
A Formal Reduction
for Lock-Free Parallel Algorithms

Hui Gao and Wim H. Hesselink

Department of Mathematics and Computing Science, University of Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands

{hui,wim}@cs.rug.nl

Abstract. On shared memory multiprocessors, synchronization often
turns out to be a performance bottleneck and the source of poor fault-
tolerance. Lock-free algorithms can do without locking mechanisms, and
are therefore desirable. Lock-free algorithms are hard to design correctly,
however, even when apparently straightforward. We formalize Herlihy’s
methodology [13] for transferring a sequential implementation of any
data structure into a lock-free synchronization by means of synchroniza-
tion primitives Load-linked (LL)/store-conditional (SC). This is done by
means of a reduction theorem that enables us to reason about the general
lock-free algorithm to be designed on a higher level than the synchroniza-
tion primitives. The reduction theorem is based on refinement mapping
as described by Lamport [10] and has been verified with the higher-order
interactive theorem prover PVS. Using the reduction theorem, fewer in-
variants are required and some invariants are easier to discover and easier
to formulate.
The lock-free implementation works quite well for small objects. How-
ever, for large objects, the approach is not very attractive as the burden
of copying the data can be very heavy. We propose two enhanced lock-
free algorithms for large objects in which slower processes don’t need to
copy the entire object again if their attempts fail. This results in lower
copying overhead than in Herlihy’s proposal.

Keywords & Phrases: Distributed algorithms, Lock-free, Simulation,
Refinement mapping

1 Introduction

On shared-memory multiprocessors, processes coordinate with each other via
shared data structures. To ensure the consistency of these concurrent objects,
processes need a mechanism for synchronizing their access. In such a system
the programmer typically has to explicitly synchronize access to shared data
by different processes to ensure correct behaviors of the overall system, using
synchronization primitives such as semaphores, monitors, guarded statements,
mutex locks, etc. Consequently the operations of different processes on a shared
data structure should appear to be serialized: if two operations execute simul-
taneously, the system guarantees the same result as if one of them is arbitrarily
executed before the other.

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 44–56, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Formal Reduction for Lock-Free Parallel Algorithms 45

Due to blocking, the classical synchronization paradigms using locks can incur
many problems such as convoying, priority inversion and deadlock. A lock-free
(also called non-blocking) implementation of a shared object guarantees that
within a finite number of steps always some process trying to perform an op-
eration on the object will complete its task, independently of the activity and
speed of other processes [13]. As lock-free synchronizations are built without
locks, they are immune from the aforementioned problems. In addition, lock-
free synchronizations can offer progress guarantees. A number of researchers [1,
4, 5, 13–15] have proposed techniques for designing lock-free implementations.
The basis of these techniques is using some synchronization primitives such as
compare-and-swap (CAS), or Load-linked (LL)/store-conditional (SC).

Typically, the implementation of the synchronization operations is left to
the designer, who has to decide how much of the functionality to implement in
software using system libraries. The high-level specification gives lots of freedom
about how a result is obtained. It is constructed in some mechanical way that
guarantees its correctness and then the required conditions are automatically
satisfied [3]. We reason about a high-level specification of a system, with a large
grain of atomicity, and hope to deduce an implementation, a low-level speci-
fication, which must be fine grained enough to be translated into a computer
program that has all important properties of the high-level specification.

However, the correctness properties of an implementation are seldom easy
to verify. Our previous work [6] shows that a proof may require unreasonable
amounts of effort, time, or skill. We therefore develop a reduction theorem that
enables us to reason about a lock-free program to be designed on a higher level
than the synchronization primitives. The reduction theorem is based on refine-
ment mappings as described by Lamport [10], which are used to prove that a
lower-level specification correctly implements a higher-level one. Using the re-
duction theorem, fewer invariants are required and some invariants are easier to
discover and easier to formulate, without considering the internal structure of
the final implementation. In particular, nested loops in the algorithm may be
treated as one loop at a time.

