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Abstract. Here we introduce a novel multi-scale heat kernel based re-
gional shape statistical approach that may improve statistical power on
the structural analysis. The mechanism of this analysis is driven by the
graph spectrum and the heat kernel theory, to capture the volumetric ge-
ometry information in the constructed tetrahedral mesh. In order to cap-
ture profound volumetric changes, we first use the volumetric Laplace-
Beltrami operator to determine the point pair correspondence between
two boundary surfaces by computing the streamline in the tetrahedral
mesh. Secondly, we propose a multi-scale volumetric morphology signa-
ture to describe the transition probability by random walk between the
point pairs, which reflects the inherent geometric characteristics. Thirdly,
a point distribution model is applied to reduce the dimensionality of the
volumetric morphology signatures and generate the internal structure
features. The multi-scale and physics based internal structure features
may bring stronger statistical power than other traditional methods for
volumetric morphology analysis. To validate our method, we apply sup-
port vector machine to classify synthetic data and brain MR images.
In our experiments, the proposed work outperformed FreeSurfer thick-
ness features in Alzheimer’s disease patient and normal control subject
classification analysis.

Keywords: Heat kernel, Volumetric Laplace-Beltrami operator, Point
distribution model, Support vector machine.

1 Introduction

In Alzheimer’s disease (AD) research, several MRI-based measures of atrophy,
including cortical thickness, hippocampal atrophy or ventricular enlargement,
are closely correlated with changes in cognitive performance, supporting their
validity as biomarkers of early AD identification. As we know, the MRI imaging
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Fig. 1. Pipeline of the volumetric morphology signature computation.

measurement of medial temporal atrophy is not sufficiently accurate on its own
to serve as an absolute diagnostic criterion for the clinical diagnosis of AD at
the mild cognitive impairment (MCI) stage. A key research question is how to
select the features which have a high discriminatory power. For example, the
cortical thickness was the popular feature which has been used to capture the
difference between different clinical groups. Currently, there are two different
computational paradigms on brain cortical thickness, with methods generally
classified as either surface or voxel based [1,2]. However, all measured distances
are unitary distances between boundary points and they are unitary values that
suggest only global trends and cannot capture topological variations (e.g. the
regional information along the connecting curves is not considered). To address
these difficulties, we introduce diffusion geometry methods to compute multi-
scale intrinsic volumetric morphology signatures. Because the 2D shape analysis
cannot offer the internal volumetric structure information within the solid vol-
ume such as brain grey matter. Based on some recent work [3,4] which studied
volumetric heat kernel and the volumetric Laplace-Beltrami operator [5], here
we propose a multi-scale heat kernel statistic to describe the transition probabil-
ity by random walk between white-grey matter and CSF-grey matter boundary
point pairs. With the tetrahedral mesh representation, our work may achieve sub-
voxel numerical accuracy. They provide quantitative measures of brain changes
which are important for evaluating disease burden, progression and response to
interventions.

In our work, a new set morphological descriptors is used to represent the
volumetric structure information, which depends on heat transmission time and
is somewhat influenced by the topological properties on the heat transmission
path. Following that, a point distribution model (PDM) is applied to reduce
the feature dimensionality to make classification feasible. With the support vec-
tor machine (SVM), we extract the most discriminative features that expose
the brain abnormal changes. We also test the effectiveness of our framework in
classification experiments.

A major innovation here is that our formulations make it possible for pro-
foundly analyzing the internal structural information. The multi-scale and physics
based geometric features may offer more statistical power on the topological
change analysis in grey matter morphology as preclinical AD biomarkers.
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2 Methods

Fig. 1 shows the pipeline of the volumetric morphology signature system.

2.1 Theoretical Background

The heat kernel diffusion on differentiable manifold M with Riemannian metric
is governed by the heat equation:

�Mf(x, t) =
∂f(x, t)

∂t
(1)

where f(x, t) is the heat distribution of the volume at the given time. Given an
initial heat distribution F : M → R , let Ht(F ) denotes the heat distribution at
time t, and limt→0 Ht(F ) = F . H(t) is called the heat operator. Both �M and
Ht share the same eigenfunctions, and if λi is an eigenvalue of �M , then e−λit

is an eigenvalue of Ht corresponding to the same eigenfunction.
For any compact Riemannian manifold, there exists a function lt(x, y) : R

+×
M ×M → R, satisfying the formula

HtF (x) =

∫
M

lt(x, y)F (y)dy (2)

where dy is the volume form at y ∈ M . The minimum function lt(x, y) that
satisfies Eq. 2 is called the heat kernel [6], and can be considered as the amount
of heat that is transferred from x to y in time t given a unit heat source at x. In
other words, lt(x, ·) = Ht(δx) where δx is the Direc delta function at x : δx(z) = 0
for any z �= x and

∫
M

δx(z) = 1.
According to the theory of the spectral analysis, for compact M , the heat

kernel has the following eigen-decomposition heat diffusion distance:

lt(x, y) =

∞∑
i=0

e−λitφi(x)φi(y) (3)

where λi and φi are the i
th eigenvalue and eigenfunction of the Laplace-Beltrami

operator, respectively. The heat kernel lt(x, y) can be interpreted as the transi-
tion density function of the Brownian motion on the manifold.

