®

Check for
updates

Transition Power Abstractions for Deep
Counterexample Detection*

Martin Blicha':*(=)®, Grigory Fedyukovich?®, Antti E.J. Hyvirinen'®, and
Natasha Sharyginal

1 Universita della Svizzera italiana, Lugano, Switzerland, first.last@usi.ch
2 Florida State University, Tallahassee, FL, USA, grigory@cs.fsu.edu
3 Charles University, Prague, Czech Republic

Abstract. While model checking safety of infinite-state systems by in-
ferring state invariants has steadily improved recently, most verification
tools still rely on a technique based on bounded model checking to detect
safety violations. In particular, the current techniques typically analyze
executions by unfolding transitions one step at a time, and the slow
growth of execution length prevents detection of deep counterexamples
before the tool reaches its limits on computations. We propose a novel
model-checking algorithm that is capable of both proving unbounded
safety and finding long counterexamples. The idea is to use Craig inter-
polation to guide the creation of symbolic abstractions of exponentially
longer sequences of transitions. Our experimental analysis shows that on
unsafe benchmarks with deep counterexamples our implementation can
detect faulty executions that are at least an order of magnitude longer
than those detectable by the state-of-the-art tools.

Keywords: Model checking - Transition systems - Craig interpolation -
Model-based projection.

1 Introduction

Model checking [17] is a very successful technique widely used for formal ver-
ification of hardware and software. While its ultimate goal is to prove safety,
the ability to discover and report counterexamples primarily contributes to its
industrial success. The algorithm that paved the way for the adaptation in the
industry, bounded model checking (BMC) [9], still remains one of the most suc-
cessful techniques today for detecting counterexamples. A typical BMC algorithm
searches for counterexamples reachable in a finite number of steps, and if nothing
is found, it increases the search limits and restarts. This philosophy has been
largely adopted by most modern model-checking algorithms based on reachability

* The first author is partially funded by the project 20-07487S of the Czech Science
Foundation. The first, third, and forth authors are partially funded by the Swiss
National Science Foundation project 200021-185031. The second author is partially
funded by the gift from Amazon Web Services.

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 524-542, 2022.
https://doi.org/10.1007/978-3-030-99524-9_29

http://orcid.org/0000-0001-8140-4098
http://orcid.org/0000-0003-1727-4043
http://orcid.org/0000-0001-6672-5109
http://orcid.org/0000-0002-8872-4913
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_29

Transition Power Abstractions for Deep Counterexample Detection 525

analysis as one of the advantages of this approach is that it finds the shortest
counterexample (if one exists). However, it also results in scalability issues. Specif-
ically, in modern software systems, it is not uncommon that a program must
iterate through a certain loop thousands of times (or more) before it reaches some
error state. These deep counterexamples pose problems for reachability-based
algorithms that rely on unrolling the bounds of the system’s transition relation
one transition at a time.

An important class of loops present in software systems are multi-phase
loops [44]. A multi-phase loop, in short, is a loop with a conditional (branch) in
its body such that the conditional exhibits a fixed number of phase transitions
during the execution of the loop. A phase is a sequence of iterations during which
the conditional has the same value. Multi-phase loops are notoriously challenging
to analyze. When they are safe, they typically require disjunctive invariants. On
the other hand, an unsafe multi-phase loop may admit only deep counterexamples
if only later phases reveal the unsafe behavior.

In this paper we present a novel model-checking algorithm that is able to
find counterexamples of much greater depth than state-of-the-art algorithms.
At the same time, it is able to prove system safe under certain conditions and
is competitive also on a general set of benchmarks. We build upon the large
body of work on SMT-based model checking [1,3,4,8,14,15,25,28,30,37,38] and
use Craig interpolation [18,35] for computing abstractions. However, we shift the
focus from state abstractions—which is the widespread approach—to transition
abstractions [40].

Our algorithm works on transition systems and it builds a sequence of ab-
stract relations that gradually summarize (in an over-approximating way) an
increasing number of steps of the transition relation. One important feature
is that the summarized number of steps increases exponentially, not linearly.
Another important feature is that all the abstract relations are expressed only
over state and next-state variables, i.e., they do not require multiple copies of
state variables to capture multiple steps of the transition relation. This sequence
of abstract relations is used to refute the existence of bounded reachability paths
in the system. If existence of a path cannot be refuted in the current abstraction,
either the abstraction is strengthened to refute such path, or the path is shown to
be real. The precise mechanics of building and refining the sequence of abstract
relations are explained in Section 4. Our experiments demonstrate that our
algorithm improves the ability to detect deep counterexamples in the multi-phase
loop programs up to two orders of magnitude compared to the state-of-the-art.
Furthermore, it enables the detection of bugs left undiscovered by the other tools.

The main contributions of the paper are the following:

— A novel model-checking algorithm for safety properties of transition system
based on a sequence of relations over-approximating exponentially increasing
number of steps of transition relation.

— Proof of correctness of the algorithm and its termination for unsafe systems.

526 M. Blicha et al.

— Implementation and experimental evaluation of the proposed algorithm dem-
onstrating its capabilities of finding deep counterexamples in challenging
benchmarks containing multi-phase loops.

The rest of the paper is organized as follows. The necessary background is
given in Section 2, and a motivating example is given in Section 3. Section 4
describes our novel algorithm, and Section 5 presents the experimental results.
We discuss the related work in Section 6 and conclude in Section 7.

2 Background

Safety problem We work with a standard symbolic representation of transition
systems using the language of first-order logic. Given a set of variables X, we
denote as X' the primed copy of X, i.e., X' = {2’ | x € X}. X is a set of state
variables and X’ is a set of next-state variables. The formulas are interpreted
with respect to some background theory 7T; in our examples and benchmarks we
work with the theory of linear real or integer arithmetic (LRA and LIA in the
terminology of satisfiability modulo theories (SMT) [6,7]). We say that a formula
in the language of T over X is a state formula and a formula over X U X’ is a
transition formula. We identify state formulas with a set of states where they
hold and we freely move between these two representations. Similarly, we identify
transition formulas with binary relations over the set of states. The identity
relation Id(z,z") corresponds to the transition formula x = 2.