2 Lock-Free Transformation

The machine architecture that we have in mind is based on modern shared-
memory multiprocessors that can access a common shared address space. There
can be several processes running on a single processor. Let us assume there are
P (≥ 1) concurrently executing sequential processes.

Synchronization primitives LL and SC, proposed by Jensen et al. [2], have
found widespread acceptance in modern processor architectures (e.g. MIPS II,
PowerPC and Alpha architectures). They are a pair of instructions, closely re-
lated to the CAS, and together implement an atomic Read/Write cycle. Instruc-
tion LL first reads a memory location, say X , and marks it as “reserved” (not
“locked”). If no other processor changes the contents of X in between, the subse-
quent SC operation of the same processor succeeds and modifies the value stored;

46 Hui Gao and Wim H. Hesselink

otherwise it fails. There is also a validate instruction V L, used to check whether
X was not modified since the corresponding LL instruction was executed. Imple-
menting V L should be straightforward in an architecture that already supports
SC. Note that the implementation does not access or manipulate X other than
by means of LL/SC/V L. Moir [12] showed that LL/SC/V L can be constructed
on any system that supports either LL/SC or CAS. A shared variable X only
accessed by LL/SC/V L operations can be regarded as a variable that has an
associated shared set of process identifiers V.X , which is initially empty. The
semantics of LL, V L and SC are given by equivalent atomic statements below.

proc LL(ref X : val) : val =
〈 V.X := V.X ∪ {self}; return X ; 〉

proc VL(ref X : val) : boolean =
〈 return (self ∈ V.X) 〉

proc SC (ref X : val; in Y : val) : boolean =
〈 if self ∈ V.X then V.X := ∅; X := Y ; return true

else return false; fi 〉
where self is the process identifier of the acting process.

At the cost of copying an object’s data before an operation, Herlihy [13]
introduced a general methodology to transfer a sequential implementation of
any data structure into a lock-free synchronization by means of synchronization
primitives LL and SC. A process that needs access to a shared object pointed
by X performs a loop of the following steps:(1) read X using an LL operation
to gain access to the object’s data area; (2) make a private copy of the indicated
version of the object (this action need not be atomic); (3) perform the desired
operation on the private copy to make a new version; (4) finally, call a SC
operation on X to attempt to swing the pointer from the old version to the new
version. The SC operation will fail when some other process has modified X
since the LL operation, in which case the process has to repeat these steps until
consistency is satisfied. The algorithm is non-blocking because at least one out
of every P attempts must succeed within finite time. Of course, a process might
always lose to some faster process, but this is often unlikely in practice.

3 Reduction

We assume a universal set V of typed variables, which is called the vocabulary.
A state s is a type-consistent interpretation of V , mapping variables v ∈ V to
values s�v�. We denote by Σ the set of all states. If C is a command, we denote
by Cp the transition C executed by process p, and s�Cp�t indicates that in state s
process p can do a step C that establishes state t. When discussing the effect of a
transition Cp from state s to state t on a variable v, we abbreviate s�v� to v and
t�v� to v′. We use the abbreviation Pres(V) for

∧
v∈V (v′ = v) to denote that

all variables in the set V are preserved by the transition. Every private variable

A Formal Reduction for Lock-Free Parallel Algorithms 47

name can be extended with the suffix “.” + “process identifier”. We sometimes
use indentation to eliminate parentheses.

3.1 Observed Specification

In practice, the specification of systems is concerned rather with externally visi-
ble behavior than computational feasibility. We assume that all levels of specifi-
cations under consideration have the same observable state space Σ0, and are in-
terpreted by their observation functions Π : Σ → Σ0. Every specification can be
modeled as a five-tuple (Σ, Π, Θ,N ,L) where (Σ, Θ,N) is the transition system
[16] and L is the supplementary property of the system (i.e., a predicate on Σω).

