of the service area. The goodness of a 
solution depends on how it minimizes the number of the communication sensors 
while maximizing the communication coverage of the sensors in the service area. In 
the rest of the paper, we will use the terms base stations and communication sensors 
interchangeably. 

The rest of the paper is organized into five sections. Section 2 describes the related 
work with respect to the coverage problem and communication problem in wireless 
sensor networks. Section 3 contains the mathematical formulation of the 
communication problem. Section 4 describes our evolutionary approach in solving the 
communication problem. Section 5 illustrates our experimental results generated by 
the proposed evolutionary methodology. Section 6 contains the conclusion and future 
directions. 
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2   Related Work 

Recently, many researchers have been investigating and developing deployment 
strategies that give the optimal base stations placement for guaranteed coverage, 
connectivity, bandwidth and robustness, taking into consideration numerous factors 
such as traffic density, channel condition, interference scenario, the number of base 
stations, …etc. The objectives are either minimizing the number of base stations 
deployed, minimizing the total cost, minimizing the energy consumption, or 
maximizing the number of served sensors by a base station, maximizing network 
lifetime, and maximizing the network utilization. 

Therefore, many researchers have focused their efforts on reducing network traffic 
of these sensor networks [2, 5, 7, 11, 12, 15]. Many other researchers have focused on 
minimizing the number of base stations [2, 5, 8, 13, 16], where others used a 
predefined fixed number of base stations [1, 9, 11, 12, 14]. Also, some researchers 
have focused on maximizing the number of sensors served by a base station [3]. 
However, most of the above researches have assumed that the number of sensors 
served by any base station is fixed [1, 2, 5, 9, 12]. 

The base stations in these applications may be arranged in wired networks, and 
may in general pose considerable technical problems in data processing, 
communication, and management. The base stations can also be arranged into 
wireless networks. This even pose more technical challenges because of their 
dynamic structures and more constrained energy and bandwidth capabilities. Thus, 
the base stations placement has been formulated in various ways.  

The strategy reported in [1] aimed to find a base station configuration that ensures 
each user to communicate with a satisfactory signal to-interference ratio (SIR) in a 
wireless CDMA system. The solution is guaranteed to be optimal and considered 
coverage, capacity and cost but not interference. The work in [2] is an adaptation to 
the recent bio-inspired optimization approach, Particle Swarm Optimization (PSO), to 
form a suitable algorithm that converges with a faster rate than genetic algorithms. 
Two important factors are considered simultaneously, coverage and economic. 
Another work in [3] describes an application of combinatorial optimization to the 
problem of designing cellular mobile telephone wireless networks. The goal of the 
network design problem is to cover the maximum number of subscribers in an 
effective and efficient manner. Work [6] focuses on the problem of where to place 
base stations to yield high capacity and efficiency in term of channel quality and 
spectral. One of the key objectives is to allow many users to co-exist in a relatively 
small area while maintaining spectral efficiency, system capacity and channel quality. 
New dynamic base station selection technique for overlapping cell placement based 
on robust traffic performance for personal communication systems in fluctuating and 
heavily tapered traffic is suggested in [7]. The proposed technique improves the 
blocking probability and carried traffic performance. It enhances the robustness of a 
system for congested traffic due to moving of the subscribers even if the base station 
has few channels. The authors in [8] addressed the problem of placing the sensor 
nodes, relay nodes and base stations in the sensor field such that each point of interest 
in the sensor field is covered by a subset of sensors of desired cardinality. Several 
deployment strategies to determine optimal placement of the nodes for guaranteed 
coverage, connectivity, bandwidth and robustness are considered in this paper.  
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The authors of paper [9] have studied two phases of installation process, the 
placement of the base stations and assignment of frequency channels in WLAN 
networks. They aimed to reduce installation costs, minimize interferences of signals 
between channels and improve the network throughput. The processes that have been 
taken to choose the best placement of base stations are to map the demand area by 
dividing it into small quadrangular pieces of demand points. Next, choose candidate 
locations that offer low cost of installation and good attendance area. Then signal 
measurement for the signal level received by each candidate base station on each 
demand point. Finally, they defined the computational model which is developed 
using integer linear programming computational model. Limited number of base 
stations and candidate locations are used. The strategy represented in [10] aimed to 
find optimization methods for base station placement in wireless applications. The 
authors suggest that Nelder-Mead method or some other direct search method will be 
highly effective for many formulations, particularly as reliable problem-specific 
initialization heuristics are developed. A set of non linear programming models are 
developed based on the Hooke and Jeeves method, quasi Newton, and conjugate 
gradient search algorithms to search the optimal location of transmitters to serve 
specified distributions of receivers. In [12] the authors considered an alternate 
objective, that is, to determine the base station positions and transmission power 
levels so as to maximize the minimum throughput among the mobiles, according to 
their study both of them determine the coverage area and the signal to interference 
ratio, and hence influence the system capacity. In [13] an approach for automatic base 
station placement is presented. An optimization strategy forms the core of the 
automatic process which not only determines the number of base stations and their 
locations but also base station configurations. It aims at designing a high-quality 
network that guarantees the system performance; i.e. meets the requirement of the 
coverage capacity, and interference level, while trying to minimize the required 
bandwidth and the cost involved in building such a network. The number of base 
stations and their locations and the transmissions power are defined. In [15] the 
authors analyzed the problem of automatic base station placement and used a 
hierarchical approach to solve the problem. A fuzzy expert system was developed to 
determine the optimal base station parameters. A numerical experiment was made for 
adjusting the transmitted power to reduce the interference and to distribute traffic 
equally to the cells so that the frequency cost is minimized. The objective function 
was based on several weighted factors, such as covered area, interference area, and 
mean signal path loss. The authors in paper [16] have developed a computer aided 
planning tool known as POPULAR, which stands for a planning of Pico cellular 
radio. Planning must take into account the specifics of radio wave propagation at the 
installation site. POPULAR computes the minimal number of base stations and their 
locations given a blueprint of the installation site and information about the wall and 
ceiling materials. The internal technique within POPULAR, depends on the number 
of assigned test points inside the building to be covered. 