Transition system is a pair (Init, Tr) where Init is a state formula representing
the initial states of the system and 77 is a transition formula representing the
transition relation of the system. A safety problem is a triple (Init, Tr, Bad)
where (Init, Tr) is a transition system and Bad is a state formula representing
bad states.

When we only need to distinguish state and next-state variables, but not the
individual state variables, for simplicity we only use the lower-case x, 2’ and not
X, X'. These can be viewed as variables representing tuples. We also often need
to refer to next-next-state variables, which we denote as x”.

We use o to represent concatenation of relations. For example, given two
relations Rj(x,y) and Ra(y,z) then R = R; o Ry is a relation over z, z such
that R(z,z) <= 3y : Ri(z,y) and Ra(y, z). In transition systems we can
define relations that represent multiple steps of a transition relation. For example
Tr?(z,2") = Tr(z,2’) o Tr(z',z") relates pair of states (s,t) such that ¢ is
reachable from s in exactly two steps of the transition relation 7r. We also write
that (s,t) € Tr?. Existence of a counterexample (a path from some initial to
some bad state) of a fixed length ! can be encoded as a satisfiability check of
formula

Init(zO) A Tr(z©, zMY A Tr(z® @) AL A Tr(@@D, 20) A Bad(2Y),

where z(V) is a state variable shifted i steps, “with i primes”. A satisfying
assignment determines [4 1 states such that the first one is an initial state, the

Transition Power Abstractions for Deep Counterexample Detection 527

last one is a bad state, and each successor can be reached from its predecessor by
one step of the transition relation 7Tr. If there is no satisfying assignment then
no path of [steps from Init to Bad exists.

C'raig interpolation [18] Given an unsatisfiable formula A A B, an interpolant
I is a formula over the shared symbols of A and B such that A = I and
I A B is unsatisfiable. We denote as Itp(A, B) an interpolation procedure that
computes an interpolant for unsatisfiable A A B. Various interpolation procedures
exist, for propositional logic [31,42,34,19] as well as for different first-order
theories [36,16,2,11].

3 DMotivating example

Throughout the paper we demonstrate our approach on a family of C-like pro-
grams with a multi-phase loop (generalized from [44] where N=50) and an unsafe
assertion. The use of parameter N (should not be confused with a nondeterministic
variable) demonstrates the scale of search of counterexamples of different lengths.
We have experimentally evaluated how various tools perform on this example in
Section 5. The program source code and the corresponding transition system are
given in Figure 1.

x=0; y=N;
while(x < 2N){ A

x = x + 1; Init(z,y) =x=0Ay=N

lf(X > N) Tr(m7y7xl7y/)E$<2N/\.’I)l:x+1

y =73 + 1; Ayl:it€($l>N7y+17y)
}
Bad(z,y) =x > 2N Ay =2N

assert(y !'= 2N); ad(z,y) =z > Y

Fig.1: An example of unsafe multi-phase loop

Since the assertion is placed after the loop, any counterexample requires
finding a complete unrolling of the loop, i.e., all 2N iterations (or 2N steps in the
corresponding transition system). Interestingly, even a linear growth of N results
in the exponential growth of complexity of search of counterexamples. Because of
the control-flow divergence in each iteration of the loop, the number of possible
program paths (that a verifier explores) doubles with each increment of counter x.
Our technique allows finding the counterexamples for any N drastically more
efficiently.

528 M. Blicha et al.

input :transition system S = (Init, Tr, Bad)
global :TPA sequence S (lazily initialized to true)
Function CheckSafetyTPA({Init, Tr, Bad)):
S[0] + Id Vv Tr
if Sat?[Init(z) A S[0](x,z") A Bad(z')] then return UNSAFE
n<+0
while TRUFE do
res < IsReachable(n, Init, Bad)
if res # () then return UNSAFE
n+<n+1
end

W g0 bk W N

Algorithm 1: Main procedure for checking safety

4 Finding deep counterexamples with transition power
abstractions

Our main procedure for detecting safety violation—given in Algorithm 1—follows
the typical scheme of bounded model checking where in each iteration the
reachability of Bad is checked within certain bounded number of steps and
the bound gradually increases. This scheme has also been adopted by other
model checking algorithms, such as Spacer [30] and interpolation-based model
checking [20,34,45], which further support a generalization/adaptation of the
proof of bounded safety to a proof of unbounded safety.

The distinguishing feature of our approach is that it increases the bound for
the safety check exponentially in the number of iterations, while other approaches
do this linearly. That is, in the n*" iteration, traditional algorithms check bounded
safety up to n steps; but our approach does up to 2"*! steps. However, we do
not unroll the transition relation an exponential number of times. Instead, we
maintain a sequence of transition formulas (i.e., each formula contains only two
copies of the state variables) where each element over-approximates twice as
many steps of transition relation 7r as its predecessor. We call this sequence a
Transition Power Abstraction (TPA) sequence.

4.1 TPA sequence for bounded reachability queries

The core of our approach lies in creating and refining a sequence of relations
ATr<C ATr<' ... ATr=",... where each relation over-approximates twice as
many transition steps of a transition relation 77 as its predecessor. Formally, we
require that n'® relation ATr=" satisfies:

Id(z, 2)V Tr(z,2') vV Tr*(z,2') V...V Tr¥ (z,2') = ATr<"(z,2') (1)
The base for constructing a TPA sequence is ATr<? = Id v Tr. Thus, ATr=<° is

not an over-approximation, but a precise relation capturing true reachability in
either 0 or 1 steps.

Transition Power Abstractions for Deep Counterexample Detection 529

Our check for bounded safety is based on a procedure that answers bounded
reachability queries: Given a set of source and target states, is any target state
reachable from some source state in up to 2"*1 steps (for n > 0)? The procedure
uses the TPA sequence to answer such queries and, at the same time, it extends
the sequence and refines its existing elements.