The supplementary constraint L is imposed since the transition system only
specifies safety requirements and has no kind of fairness conditions or liveness
assumptions built into it. Since, in reality, a stuttering step might actually per-
form modifications to some internal variables in internal states, we do allow
stuttering transitions (where the state does not change) and the next-state rela-
tion is therefore reflexive. A finite or infinite sequence of states is defined to be
an execution of system (Σ, Π, Θ,N ,L) if it satisfies initial predicate Θ and the
next-state relation N but not necessarily the requirements of the supplementary
property L. We define a behavior to be an infinite execution that satisfies the
supplementary property L. A (concrete) specification Sc implements a (abstract)
specification Sa iff every externally visible behavior allowed by Sc is also allowed
by Sa. We write Beh(S) to denote the set of behaviors of system S.

3.2 Refinement Mappings

A refinement mapping from a lower-level specification Sc = (Σc, Πc, Θc,Nc,Lc)
to a higher-level specification Sa = (Σa, Πa, Θa,Na,La), written φ : Sc � Sa, is
a mapping φ : Σc → Σa that satisfies:

1. φ preserves the externally visible state component: Πa ◦ φ = Πc.
2. φ is a simulation, denoted φ : Sc � Sa:

① φ takes initial states into initial states: Θc ⇒ Θa ◦ φ.
② Nc is mapped by φ into a transition (possibly stuttering) allowed by Na:

Q ∧Nc ⇒ Na ◦ φ, where Q is an invariant of Sc.
3. φ maps behaviors allowed by Sc into behaviors that satisfy Sa’s supplemen-

tary property: ∀ σ ∈ Beh(Sc) : La(φ(σ)).

Below we need to exploit the fact that the simulation only quantifies over all
reachable states of the lower-level system, not all states. We therefore explicitly
allow an invariant Q in condition 2 ➁. The following theorem is stated in [11].

Theorem 1. If there exists a refinement mapping from Sc to Sa, then Sc im-
plements Sa.

Refinement mappings give us the ability to reduce an implementation by
reducing its components in relative isolation, and then gluing the reductions

48 Hui Gao and Wim H. Hesselink

together with the same structure as the implementation. Atomicity guarantees
that a parallel execution of a program gives the same results as a sequential and
non-deterministic execution. This allows us to use the refinement calculus for
stepwise refinement of transition systems [8]. Essentially, the reduction theorem
allows us to design and verify the program on a higher level of abstraction. The
big advantage is that substantial pieces of the concrete program can be dealt
with as atomic statements on the higher level.

The refinement relation is transitive, which means that we don’t have to
reduce the implementation in one step, but can proceed from the implementation
to the specification through a series of smaller steps.

3.3 Correctness

The safety properties satisfied by the program are completely determined by the
initial predicate and the next-state relation. This is described by Theorem 2,
which can be easily verified.

Theorem 2. Let Pc and Pa be safety properties for Sc and Sa respectively.
The verification of a concrete judgment (Σc, Θc,Nc) |= Pc can be reduced to
the verification of an abstract judgment (Σa, Θa,Na) |= Pa, if we can exhibit a
simulation φ mapping from Σc to Σa that satisfies Pa ◦ φ ⇒ Pc.

We make a distinction between safety and liveness properties (See [10] for the
proof schemes). The proof of liveness relies on the fairness conditions associated
with a specification. The purpose for fairness conditions is to rule out executions
where the system idles indefinitely with control at some internal point of a pro-
cedure and with some transition of that procedure enabled. Fairness arguments
usually depend on safety properties of the system.

4 A Lock-Free Pattern

We propose a pattern that can be universally employed for a lock-free construc-
tion in order to synchronize access to a shared node of nodeType. The interface
Sa is shown in Fig. 1, where the following statements are taken as a schematic
representation of segments of code:

1. noncrit(ref pub : aType, priv : bT ype; in tm : cT ype; out x : 1..N) :
representing an atomic non-critical activity on variables pub and priv ac-
cording to the value of tm, and choosing an index x of a shared node to be
accessed.

2. guard(in X : nodeType, priv : bT ype) a non-atomic boolean test on the
variable X of nodeType. It may depend on private variable priv.

