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Abstract. Let n be a positive integer, λ > 0 a real number, and 1 ≤ p ≤
∞. We study the unit disk random geometric graph Gp(λ,n), defined to
be the random graph on n vertices, independently distributed uniformly
in the standard unit disk in R

2, with two vertices adjacent if and only
if their �p-distance is at most λ. Let λ = c

√
ln n/n, and let ap be the

ratio of the (Lebesgue) areas of the �p- and �2-unit disks. Almost always,

Gp(λ,n) has no isolated vertices and is also connected if c > a
−1/2
p , and

has n1−apc2(1 + o(1)) isolated vertices if c < a
−1/2
p . Furthermore, we

find upper bounds (involving λ but independent of p) for the diameter
of Gp(λ, n), building on a method originally due to M. Penrose.

1 Introduction

Let D be the Euclidean unit disk in R
2 and n a positive integer. Let Vn be a set

of n points in D, distributed independently and uniformly with respect to the
usual Lebesgue measure on R

2. For p ∈ [1,∞], the �p metric on R
2 is defined by

dp((x1, y1), (x2, y2)) =

{
(|x2 − x1|p + |y2 − y1|p)1/p when p ∈ [1,∞) ,

max{|x2 − x1|, |y2 − y1|} when p = ∞ .

For λ ∈ (0,∞), the unit disk random geometric graph Gp(λ, n) on the vertex set
Vn is defined by declaring two vertices u, v ∈ Vn to be adjacent if and only if
dp(u, v) ≤ λ. In addition to their theoretical interest, random geometric graphs
have important applications to wireless communication networks; see, e.g., [1–3].

Together with X. Jia, the first and third authors studied the case p = 2
in [4]. In this extended abstract, we generalize to arbitrary p those results of [4]
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concerning connectedness and graph diameter. Complete results with proofs will
be included in a forthcoming paper.

We will say that Gp(λ, n) has a property P almost always if

lim
n→∞ Pr [Gp(λ, n) has the property P ] = 1 .

Denote by Bp(u, r) the �p-ball of radius r with center u ∈ R
2. It is not hard to

show that the area of Bp(u, r) is 4r2Γ ((p+1)/p)2/Γ ((p+2)/p), where Γ (·) is the
usual gamma function. We omit the calculation, which uses the beta function;
see [5, §12.4]. An important quantity in our work will be the ratio

ap :=
Area(Bp(u, r))
Area(B2(u, r))

=
4Γ

(
p+1

p

)2

πΓ
(

p+2
p

) .

By another elementary calculation, the �p-diameter of the unit disk D is

diamp(D) := max
u,v∈D

{dp(u, v)} =

{
21/2+1/p when 1 ≤ p ≤ 2 ,

2 when 2 ≤ p ≤ ∞ .

The diameter is achieved by the points (
√

2/2,
√

2/2) and (−√
2/2,−√

2/2) when
1 ≤ p ≤ 2, and by (0, 1) and (0,−1) when 2 ≤ p ≤ ∞.

Let λ = c
√

ln n/n. In Sect. 2, we show that almost always, Gp(λ, n) has
n1−apc2

(1+ o(1)) isolated vertices when c < a
−1/2
p and no isolated vertices when

c > a
−1/2
p . Penrose [6] has shown that, almost always, Gp(λ, n) is connected

when it has no isolated points; combining this with our result, it follows that
when c > a

−1/2
p , the graph Gp(λ, n) is almost always connected.

The diameter of a graph G, denoted diam(G), is defined as the maximum
distance in G between any two of its vertices. This graph-theoretic quantity
should not be confused with the diameter of a geometric object with respect to
the �p-metric; we will always denote the latter by diamp. In Sect. 3, we show that
if c > a

−1/2
p , then almost always diam(Gp(λ, n)) ≤ K/λ, where K ≈ 387.17 . . .

is a constant independent of p. In Sect. 4, we show that when c is larger than
a constant depending only on p, we have almost always diam(Gp(λ, n)) ≤ 2 ·
diamp(D)(1 + o(1))/λ. In fact, there is a function cp(δ) > 0 with the following
property: if c > cp(δ), then almost always diam(Gp(λ, n)) ≤ diamp(D)(1 + δ +
o(1))/λ.