Given two sets of states, Source and Target, and n*" element of the current
TPA sequence ATr<", the following SMT query is issued:

Sat?[Source(x) AN ATr="(z, ') N ATr="(z', 2"") A Target(z")). (2)

If query (2) is unsatisfiable, it means that there is no intermediate state
that would be reachable from Source using one step of ATr<" and, at the same
time, can reach Target in yet another step of ATr=". Since one step of ATr<"
over-approximates reachability (using 7r) in 0 to 2™ steps, this means that no
path of length <2"*+! exists from Source to Target. Thus, the procedure can
immediately conclude that no state from Target is reachable from any state in
Source in <2"*1 steps.

Additionally, it is also possible to learn new information about the reachability
in <27+ steps in the form of an interpolant between ATr="(z, 2)AATr<" (', ")
and Source(x) A Target(z"). The properties of interpolation guarantee that the
interpolant contains only variables z,z” (i.e., it does not contain z’), it over-
approximates ATr<" o ATr=", and it does not relate any source state with a
target state. The relation defined by such an interpolant satisfies condition (1)
for the n+1% element of TPA sequence and the current TPA sequence can be
refined by conjoining the interpolant (after renaming of variables) to its n+15¢
element.

If query (2) is satisfiable, there exists some intermediate state m that can
be reached from Source by one step of ATr=" and that can reach Target by
yet another step of ATr<". If n = 0, the procedure returns and reports the
answer “reachable” as ATr=Y is precise, not over-approximating. Otherwise, such
an intermediate state m can be seen as a potential point on the path from Source
to Target, and this path can be shown to be real if there exist two real paths:
from Source to m and from m to Target. The existence of these two real paths
can be checked in a recursive manner.

4.2 Algorithm for bounded reachability checks

The pseudocode for the procedure is given in Algorithm 2. We first explain the
steps in more detail and demonstrate a run of the algorithm on our example
from Section 3. We then prove the correctness and termination of Algorithm 2
from which follow the correctness of Algorithm 1 and its termination for unsafe
systems.

Function IsReachable takes as input an integer n > 0, a set of source states,
and a set of target states. The output is a subset of target states that are reachable
in <2"*! steps of transition relation Tr. The output set is empty if and only if
no target state is reachable from any source state within the given bound.

530 M. Blicha et al.

input :level n, source states Source, target states Target
output : subset of Target reachable from Source within 2" steps
global : TPA sequence S
Function IsReachable(n,Source,Target):
1 while true do
2 ATrs" < S[n]
3 query Source(x) N ATr<"(z,z") AN ATr<"(z',2") A Target(z")
4 sat_res < Sat?[query]
5 if sat_res = UNSAT then
6 I« Itp(ATr="(z,x') A ATr<" (2, x""), Source(x) A Target(z"))
7 Sn+1] + Sn+ 1] AIx" — 2]
8 return ()
9 else
10 if n =0 then return QE(3x,z" query)[z” — 1]
11 Intermediate <+ QE(3x,x" query)[z’ — x]
12 IntermediateReached + IsReachable(n — 1, Source, Intermediate)
13 if IntermediateReached = () then continue
14 TargetReached < IsReachable(n — 1, IntermediateReached, Target)
15 if TargetReached = () then continue
16 return TargetReached
17 end
18 end

Algorithm 2: Reachability query using TPA

The procedure loops until it computes a truly reachable subset of target states
or proves all target states unreachable. In each iteration the procedure reads
the current n** element of the TPA sequence (line 2). Note that this will be
different in each iteration as the TPA sequence will be updated in the recursive
calls on lines 13 and 15. After that, a satisfiability query is constructed and
passed to a decision procedure for the background theory 7 (lines 3 and 4).
The satisfiability query represents a question whether or not there exists an
intermediate state that would be reachable from Source using one step of ATr<"
and, at the same time, can reach Target in yet another step of ATr=",

Query on line 4 is unsatisfiable. If the query is unsatisfiable then no target state
can be reached from any source state in two steps of ATr=". It follows from
Eq. (1) that no target state can be reached from any source state in <2"*+! steps.
Before indicating the unreachability by returning @ (line 8), the function updates
the TPA sequence to ensure termination (discussed later): The function computes
an interpolant between ATr<"(z,z') A ATr="(z', ") and Source(z) A Target(z")
(line 6). After renaming variables, the interpolant is conjoined to the n+15*
element of the TPA sequence. The following example demonstrates this part of
the procedure on our motivating example.

FEzample 1. Consider the system from Figure 1 for N = 3. This system is not
safe and the counterexample requires six steps of transition relation Tr.

Transition Power Abstractions for Deep Counterexample Detection 531

After Algorithm 1 initializes the base element of TPA sequence to (z' =

zANY =y)V(z <6Ax =xz+1Ay =ite(z’ > 3,y+1,y)) it issues a reachability

query IsReachable(0,2 =0Ay =3,z > 6 Ay =6) in the first iteration of its
loop. This translates to a satisfiability check of the formula

r=0Ny=3

ANE'=zAy =y)V(E<b6rz =x+ 1Ay =ite(x’ >3,y+1,y)))
ANE"=2 ANy =y) V(@ <6rz" =2 +1Ay" =ite(z" >3,y +1,9)))
ANt >6Ay" =6

on line 4 of Algorithm 2. This query is unsatisfiable, and "/ < x + 2 is a possible
interpolant computed on line 6. After variable renaming, this interpolant refines
S[1], which becomes z’ < z + 2. Then this call to IsReachable terminates and
the main loop issues a new reachability query for n = 1. This yields a satisfiability
query z =0Ay =3ANx' <z+2A2" <2’ +2A2" >6Ay" =6. Again, this
formula is unsatisfiable and a possible interpolant is z’/ < x +4. The next element
of the TPA sequence, S[2] is refined to 2’ < z + 4.

For n = 2 (reachability within eight steps), the query on line 4 is satisfiable,
and the procedure switches to checking if the counterexample from abstract
transition is real or exists only due to a coarse abstraction.