3. com(ref X : nodeType; in priv : bT ype; out tm : cT ype) : a non-atomic
action on the variable X of nodeType and private variable tm. It is allowed
to inspect private variable priv.

A Formal Reduction for Lock-Free Parallel Algorithms 49

CONSTANT

P = number of processes; N = number of nodes

Shared Variables:

pub: aType; Node: array [1..N] of nodeType;

Private Variables:

priv: bType; pc: {a1, a2}; x: 1..N; tm: cType;

Program:

loop

a1: noncrit(pub, priv, tm, x);

a2: 〈 if guard(Node[x], priv) then com(Node[x], priv, tm); fi 〉
end

Initial conditions Θa : ∀ p:1..P: pc = a1

Liveness La : � (pc = a2 −→ � pc = a1)

Fig. 1. Interface Sa

CONSTANT

P = number of processes; N = number of nodes

Shared Variables:

pub: aType; node: array [1..N+P] of nodeType;

indir: array [1..N] of 1..N+P;

Private Variables:

priv: bType; pc: [c1.. c7];
x: 1..N; mp, m: 1..N+P; tm, tm1: cType;

Program:

loop

c1: noncrit(pub, priv, tm, x);

loop

c2: m := LL(indir[x]);

c3: read(node[mp], node[m]);

c4: if guard(node[mp], priv) then

c5: com(node[mp], priv, tm1);

c6: if SC(indir[x], mp) then

mp := m; tm := tm1; break;

fi

c7: else

if VL(indir[x]) then break; fi

fi

end

end

Initial conditions Θc :

(∀ p:1..P: pc = c1 ∧ mp=N+p) ∧ (∀ i:1..N: indir[i]=i)

Liveness Lc : � (pc = c2 −→ � pc = c1)

Fig. 2. Lock-free implementation Sc of Sa

The action enclosed by angular brackets 〈. . .〉 is defined as atomic. The private
variable x is intended only to determine the node under consideration, the private

50 Hui Gao and Wim H. Hesselink

variable tm is intended to hold the result of the critical computation com, if
executed. By means of Herlihy’s methodology, we give a lock-free implementation
Sc of interface Sa in Fig. 2. In the implementation, we use some other schematic
representations of segments of code, which are described as follows:

4. read(ref X : nodeType, in Y : nodeType) : a non-atomic read operation
that reads the value from the variable Y of nodeType to the variable X of
nodeType, and does nothing else. If Y is modified during read, the resulting
value of X is unspecified but type correct, and no error occurs.

5. LL, SC and V L : atomic actions as we defined before.

Typically, we are not interested in the internal details of these schematic com-
mands but in their behavior with respect to lock-freedom. In Sc, we declare P
extra shared nodes for private use (one for each process). Array indir acts as
pointers to shared nodes. node[mp.p] can always be taken as a “private” node
(other processes can read but not modify the content of the node) of process
p though it is declared publicly. If some other process successfully updates a
shared node while an active process p is copying the shared node to its “private”
node, process p will restart the inner loop, since its private view of the node is
not consistent anymore. After the assignment mp := m at line c6, the “private”
node becomes shared and the node shared previously (which contains the old
version) becomes “private”.

Formally, we introduce Nc as the relation corresponding to command noncrit
on (aType×bT ype×cT ype, aType×bT ype×1..N), Pg as the predicate computed
by guard on nodeType × bT ype, Rc as the relation corresponding to com on
(nodeType× bT ype, nodeType× cT ype), and define

Σa � (Node[1..N], pub) × (pc, x, priv, tm)P ,

Σc � (node[1..N+P], indir[1..N], pub) × (pc, x, mp, m, priv, tm, tm1)P ,

Πa(Σa) � (Node[1..N], pub), Πc(Σc) � (node[indir[1..N]], pub),
Na �

∨
0≤i≤2 Nai , Nc �

∨
1≤i≤7 Nci ,

The transitions of the abstract system can be described: ∀s, t : Σa, p : 1..P :

s�(Na0)p�t � s = t (to allow stuttering)
s�(Na1)p�t � pc.p = a1 ∧ pc′.p = a2 ∧ Pres(V − {pub, priv.p, pc.p, x.p})

