Random Geometric Graph Diameter in the Unit Disk with ℓ_p Metric Extended Abstract

Robert B. Ellis^{1,*}, Jeremy L. Martin^{2,**}, and Catherine Yan^{1,***}

 ¹ Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA {rellis,cyan}@math.tamu.edu
² School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, MN 55455, USA martin@math.umn.edu

Abstract. Let n be a positive integer, $\lambda > 0$ a real number, and $1 \le p \le \infty$. We study the *unit disk random geometric graph* $G_p(\lambda, n)$, defined to be the random graph on n vertices, independently distributed uniformly in the standard unit disk in \mathbb{R}^2 , with two vertices adjacent if and only if their ℓ_p -distance is at most λ . Let $\lambda = c\sqrt{\ln n/n}$, and let a_p be the ratio of the (Lebesgue) areas of the ℓ_p - and ℓ_2 -unit disk. Almost always, $G_p(\lambda, n)$ has no isolated vertices and is also connected if $c > a_p^{-1/2}$, and has $n^{1-a_pc^2}(1+o(1))$ isolated vertices if $c < a_p^{-1/2}$. Furthermore, we find upper bounds (involving λ but independent of p) for the diameter of $G_p(\lambda, n)$, building on a method originally due to M. Penrose.

1 Introduction

Let D be the Euclidean unit disk in \mathbb{R}^2 and n a positive integer. Let V_n be a set of n points in D, distributed independently and uniformly with respect to the usual Lebesgue measure on \mathbb{R}^2 . For $p \in [1, \infty]$, the ℓ_p metric on \mathbb{R}^2 is defined by

$$d_p((x_1, y_1), (x_2, y_2)) = \begin{cases} (|x_2 - x_1|^p + |y_2 - y_1|^p)^{1/p} & \text{when } p \in [1, \infty) \\ \max\{|x_2 - x_1|, |y_2 - y_1|\} & \text{when } p = \infty \end{cases}$$

For $\lambda \in (0, \infty)$, the unit disk random geometric graph $G_p(\lambda, n)$ on the vertex set V_n is defined by declaring two vertices $u, v \in V_n$ to be adjacent if and only if $d_p(u, v) \leq \lambda$. In addition to their theoretical interest, random geometric graphs have important applications to wireless communication networks; see, e.g., [1–3].

Together with X. Jia, the first and third authors studied the case p = 2 in [4]. In this extended abstract, we generalize to arbitrary p those results of [4]

^{*} Partially supported by NSF grant DMS-9977354.

^{**} Partially supported by an NSF Postdoctoral Fellowship.

^{***} Partially supported by NSF grants DMS-0245526 and DMS-0308827 and a Sloan Fellowship. The author is also affiliated with Dalian University of Technology.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 167–172, 2004.

[©] Springer-Verlag Berlin Heidelberg 2004

concerning connectedness and graph diameter. Complete results with proofs will be included in a forthcoming paper.

We will say that $G_p(\lambda, n)$ has a property *P* almost always if

 $\lim_{n \to \infty} \Pr\left[G_p(\lambda, n) \text{ has the property } P\right] = 1 \; .$

Denote by $B_p(u, r)$ the ℓ_p -ball of radius r with center $u \in \mathbb{R}^2$. It is not hard to show that the area of $B_p(u, r)$ is $4r^2\Gamma((p+1)/p)^2/\Gamma((p+2)/p)$, where $\Gamma(\cdot)$ is the usual gamma function. We omit the calculation, which uses the beta function; see [5, §12.4]. An important quantity in our work will be the ratio

$$a_p := \frac{\operatorname{Area}(B_p(u, r))}{\operatorname{Area}(B_2(u, r))} = \frac{4\Gamma\left(\frac{p+1}{p}\right)^2}{\pi\Gamma\left(\frac{p+2}{p}\right)}$$

By another elementary calculation, the ℓ_p -diameter of the unit disk D is

diam_p(D) :=
$$\max_{u,v\in D} \{ d_p(u,v) \} = \begin{cases} 2^{1/2+1/p} & \text{when } 1 \le p \le 2 \\ 2 & \text{when } 2 \le p \le \infty \end{cases}$$

The diameter is achieved by the points $(\sqrt{2}/2, \sqrt{2}/2)$ and $(-\sqrt{2}/2, -\sqrt{2}/2)$ when $1 \le p \le 2$, and by (0, 1) and (0, -1) when $2 \le p \le \infty$.

