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Abstract. This paper introduces a variational strategy to learn spatially-
varying metrics on large groups of images, in the Large Deformation Dif-
feomorphic Metric Mapping (LDDMM) framework. Spatially-varying
metrics we learn not only favor local deformations but also correlated
deformations in different image regions and in different directions. In
addition, metric parameters can be efficiently estimated using a gradi-
ent descent method. We first describe the general strategy and then
show how to use it on 3D medical images with reasonable computa-
tional ressources. Our method is assessed on the 3D brain images of the
LPBA40 dataset. Results are compared with ANTS-SyN and LDDMM
with spatially-homogeneous metrics.

1 Introduction

Diffeomorphic image registration often consists in minimizing an objective func-
tion which contains a similarity term and a regularization term. In this work, we
focus on the regularization term which can be seen as a prior when approximat-
ing the biomechanical properties of the registered structures (e.g. deformation
smoothness, magnitude, ...). In the context of Large Deformation Diffeomorphic
Metric Mapping (LDDMM) different works have addressed this question. Sum of
kernels strategies were proposed in [7,13] to account for multi-scale effects and
therefore obtain plausible deformations while still preserving good matchings.
Other approaches do not learn the metric but a distribution on initial momenta
which defines the optimal deformations between a template and a learning set
of images [12]. Such approaches however require to first choose a metric and the
momenta distribution or their PCAs strongly depend on this choice.

To overcome these limitations, the Bayesian approach is often the method of
choice, allowing to learn parameters distribution [14]. Full Bayesian approaches
require the use of stochastic optimization methods which are slow. Sometimes
approximations such as variational Bayes are preferred. For small deformations,
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[1] estimates the covariance matrix of the deformations parametrized by a set of
points. The approach has been extended to large deformations in [4] by reducing
the metric learning to a set of control points. In a non-diffeomorphic context,
variational Bayes methods were also introduced in [11,10] to perform image reg-
istration with the automatic tuning of global or spatially-varying regularisation
parameters. The motivation of this method is however to be flexible and not to
learn optimal metrics on large groups of images, which differs from our goal.

Spatially-varying metrics have recently been introduced in LDDMM by chang-
ing the Eulerian point of view on the regularization strategy to a Lagrangian
point of view [8]. Although this strategy is appealing, its practical use is lim-
ited, as the tuning of a large amount of metric parameters is made manually.
To overcome this issue, we propose in this paper a fully variational approach to
estimate a kernel matrix M , which parametrizes the regularization term.

We present the variational approach to learn M in section 2. Strategies to
reduce the problem dimensionality are developed in section 3. Results are finally
given in section 4.

2 Mathematical Model

2.1 LDDMM Registration

Our model is based on the LDDMM framework. Let (In)n=1,...,N be a population
of N images and T be a given template. Registering the template T onto the
image In consists in minimizing:

JIn(v,K) =
1

2

∫ 1

0

‖v(t)‖2V dt+ E(φ(1) · T, In) , (1)

where the path φ(t), t ∈ [0, 1] is encoded by the velocity field v(t), t ∈ [0, 1]:
φ(0) = Id and ∂tφ(t) = v(t) ◦ φ(t). Importantly, the optimal diffeomorphism
depends on a smoothing kernel K which defines the metric V . In LDDMM, K
is usually translation and rotation invariant so that the Fourier transform can
be used to write the metric as ‖vt‖2V = < F(vt)F(K)−1,F(vt) >L2 , where F(.)
is the Fourier transform and < ., . >L2 is the L2 inner product [3]. Following [3],
the energy can be minimized using a gradient descent with ∇vEt = vt −K �Pt,
where Pt = Det Jφt,1∇Tt(Tt − It) is the momentum at time t and � denotes the
convolution operator. Images Tt and It are also T and In transported at time t
by φ(t): Tt = φ(t) · T and It = φ(t) · φ−1(1) · In.

2.2 Spatially Varying Metrics

A mathematical interpretation of spatially-varying metrics in LDDMM has re-
cently been given by [8], opening the opportunity to design metrics adapted to
the different structures contained in the template T . Based on this interpre-
tation, we design a set of kernels expressing spatially-varying metrics. More
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specifically, we use (symmetric) positive definite matrices M as a parametriza-
tion of this set of kernels. In order to ensure smoothness of the deformations,
any kernel of this set has to satisfy the constraint that the Hilbert space of vec-
tor fields is embedded in the Banach space of C1 vector fields. To enforce this
constraint, we propose the following parametrization,

K = {K̂MK̂ |M SDP operator on L2(Rd,Rd)} , (2)

where K̂ is a spatially-homogeneous smoothing kernel (typically Gaussian). In-
stead of using K as in section 2.1, K smoothes the vector field Pt as follows:

1. Pt is first convoluted with K̂: Γt = K̂ � Pt.
2. Matrix M multiplies the values of the 3D vector field Γt as follows: We

suppose that Γt has a size (Nx, Ny, Nz) and denote Γt(xi, yi, zi, di) the value
of Γt at point (xi, yi, zi) and in direction di. Γt is first reshaped as a vector,
so that Γt(xi, yi, zi, di) is located at the index νi = xi + yiNx + ziNxNy +
diNxNyNz of the vector. The vector is first multiplied with M and then
reshaped as a 3D vector field.