∧ ((pub, priv.p, tm.p), (pub, priv.p, x.p)′) ∈ Nc

s�(Na2)p�t � pc.p = a2 ∧ pc′.p = a1 ∧ (Pg(Node[x], priv.p)
∧ ((Node[x], priv.p), (Node[x], tm.p)′) ∈ Rc

∧ Pres(V − {pc.p, Node[x], tm.p})
∨ ¬Pg(Node[x], priv.p) ∧ Pres(V − {pc.p})).

The transitions of the concrete system can be described in the same way. Here
we only provide the description of the step that starts in c6: ∀s, t : Σc, p : 1..P :

s�(Nc6)p�t � pc.p = c6 ∧ (p ∈ V.indir[x.p]
∧ pc′.p = c1 ∧ (indir[x.p])′ = mp.p ∧ mp′.p = m.p
∧ tm′.p = tm1.p ∧ (V.indir[x.p])′ = ∅
∧ Pres(V − {pc.p, indir[x.p], mp.p, tm.p, V.indir[x.p]})

∨ p /∈ V.indir[x.p] ∧ pc′.p = c2 ∧ Pres(V − {pc.p}))

A Formal Reduction for Lock-Free Parallel Algorithms 51

4.1 Simulation

According to Theorem 2, the verification of a safety property of concrete system
Sc can be reduced to the verification of the corresponding safety property of
abstract system Sa if we can exhibit the existence of a simulation between them.

Theorem 3. The concrete system Sc defined in Fig. 2 is simulated by the ab-
stract system Sa defined in Fig. 1, that is, ∃φ : Sc � Sa.

Proof: We prove Theorem 3 by providing a simulation. The simulation function
φ is defined by showing how each component of the abstract state (i.e. state
of Σa) is generated from components in the concrete state (i.e. state of Σc).
We define φ : the concrete location c1 is mapped to the abstract location a1,
while all other concrete locations are mapped to a2; the concrete shared vari-
able node[indir[x]] is mapped to the abstract shared variable Node[x], and the
remaining variables are all mapped to the identity of the variables occurring in
the abstract system.

The assertion that the initial condition Θc of the concrete system implies the
initial condition Θa of the abstract system follows easily from the definitions of
Θc, Θa and φ.

The central step in the proof of simulation is to prove that every atomic
step of the concrete system simulates an atomic step of the abstract system.
We therefore need to associate each transition in the concrete system with the
transition in the abstract system.

It is easy to see that the concrete transition Nc1 simulates Na1 and that
Nc2, Nc3, Nc4, Nc5, Nc6 with precondition “self /∈ V.indir[x.self]”, and Nc7

with precondition “self /∈ V.indir[x.self]” simulate a stuttering step Na0 in the
abstract system. E.g., we prove that Nc6 executed by any process p with precon-
dition “p /∈ V.indir[x.p]” simulates a stuttering step in the abstract system. By
the mechanism of SC, an active process p will only modify its program counter
pc.p from c6 to c2 when executing Nc6 with precondition “p /∈ V.indir[x.p]”.
According to the mapping of φ, both concrete locations c6 and c2 are mapped
to abstract location a2. Since the mappings of the pre-state and the post-state to
the abstract system are identical, Nc6 executed by process p with precondition
“p /∈ V.indir[x.p]” simulates the stuttering step Na0 in the abstract system.