Query on line 4 is satisfiable. If the query on line 9 is satisfiable, a concrete path
of length <2"*! cannot be ruled out at this point and the algorithm proceeds
to recursively check the existence of one. In the base case n = 0 of the recursion,
ATr=Y is not an over-approximation but a precise relation representing 0 or 1 steps
of Tr and there exists a real path from Source to Target. The algorithm computes
a state formula representing a truly reachable subset of Target. This is done by first
using quantifier elimination (QE) to eliminate all except next-next state variables
from the query (line 10) and then renaming the variables to state variables.*

If the base case has not been reached yet (n > 0), the procedure first computes
a set of candidate intermediate states by eliminating all except next-state variables
from the query (line 11). Then, the procedure recursively calls itself to determine
the existence of a path from Source to the newly computed intermediate set with
the bound on length halved (line 12). This check has two possible outcomes. In
case the recursive call returns (), none of the intermediate candidates is reachable
(within 2™ steps). Moreover, S[n] must have been strengthened (line 7) before the
recursive call returned as to not relate any of the source states and intermediate
candidates. The procedure then continues to the next iteration (line 13) where it
tries to find new intermediate candidates or prove there are none anymore. In case
the set returned on line 12 is non-empty, it represents a set of states reachable
from Source within 2™ steps of Tr. The procedure proceeds to check the existence

4 QE computes maximal reachable subsets. While this is convenient for proving termi-
nation of Algorithm 2, in practice quantifier elimination is a very expensive operation.
Our implementation therefore supports also the use of model-based projection to
efficiently under-approximate quantifier elimination (see Section 4.4).

532 M. Blicha et al.

of a path from these states to the target states (line 14). The reasoning here is
the same as for the first recursive call: If Target is not reachable, the procedure
attempts to find new intermediate candidates in a new iteration. Otherwise, real
path from Source to Target exists and the computed truly reachable states are
returned. The returned states are reachable with 27*! steps as both recursive
calls check reachability within 2™ steps.

We continue Example 1 to illustrate this phase of Algorithm 2.

Ezxample 2. Following Example 1, the algorithm is checking bounded reachability
between Init and Bad for n = 2, i.e., within 8 steps. The issued satisfiability
queryisz=0Ay=3A2' <z+4Az" <2’ +4A2" >6Ay" =6. Eliminating
all except next-state variables yields =’ < 4 A 2’ > 2. This results in the call
IsReachable(l,x = 0Ay = 3,2 < 4 Ax > 2). The satisfiability query issued
nextisz =0Ay=3AN2 <z+2Az2" <2 +2A2" <4A2" > 2 Thisis
again satisfiable and yields 2’ < 2 A 2’ > 0 after quantifier elimination. Now
we reach level 0 with a call IsReachable(0,2 =0Ay = 3,2 < 2Az > 0). The
constructed satisfiability query is again satisfiable and since we are at level 0, the
procedure returns a set of states truly reachable from z = 0 Ay = 3 within 2 steps.
These can be characterized as (r =0V z =1V x = 2) Ay = 3. The reachable
states are reported to level 1 which issues reachability query for the second part:
IsReachable(0,(x =0Vx=1Vx=2)Ay = 3,2 <4 Az > 0). This is also
successful and returns reachable states (z =0Vae=1Vz=2Va=3Vz =4)A
y = 3. These are states reachable from Init within 4 steps and they are reported
to level 2. There, the second part of the counterexample is found in a similar way
and the procedure concludes that Bad is truly reachable from Init within 8 steps.

The behaviour of the algorithm on these examples can be generalized for the
system of Figure 1 for larger values of N. The length of the counterexample is 2N
and let [denote [log2(2N)]. The bounded safety will be quickly determined up
to 2! steps with I calls to IsReachable which all return () in their first iteration.
On the next iteration, for n = [, IsReachable will find the real counterexample,
but it requires O(2') recursive calls to find the counterexample of length in the
interval (2, 2!+1].

4.3 Correctness and termination

We first prove correctness and termination of Algorithm 2 which then entails
correctness of Algorithm 1 and its termination for unsafe systems. We prove the
correctness of procedure IsReachable separately for the unreachable and the
reachable case.

Lemma 1. If IsReachable(n, Source, Target) returns (), then no state from
Target can be reached from Source within 2"T1 steps.

Proof. The proof relies on the invariant that S is always a TPA sequence, i.e.,
its elements satisfy the property of Eq. (1). This is obviously true when S is
initialized in Algorithm 1. The only update of S happens in Algorithm 2 on line 7.

Transition Power Abstractions for Deep Counterexample Detection 533

Consider an update on any level k < n. From the properties of interpolation, we
know that I(z,z”) (on line 6) over-approximates ATr<*(z, z') A ATr=F(a!, z"),
which represents two steps of the relation ATr<*. Since ATr<F over-approximates
<2* steps of Tr, it follows that I(x,z") over-approximates <2**! steps of Tr.
Thus, conjoining it to ATr<F™! preserves the condition of Eq. (1).

It follows from Eq. (1) that when the query on line 4 is unsatisfiable, there
exists no path of length < 2 x 2" = 2"*! from any source state to any target

state. O

Lemma 2. If IsReachable(n, Source, Target) returns a non-empty set Res,
then Res C Target and every state in Res can be reached from some state in
Source in <271 steps.

Proof. The proof is by induction on n.

Base case: For n = 0 ATr=Y represents precise reachability in 0 or 1 step.
It follows that if the query on line 4 is satisfiable, some target states are truly
reachable from the set of source states in <2 steps. Moreover, the properties
of QF guarantee that Res = QF(3x, 2’ query)[x” — x] is a subset of Target(x)
that are reachable from Source using ATr=" o ATFr=°,

Inductive case: Suppose the claim holds for n — 1. If at level n the procedure
returned a non-empty set, it must have been the case that the first recursive
call (line 12) returned a non-empty set IntermediateReached of states truly
reachable from Source in <2" steps, by our induction hypothesis. Additionally,
the second recursive call (line 14) also returned a non-empty set TargetReached
that, according to our induction hypothesis, is a subset of Target truly reachable
from IntermediateReached in <2" steps. It follows that TargetReached is a subset
of Target truly reachable from Source in <2"*! steps. O

The correctness of procedure IsReachable extends naturally to the correct-
ness of our main procedure.

Theorem 1 (Correctness). If Algorithm 1 returns UNSAFE, then the system
S is unsafe, i.e., some bad state is reachable from some initial state.