In this work, we consider similar formulation of the coverage problem as discussed 
in [17, 19, 20]. However, we have assumed that the cell size is not fixed, and the 
service area can be floorplanned in arbitrary ways. Also, we used object-oriented 
classes to represent chromosomes and their genes. Our evolutionary methodology is 
attached with a sensor device library with heterogeneous features, such as the radius 
of coverage (ranging from 1 meter to 50 meters) and cost (ranging from $50 to 
$1000). 
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3   Communication Problem Formulation 

We are given a two-dimensional service area (A) with width (W) and height (H) as 
shown in Figure 1. The service area is an obstacle-free. Also, the service area A is 
already divided into M x N cells, where each cell can possibly contain a sensor device 
at its center of mass. All the centers of mass represent demand points, which were 
considered as the candidate locations for the sensor devices for the coverage problem. 
Thus, a set of placed sensors for the coverage problem, B, is given as an input to the 
communication problem. Each element in the set B is a tuple, bi, consisting of six 
ordered parameters, bi = <Sj, CMxN, RC, SC, CR, BL>. The parameter Sj refers to the 
sensor identification, which was allocated from the sensor device library S. The 
parameter CMxN represents the physical cell location of the placed sensor within the 
service area. The indices M and N refer the column and row numbers respectively of 
the floorplan of the service area, as shown in Figure 1. The parameter RC indicates 
the radius of coverage in meters of the placed sensor Sj. The parameter SC refers to 
the initial installation and deployment cost in Dollars ($) of the placed sensor Sj. The 
parameter CR refers to the communication radius that the radio signal within the 
placed sensor (Sj) can reach in meters. The range of CR varies with the consumption 
of power. The last parameter BL indicates the current battery level of the placed 
sensor Sj. 
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Fig. 1. A service area to be monitored by WSN 