3. The vector field resulting from step 2 is finally convoluted with K̂.

By construction M(νi, νj) therefore correlates the velocities of Γt at points
(xi, yi, zi) and (xj , yj, zj) and in directions di and dj , respectively. Remark

that if M = Id and K̂ is a Gaussian kernel of standard deviation σ, then K is
a Gaussian kernel of standard deviation

√
2σ. If M has non-null and hetero-

geneous values on its diagonal only, the metric will favor the deformations at
specific locations and in specific directions. More interestingly, if M contains
non-null terms outside of its diagonal, it will favor deformations in correlated
locations and/or directions. Of course, this correlation can be non-local.

2.3 Learning Optimal Metrics

To shorten the notations, we use JIn(v,M) instead of JIn(v, K̂MK̂). The vari-
ational model consists in minimizing the functional, with β a positive real:

F(M) =
β

2
d2S++(M, Id) +

1

N

N∑
n=1

min
v

JIn(v,M) , (3)

The first term is a regularizer of the kernel parameters so that that the min-
imization problem is well posed. Here, it favors parametrizations of M close
to the identity matrix but other a priori correlation matrix could be used. The
term d2S++(Id,M) can be chosen as the squared distance on the space of positive
definite matrices given by ‖ log(M)‖2. Here again, other choices of regulariza-
tions could have been used such as the log-determinant divergence. We simply
remark that this distance comes from a Riemannian metric denoted by g on
S++ which makes it complete [6,2]: namely we consider S++ endowed with the
inner product at S given by tr(S−1dSS−1dS) where tr is the standard trace
operator. The variational problem would have been ill-posed if the standard L2
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metric (Frobenius norm) had been used. Note that the energy term in JIn is
linear in M−1. A direct calculation shows that the gradient of F with respect
to the metric g denoted by ∇gF is

∇gF(M) = βM log(M)− 1

N

N∑
n=1

∫ 1

0

(MK̂ � Pn(t))⊗ (MK̂ � Pn(t))dt , (4)

where A ⊗ B is the tensor product and is defined by A ⊗ B(f) = 〈B, f〉L2A
for A,B ∈ L2(Rd,Rd). Momenta Pn(t) are obtained at convergence of the dif-
feomorphic matching algorithm on JIn(v,M). Note that this tensor product is
performed in the space of vectorized vector fields defined in step 2 of the al-
gorithm section 2.2. We now develop a brief proof of how Eq. (4) is obtained:
The second term is a minimization over v of each term independently and there-
fore can be rewritten as a function of M :

∑N
n=1 minv JIn(vn(M),M), so that

at convergence we have ∂1JIn(vn(M),M) = 0 for each n = 1, . . . , N , where ∂1
is the partial derivative w.r.t. v. Thus, ∇L2F(M) equals β

2∇L2d2S++(M, Id) +
1
N

∑N
n=1 minv ∂MJIn(v,M). Using the linearity w.r.t. M−1 and the chain rule

formula, we obtain ∂2JIn(v,M) = − ∫ 1

0
(K̂ � Pn(t)) ⊗ (K̂ � Pn(t)) dt. We then

derive the Riemannian gradient using the formula ∇gf(S) = S∇L2f(S)S . The
differentiation of the first term is standard on a Riemannian manifold and its
gradient is given by the tangent vector of the geodesic between Id and M eval-
uated at M . Then the geodesic starting at identity and ending at M is given by
t→ et log(M) (see [6,2]). As a consequence, ∇g

1
2d

2
S++(M, Id) =M log(M).

After initializing M to identity, the algorithm is a simple gradient descent
which iterates: (1) Register T on the images In, n = 1, . . . , N to obtain the mo-
menta Pn(t); (2) Compute the gradient ∇gF(M) using formula (4); (3) Update
M :=M − ε∇gF(M), where ε is the chosen step length.

3 Reducing the Problem Dimension

In this section, we propose two straightforward solutions to make the learning
problem of section 2 usable on most computers when treating 3D medical im-
ages. Other dimensionality reduction methods could be applied as discussed in
section 5. Considering that the registered 3D images have N voxels, matrix M
has a size 3N × 3N which may be a huge amount of information to store.