Proof. The satisfiablity query on line 2 of Algorithm 1 checks reachability in
0 and 1 step. If this query is satisfiable, there exists a counterexample path of
length 0 or 1 from some initial state to a bad state.

Otherwise, it enters the loop where UNSAFE is returned only if IsReachable
returns non-empty set of states for some n. From the correctness of IsReachable
it follows that the returned set is a subset of Bad that is reachable from Init in
<271 steps. Thus there exists a counterexample path in the system.]

Next, we want to show that if there exists a counterexample path in the
system, our procedure will eventually report it. This boils down to the question
of termination of a single call to IsReachable.

Lemma 3. Assume that the satisfiability check (line 4) terminates, i.e., that the
background theory T is decidable, and that T has procedures for interpolation and
quantifier elimination.® Then a single call to IsReachable always terminates.

5 The linear arithmetic theories of our experiments satisfy these assumptions.

534 M. Blicha et al.

Proof. The proof proceeds by induction on level n. The base case (n = 0) trivially
terminates after a single satisfiability query on line 4.

For the inductive case, consider the first iteration of the loop. If the query is
unsatisfiable, the procedure terminates. If it is satisfiable, quantifier elimination
yields a set of states Intermediate = {m | Is € Source,3t € Target : (s,m) €
ATr<" A (m,t) € ATr="}. Now consider the first recursive call (line 12). By
induction, it terminates. If it returns @, then, by properties of the interpolation,
ATr=" has been strengthened such that Vs € Source,¥Ym € Intermediate :
(s,m) ¢ ATr=" now holds. Consequently, in the second iteration the query
on line 4 must be unsatisfiable and the procedure terminates.

Now consider the situation where the recursive call on line 12 returned a
non-empty set IntermediateReached. The procedure continues to the second
recursive call (line 14), which also terminates, by induction. If the returned set
TargetReached is non-empty, the procedure terminates (line 16). If it is empty,
then no state reachable from Source in <2™ steps of Tr can reach any state in
Target in another <2 steps. Moreover, ATr<" has been strengthened so that
now it does not relate any state from IntermediateReached with a state in Target.
In the second iteration, the query on line 4 could still be satisfiable. However,
the extracted Intermediate (of the second iteration) cannot contain states that
are reachable from Source in <2" steps. Thus first recursive call (line 12) in the
second iteration must return () and this is followed by an unsatisfiable query
(line 4) in the third iteration and termination. O

The immediate consequence of Lemma 3 is that our main procedure will find
a counterexample if one exists.

Theorem 2. If there exists a counterexample in the system, Algorithm 1 termi-
nates with UNSAFE result.

4.4 TUnder-approximating QE with model-based projection

Model-based projection (MBP) [30] is a recent technique for under-approximating
quantifier elimination for existentially quantified formulas. In short, given an
existentially quantified formula Jz¢(z,y), MBP is a function that maps each
model of ¢ to a quantifier-free formula that implies Jz¢(z,y) and is true in the
model. Moreover, it is required that the function has a finite image (it produces
only finitely many quantifier-free under-approximations) and the disjunction of
the image is equal to the quantified formula. Efficient MBP for linear real and
integer arithmetic was given in [30,10]. MBP has also been designed for algebraic
datatypes [10], arithmetic signature of bit-vectors [23] and arrays® [29].

Quantifier elimination in Algorithm 2 can be replaced by MBP in a straight-
forward way. On line 4, if the query is satisfiable, we obtain from the SMT solver
a model witnessing the satisfiability. Then, on lines 10 and 11 we replace QE with
MBP using the obtained model. It is easy to check that the proof of Lemma 2
remains valid with this change, and thus also the result of Theorem 1. In Section 5
we experimentally demonstrate the practical advantage of MBP over QE.

6 MBP for arrays does not satisfy the finite image condition

Transition Power Abstractions for Deep Counterexample Detection 535

4.5 Proving safety

Even though the main purpose of the TPA sequence is to help to quickly rule out
bounded reachability queries, it can also be useful in another way. Specifically,
an element of the TPA sequence may turn out to be a transition invariant with
respect to transition relation 77r.

Definition 1 (transition invariant). We say that R(xz,z’) is a transition
invariant if Tr* C R, i.e., Vo, o' Tr*(z,2') = R(xz,xz’), where Tr" is the
reflexive transitive closure of Tr.

Note that our definition is slightly simpler than that of [40], as it only depends
on the transition relation and not, for example, on the initial states of the system.

If we find a transition invariant that does not relate any initial state with a
bad state, we can immediately conclude that the system is safe. We show one
way how to detect if a member of the TPA sequence is a transition invariant
using SMT query.

Lemma 4. Assume that for some n, ATr<"o Tr C ATr<" or that Tro ATr<" C
ATrS"™. Then ATr<" is a transition invariant.

Proof. We consider the case ATr<" o Tr C ATr<" and show that Tr* C ATr<".
The other case is analogous. Take any two states s, s’ such that s’ is reachable
from s, i.e., (s,s') € Tr*. We show that (s,s’) € ATr<" by induction on d, the
length of the path from s to s". If d < 2" then (s, s') € ATF=" by Eq. (1). Assume
now that d > 2". Then there exists a state ¢ such that ¢ can be reached from s
in d — 1 steps and (t,s') € Tr. By induction, we have that (s,t) € ATr=" and
(s,5') € ATr=" o Tr. By our assumption it follows that (s,s’) € ATr=". O

Note that when a call to IsReachable on line 5 in Algorithm 1 returns), the
n+15¢ element of TPA sequence ATr<"*! does not relate any initial and bad
state. Thus we can check at this point for the conditions of Lemma 4, and, if
satisfied, we can immediately conclude that no counterexample (of any length)
exists in the system and report safety.

In fact, to detect that no counterexample exists, the assumptions of Lemma 4
can be relaxed a bit. We can consider the restriction of these relations to only
initial or bad states. The notation A < R denotes a domain restriction of a binary
relation R to a set A, i.e., (z,y) € A<Riff (x,y) € RAx € A. Similarly R> B
denotes the codomain restriction, i.e., (z,y) € R> B iff (z,y) € RAy € B.