2 Isolated Vertices

Theorem 1. Let 1 ≤ p ≤ ∞, let λ = c
√

ln n/n, and let X be the number of
isolated vertices in Gp(λ, n). Then, almost always,

X =

{
0 when c > a

−1/2
p ,

n1−apc2
(1 + o(1)) when 0 < c < a

−1/2
p .
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We sketch the proof, which uses the second moment method [7] to show that
the expected number of isolated vertices is E[X ] = n1−apc2

, and that the variance
is Var[X ] = o(E[X ]2). When c < a

−1/2
p , an application of Chebyshev’s inequality

yields X = n1−apc2
(1 + o(1)). Let Ai be the event that vertex vi has degree 0.

Then
ap

2
πλ2(1 + O(λ)) ≤ Area (Bp(vi, λ) ∩ D) ≤ apπλ2 ,

where the upper (resp. lower) bound is achieved when Bp(vi, λ) ⊆ D (resp.
Bp(vi, λ) �⊆ D). Conditioning on the event that Bp(vi, λ) ⊆ D, we have

(1 − apλ
2)n−1 ≤ Pr[Ai] ≤ Pr[Bp(vi, λ) ⊆ D](1 − apλ

2)n−1

+ Pr[Bp(vi, λ) �⊆ D]
(
1 − ap

2
λ2(1 + O(λ))

)n−1

.

By linearity of expectation, E[X ] = n · Pr[Ai] = n1−apc2
(1 + o(1)). The vari-

ance is Var[X ] = O
(
n

3
2− 3

2apc2√
ln n

)
, computed via Pr[Ai ∧Aj ], conditioned on

dp(vi, vj). The rest of the proof is a straightforward computation.
Penrose [6, Thm. 1.1] showed that for every t ≥ 0, the d-dimensional unit-

cube random geometric graph simultaneously becomes (t + 1)-connected and
achieves minimum degree t + 1. Penrose’s proof remains valid for the unit disk.
The precise statement is as follows: for t ≥ 0 and 1 < p ≤ ∞, almost always,

min {λ | Gp(λ, n) is (t + 1)-connected}
= min {λ | Gp(λ, n) has minimum degree t + 1} .

Penrose’s proof also works for p = 1 in dimension 2, though not for arbitrary
dimension d. Combining Penrose’s theorem for t = 0 with Theorem 1 yields the
following.

Theorem 2. Let 1 ≤ p ≤ ∞ and λ = c
√

ln n/n. Suppose that c > a
−1/2
p . Then,

almost always, the unit disk random geometric graph Gp(λ, n) is connected.

3 Diameter of Gp(λ, n) near the Connectivity Threshold

Suppose that Gp(λ, n) is connected by virtue of Theorem 2. Usually, Gp(λ, n)
will contain two vertices whose �p-distance is close to diamp(D), so that the
graph has diameter at least diamp(D)/λ. It appears to be much more difficult
to obtain an upper bound on diameter. However, there is an upper bound which
is a constant multiple of the lower bound, as we now explain.

Theorem 3. Let 1 ≤ p ≤ ∞ and λ = c
√

ln n/n, where c > a
−1/2
p . Suppose that

K > 256
√

2 + 8π ≈ 387.17 . . . . Then, almost always, diam(Gp(λ, n)) < K/λ.

We sketch the proof of this theorem. For any two points u, v ∈ D, define

Tu,v(k) :=
(
convex hull of B2(u, kλ) ∪ B2(v, kλ)

) ∩ D .
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We impose upon this lozenge-shaped region a grid composed of squares with
side length proportional to λ. Let An(k) be the event that there exist two points
u, v ∈ Vn such that

(i) at least one of u, v lies in B2(O, 1 − (k +
√

2)λ), and
(ii) there is no path in Gp(λ, n) joining u to v that lies entirely inside Tu,v(k).

We claim that

if k > 128/(π
√

2) ≈ 28.180 . . . , then lim
n→∞Pr[An(k)] = 0. (1)

Indeed, if the event An(k) occurs, then by Penrose’s argument [6, p. 162], there
exists a curve L separating u and v which intersects a large number of grid
squares, none of which contains any vertex of Vn (see Fig. 1). Combining this
fact with a Peierls argument, as in [8, Lemma 3], leads to the bound on k given
in (1).

L
vu

Fig. 1. Two vertices u, v ∈ Vn which are not connected by any path in Tu,v(k), and
the “frontier” L separating them.

Let u, v ∈ Vn. If k is large enough, then (1) guarantees the existence of a path
from u to v inside Tu,v(k). Comparing the total area of Tu,v(k) to the area of
the �p-balls around the vertices in a shortest path from u to v inside Tu,v(k), one
obtains the desired diameter bound on Gp(λ, n), completing the proof. (Minor
adjustments are needed if u or v is close to the boundary of D.)