Also, the total coverage (TC), which represents the ratio of the total non-
overlapping of all placed sensors’ radius of coverage over the total area of service 
area (WxH), is given as an input to the communication problem. The communication 
problem is to determine a minimal subset C of B (C ⊆ B) such that the 
communication radiuses (CRs) of all selected sensors (vertex covers) within B can 
reach all other sensors in Ĉ = B – C; moreover, the sensors in Ĉ should be as far as 
possible away from the radius of coverage of all selected vertex covers in C, as  
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Fig. 2. The relationship between the communication and coverage ranges of s vertex-cover 

illustrated in Figure 2. There are three possible relations between the communication 
radius (CR) and the radius of coverage (RC) of a sensor: 

1. CR = RC, 
2. CR < RC, and 
3. CR > RC. 

The first two relations, where the communication radius is equal or less than the 
radius of coverage respectively, are not considered in this paper. According to the 
leading company in the development of WSN [21], the relations 1-2 are not 
considered due to their impractical usage in the field. In this paper, we considered  
the third relation (CR > RC), where the communication radius is greater than the 
radius of coverage (sensing range). If a sensor is selected as a vertex cover, then  
there should be a minimal number of sensors in its sensing range (within the  

white-circle 2RC×π ) as illustrated in Figure 2. Also, all the sensors within the 

shaded circle ((π × CR2) − (π × RC2)) can be bound to the vertex cover Si. Our 
objective function is to achieve a minimal vertex cover set as stated in Equation (1). 

kδ represents an allocation variable of a vertex cover; kδ  = 1 indicates that a sensor 

device k has been allocated to be used as a vertex cover. This objective function is 
subject to a set of constrains (2), (3), (4), (5), (6), (7) and (8). 

∑
∈Bk

kδmin  (1) 
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Constraint (2) ensures that the cardinality of the vertex cover set C is bound 
between one and the cardinality of the entire sensors set B divided by some given 
value (z). Constraint (3) ensures that each sensor, which is not selected as a vertex 
cover, must be bound to at least one vertex cover. jk ,ω  is a binding variable; jk ,ω  = 

1 indicates that a sensor j is bound to a vertex cover k. Otherwise, the sensor j is 
bound to different vertex cover. Constraint (4) ensures that the bound sensors to an 
allocated vertex cover are restricted between a lower (L) and upper (U) values. The 
values of L and U are determined by the designers, and also they are used to create a 
load-balance workload for each vertex cover. Constraint (5) ensures that the number 
of sensors located within the sensing range of a vertex cover is minimized and cannot 
be more than the total number of vertex cover sensors. Moreover, Constraint (6) 
ensures that a sensor is located within the communication range of its vertex cover 
excluding its sensing range. Constraint (7) ensures that the coverage ranges of two 
vertex cover sensors are not overlapping, hence, ensures that no vertex cover sensor is 
located within the sensing range of another vertex cover sensor. Finally, Constraint 
(8) defines the allocation (δ ) and binding ( ω ) variables as a Boolean. 

4   Evolutionary Approach for Solving the Communication 
Problem 

The selection problem of communication sensors requires an enormous computational 
effort to achieve optimal solutions. Therefore, we have selected the Genetic 
Algorithm (GA) to search the discrete design space for good solutions. GA uses a 
population of chromosomes, which represent the candidate solutions, to evolve 
toward better solutions. Through some genetic operators such as a mutation and 
crossover, these chromosomes would reach the optimum or near-optimum solutions. 
The evolution process starts from a population of chromosomes generated by 
applying the coverage algorithm, and occurs over a number of generations. In each 
generation, multiple chromosomes are stochastically selected from the current 
population, modified using different operators to form a new offspring, which 
becomes the new chromosomes in the next iteration of the algorithm. The basic 
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structure of GA, as shown in Figure 3, is a powerful search technique that is used to 
solve many combinatorial problems. 

The genetic algorithm starts with an initial population P (t=0) of solutions encoded 
as chromosomes. Each chromosome is made of a sequence of genes and every gene 
controls the inheritance of specific attributes of the solution's characteristics. A fitness 
function measures the quality of the chromosome (number of communication sensors, 
and number of sensors covered by their sensing and communication ranges). A fit 
chromosome suggests a better solution.  In the evolution process relatively fit 
chromosomes reproduce new chromosomes and inferior chromosomes die. This 
process continues until a chromosome with desirable fitness is found. These selected 
chromosomes, known as parents, are used to reproduce the next generation of 
chromosomes, known as offspring. 