2.2 Discrete Multi-scale Volumetric Morphology Signature

On volumetric structure represented by a tetrahedral mesh, we can estimate the
boundary point pairs (x and y) based on the heat propogation, e.g. [5]. Then
we can compute the eigenfunctions and eigenvalues of Lp and then estimate the
heat diffusion distance lt(x, y) by evaluating Eqn. 3. We define the evaluation of
lt(x, y) between surface point pairs, x and y, with varying time t, as the volu-
metric morphology signature (VMS). To establish measurements on the unified
template for statistical analysis, the weighted spherical harmonic representation
[7] is applied to build surface correspondence between the different surfaces.

In order to reveal the internal structure features in a way that best explains
the variance in the VMS, we apply a point distribution model(PDM) [8] to
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extract the most informative features. Given a group of N tetrahedral meshes,
we apply the eigenanalysis of the covariance matrix Σ of the VMS as follows:

Σ = 1
N−1

N∑
i=1

(Ti −T)(Ti −T)T

ΣP = DP

(4)

where Ti is the VMS of the ith tetrahedral mesh and T is the mean VMS
of N objects. The columns of P hold eigenvectors, and the diagonal matrix
D holds eigenvalues of Σ. The eigenvectors in P can be ordered according to
respective eigenvalues, which are proportional to the variance explained by each
eigenvector. The first few eigenvectors (with greatest eigenvalues) often explain
most of variance in the VMS data. Now any volumetric morphology signature
Ti can be obtained using

Ti = T+ Pvi (5)

where vi is a vector containing the principal components which are called the
internal structure features. It can be used to represent the principal internal
structure information of the individual tetrahedral mesh in a new basis of the
deformation models.

2.3 Internal Structure Feature Selection

Generally speaking, the additional features are theoretically helpful to improve
the classifier performance. However, in practice, each additional feature adds
a parameter to the classifier model which needs to be estimated, and mis-
estimations that result from the less informative features can actually degrade
performance. This is a form of overfitting. So there is a need to order the fea-
tures from more information to less information. This tactics can improve the
classification accuracy. We adopt a t-test on each feature and obtain a p-value
associated with the statistical group difference. Thus, a lower p-value implies a
more significant feature. In the following experiments, we will test the classifi-
cation accuracies according to two different feature orderings.

3 Experimental Results

3.1 Synthetic Data Results

We conduct classification experimental studies on a synthetic data set. Fig. 2
shows two classes of 12 synthetic volumetric geometrical structures each, Class
1 shows the cylinders with a sphere hole and Class 2 shows the cylinders with
a bump-sphere hole. First we compute the streamlines between the outer cylin-
der surface and the inner spherical surface and establish the measurements on
the unified template [5]. Then the VMS can be obtained with Eqn. 3. Fig. 3(a)
shows a volumetric tetrahedral mesh. The point pairs between the outer cylinder
surface and the inner spherical surface is shown in (b). The VMS of this tetra-
hedral mesh is shown in (c), where the horizontal axis is log(t) and the vertical
axis is the VMS value. Apply Eqn. 4 and Eqn. 5, we obtain the first 23 internal
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Fig. 2. Two classes of synthetic volumetric geometrical structures.

structure features of every object. Then the features have been scaled to [−1,+1]
before the classification. The main advantage of scaling is to avoid attributes in
greater numeric ranges dominating those in smaller numeric ranges. In (d), we
validate the classification performance of the two different feature orderings us-
ing the leave-one-out cross-validation method based on the SVM classifier. One
is the standard ordering according to the order of the eigenvalue of the covari-
ance matrix Σ generated from the training data , which indicates the variance
amount of every feature from large to small. The other is the p-value ordering
of the features from the training data. From the results, we can see that the
internal structure features based on VMS have the high discriminative power.
The mean accuracy of p-value ordering is 93.7% and the mean accuracy of stan-
dard ordering is 84.8%. And the two orderings can achieve the best accuracy
100% with fewer features. Moreover, the main computation is the eigenanalysis
of the covariance matrix. By using the Gram matrix for eigenanalysis,the com-
putational time for PDM can be improved to O(n2

s ∗ nl) time. ns is the number
of shapes and nl is the resolution.

In addition, we illustrate the importance of the feature selection in the pro-
jection space. The direction vectors of the classification hyperplane from the
training data can be calculated as proj−value = xT

δ ∗ w, where xδ = x − x̄
indicates the heat diffusion distance difference between the individual and the
average. proj−value is the projected value and w is the direction vectors of the
classification hyperplane. Fig. 4 shows the classification results in the projection
space, with the horizontal coordinate representing the projection data, and with
the vertical coordinate used for the posterior probability of belonging to the par-
ticular class. (a) and (b) represent the training data distributions with the first
ith feature number (i.e., 6 and 23 ) according to the p-value respectively. The
symbol ♦ and � indicate the two classes. From the results we can see that the
phenomenon of the data piling has become apparent with the increasing of the
feature number.(c) and (d) are the test classification results based on the first 6
and 23 features respectively. And the symbol ♦ and � with red mark indicate
the misclassification results. From the results in Fig. 4, when all the features
are used in training data, is associated with low in-sample error rate and high
out-of-sample error rate.

