
A STEP TOWARD AUTOMATIe
DISTRIBUTION OF JAVA PROGRAMS

Isabelle Attali
Denis Caromel
Romain Guider
INRIA - CNRS - ISS - UNSA

BP 9S, F-06902 Sophia Antipolis

France

First.Last@inriaJr

Abstract This article investigates the automatie distribution and parallelization
of object-oriented programs. We formally define a set of properties that
allow to turn standard objects into active objects to be distributed on
a network (Iocal or wide area).

We first explain a principle of seamless sequential, multi-threaded
and distributed programming using Java, that enhances code reuse and
code distribution. We exhibit conditions on the graph of objects to
detect activable objects and transform a sequential program into a dis­
tributed or parallel program using active objects. Finally, we explain
how these properties were implemented in order to check them statically
on a given Java program.
Keywords: model for object distribution, formal techniques, program
analysis

1. INTRODUCTION
One major issue of object-oriented programming is reusability through

inheritance, polymorphism, and dynamic binding. This feature has also
been studied and enhanced in the context of parallelization and distri­
bution. Several concurrent object-oriented programming languages have
been designed, see for instance Hybrid [30], Pool [3], DROL [34], and
more recently Java [23J. Also, many object-oriented languages have been
extended to address concurrency, parallelism, and distribution issues, see
for instance ConcurrentSmalltalk [35], Distributed Smalltalk [9J, Eiffel/ /
[11], ProActive [14J.

http://dx.doi.org/10.1007/978-0-387-35520-7_21

142

Most of these works off er a setting for easy parallel, distributed, and
concurrent programming, starting from a sequential applieation, and
making it run on a parallel or distributed architecture. Some languages
provide a unified syntax (no syntactie extension) for both sequential and
parallel versions. This feature is critieal for reuse.

The concurrent object-oriented language Eiffel/ / comes together with
a design method for concurrent applieations [12]. This method promotes
a first phase of sequential design and programming before a second phase
that must start with the identification of concurrent activities, and then
follows with the creation of active objects (actor-like entities [1]). This
method can be applied to Java as weIl, using the ProActive library [14],
which makes it possible to reuse sequential components in a parallel and
distributed setting with very limited modifications.

Another problem indeed is to be able to guarantee that the semanties
of the original sequential version is preserved in a parallel and distributed
setting. This problem has been tackled in various works, using different
modelizations: 7r-calculus [29], operational semanties [27], natural se­
manties [5], Temporal Logic of Actions (TLA) [7]. These work are to be
generalised, and extended to the point where the detection of parallelism
is no longer manually achieved, but automatie.

Toward that goal, we present in this article a parallelization and distribu­
tion criterion based on properties of the graph of objects. The criterion
formally expresses conditions under whieh objects are activable, and so
can be transformed into active objects of the ProActive library. The
library itself takes care of the distribution and parallel executions:

• the active object can be created either within the current VM, or
on a remote host;

• an active object has its own thread that executes methods invoked
on the object in adefault FIFO order;

• the semanties of calls to an active object are transparently asyn­
chronous, with no code modification being required on the caller's
side (futures with wait-by-necessity [11]).

We do not address the problem of compiling legacy code for high
performance architectures; instead, we want to provide developers of
distributed or concurrent applieations with a tool that helps them in
the process of identification and organization of parallel activities.

The next section of this paper presents the underlying model of distri­
bution used in the ProActive library, and details the transformations
between sequential and parallel vers ions of a program. In Section 3, we

A Step Toward Automatie Distribution 0/ Java Programs 143

briefly describe semantie domains for an operational semanties of the
Java language. Based on these domains, we formally express conditions
for detecting activable objects on the graph of objects, and prove that
these conditions enforce a tree-like topology of processes. We explain
in Section 4 how we can derive an algorithm for checking our criterion,
founded on a static analysis of Java programs, and compare this work
with existing statie analyses. Then we discuss related work on paral­
lelization in Section 5. Finally, we conclude and outline future work.