 
Genetic Algorithm: 
1 begin 
2 t = 0; 
3 initialize chromosomes P(t); 
4 evaluate chromosomes P(t); 
5 while (termination conditions are unsatisfied) 
6 begin 
7  t = t + 1; 
8  select P(t) from P(t-1); 
9  mutate some of P(t); 
10  crossover some of P(t); 
11  evaluate chromosomes P(t); 
12 end 
13 end 

Fig. 3. The basic structure of Genetic Algorithm 

The evolution process involves two genetic operations namely, mutation and 
crossover.  A mutation operator arbitrarily alters one or more genes of a randomly 
selected chromosome. The intuition behind the mutation operator is to introduce a 
missing feature in the population. Our mutation replaces an existed communication 
sensor device with a new one from the list of coverage sensors. 

A crossover operator combines features of two selected chromosomes (parents) to 
form two similar chromosomes (offspring) by swapping genes of the parent 
chromosomes. The intuition behind the crossover operator is to exchange information 
between different potential solutions. 

4.1   Chromosome Representation 

We represent a solution of communication sensors selection problem as three object-
oriented link lists, as shown in Figure 4. The first link-list represents the population, 
which contains all chromosomes. The second link-list, which is attached with every 
chromosome class, represents how many sensor devices have been allocated and 
bound to a chromosome. The third link-list, which is attached with every chromosome 
class, represents the vertex cover nodes. 
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We combined all chromosomes in the population of size P into one data structure, 
which comprises of one link list representing all chromosomes and each chromosome 
has one link list representing all its genes, where each gene symbolizes a sensor 
device that is allocated as a base station. Two types of nodes are declared as two 
different classes, where first class represents a chromosome’s attributes and the 
second class represents a gene’s features. Also, we maintain a dynamic matrix to 
illustrate all cells and demand points. 

 

Fig. 4. A population of Chromosomes 

5   Experimental Results 

To test our evolutionary methodology for the communication problem in wireless 
sensor networks, we first ran our previously developed code for the coverage problem 
to find a good solution to the coverage problem of a sensor wireless network. We 
have coded the coverage within WSN using the evolutionary methodology, which 
searches for good solutions using JAVA as a programming language. For this 
experiment, we assigned the population size, the number of generations, the crossover 
rate and mutation rate to be 100, 1000, 0.45, and 0.25 respectively. The budget 
threshold C is set to $150,000, and we have used a cell size of 30 meters by 30 
meters; moreover, we maintained 10 cells by 10 cells as a service area.  We choose 
the solution that consisted of 45 sensors with an average cost of $25,334, and an 
average coverage ratio of 86.71% of the service area. The coverage ratio represents 
the total amount of service area that is covered by the sensing range of the sensor 
devices. Next, we ran our developed methodology for the communication problem on 
the previous network setup to pick up the least number of the coverage sensors as 
vertex cover (communication) sensors that would have the maximum communication 
ratio. The communication ratio represents the total number of coverage sensors that 
are covered by the communication range of the sensor devices considered as vertex 
cover (communication) sensors. 
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For the next experiments, we started by assuming that all the coverage sensors are 
considered as communication sensors (vertex covers). Hence, 100% of the coverage 
sensors are covered by the vertex covers, i.e., the communication sensors would have 
the exact same coverage ratio as the coverage sensors. Then, we applied our 
evolutionary methodology to reduce the number of required vertex covers, while 
maintaining the exact same coverage ratio. To achieve such a coverage ratio, we only 
used the mutation operation that removes or replaces a vertex cover sensor from a 
solution if and only if the 100% coverage ratio is not affected. In addition, we have 
ignored the crossover operation, since we cannot guarantee that we end up with a 
solution that has 100% coverage ratio as we started with. All the experiments are 
executed on a PC platform and each experimental run for 1000 generations of the 
communication problem took under 14 seconds. Moreover, in all of our experiments, 
as the number of generations increased, the behavior of our algorithm changed and 
then it reaches a plateau after 240 generations. In each of the Figures 5, 6, and 7, we 
illustrate six curves that tracked the average behavior of the whole population with 
respect to the number of vertices chosen as vertex covers and how many other vertex 
covers are in their communication range. This behavior is measured as the number of 
generations increased. 