3.1 Diagonal Matrix M

A straightforward solution to reduce the problem’s dimension is to constrainM
to have diagonal terms only. As explained in section 2, matrixM will only favor
deformations in specific locations and directions. The amount of parameters to
store and to estimate is however 3N instead of 3N × 3N , which makes it us-
able in 3D medical imaging with resonable computational ressources. Moreover,
Eq. (4) becomes numerically obvious to compute as the logarithm of 3N scalars
is computed instead of the logarithm of a 3N × 3N matrix.
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3.2 Basis Projection

Another solution, which allows to model long distance and inter-axes corre-
lations, is to project Γt on a 3D basis. In this work, we use a 3D B-spline
basis, with elements denoted by ψl, l ∈ {1, · · · , L}. Each element has its ori-
gin at point pl = (pxl , p

y
l , p

z
l ) and we suppose the pl sampled on a spatially

homogeneous grid with a larger step size than the image resolution. We also
associate the vector αl = (αx

l , α
y
l , α

z
l ) to element l of the basis. We denote

Γ̂ = (αx
1 , · · · , αx

L, α
y
1 , · · · , αz

L) the vector of size d = 3L which will be used to

learn M . A dense vector field v can be constructed from Γ̂ using:

v(p) =

L∑
l=1

αlψ(p− pl) , p ∈ Ω (5)

Projecting Γt on the basis only would induce a loss of information related to
deformations at a finer scale than the grid step size. To address this issue, we
perform the orthogonal projection of Γt on a closed subspace, Π : L2(Rd,Rd) �→
W , to learn parameters only on this subspace:

K = {K̂MΠK̂ + K̂(Id−Π)K̂ |M SDP operator on L2(Rd,Rd)} . (6)

Let us interpret how Eq. (6) reduces the problem dimensionality. Instead of step
2 in the pseudo-algorithm of section 2.2: (1) We compute Γ̂t (Γ̂ at time t) by
projecting Γt on the basis. (2) A vector field Q1 is constructed using Eq. (5)
with Γ̂t and we define the residual vector field Rt = Γt − Q1. (3) Another
vector field Q2 is constructed using Eq. (5) with MΓ̂t, the product of M and
Γ̂t. (4) The vector field Q2+Rt is finally the result of this modified step 2. The
interest of this strategy is twofold: Spatially-varying metric can be learnt using
the information projected on Γ̂t. Residue Rt which is related to deformations
at a finer scale than the grid step size also ensures that all information, and not
only the one projected on Γ̂t, is used to register the images. In addition to these
modified steps, the gradient of Eq. (4) is now computed using the projected
values of Γt and not the values of Γt directly.

4 Results

We assessed our method on the 40 subjects of the LONI Probabilistic Brain
Atlas (LPBA40) [9]. All 3D images were affinely aligned to subject 5 using
ANTS1 and then resampled to a resolution of 2 mm. We then learnt different
matrices M using the strategies of sections 3.1 and 3.2: T was the probability
tissue map (TM) of subject 5, the In were the TM of subjects 1 to 30 (except
5) and K̂ was a Gaussian kernel of width σ = 10. For the strategy of sec-
tion 3.2, we used a regular 3D grid sampled with a step size of 20mm. The
parameter ε was semi-empirically tuned so that ε equals 0.01 divided by the

1 http://stnava.github.io/ANTs/

http://stnava.github.io/ANTs/
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Axial Coronal Sagittal Axial Coronal Sagittal

(DiagM) (GridM)

Fig. 1. Values out of M after the two learning steps of section 4. The values are
represented at their corresponding location in the template image T . (DiagM): Values
M(j, j) for j ∈ [1, · · · , N ]. Color bar ranges from 1 (black) to 1.04 (white). (GridM):
M(i, j) for a fixed i and j ∈ [1, · · · , L]. White point corresponds to i = j and has an
intensity of 1.03. Color bar ranges from -0.05 (black) to 0.05 (white) for other points.
Red curves represent the boundary between white and grey matter in T .

maximum of
∣∣∣∑N

n=1

∫ 1

0 (MK̂ � Pn(t))⊗ (MK̂ � Pn(t))dt
∣∣∣ at the first iteration of

the algorithm. Parameter β is also equal to 0.025β̂ divided by the maximum of
|εM log(M)| at the second algorithm iteration. We used four values of β̂ to test
different regularization levels of M .