The proof for the simulations of the remaining concrete transitions is less
obvious. Since simulation applies only to transitions taken from a reachable
state, we postulate the following invariants in the concrete system Sc:

Q1: (p �= q ⇒ mp.p �= mp.q) ∧ (indir[y] �= mp.p)
∧ (y �= z ⇒ indir[y] �= indir[z])

Q2: pc.p = c6 ∧ p ∈ V.indir[x.p]
⇒ ((node[m.p], priv.p), (node[mp.p], tm1.p)) ∈ Rc

Q3: pc.p = c7 ∧ p ∈ V.indir[x.p] ⇒ ¬ Pg(node[m.p], priv.p)
Q4: pc.p ∈ [c3..c7] ∧ p ∈ V.indir[x.p] ⇒ m.p = indir[x.p]
Q5: pc.p ∈ {c4, c5} ∧ p ∈ V.indir[x.p] ⇒ node[m.p] = node[mp.p]
Q6: pc.p = {c5, c6} ⇒ Pg(node[mp.p], priv.p)

52 Hui Gao and Wim H. Hesselink

In the invariants, the free variables p and q range over 1..P , and the free variables
y and z range over 1..N . Invariant Q1 implies that, for any process q, node[mp.q]
can be indeed treated as a “private” node of process q since only process q
can modify that. Invariant Q4 reflect the mechanism of the synchronization
primitives LL and SC.

With the help of those invariants above, we have proved that Nc6 and Nc7

executed by process p with precondition “p ∈ V.indir[x.p]” simulate the abstract
step Na2 in the abstract system. For reasons of space we refer the interested
reader to [7] for the complete mechanical proof. ��

4.2 Refinement

Recall that not all simulation relations are refinement mappings. According to
the formalism of the reduction, it is easy to verify that φ preserves the externally
visible state component. For the refinement relation we also need to prove that
the simulation φ maps behaviors allowed by Sc into behaviors that satisfy Sa’s
liveness property, that is, ∀σ ∈ Beh(Sc) : La(φ(σ)). Since φ is a simulation, we
deduce

σ |= Lc ≡ σ |= �(pc = c2 −→ �pc = c1)
⇒ σ |= �(pc ∈ [c2..c7] −→ �pc = c1)
⇒ φ(σ) |= �(pc = a2 −→ �pc = a1)
≡ La(φ(σ))

Consequently, we have our main reduction theorem:

Theorem 4. The abstract system Sa defined in Fig. 1 is refined by the concrete
system Sc defined in Fig. 2, that is, ∃φ : Sc � Sa.

The liveness property Lc of concrete system Sc can also be proved under the
assumption of the strong fairness conditions and the following assumption:

� (�pc.p ∈ [c2..c7] ∧ ��p ∈ V.indir[x.p]
−→ �(pc.p = c6 ∨ pc.p = c7) ∧ p ∈ V.indir[x.p]).

The additional assumption indicates that for every process p, when process p re-
mains in the loop from c2 to c7 and executes c2 infinitely often, it will eventually
succeed in reaching c6 or c7 with precondition “p ∈ V.indir[x.p]”.

5 Large Object

To reduce the overhead of failing non-blocking operations, Herlihy [13] proposes
an exponential back-off policy to reduce useless parallelism, which is caused
by failing attempts. A fundamental problem with Herlihy’s methodology is the
overhead that results from making complete copies of the entire object (c3 in
Fig. 2) even if only a small part of an object has been changed. For a large object
this may be excessive.

A Formal Reduction for Lock-Free Parallel Algorithms 53

We therefore propose two alternatives given in Fig. 3. For both algorithms the
fields of the object are divided into W disjoint logical groups such that if one field
is modified then other fields in the same group may be modified simultaneously.
We introduce an additional field ver in nodeType to attach version numbers
to each group to avoid unnecessary copying. We assume all version numbers
attached to groups are positive. As usual with version numbers, we assume that
they can be sufficiently large. We increment the version number of a group each
time we modify at least one member in the group.

All schematic representations of segments of code that appear in Fig. 3 are
the same as before, except

3. com(ref X : nodeType; in g : 1..W, priv : bT ype; out tm : cT ype) :
performs an action on group g of the variable X of nodeType instead of on
the whole object X .

4. read(ref X : nodeType; in Y : nodeType, g : 1..W) : only reads the value
from group g of node Y to the same group of node X .

The relations corresponding to these schematic commands are adapted accord-
ingly.