2. DISTRIBUTION OF OBJECT-ORIENTED
PROGRAMS

In this section we give an overview of the ProActive model and library,
and explain how one can use it as a target system for distributing appli­
cations. We pinpoint some of the crucial features that make it possible,
with very limited changes, to turn standard objects into active ones to
be distributed. A typieal example illustrates that technique (a binary
search tree).

The target model of distribution that we use has been studied and
improved along several experiments, both practieal and more formal
[12, 13, 5, 4]. The current experiment at ion and implement at ion are
done within Java with a library named ProActive [14]. Its main goal
is to improve simplicity and reuse in the programming of distributed
object systems.
The ProActive model uses by default the following principles and fea­
tures:

• heterogeneous model with both passive and active objectsj
• sequential processesj
• unified syntax between message passing and inter-process commu-

nicationj
• systematic asynchronous communieations towards active objectsj
• wait-by-necessity (automatie and transparent futures)j
• automatie continuations (a transparent delegation mechanism)j
• no shared passive objects (call-by-value between processes)j
• centralized and explicit control by defaultj
• polymorphism between standard objects and remote or thread ob-

jects.

A passive object is simply a standard Java object that does not have a
thread on its ownj it is passive in the sense that only calls coming from
outside will carry and trigger their execution. An active object is, in
an actors sense, an object, plus a thread, plus arequest line of pending
calls. Based on such an heterogeneous model (featuring both active

144

and passive objects), and thanks to the absence of sharing, a system
is always structured as several subsystems. Each subsystem is defined
as an active root object, and all the standard objects (not active) that
it can reach. An automatie eontinuation occurs when the result of an
asynchronous call has to be returned to another subsystem: it allows to
automatically avoid the blocking of the current subsystem; the binary
search tree example below (routine search) features such a case.

Given a sequential Java program, it takes only minor modifications
from the programmer in order to turn it into a multi-threaded, parallel,
or distributed one. ProActive actually only requires instantiation code
to be modified in order to transform a standard object into an active one.
Here is a sampie of code with several techniques for turning a passive
instance of dass A into an active, possibly remote, one.
A creation of a standard object through astatement:

A a = new A ("foo", 7) ;
can become either:

• instantiation-based:
Object [] params={"foo", 7};
A a =(A) ProActive.newActive ("A",params, Hode);

• class-based:
class pA extends A implements Active {}
Object [] params={"foo", n;
A a =(A) ProActive.newActive ("pA", params, Hode);

• object-based:
A a = new A ("foo", 7) ; // Ho change
a = (A) ProActive.turnActive (a, Hode);

All these techniques create an active object, an instance of dass A or
pA on a given node. The node is actually a Java virtual machine that
can be running on a remote host; the library transparently takes care
of the distribution. The active object just created has its own thread
that executes methods invoked on the object in adefault FIFO order.
The semantics of calls to such an object are transparently asynchronous,
with no code modification being required on the caller's side.

Instantiation-based creation is much of a convenience technique. It
allows the programmer to create an active instance of A with a FIFO
behavior without defining any new dass. In the dass-based creation,
given a dass A, the programmer writes a sub dass pA that inherits di­
rectly from A and implements the specific marker interface Active. He
or she mayaiso provide a live method in dass pA for giving a specific ac­
tivity or managing synchronization. The object-based technique enables
a programmer to attach an active behavior to an existing object at any

A Step Toward Automatie Distribution 0/ Java Programs 145

package fr.inria.proaetive.ezaaples.biDarytree;
publie elaas BTree eztends Objeet
{

}

protected int key; 11 Key for aeeessing the value eontained in thia node
protected Objeet value; 11 Aetual value eontained in this node
protected BTree leftTree; 11 The tvo aubtrees
protected BTree rightTree;

publie BTree () {
thia.value - null;
this.leftTree - null;
this.rightTree z null;

11 On ereation, the node doea not eontain a value
11 Bor does it have any ehild

}
11 Inserts a (key, value) pair in the aubtree that haa this node aa ita root
publie void put (int key, Objeet value) {

}

if «thia.leftTree==null) tt (thia.rightTree--null») { 11 Is leaf
this.key - key; thia.value • value;
this.ereateChildren ();
return;

} elae if (key--thia.key) {
this.value = value.