We can see in Fig. 1(DiagM) the location of the deformations favored by the

diagonal matrixM learnt with β̂ = 1 on the x-axis. ForM learnt on a grid with
β̂ = 1, Fig. 1(GridM) also indicates how the motion on the x-axis at point i is
empirically correlated with the motion at other locations j on the same axis.
Note that this information is computed for all grid nodes and not only i.

We then compared different registration strategies by registering the TM of
subject 5 on those of subjects 31 to 40: (DiagM) and (GridM) LDDMM
registration with the kernels learnt using the strategies of sections 3.1 and 3.2,
respectively. (Kref) Same as (DiagM) or (GridM) withM equals identity (noth-
ing learnt). This is equivalent to LDDMM registration using a Gaussian kernel
with σ = 10

√
2. (Kσ) To compare (GridM) with results obtained using stronger

spatially-homogeneous regularizations than in (Kref ), we also performed LD-
DMM registration with different values of σ. Finally, to compare our results
with state of the art strategies we finally performed ANTS-SyN registration
with the regularisation parameters of [5] (SyN) and LDDMM registration with
the multiscale strategy of [7]2 with σ sampled between 2 and 20mm (Kfine). Af-
ter registration, we computed the target overlaps (TO) between the segmented
cortical regions (given in LPBA40) to measure the matching quality and the
determinant of the Jacobians (DetJ) to quantify the deformation smoothness.
We also performed Kruskal-Wallis rank tests, where p ≤ 0.05 was chosen as
significance threshold, to compare different strategies.

As shown Table 1, we obtained more accurate TO using (SyN) and (Kfine)
than other methods. This is because other methods derive from (Kref ) and are
then constrained to register the images at a relatively large scale, as shown by
the DetJ of Table 1. Note that the relatively large kernel of (Kref ) was chosen to

2 http://sourceforge.net/projects/utilzreg/

http://sourceforge.net/projects/utilzreg/
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emphasize the effect of M with the grid of (GridM). Learning M on finer grids
would allow to learn multiscale kernels derived from (Kfine) for instance. On 3D
brain images this would however either require more advanced dimensionality
reduction techniques than those of section 3 or a very large amount of memory.
Comparing (Kref ) with the methods usingM shows the effect of our strategy, as
(Kref ) is strictly equivalent to the other methods if M is identity: Remark first
that, in our tests, no significant difference was found between (Kref ) and the
different (DiagM). We also did not found significant differences between (Kref )
and (GridM) close to identity (eg: (GridM1) in Table 1) or (Kσ) with σ close
to 10

√
2 (eg: (K20) in Table 1). No significant difference is also found between

(GridM1) and (K20). Significantly different TO and maximum DetJ to those
of (Kref ) were found using stronger spatial regularization, e.g. (GridM2) and
(K30) in Table 1. Comparing these two strategies leads to our key result: For a
similar TO, (GridM2) has significantly lower DetJMax and DetJStd than (K30).
Remark finally that the average DetJStd of (K30) is higher than the one of (K20)
although the one of (GridM2) is lower than the one of (GridM1). The spatially-
varying kernel therefore seems to take advantage of the learnt information with
non-local correlations to estimate smoother meaningful deformations.

Table 1. Average results obtained on the 3D brain images of the LPBA40 dataset

No Reg SyN Kfine Kref DiagM GridM1 GridM2 K20 K30

TO 0.665 0.750 0.732 0.712 0.711 0.710 0.704 0.710 0.704

DetJMax 1 3.17 4.65 1.66 1.66 1.61 1.41 1.62 1.50

DetJMin 1 0.047 0.46 0.67 0.68 0.70 0.67 0.73 0.66

DetJStd 0 0.17 0.11 0.063 0.062 0.059 0.049 0.056 0.063

5 Discussion

In this paper, we addressed the problem of regularization in diffeomorphic regis-
tration using a new variational approach to learn spatially-varying metrics in the
LDDMM setting. We parametrized the space of spatially-varying metrics with
positive definite matrices M and used the logarithm norm on this space as a
Tychonov regularizer to make the variational problem well posed. We also gave
a semi-analytical expression of the minimized energy gradients relative to M , as
well as two strategies to keep the problem’s dimensionality resonable, making
our learning strategy doable on standard computers. Note that the proposed
method has a natural maximum a posteriori interpretation and thus, Bayesian
methods could be developed in coherence with this variational model. We ob-
tained encouraging results showing that the spatially-varying metrics we learnt
allowed to register 3D brain images with smoother deformations than by using
a spatially-homogeneous metric, for similar structure overlaps.

Future work will focus on dimensionality reduction methods to learn M . Our
goal is to learn multiscale smoothing kernels, making our strategy more pertinent
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on large 3D medical images. An exciting perspective of this work would also be
the statistical analysis of the spatially-varying metric parameters defined here.
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