In the first implementation, mp becomes an array used to record pointers to
private copies of shared nodes. In total we declare N ∗P extra shared nodes for
private use (one for each process and each node). Note that node[mp[x].p] can
be taken as a “private” node of process p though it is declared publicly. Array
indir continues to act as pointers to shared nodes.

At the moment that process p reads group i.p of node[m.p] (line l5), process
p may observe the object in an inconsistent state (i.e. the read value is not the
current or historical view of the shared object) since pointer m.p may have been
redirected to some private copy of the node by some faster process q, which
has increased the modified group’s version number(in lines l9 and l10). When
process p restarts the loop, it will get higher version numbers at the array new,
and only needs to reread the modified groups, whose new version numbers differ
from their old version numbers. Excessive copying can be therefore prevented.
Line l6 is used to check if the read value of a group is consistent with the version
number.

The first implementation is fast for an application that often changes only a
small part of the object. However, the space complexity is substantial because
P +1 copies of each node are maintained and copied back and forth. Sometimes,
a trade-off is chosen between space and time complexity. We therefore adapt
it to our second lock-free algorithm for large objects (shown in Fig. 3 also) by
substituting all statements enclosed by (∗ . . . ∗) for the corresponding statements
in the first version. As we did for small objects, we use only one extra copy of a
node for each process in the second implementation.

In the second implementation, since the private copy of a node may belong
to some other node, a process first initializes all elements of old to be zero (line
l1) before accessing an object, to force the process to make a complete copy of
the entire object for the first attempt. The process then only needs to copy part
of the object from the second attempt on. The space complexity for our second

54 Hui Gao and Wim H. Hesselink

CONSTANT

P = number of processes; N = number of nodes;

W = number of groups;

K = N + N * P; (* II : K = N + P; *)

Type nodeType = record

val: array [1..W] of valType;

ver: array [1..W] of posnat;

end

Shared Variables:

pub: aType; node: array [1..K] of nodeType;

indir: array [1..N] of 1..K;

Private Variables:

priv: bType; pc: [l1..l11];
x: 1..N; m: 1..K;

mp: array [1..N] of 1..K; (* II : mp: 1..K; *)

new: array [1..W] of posnat; old: array [1..W] of nat;

g: 1..W; tm, tm1: cType; i: nat;

Program:

loop

l1: noncrit(pub, priv, tm, x);

choose group g to be modified;

old := node[mp[x]].ver; (* II : old := λ (i:1..W): 0; *)

(* II : replace all ‘‘mp[x]’’ below by ‘‘mp’’ *)

loop

l2: m := LL(indir[x]);

l3: i := 1

l4: while i ≤ W do

new[i] := node[m].ver[i];

if new[i] �= old[i] then

l5: read(node[mp[x]], node[m], i); old[i] := 0;

l6: if not VL(indir[x]) then goto l2; fi;

l7: node[mp[x]].ver[i] := new[i]; old[i] := new[i];

fi;

i++;

end;

l8: if guard(node[mp[x]], priv) then

l9: com(node[mp[x]], g, priv, tm1); old[g] := 0;

node[mp[x]].ver[g] := new[g]+1;

l10: if SC(indir[x], mp[x]) then

mp[x] := m; tm := tm1; break;

fi

l11: elseif VL(indir[x]) then break;

fi

end

end

Fig. 3. Lock-free implementation I (* implementation II *) for large objects

A Formal Reduction for Lock-Free Parallel Algorithms 55

version saves (N − 1) × P times of size of a node, while the time complexity is
more due to making one extra copy of the entire object for the first attempt. To
see why these two algorithms are correct, we refer the interested reader to [7]
for the complete mechanical proof.

6 Conclusions

This paper shows an approach to verification of simulation and refinement be-
tween a lower-level specification and a higher-level specification. It is motivated
by our present project on lock-free garbage collection. Using the reduction theo-
rem, the verification effort for a lock-free algorithm becomes simpler since fewer
invariants are required and some invariants are easier to discover and easier to
formulate without considering the internal structure of the final implementation.
Apart from safety properties, we have also considered the important problem of
proving liveness properties using the strong fairness assumption.