Let $\lambda = c\sqrt{\ln n/n}$. In Sect. 2, we show that almost always, $G_p(\lambda, n)$ has $n^{1-a_pc^2}(1+o(1))$ isolated vertices when $c < a_p^{-1/2}$ and no isolated vertices when $c > a_p^{-1/2}$. Penrose [6] has shown that, almost always, $G_p(\lambda, n)$ is connected when it has no isolated points; combining this with our result, it follows that when $c > a_p^{-1/2}$, the graph $G_p(\lambda, n)$ is almost always connected.

The diameter of a graph G, denoted diam(G), is defined as the maximum distance in G between any two of its vertices. This graph-theoretic quantity should not be confused with the diameter of a geometric object with respect to the ℓ_p -metric; we will always denote the latter by diam_p. In Sect. 3, we show that if $c > a_p^{-1/2}$, then almost always diam $(G_p(\lambda, n)) \leq K/\lambda$, where $K \approx 387.17...$ is a constant independent of p. In Sect. 4, we show that when c is larger than a constant depending only on p, we have almost always diam $(G_p(\lambda, n)) \leq 2 \cdot \text{diam}_p(D)(1 + o(1))/\lambda$. In fact, there is a function $c_p(\delta) > 0$ with the following property: if $c > c_p(\delta)$, then almost always diam $(G_p(\lambda, n)) \leq \text{diam}_p(D)(1 + \delta + o(1))/\lambda$.

2 Isolated Vertices

Theorem 1. Let $1 \le p \le \infty$, let $\lambda = c\sqrt{\ln n/n}$, and let X be the number of isolated vertices in $G_p(\lambda, n)$. Then, almost always,

$$X = \begin{cases} 0 & \text{when } c > a_p^{-1/2}, \\ n^{1-a_p c^2} (1+o(1)) & \text{when } 0 < c < a_p^{-1/2} \end{cases}$$

We sketch the proof, which uses the second moment method [7] to show that the expected number of isolated vertices is $\mathbb{E}[X] = n^{1-a_pc^2}$, and that the variance is $\operatorname{Var}[X] = o(\mathbb{E}[X]^2)$. When $c < a_p^{-1/2}$, an application of Chebyshev's inequality yields $X = n^{1-a_pc^2}(1+o(1))$. Let A_i be the event that vertex v_i has degree 0. Then

$$\frac{a_p}{2}\pi\lambda^2(1+O(\lambda)) \le \operatorname{Area}\left(B_p(v_i,\lambda) \cap D\right) \le a_p\pi\lambda^2 ,$$

where the upper (resp. lower) bound is achieved when $B_p(v_i, \lambda) \subseteq D$ (resp. $B_p(v_i, \lambda) \not\subseteq D$). Conditioning on the event that $B_p(v_i, \lambda) \subseteq D$, we have

$$(1 - a_p \lambda^2)^{n-1} \leq \Pr[A_i] \leq \Pr[B_p(v_i, \lambda) \subseteq D] (1 - a_p \lambda^2)^{n-1} + \Pr[B_p(v_i, \lambda) \not\subseteq D] \left(1 - \frac{a_p}{2} \lambda^2 (1 + O(\lambda))\right)^{n-1}$$

By linearity of expectation, $\mathbb{E}[X] = n \cdot \Pr[A_i] = n^{1-a_pc^2}(1+o(1))$. The variance is $\operatorname{Var}[X] = O\left(n^{\frac{3}{2}-\frac{3}{2}a_pc^2}\sqrt{\ln n}\right)$, computed via $\Pr[A_i \wedge A_j]$, conditioned on $d_p(v_i, v_j)$. The rest of the proof is a straightforward computation.

Penrose [6, Thm. 1.1] showed that for every $t \ge 0$, the *d*-dimensional unitcube random geometric graph simultaneously becomes (t + 1)-connected and achieves minimum degree t + 1. Penrose's proof remains valid for the unit disk. The precise statement is as follows: for $t \ge 0$ and 1 , almost always,

$$\min \{ \lambda \mid G_p(\lambda, n) \text{ is } (t+1)\text{-connected} \}$$
$$= \min \{ \lambda \mid G_p(\lambda, n) \text{ has minimum degree } t+1 \}$$

Penrose's proof also works for p = 1 in dimension 2, though not for arbitrary dimension d. Combining Penrose's theorem for t = 0 with Theorem 1 yields the following.

Theorem 2. Let $1 \le p \le \infty$ and $\lambda = c\sqrt{\ln n/n}$. Suppose that $c > a_p^{-1/2}$. Then, almost always, the unit disk random geometric graph $G_p(\lambda, n)$ is connected.