} elae if (key<thia.key) {
thia.leftTree.put (key, value);

} elae {
this.rightTree.put (key, value);

}

return;

11 aetrieve a value from a key in the aubtree that haa this node as its root
publie Objeet get (int key) {

}

if «thia.leftTreez=null) tt (thia.rightTree--null») { 11 Ia leaf
return null;

} else if (key--thi •• key) {
return thi •. value;

} else if (key<thia.key) {
return this.leftTree.get (key);

} else {
return this.rightTree.get (key);

}

11 ereate. tvo empty leavea a8 ehildren
protected void ereateChildren () {

this.leftTree - nev BTree ();
thia.rightTree - nev BTree ();
return;

}

Figure 1 Sequential Recursive Binary Tree

time after its creation. This is especially useful when one does not have
access to the code that creates the standard object to be made activej
however, this technique is not used for the distribution transformations
described in the current paper.

Once the active object is created, it automatieally features the prin­
ciples previously described. Among them, a few are critieal for the goal
of this paper: polymorphism between objects and active objects (allows
the transformations), sequential processes without shared objects (no
interleaving), asynchrony of calls and automatie continuations (avoids

146

package fr.inria.proactive.examples.binarytreei
import fr.inria.proactive.*;

public class ActiveBTree extends BTree implements Active {

}}

protected void createChildren (){
this.leftTree = (BTree) ProActive.newActive ("ActiveBTree", null, null);
this.rightTree = (BTree) ProActive.newActive ("ActiveBTree", null, null);
return:

Figure 2 Active Binary Tree

package fr.inxia.proactive.examples.binarytree;
import fr.inria.proactive .• ;

public class TestBT
{ public static void main (String[] args)

{ BTree myTree;

}

myTree = new BTree (); 11 Instantiating a standard version
// To get an active version. just comment the line abov8,
11 and comment out the line below

11 myTree = (BTree) ProActive.newActive ("ActiveBTree", null, null);
11 • First parameter: get an active instance of c,lass ActiveBTree
11. Second ('null'): instantiates with empty (no-arg) constructor
11 'null' is a convenience for 'new Object [0]'
11. Last ('null'): instantiates this object on the current host,
11 within the current virtual machine

11 Use either standard or active versions through polymorphism
TestBT.useBTree (myTree);
return:

11 Note that this code is the same for the passive or active version of the tree
protected static void useBTree (BTree bt)

)}

{ String sl; String s2;
bt.put (1, "one"); 11 We insert 4 elements in the tree, non-blocking
bt.put (2. IItwO Il);

bt.put (3, "three");
bt .put (4, "four") ;

11 Now we get all these 4 elements out of the tree
11 method get in class BTree returns a future object if
11 bt is an active object, but as System. out actually calls toString()
11 on the future, the execution of each of the following 4 calls
11 to System. out blocks until the future object is available.

System.out.println ("Value associated to key 2 is "+bt.get (2»;
System.out.println ("Value associated to key 1 is "+bt.get (1»;
System.out.println ("Value associated to key 3 is "+bt.get (3»;
System.out.println ("Value associated to key 4 is "+bt.get (4»;

11 When using variables, all the instructions are non-blocking
bt.put (2. "tvoBis");
s2 = bt.get (2); 11 non-blocking
bt.put (2. "twoTer");
s2 = bt.get (2); 11 non-blocking
sl = bt.get (1); 11 non-blocking

11 Blocking operations
System,out.println ("Value associated to kay 2 is u+ 82); // prints "twoTer ll

System.out.println ("Value associated to key is "+ s1)j // prints lI one "
return;

Figure 3 Binary Tree: example of main program

A Step Toward Automatie Distribution 01 Java Programs 147

deadlocks and allows parallelism), wait-by-necessity (automatically re­
spects data dependencies).

We have been studying various case studies of parallelizations, and it
appears that, with these features, if the graph of objects at execution
is a tree, then we can safely turn the objects of the graph into active
ones. This property has been formally studied within various frameworks
[4, 5, 7] and demonstrated on either examples or subsets of the model,
and we are currently working on its generalization. The goal of this paper
is to exploit this property in order to detect the places in a system where
we can apply it for the sake of distribution or parallelization. Being a
property on dynamic structures, the graph of objects and its topology
at execution, it requires static analysis to uncover the places where it
holds.