A more fundamental problem with Herlihy’s methodology is the overhead
that results from having multiple processes that simultaneously attempt to up-
date a shared object. Since copying the entire object can be time-consuming,
we present two enhanced algorithms that avoid unnecessary copying for large
objects in cases where only small part of the objects are modified. It is often
better to distribute the contents of a large object over several small objects to
allow parallel execution of operations on a large object. However, this requires
that the contents of those small objects must be independent of each other.

Formal verification is desirable because there could be subtle bugs as the
complexity of algorithms increases. To ensure our hand-written proof presented
in the paper is not flawed, we use the higher-order interactive theorem prover
PVS for mechanical support. PVS has a convenient specification language and
contains a proof checker which allows users to construct proofs interactively, to
automatically execute trivial proofs, and to check these proofs mechanically. For
the complete mechanical proof, we refer the reader to [7].

References

1. B. Bershad: Practical Considerations for Non-Blocking Concurrent Objects. In Pro-
ceedings of the 13th International Conference on Distributed Computing Systems,
May 1993.

2. E.H. Jensen, G.W. Hagensen, and J.M. Broughton: A new approach to exclusive
data access in shared memory multiprocessors. Technical Report UCRL-97663,
Lawrence Livemore National Laboratory, November 1987.

3. E. Clarke, O. Grumberg, and D. Long: Model checking and abstraction ACM
Transactions on Programming Languages and Systems 16(5), January 1994.

4. G. Barnes: A method for implementing lock-free data structures. In Proceedings
of the 5th ACM symposium on Parallel Algorithms & Architecture, June 1993.

5. Henry Massalin, Calton Pu: A Lock-free Multiprocessor OS Kernel. Technical Re-
port CUCS-005-91, Columbia University, 1991

56 Hui Gao and Wim H. Hesselink

6. H. Gao, J.F. Groote and W.H. Hesselink.: Efficient almost wait-free parallel accessi-
ble dynamic hashtables. Technical Report CS-Report 03-03, Eindhoven University
of Technology, The Netherlands, 2003. To appear in the proceedings of IPDPS
2004.

7. http://www.cs.rug.nl/~wim/mechver/LLSCreduction
8. J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors: Stepwise Refine-

ment of Distributed Systems: Models, Formalism, Correctness. Lecture Notes in
Computer Science 430. Spinger-Verlag, 1990.

9. Anthony LaMarca: A Performance Evaluation of Lock-free Synchronization Pro-
tocols. In proceedings of the thirteenth symposium on priniciples of distributed
computing, 1994.

10. L. Lamport: The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems 16(3), 1994, pp. 872–923.

11. M. Abadi and L. Lamport: The existence of refinement mappings. Theoretical
Computer Science, 2(82), 1991, pp. 253–284.

12. Mark Moir: Practical Implementations of Non-Blocking Synchronization primi-
tives. In Proceedings of the sixteenth symposium on principles of Distributed com-
puting, 1997. Santa Barbara, CA.

13. M. P. Herlihy: A methodology for implementing highly concurrent objects. ACM
Transactions on Programming Languages and Systems 15, 1993, pp. 745–770.

14. Maurice Herlihy, Victor Luchangco and Mark Moir: The Repeat Offender Problem:
A Mechanism for Supporting Dynamic-Sized, Lock-Free Data Structures. In Pro-
ceedings of the 16th International Symposium on DIStributed Computing, 2002.

15. Victor Luchangco, Mark Moir, Nir Shavit: Nonblocking k-compare-single-swap. In
Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms,
2003, pp. 314-323.

16. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992.

	1 Introduction
	2 Lock-Free Transformation
	3 Reduction
	3.1 Observed Specification
	3.2 Refinement Mappings
	3.3 Correctness

	4 A Lock-Free Pattern
	4.1 Simulation
	4.2 Refinement

	5 Large Object
	6 Conclusions
	References