3 Diameter of $G_p(\lambda, n)$ near the Connectivity Threshold

Suppose that $G_p(\lambda, n)$ is connected by virtue of Theorem 2. Usually, $G_p(\lambda, n)$ will contain two vertices whose ℓ_p -distance is close to diam_p(D), so that the graph has diameter at least diam_p(D)/ λ . It appears to be much more difficult to obtain an *upper* bound on diameter. However, there is an upper bound which is a constant multiple of the lower bound, as we now explain.

Theorem 3. Let $1 \le p \le \infty$ and $\lambda = c\sqrt{\ln n/n}$, where $c > a_p^{-1/2}$. Suppose that $K > 256\sqrt{2} + 8\pi \approx 387.17...$ Then, almost always, diam $(G_p(\lambda, n)) < K/\lambda$.

We sketch the proof of this theorem. For any two points $u, v \in D$, define

$$T_{u,v}(k) := (\text{convex hull of } B_2(u,k\lambda) \cup B_2(v,k\lambda)) \cap D$$

We impose upon this lozenge-shaped region a grid composed of squares with side length proportional to λ . Let $A_n(k)$ be the event that there exist two points $u, v \in V_n$ such that

- (i) at least one of u, v lies in $B_2(O, 1 (k + \sqrt{2})\lambda)$, and
- (ii) there is no path in $G_p(\lambda, n)$ joining u to v that lies entirely inside $T_{u,v}(k)$.

We claim that

if
$$k > 128/(\pi\sqrt{2}) \approx 28.180...$$
, then $\lim_{n \to \infty} \Pr[A_n(k)] = 0.$ (1)

Indeed, if the event $A_n(k)$ occurs, then by Penrose's argument [6, p. 162], there exists a curve L separating u and v which intersects a large number of grid squares, none of which contains any vertex of V_n (see Fig. 1). Combining this fact with a Peierls argument, as in [8, Lemma 3], leads to the bound on k given in (1).

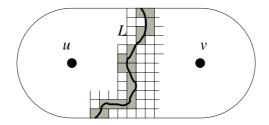


Fig. 1. Two vertices $u, v \in V_n$ which are not connected by any path in $T_{u,v}(k)$, and the "frontier" L separating them.

Let $u, v \in V_n$. If k is large enough, then (1) guarantees the existence of a path from u to v inside $T_{u,v}(k)$. Comparing the total area of $T_{u,v}(k)$ to the area of the ℓ_p -balls around the vertices in a shortest path from u to v inside $T_{u,v}(k)$, one obtains the desired diameter bound on $G_p(\lambda, n)$, completing the proof. (Minor adjustments are needed if u or v is close to the boundary of D.)

Corollary 1. Let $1 \le p \le \infty$ and $\lambda = c\sqrt{\ln n/n}$, where $c > a_p^{-1/2}$. Suppose that $K > 256\sqrt{2} + 8\pi \approx 387.17...$ Then, almost always, every two vertices u, v in the unit disk random geometric graph $G_p(\lambda, n)$ are joined by a path of length at most $Kd_p(u, v)/\lambda$ in $G_p(\lambda, n)$.

4 Diameter of $G_p(\lambda, n)$ for Larger c

By means of a "spoke overlay" construction, we improve the upper bound in Theorem 3 by increasing the constant c slightly and reducing the constant Ksubstantially. Roughly, a spoke consists of a number of evenly spaced, overlapping ℓ_p -balls whose centers lie on a diameter L of the Euclidean unit disk D. We superimpose several spokes on D so that the regions of intersection of the ℓ_p balls are distributed fairly evenly around D. The idea is that if the constant c is large enough, then, almost always, every region of intersection contains at least one vertex of V_n , so that $G_p(\lambda, n)$ contains a path joining vertices near the antipodes of D on L. The lengths of such paths, which may be calculated geometrically, give an upper bound for the diameter of $G_p(\lambda, n)$.

Definition 1 (Spoke construction). Fix $1 \le p \le \infty$, $\theta \in (-\pi/2, \pi/2]$, and r > 0. Let D be the Euclidean unit disk. For $m \in \mathbb{Z}$, put

$$u_m = u_m(r,\theta) = ((r/2 + rm)\cos\theta, (r/2 + rm)\sin\theta) \in \mathbb{R}^2$$

The corresponding spoke is defined to be the point set $U_{p,\theta}(r) = \{u_m\} \cap D$, together with a collection of ℓ_p -balls of radius $\lambda/2$, one centered at each point $u_m \in U_{p,\theta}(r)$.