Figures 1, 2, 3 present an example of parallelization: a binary search
tree. Applied on this example, the goal that we pursue in this paper
is to help the programmer to identify the places where the BTree dass
can be transformed into an active object while the semantics remains
constant. In Figure 1, the system will point out that the instantiation
of BTree:

myTree = new BTree ();

can be replaced with an active binary tree. So the user, possibly with
the help of semi-automatic tools, will define the dass Acti veBTree and
replace the above instantiation with:

myTree=(BTree)ProActive.newActive(IActiveBTree",null,Node);

The prototype we describe in this paper is able to detect that all
instantiation sites of the Btree dass in the program presented in Fig­
ure 1 can be safely turned active, induding instantiation sites within the
method createChildren.

3. A CRITERION FOR DISTRIBUTION OF
OBJECT-ORIENTED PROGRAMS

In this section, we give a condition, expressed on object graphs, for
the identification of active objects. We show that when all objects that
satisfy this condition (activable objects) are activated, then the resulting
program is correct with respect to the semantics of the sequential pro­
gram and to the constraints imposed on the runtime structures within

148

ProActive. These constraints impose that passive objects are not di­
rectly accessible through more than one active object. To guarantee the
correctness of the parallel program with respect to the semantics of the
sequential one, we show that the condition implies that the topology of
processes is a tree. This guarantees that there is no interference between
processes.

We formulate the condition on the basis of semantic domains that
describe the structure of a Java interpreter. The domains are as follows :

Env = Id -t Val
Obj - Re! x Type x Env
Objs - P(Obj)
Act = Inst x Id x Type x Env
Stack = Act*
State = Stack x Objs

The syntactic domains Type, I d and Val are respectively the set of
classes, identifiers, and values defined by the program being parallelized.

The interpreter is organized around an execution stack (in the domain
Stack) that together with a set of object (in the domain Obj) form a
state (in the domain State). Stack elements are method activations
that correspond to the execution of a method call. Activations are buHt
up from all the elements that are needed for a method to execute: a
program counter (element of the domain Inst), the type of the target
object (we omit static method invocation so any activation has a target
object) and an environment that binds local variables to their values
(local variables are both formal parameters and local variables declared
inside the method body).

We currently restrict ourselves to a subset of Java where there are
no threads, no class methods nor class variables, and no dynamic class
loading. For more details on the description of the operational semanties,
the reader should refer to [6].

We first give various definitions (Section 3.1), then a property to be
satisfied by an active object (Section 3.2) and finally prove facts about
the topology of processes (Section 3.3).

3.1. ACCESSIBILITY OF OBJECTS
We could directly use the domains defined for the interpreter, but

we can remark that there are two ways for a method to access an ob­
ject: through instance variables or through local variables. In the con­
text of parallelization we have to consider all the objects accessed by a
process, that is all the objects accessed by the executions of a method
invocation on a possibly active object. In ProActive, processes are as-

A Step Toward Automatie Distribution 0/ Java Programs 149

sociated to objeets, so we have to eonsider that an objeet 0' reaehable
by a loeal variable of a method aetivation on an object 0 is in the set of
objects aeeessible through o.

In order to reason uniformly about these two ways of aeeessing an
objeet, we define a graph (the accessibility graph of astate) from an
interpreter state. This graph represents both relations between objeets
by identical edges. We introduee a fietive node (r s) that does not eor­
respond to an objeet in the objeet graph. It is used as a root for the
objeet graph and allows us to treat uniformly no des pointed to by loeal
variables from the base aetivation (the method main) as we treat nodes
pointed to by other aetivations.

Definition 1 Accessibility Graph
Given astate S = (s, h), we dejine the accessibility graph associated

with S to be G s = (Vs, Es), sueh that:

• Vs = h U {rs}, where rS is a jictive node (does not eorrespond to
anode in h).

• (o,o') E Es iff:

the object 0 points to 0' (an attribute 0] 0 direetly re]erenees
0').

0' is the value 0] a loeal variableI 0] a method which target
object is 0 (rs is eonsidered as the target objeet 0] the method
main).