Corollary 1. Let 1 ≤ p ≤ ∞ and λ = c
√

ln n/n, where c > a
−1/2
p . Suppose that

K > 256
√

2 + 8π ≈ 387.17 . . . . Then, almost always, every two vertices u, v in
the unit disk random geometric graph Gp(λ, n) are joined by a path of length at
most Kdp(u, v)/λ in Gp(λ, n).

4 Diameter of Gp(λ, n) for Larger c

By means of a “spoke overlay” construction, we improve the upper bound in
Theorem 3 by increasing the constant c slightly and reducing the constant K
substantially. Roughly, a spoke consists of a number of evenly spaced, overlapping
�p-balls whose centers lie on a diameter L of the Euclidean unit disk D. We
superimpose several spokes on D so that the regions of intersection of the �p-
balls are distributed fairly evenly around D. The idea is that if the constant
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c is large enough, then, almost always, every region of intersection contains at
least one vertex of Vn, so that Gp(λ, n) contains a path joining vertices near
the antipodes of D on L. The lengths of such paths, which may be calculated
geometrically, give an upper bound for the diameter of Gp(λ, n).

Definition 1 (Spoke construction). Fix 1 ≤ p ≤ ∞, θ ∈ (−π/2, π/2], and
r > 0. Let D be the Euclidean unit disk. For m ∈ Z, put

um = um(r, θ) = ((r/2 + rm) cos θ, (r/2 + rm) sin θ) ∈ R
2 .

The corresponding spoke is defined to be the point set Up,θ(r) = {um} ∩ D,
together with a collection of �p-balls of radius λ/2, one centered at each point
um ∈ Up,θ(r).

The points um lie on the line Lθ through O at angle θ, and the Euclidean
distance d2(um, um′) equals r|m − m′|. By choosing r sufficiently small, we can
ensure that each pair of adjacent �p-balls intersects in a set with positive area
(the shaded rectangles in Fig. 2). Thus the two outermost points on each spoke
are joined by a segmented path of Euclidean length approximately 2, which has
approximately 2 · diamp(D)/λ edges when r = min{λ2−1/2−1/p, λ/2}.

Define A∗
p(r, λ/2) to be the minimum area of intersection between two �p-

balls in R
2 of radius λ/2 whose centers are at Euclidean distance r. The general

formula for this quantity seems to involve integrals that cannot be evaluated
exactly, except for very special cases such as p = 1, 2,∞. However, for fixed r,
it is certainly true that A∗

p(r, λ/2) = Θ(λ2).

Theorem 4. Let 1 ≤ p ≤ ∞, λ = c
√

ln n/n, and r = min{λ2−1/2−1/p, λ/2}.
Suppose that

c >
√

πλ2/(2A∗
p(r, λ/2)) . (2)

Then, almost always, as n → ∞,

diam(Gp(λ, n)) ≤ (2 · diamp(D) + o(1))/λ.
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Fig. 2. The spoke overlay construction with p = 1, in the unit disk D. The left-hand
figure shows a single spoke with parameters r,L, θ. The right-hand figure shows how
spokes at different angles are superimposed on D.
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Since A∗
p(r, λ/2) = Θ(λ2), the lower bound (2) for c depends only on p.

We sketch the proof of Theorem 4. The spoke construction uses approxi-
mately ln n spokes Up,θ(r), at evenly spaced angles. Almost always, for each
spoke, every intersection of two consecutive �p-balls of radius λ/2 contains at
least one vertex of Vn, provided that the bound (2) holds.

Let v1, v2 ∈ Vn. For i = 1, 2, by Corollary 1, there is a vertex v′i ∈ Vn lying
inside some spoke Ui, connected to vi by a path in Gp(λ, n) of length o(1/λ).
Moreover, v′i is connected to a vertex near the origin by a path consisting of
vertices in Ui ∩ Vn, lying in successive �p-balls of the spoke. Thus each of these
two paths contains at most diamp(D)/λ vertices, and concatenating these paths
gives the desired upper bound on the diameter of Gp(λ, n).

We can make the average Euclidean distance covered in a path from v′i to
v′j larger by increasing r. This change decreases the area of intersection of con-
secutive �p-balls, which in turn requires an increase in c in order to guarantee a
vertex of Vn in every region of intersection. This leads to the following corollary.

Corollary 2. Let 1 ≤ p ≤ ∞ and let λ = c
√

ln n/n. For every δ ∈ (0, 1], there
exists cp(δ) > 0 such that if c > cp(δ), then Gp(λ, n) is almost always connected,
and has diameter at most diamp(D)(1 + δ + o(1))/λ as n → ∞.
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