Lemma 5. Assume that for some n Init < ATr<" o Tr C Init < ATr<"™. Then
Init < Tr* C Init < ATr<". Similarly, if Tr o ATr="1> Bad C ATr<" 1 Bad, then
Tr* > Bad C ATr<"1> Bad.

Proof. Same as the proof of Lemma 4, with appropriate restrictions.

Lemma 5 represents a weaker form of Lemma 4: it has a weaker assumption
and a weaker conclusion. Nevertheless, the conclusion is still strong enough to
ensure that no counterexample exists and conclude safety.

536 M. Blicha et al.
5 Experiments

We have implemented our TPA-based procedure (Algorithm 1) in our new
CHC solver Golem”. Golem is built on top of the interpolating SMT solver
OpenSMT [26]. In our experiments we used version 2.2.0 of OpenSMT?.

To gauge the feasibility of our algorithm we performed a set of experiments.
All experiments were conducted on a machine with AMD EPYC 7452 32-core
processor and 8x32 GiB of memory. We compared our approach to the current
state-of-the-art tools Eldarica 2.0.6 [25], IC3-IA 20.04.1 [15] and Z3 4.8.12 [39]
(using both its BMC [9] and Spacer [30] engines), which were the top competitors
in CHC-COMP 2020 and 2021 [43,21]. We used both versions of our algorithm
in the experiments: using MBP (TPA-MBP) and QE (TPA-QE). The format
of all the benchmarks is that of the constrained Horn clauses (CHCs) used in
the CHC-COMP. Since IC3-IA’s input format differs, all CHC benchmarks were
translated to VMT format using the automated tool packaged with IC3-IA.?

The goal of the first experiment was to investigate the scalability of our
algorithm with respect to the length of the counterexample and compare its
performance to the state-of-the-art tools. We used the parametrized transition
system from our motivating example in Section 3. The counterexample in this
system has length 2N and we ran the tools on instances for N ranging from 1
to 511. The timeout was set to 300 seconds. Figure 2 shows the runtime of the
tools for the given value of V.

TPA-MBP was able to report all instances as unsafe, needing less than two
seconds for each instance. Eldarica, IC3-IA and Z3-BMC exhibit relatively stable
pattern where the performance decreases rapidly with increasing N. Z3-Spacer,
on the other hand, exhibits a curious behaviour where it is able to solve most of
the instances (even though it is slower than TPA-MBP by at least an order of
magnitude), but on a relatively large number of instances it times out, and we
were not able to understand the pattern on which instances this happens. Quick
look at the instances for N < 100 suggests that on some instances its behaviour
is much closer to that of IC3-IA. Finally, TPA-QE also shows an interesting
pattern in its runtime where its performance drops considerably on every power
of two, and then it slowly improves for larger N until the next power of two.

This first experiment showed very promising results for TPA-MBP which
benefited from the fact that the reason why shorter counterexamples do not exist
can be summarized relatively easily. It scaled exceptionally well compared to the
state-of-the-art tools, as well as TPA-QE.

To confirm the results from the first experiment, we continued with the second
set of benchmarks representing instances of our targeted type of problems. They
represent assertions over multi-phase loops, which are known to be difficult to
analyze by state-of-the-art techniques. We took 54 safe multi-phase benchmarks

7 https://github.com/usi-verification-and-security /golem; commit 4eala53

8 https://github.com/usi-verification-and-security /opensmt

9 Full results of the experiments available at http://verify.inf.usi.ch/horn-clauses/tpa,/
experiments. Artifact available at https://doi.org/10.5281/zenodo.5815911

https://github.com/usi-verification-and-security/golem
https://github.com/usi-verification-and-security/golem/commit/4ea1a531a59575a9c0c0254201d90d52547152ff
https://github.com/usi-verification-and-security/opensmt
http://verify.inf.usi.ch/horn-clauses/tpa/experiments
http://verify.inf.usi.ch/horn-clauses/tpa/experiments
https://doi.org/10.5281/zenodo.5815911

Transition Power Abstractions for Deep Counterexample Detection 537

100 §
10 E
=
[
E
= 1 K
g
Eldarica +
IC3-IA x
0.1 TPA-QE E
TPA-MBP]
7Z3-BMC
0.01 ‘ ‘ ‘ ‘Z3-Spacer o L
0 100 200 300 400 500

N

Fig. 2: Runtime for motivating example for N from 1 to 511 (log y-axis)

from CHC-COMP repository'® and then for each benchmark created its unsafe
version with a minor modification of the safety property.'’ In most cases this was
done by negating one of the conjuncts of the property. In a few cases this resulted
in a simple benchmark with a very short CEX (< 10 steps), but in most cases,
the minimal counterexample is much larger, ranging from a few hundreds to a
few tens of thousands of steps. There are even a few extremes where the minimal
counterexample requires hundreds of thousands or even millions of steps.

With the timeout of 300 seconds, out of 54 benchmarks, TPA-QE solved 20
and TPA-MBP solved 35 benchmarks, beating the other tools among which Z3-
Spacer performed the best, solving 20 benchmarks. The results are summarized in
Figure 3 where the number of solved benchmarks by each tool is plotted against
the time needed for their solving.

Overall, our tool solved 15 benchmarks that none of the other tools was able
to solve and in general could be one or two orders of magnitude faster. There
were two noticeable exceptions: benchmark 24 was uniquely solved by Z3 and
benchmark 39 was uniquely solved by IC3-TIA (for benchmark numbering, see the
link in footnote 11). We found out that in the latter case our tool suffered from
incompleteness in the decision procedure of OpenSMT for integer arithmetic,
while in the former case the interpolation used by our algorithm was not producing
good abstractions and we suffered from the need for frequent refinements.