The Figure 4(b) represents the aeeessibility graph associated to the
state represented in Figure 4(a).

Our eriterion is based on the inspeetion of the memory regions read
and written by method ealls. We formally define (Definition 2) these
domains using aecessibility graphs and we eall them aceessibilities of
objeets:

Definition 2 Aecessibility
For a given interpreter state S, the accessibility 0] an objeet 0 (noted
As(o)) is the set 0] objects transitively reachable]rom 0 in the graph
Gs.

1 We eonsider that there is no operation of the form t. foo (new C (... »; in our programs so
that any objeet is at least pointed to by a loeal variable. Programs ean easily be transformed
to meet that requirement.

150

r------
. t. .Je I 05

Stack Heap

(a) (h)

(c) legend

Figure 4 Activable Objects

3.2. ACTIVABLE OBJECTS
Now that we have defined accessibilities, we give a property on them

which expresses that they have the same properties as subsystems. This
property is stated for a given interpreter state. For an object to be
activable, it actually has to verify that property in all the states during
its life-time (between the time it is created and the time it is no longer
referenced or the program terminates).

Property 1 Activable
For a program P, in a given interpreter state S, Activables(o) iff As(o)
is a disjoint part of the object graph: for all objects 0' E As (0), for all
objects 0" either: 0" E As(o) or 0 belongs to all the paths from 0" to 0'
in Gs.

The Property 1 states that an activable object has a self-contained
accessibility. Any access to its accessibility must be done through it.

We show in the next section what are the properties of the graph of
processes induced by that property.

A Step Toward Automatie Distribution 0/ Java Programs 151

3.3. TOPOLOGY OF SUBSYSTEMS
We have stated a condition on objects for detecting activable ones.

We will now show that objects which satisfy this property are correct
candidates for activation. This include three things:

1 We have to show that the parallel program obtained is deadlock­
free so that whenever the sequential program terminates, so does
the parallel program. We show this by proving that the process
topology is cycle-free (Proposition 1).

2 We have to show that if such objects are activated, then the result­
ing system has the same property as subsystems, that is, there is
no shared objects between two subsystems (see [12] for a discussion
on the topic and [5] for a formalization of this). This is expressed
by Propositions 2 and 3.

3 Last, we have to show that the topology of resulting processes are
trees (Proposition 4). This guarantees that the semantics of the
sequential program is preserved as we will explain later.

Let's start with adefinition of subsystems.

Definition 3 Sulrsystems
Given astate S, and an activable object n, the subsystem associated

to n is
Ss{n) = As{n)/ u As{n')

n' EAs (n), n' ;j:n, Activables (n')

This definition only formalizes subsystems as they are introduced
in [12, 14] and is equivalent to that given in [5] (even though we do
not formally show this fact here).

Before we state the propositions that state that activable objects can
be activated, we introduce a usefullemma for proving those propositions.

Lemma 1 Given astate S, 'i nl, n2 such that Adivables{nt}:
As{nl) As{n2) or As{n2) As{nl) or As{n2) n As{nl) = 0

Proof. First if nl = n2 then the proposition is trivially true because
in that case As{nt} = As{n2). Ifnl -=I- n2 then assume As{nl) g; As{n2)
and As{n2) g; As{nt} and As{nl) nAs{n2) = I -=I- 0. We will show that
this leads to a contradiction with the hypothesis. From Definition 2,
we have 'in, n' E Vs, n E As{n') As{n) As{n'). This together
with As{nt} g; As{n2) implies nl ft As{n2) (symmetrically, we prove
n2 ft As{nl)). Let nr be anode in I then nr -=I- nl and nr -=I- n2·

152

Moreover, n/ E AS{n2) implies there is a path from n2 to n/ in GSi
since n2 ft As{nd and there is no path from n2 to nl, we can then
conclude that notActivables{nd, which is in contradiction with the hy­
pothesis. 0

The next proposition states that two activable nodes can never be on
the same cycle. One important corollary of this is that the graph of
processes of the parallel program is acyclic. This guarantees deadlock
freeness.

Proposition 1 In an interpreter state S, if two nodes nl and n2 of Vs
are in a cycle in G s, then one at most is activable.