The points u_m lie on the line L_{θ} through O at angle θ , and the Euclidean distance $d_2(u_m, u_{m'})$ equals r|m - m'|. By choosing r sufficiently small, we can ensure that each pair of adjacent ℓ_p -balls intersects in a set with positive area (the shaded rectangles in Fig. 2). Thus the two outermost points on each spoke are joined by a segmented path of Euclidean length approximately 2, which has approximately $2 \cdot \operatorname{diam}_p(D)/\lambda$ edges when $r = \min\{\lambda 2^{-1/2-1/p}, \lambda/2\}$.

Define $A_p^*(r, \lambda/2)$ to be the minimum area of intersection between two ℓ_p balls in \mathbb{R}^2 of radius $\lambda/2$ whose centers are at Euclidean distance r. The general formula for this quantity seems to involve integrals that cannot be evaluated exactly, except for very special cases such as $p = 1, 2, \infty$. However, for fixed r, it is certainly true that $A_p^*(r, \lambda/2) = \Theta(\lambda^2)$.

Theorem 4. Let $1 \le p \le \infty$, $\lambda = c\sqrt{\ln n/n}$, and $r = \min\{\lambda 2^{-1/2-1/p}, \lambda/2\}$. Suppose that

$$c > \sqrt{\pi \lambda^2 / (2A_p^*(r, \lambda/2))} \quad . \tag{2}$$

Then, almost always, as $n \to \infty$,

 $\operatorname{diam}(G_p(\lambda, n)) \le (2 \cdot \operatorname{diam}_p(D) + o(1))/\lambda.$

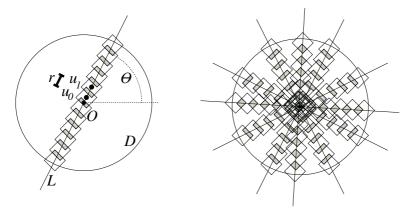


Fig. 2. The spoke overlay construction with p = 1, in the unit disk *D*. The left-hand figure shows a single spoke with parameters r, L, θ . The right-hand figure shows how spokes at different angles are superimposed on *D*.

Since $A_p^*(r, \lambda/2) = \Theta(\lambda^2)$, the lower bound (2) for c depends only on p.

We sketch the proof of Theorem 4. The spoke construction uses approximately $\ln n$ spokes $U_{p,\theta}(r)$, at evenly spaced angles. Almost always, for each spoke, every intersection of two consecutive ℓ_p -balls of radius $\lambda/2$ contains at least one vertex of V_n , provided that the bound (2) holds.

Let $v_1, v_2 \in V_n$. For i = 1, 2, by Corollary 1, there is a vertex $v'_i \in V_n$ lying inside some spoke U_i , connected to v_i by a path in $G_p(\lambda, n)$ of length $o(1/\lambda)$. Moreover, v'_i is connected to a vertex near the origin by a path consisting of vertices in $U_i \cap V_n$, lying in successive ℓ_p -balls of the spoke. Thus each of these two paths contains at most diam_p(D)/ λ vertices, and concatenating these paths gives the desired upper bound on the diameter of $G_p(\lambda, n)$.

We can make the average Euclidean distance covered in a path from v'_i to v'_j larger by increasing r. This change decreases the area of intersection of consecutive ℓ_p -balls, which in turn requires an increase in c in order to guarantee a vertex of V_n in every region of intersection. This leads to the following corollary.

Corollary 2. Let $1 \le p \le \infty$ and let $\lambda = c\sqrt{\ln n/n}$. For every $\delta \in (0, 1]$, there exists $c_p(\delta) > 0$ such that if $c > c_p(\delta)$, then $G_p(\lambda, n)$ is almost always connected, and has diameter at most $\operatorname{diam}_p(D)(1 + \delta + o(1))/\lambda$ as $n \to \infty$.

References

- Chen, X., Jia, X.: Package routing algorithms in mobile ad-hoc wireless networks. In: 2001 International Conference on Parallel Processing Workshops. (2001) 485–490
- Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor eliminationbased broadcasting algorithms in wireless networks. IEEE Trans. Parallel Distrib. Syst. 13 (2002) 14–25
- 3. Wu, J., Li, H.: A dominating-set-based routing scheme in ad hoc wireless networks. Telecommunication Systems 18 (2001) 13–36
- 4. Ellis, R.B., Jia, X., Yan, C.H.: On random points in the unit disk. (preprint)
- 5. Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge University Press (1996)
- Penrose, M.D.: On k-connectivity for a geometric random graph. Random Structures Algorithms 15 (1999) 145–164
- 7. Alon, N., Spencer, J.H.: The probabilistic method. 2nd edn. John Wiley (2000)
- 8. Klarner, D.A.: Cell growth problems. Canad. J. Math. 19 (1967) 851-863