We also examined the solved benchmarks for the length of the minimal
counterexample they admit. The results are in line with the observations from our
first experiments: Other tools could only solve benchmarks with a counterexample

10 https://github.com/chc-comp/aeval-benchmarks
1 Benchmarks available at https://github.com /blishko/chc-benchmarks.

https://github.com/chc-comp/aeval-benchmarks
https://github.com/blishko/chc-benchmarks

538 M. Blicha et al.

T
3 <k e il
: vy :
— 10 & 7/4/: ‘ -
~ / / |
) / | o
g 1 A [w p Eldarica —+
= E f .
= i o v IC3-IA —< i
[' f TPA-QE 1
0.1 ¢ Z%f TPA-MBP .
po 73-BMC
r }Z)/ Z3-Spacer - 1
001 Ak | | | | | |

0 5 10 15 20 25 30 35 40

Fig. 3: Results on 54 multi-phase unsafe benchmarks

of up to a thousand steps (1001 steps in benchmark 17 solved by Z3-Spacer).
TPA-QE matched this performance (1001 steps in benchmark 27), but TPA-MBP
managed to solve benchmarks with a counterexample of more than ten thousand
steps (17650 in benchmark 42). Thus, our technique significantly improves upon
state-of-the-art with respect to the length of the counterexample it can detect.

Finally, we successfully tested our implementation on the safe version of
the 54 multi-phase benchmarks and on the general set of 498 benchmarks from
CHC-COMP’21, the category of transition systems over linear real arithmetic.
TPA-MBP managed to prove 10 of the multi-phase benchmarks safe. Z3-Spacer,
IC3-TA and Eldarica proved safe 9, 20 and 26 of these benchmarks, respectively.
On the CHC-COMP LRA-TS benchmark set, TPA-MBP was able to solve 70
unsafe benchmarks (from 90+ known unsafe benchmarks in the set) and 67 safe
benchmarks.

6 Related work

Loop acceleration [5,12,22] is a related approach for loop analysis that enables
both proving safety and detection of deep bugs. It transforms the loop to a single
quantifier-free formula representing all possible executions of the loop. While
offering significant improvement for a limited types of integer loops, it is not
applicable for code with control-flow divergence and/or data structures. Accelera-
tion has also been combined with interpolation-based model-checking [13,24]. In
contrast, our technique does not accelerate paths but builds over-approximations
of bounded number of iterations. It is not restricted to any specific type of loops,
and it works over any theory supporting interpolation and quantifier elimination.

Another technique for fast detection of deep counterexamples for C programs
was proposed in [32]. Given a path through a loop, it computes a new path that

Transition Power Abstractions for Deep Counterexample Detection 539

under-approximates an arbitrary number of iterations of the original path. In
contrast to loop acceleration, this technique only under-approximates the loop
behaviour, but it can handle conditionals and richer background theories. Our
approach targets the same goal but it is over-approzimating, which allows for
detecting (transition) invariants and proving safety. Their prototype aims at C
programs only (and does not seem to be maintained anymore). Our implementa-
tion works on transition systems in the form of constrained Horn clauses (CHC)
and thus is agnostic to the programming language.

Abstracting transition relation using interpolation has been employed in [27].
They use interpolation to compute and refine abstract version of the transition
relation. However, they abstract only a single step of the transition relation.
Instead, we use interpolation to compute relations that over-approximate multiple
(and increasingly larger number of) steps of the transition relation.

Transition invariants [40] have been successfully employed for proving liveness
properties, especially termination [33,41]. Our technique can discover transition
invariants and use them to prove safety. However, in this paper we focused on find-
ing counterexamples and the directed search for invariants is left for future work.

Our technique can find a possible application in automating test-case genera-
tion. A given program can be automatically annotated with assertions representing
the reachability of all the branches. Having the goal to detect a set of input values
for maximizing the test coverage [46], our technique would be called repeatedly
to find many counterexamples for a subset of assertions (including deep ones)
and prove the unreachability of the remaining ones.

7 Conclusion and Future Work

This paper introduces a novel model-checking algorithm for safety properties
of transition systems with a focus on finding deep counterexamples. The idea
is based on maintaining a sequence of transition formulas, called the transition
power abstraction (TPA) sequence, where each element over-approximates a
sequence of transition steps twice as long as its predecessor. The sequence is
used in answering bounded reachability queries, which in turn results in new
information that further refines the sequence. We proved the correctness of this
algorithm and showed that it eventually finds a counterexample if one exists,
assuming the background theory admits interpolation and quantifier elimination.
For performance reasons, our implementation applies quantifier elimination lazily
using model-based projection that lets the approach to outperform state-of-the-
art on a class of problems with multi-phase loops. The experiments confirmed
that it is able to detect counterexamples of much greater depth than existing
tools within the same time constraints.

As future work, we plan to investigate possible improvements of the algorithm
and tailor it for finding transition invariants. This would contribute to its ability
to prove programs safety and enable the modular reasoning to support arbitrary
systems of constrained Horn clauses.

540

M. Blicha et al.

References

1.

10.

11.

12.

13.

14.

Alt, L., Asadi, S., Chockler, H., Even Mendoza, K., Fedyukovich, G., Hyvarinen,
A.E.J., Sharygina, N.: Hifrog: SMT-based function summarization for software
verification. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 207-213. Springer Berlin Heidelberg, Berlin,
Heidelberg (2017)

. Alt, L., Hyvéarinen, A.E.J., Sharygina, N.: LRA interpolants from no man’s land.

In: Strichman, O., Tzoref-Brill, R. (eds.) HVC 2017. LNCS, vol. 10629, pp. 195-210.
Springer, Cham (2017)

. Asadi, S., Blicha, M., Fedyukovich, G., Hyv\”arinen, A., Even-Mendoza, K., Shary-

gina, N., Chockler, H.: Function summarization modulo theories. In: Barthe, G.,
Sutcliffe, G., Veanes, M. (eds.) LPAR-22. 22nd International Conference on Logic
for Programming, Artificial Intelligence and Reasoning. EPiC Series in Computing,
vol. 57, pp. 56-75. EasyChair (2018)

. Asadi, S., Blicha, M., Hyvéarinen, A.E.J., Fedyukovich, G., Sharygina, N.: Incre-

mental verification by SMT-based summary repair. In: 2020 Formal Methods in
Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020. pp.
77-82. IEEE (2020)

. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: Acceleration from theory to

practice. International Journal on Software Tools for Technology Transfer 10(5),
401-424 (2008)

. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.

rep., Department of Computer Science, The University of Iowa (2017), available at
http://smtlib.cs.uiowa.edu

. Barrett, C., de Moura, L., Ranise, S., Stump, A., Tinelli, C.: The SMT-LIB initiative

and the rise of SMT. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) Hardware
and Software: Verification and Testing. pp. 3—-3. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-

cation. Journal of Automated Reasoning 60(3), 299-335 (Mar 2018)

. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without

BDDs. In: Tools and Alg. for the Const. and Anal. of Systems (TACAS ’99). LNCS,
vol. 1579, pp. 193-207 (1999)

Bjgrner, N., Janota, M.: Playing with quantified satisfaction. In: Fehnker, A., Mclver,
A., Sutcliffe, G., Voronkov, A. (eds.) LPAR-20. 20th International Conferences on
Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations.
EPiC Series in Computing, vol. 35, pp. 15-27. EasyChair (2015)

Blicha, M., Hyvéarinen, A.E.J., Kofron, J., Sharygina, N.: Decomposing Farkas
interpolants. In: Vojnar, T., Zhang, L. (eds.) Proc. TACAS 2019. LNCS, vol. 11427,
pp. 3-20. Springer (2019)

Bozga, M., losif, R., Koneény, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) Computer Aided Verification. pp. 227-242.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating interpolation-based
model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 428-442. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008)

Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) Computer Aided Verification. pp. 277-293. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Transition Power Abstractions for Deep Counterexample Detection 541

Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: Abrahém, E., Havelund, K. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems. pp. 46-61. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants
in satisfiability modulo theories. ACM Trans. Comput. Logic 12(1), 7:1-7:54 (Nov
2010)

Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018)

Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic 22(3), 269285 (1957)

D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: VMCALI 2010. LNCS, vol. 5944, pp. 129-145. Springer (2010)

Fedyukovich, G., Bodik, R.: Accelerating syntax-guided invariant synthesis. In:
TACAS, Part I. LNCS, vol. 10805, pp. 251-269. Springer (2018)

Fedyukovich, G., Rimmer, P.: Competition report: CHC-COMP-21. In: Hojjat, H.,
Kafle, B. (eds.) Proceedings 8th Workshop on Horn Clauses for Verification and
Synthesis, HCVSQETAPS 2021, Virtual, 28th March 2021. EPTCS, vol. 344, pp.
91-108 (2021)

Frohn, F.: A calculus for modular loop acceleration. In: Biere, A., Parker, D. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp. 58-76.
Springer International Publishing, Cham (2020)

Govind, H., Fedyukovich, G., Gurfinkel, A.: Word level property directed reachability.
In: 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
pp. 1-9 (2020)

Hojjat, H., losif, R., Koneény, F., Kuncak, V., Riimmer, P.: Accelerating interpolants.
In: Chakraborty, S., Mukund, M. (eds.) Automated Technology for Verification and
Analysis. pp. 187-202. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
Hojjat, H., Riitmmer, P.: The ELDARICA Horn Solver. In: FMCAD. pp. 158-164.
IEEE (2018)

Hyvérinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.)
SAT 2016. LNCS, vol. 9710, pp. 547-553. Springer, Cham (2016)

Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation.
In: Etessami, K., Rajamani, S.K. (eds.) Computer Aided Verification. pp. 39-51.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

Jovanovic, D., Dutertre, B.: Property-directed k-induction. In: Piskac, R., Talupur,
M. (eds.) Proc. FMCAD 2016. pp. 85-92. IEEE (2016)

Komuravelli, A., Bjgrner, N.,; Gurfinkel, A., McMillan, K.L.: Compositional verifi-
cation of procedural programs using Horn clauses over integers and arrays. In: 2015
Formal Methods in Computer-Aided Design (FMCAD). pp. 89-96 (2015)
Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods in System Design 48(3), 175-205 (Jun 2016)
Krajicek, J.: Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic. The Journal of Symbolic Logic 62(2),
457-486 (1997)

Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C
programs for fast counterexample detection. Formal Methods in System Design
47(1), 75-92 (2015)

542 M. Blicha et al.

33. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
analysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) Computer Aided Verification. pp. 89-103. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

34. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2013. pp. 1-13. Springer, Heidelberg (2003)

35. McMillan, K.L.: Applications of Craig interpolants in model checking. In: Halbwachs,
N., Zuck, L.D. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 1-12. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

36. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science
345(1), 101-121 (2005)

37. McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided Verification
(CAV °06). LNCS, vol. 4144, pp. 123-136 (2006)

38. McMillan, K.L.: Lazy annotation revisited. In: Proc. CAV 2014. LNCS, vol. 8559,
pp. 243-259. Springer (2014)

39. de Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. pp. 337—-340. Springer, Heidelberg (2008)

40. Podelski, A., Rybalchenko, A.: Transition invariants. In: Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science, 2004. pp. 32-41 (2004)

41. Podelski, A., Rybalchenko, A.: Transition invariants and transition predicate ab-
straction for program termination. In: Abdulla, P.A., Leino, K.R.M. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems. pp. 3-10. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

42. Pudlék, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic 62(3), 981-998 (1997)

43. Riimmer, P.: Competition report: CHC-COMP-20. Electronic Proceedings in Theo-
retical Computer Science 320, 197-219 (Aug 2020)

44. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying loop invariant generation
using splitter predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification. pp. 703-719. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

45. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: Proc.
FMCAD 2014. pp. 1-8. IEEE (2009)

46. Zlatkin, 1., Fedyukovich, G.: Maximizing branch coverage with constrained horn
clauses. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems. Springer Berlin Heidelberg (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Transition Power Abstractions for Deep Counterexample Detection
	1 Introduction
	2 Background
	3 Motivating example
	4 Finding deep counterexamples with transition power abstractions
	4.1 TPA sequence for bounded reachability queries
	4.2 Algorithm for bounded reachability checks
	4.3 Correctness and termination
	4.4 Under-approximating QE with model-based projection
	4.5 Proving safety

	5 Experiments
	6 Related work
	7 Conclusion and Future Work
	References