 

Fig. 5. Relation between the average percentage of coverage sensors chosen as vertex covers, 
the average percentage of coverage sensors covered by the vertex covers and the number of 
generations 

Figure 5 illustrates two curves that tracked the behavior of the whole population 
with respect to the average percentage of coverage sensors chosen as vertex covers, 
and the average percentage of coverage sensors covered by the vertex covers.  As the 
number of generations increased, the average number of coverage nodes chosen as 
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vertex covers decreased from 100% of the coverage sensors to around 16% of the 
coverage sensors. In addition, the second curve illustrates that our methodology 
managed to cover all the coverage sensors by the set of the vertex covers (100% 
coverage ratio) as the number of generations increased. The average ratio of the 
number of vertex covers out of the total number of coverage sensors was around 37% 
and those vertex covers covered 100% of the original 45. 

In Figure 6, the curve tracked the behavior of the whole population with respect to 
the average number of vertex covers in the range of other vertex covers. Since we 
began with a solution that considers every coverage sensor as a vertex cover, and 
given the communication ranges of those vertex covers, a large percentage of the 
vertex cover sensors are covered by the communication ranges of other vertex covers. 
However, as the number of generations increased, this ratio dropped to almost 0%. 
Thus, our methodology was able to optimize the solution to a minimum set of vertex 
covers that cover the whole coverage sensors and at the same time they do not cover 
each other by their communication ranges (i.e., minimized their intersections.) 

 

 
Fig. 6. Relation between the average number of vertex covers in range of other vertex covers 
and the number of generations 

Figure 7 illustrates three curves that track the best, the average, and the worst 
percentage of sensors chosen as vertex covers as the number of generations increased. 
All the three curves show a consistent behavior of our methodology in choosing the 
optimum number of sensors as vertex covers, and that the number of VCs decreases 
with the increasing number of generations. We concluded from these early 
experiments that our methodology managed to produce a near optimal number of 
vertex cover sensors that cover all the coverage sensors, and this was accomplished in 
less than 14 seconds. 



646 M. Safar and S. Habib 

 

Fig. 7. Relation between the best, average and worst number of vertex-cover sensors and the 
number of generations 

 

Fig. 8. A snapshot of the Sensor CAD Visualizer, which shows that after 631 generations of 
applying the coverage GA found 45 sensors as the best coverage at a cost of $30,430 while 
having a coverage ratio is equal to 99% 
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Fig. 9. A snapshot of the Sensor CAD Visualizer, which shows that after 200 generations of 
applying the communication GA found 8 sensors as the best vertex-cover sensors that cover all 
coverage sensors 

Finally, in Figures 8 and 9 we show snapshots of our Sensor CAD Visualizer. It 
provides a graphical user interface that lets the user control the genetic algorithm, 
visualizes the solutions graphically, shows how it would look like in real life, and lets 
you go through different generations that were produced by the GA. Figure 8 shows 
the result of applying our evolutionary coverage GA, while Figure 9 shows the result 
of applying our evolutionary communication GA. 

6   Conclusion and Future Directions 

We have extended our previously proposed model for the coverage problem in the 
wireless sensor networks by introducing a new model for the communication 
problem.  As with the coverage model, our communication modeling has reduced the 
solution space into a discrete optimization problem so that it can achieve the 
maximum communication possible with the least number of the coverage sensors 
(i.e., vertex covers) and at the same time guarantees that all the coverage sensors are 
covered by the vertex covers. Our early experiments with our new evolutionary model 
demonstrate very promising results. We will continue to improve our methodology by 
trying to solve both the coverage and communication problems simultaneously, and 
hence try to increase the transmission power during the coverage problem while 
reducing the energy utilization and reducing the over all cost of constructing the 
sensor network. Furthermore, we want to run our evolutionary communication GA 
using both the mutation and crossover operations. We want to study the effect of 
using both operations on the number of vertex cover sensors and the time required to 
get such optimal solution. 
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