3.2 Application to Alzheimer’s Disease

To validate whether VMS can improve the statistical power on brain MRI
analysis, we apply it to study the volumetric differences associated with AD
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Fig. 3. Illustration of streamlines, VMS and classification accuracies on the synthetic
cylinder with inner spherical hole.

and Control groups on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset [9]. We used the baseline T1-weighted images from 81 subjects consist-
ing of 41 healthy controls (CTL) and 40 patients of Alzheimer’s (AD). We apply
FreeSurfer software [10] for skull stripping, tissue segmentation and surface re-
construction. Given the white matter and pial surfaces, the tetrahedral meshes
are generated by an adaptively sized tetrahedral mesh modeling method [11].
After the boundary point pairs are estimated, we resample all the brain sur-
face to a common template which contains 40962 sample points. This allows us
to compare the VMS measurements across different cortical surfaces. Next we
apply the point distribution model (PDM) to the VMS to obtain vi which con-
tains 80 internal structure features for every individual grey matter tetrahedral
mesh. After the scaling process, all the features are scaled to the interval [−1, 1].
We apply a t-test on each feature and obtain a p-value associated with the test
statistic. The results are shown in Fig. 5 (a). The second feature corresponds to
p = 2.29×10−9, the third and fourth features correspond to p = 1.34×10−6 and
p = 1.51× 10−6 respectively, and for all the other features are above 1× 10−3.
Based on the SVM classifier, we investigate the leave-one-out cross-validation
accuracies using the first i features from the two different ordering of the fea-
tures. The results are shown in Fig. 5 (b). From the results, we can see that
the best accuracy (97.5%)can be achieved using few (e.g.,34) features based on
the p-value ordering, while on the standard ordering, a good accuracy (88.9%)
can be achieved using 42 features. Moreover, the mean cross-validation accuracy
based on the p-value ordering is higher about (5%) than the standard ordering.
From the Eqn. 5, the specific eigenvector has the weights to create the specific
feature. Therefore, the most informative feature should correspond to the spe-
cific eigenvector with the most significant contribution for the group differences.
We compute the L2 norm of the specific eigenvector to obtain these weights ac-
cording to the template surface. The weights from the first four eigenvectors are
shown on the mean outer surface in Fig. 5. From (c) to (f), they are the computed
weights from the first eigenvector to the fourth eigenvector. Large weights cor-
respond to locations with the most discrimination power. The weights are later
color coded on the surface template point with the group difference p-map by
different principal components. The values increase as the color goes from blue
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Fig. 4. The training and test data classification results with the different feature num-
ber in the projection space .

Fig. 5. Illustration of the SVM classification accuracy and the contrubutions from the
four eigenvectors color coded on the mean outersurface of AD and Control subjects.

to yellow and to red. Because the second principal component has the smallest
p-value, a significant difference exists in the medial temporal lobe region repre-
sented in Fig. 5 (d), supporting the fact that the medial temporal atrophy is the
hallmark of AD disease.

3.3 Comparison with Freesurfer Thickness Feature

In this section, we compare the classification performance about the VMS and
the thickness based on the Freesurfer method [10]. Here we apply the receiver
operating characteristic (ROC) analysis to compare the discriminative power of
the two analysis framework, which is created by plotting the true positive rate
against the false positive rate at various threshold settings. After obtaining the
thickness values on the unified template, we apply the PDM to the thickness to
obtain vi as the thickness feature. Through varying the threshold value which
can determine the SVM classifier boundary, we can obtain the true positive rate,
false positive rate and draw a ROC curve. The ROC curve is shown in Fig. 6 and



758 G. Wang and Y. Wang

Fig. 6. ROC analysis for
comparison using VMS
and thickness features.

the legend shows the two data set, the area under
the ROC curve (AUROC) and the number of fea-
tures used. Here we choose 42 VMS features and 55
cortical thickness features computed by Freesurfer
to achieve the maximum AUROC according to the
p-value feature selection scheme. And a completely
random guess would give a diagonal line from the
left bottom to the top right corners. The points
above the diagonal represent good classification re-
sults (better than random), points below the line
represent poor results (worse than random). From
the result, we can see that the features of the VMS
have the higher discriminative power than the corti-
cal thickness.

A key reason for better classification is that VMS can not only compute
geodesic distance between the point pairs, but it also compare the immediate
neighboring volume changes along the geodesics. It may provide new insights to
grey matter morphology study.

4 Conclusions and Future Work

Based on heat kernel analysis, we propose a novel multi-scale volumetric mor-
phology signature. This has many applications in brain imaging research.
Whether or not our new method provides a more relevant shape analysis power
than those afforded by other criteria (folding, surface curvature, cortical thick-
ness) requires careful validation for each application. Because different geometric
properties produce different models, we plan to compare them in future for de-
tecting subtle differences in brain structure for preclinical AD research.
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