Proof. The node TS is such that it is not accessible from any node
in GSi TS is not in the accessibility of any node. Plus, in a given inter­
preter state, all objeets that are not candidates for garbage collection are
reachable through a path rooted at a loeal variable so that, according
to the definition of Gs, any node in an accessibility graph is reachable
from TS.

Consider two nodes nl and n2 in S such that there is a path from nl
to n2 and a path from n2 to nl in Gs and a shortest path P from TS
to nl in Gs. Either P passes through n2 or not. If it does, then the
subpath of P that ends at n2 does not contain nl i otherwise P would
not be a shortest path from TS to nl. From this, we conclude that there
is a path in Gs from TS to n2 that does not eontain nl or a path from
TS to nl that does noteontain n2. In the first case, there is a path from
TS ft As{nl) to n2 E As{nl) that does not pass through nl. From this
we can conclude that nl is not activable. In the second case, we can
conduet the same reasoning replacing nl by n2 and conversely eonclude
that n2 is not activable. In both cases, one of the two nodes is not
activable that is, one at most is activable. 0

Proposition 2 Let nl, n2, nl -=I n2 be two activable objects in astate S,
then Ss{nl) n Ss{n2) = 0

Proof. From Lemma 1, there are three cases to consider:
(i) As{ndnAs{n2) = 0. From Definition 3 we get that for all activable

object n, Ss{n) As{n) and we can conclude that Ss{nd nSs{n2) = 0.
(ii) As{nd As{n2) then nl E As{n2) and consequently,

u As{n')
n' EAs (n2),Activables (n')

A Step Toward Automatie Distribution 0/ Java Programs 153

From this, we condude that As(nil n Ss(n2) = 0 and finally that
Ss(nl) n Ss(n2) = 0 because Ss(nil As(nIl·

(iii) As(n2) As(nil. This is the symmetrie case of the previous
one.D

The next proposition states that all incoming edges of a non-activable
node (a passive object) are from nodes in the same subsystem. A con­
sequence is that a non-activable node can only be reached by nodes of
its subsystem or through the active node of its own subsystem.

Proposition 3 In astate S, given a subsystem Ss(n) such that n is
activable, "In' E Ss(n), V(n",n') E Es, n' i= n =} n" E Ss(n)

Proof. Assume n i= n' and n" rt Ss(n). We will show that this leads
to a contradietion. There are two cases to consider:

(i) n" rt As(n). In that case, because (n", n') E Es, there is a path
from anode outside As (n) such that n does not belong to that path.
This is in contradietion with Activables(n).

(ii) n" E As(n). Then, because n" rt Ss(n), and using Definition 3,
n' is in the subsystem of another node. So, there is anode n'" E Vs such
that n'" E As(n) and Activables(n"') and n" E As(n"').

From this and (n", n') E Es, we get n' E As(n"'). From that last
fact and Definition 3 we get n' rt Ss(n) whieh is in contradietion with
n' E Ss(n). 0

Definition 4 In astate S = (s, h), the graph of subsystems is a graph
= (V;, ES) such that:

• V; = {n E hIActivables(n)}

• (n, n') E ES {:> 30 E Ss(n) 1\ (0, n') E Es

Propositions 2 and 3 together guarantee that any object in a subsys­
tem is only accessible from the root of the subsystem. Because active
objects serve one request at a time, this guarantees that the parallel
system obtained is race condition free.

Proposition 1 states that two objects that form a cyde can not be both
activable. According to Definition 4, this guarantees that the process
topology is a DAG, and so the resulting parallel system is deadlock-free.

All this, together with Proposition 1 guarantees that the parallel sys­
tem obtained by activating activable objects is sane in some sense but it
is not enough to guarantee that it is equivalent to the sequential system
in term of results.

154

To guarantee this, we prove a last proposition that states that pro­
cess graphs are trees. This ensures a stronger form of Bernstein's con­
ditions: read/write domains of any two processes are disjoint.

Proposition 4 The graph 0/ subsystems is a tree.

Proof. Formally the proposition is expressed as follows: in an inter­
preter state S let nl, n2 and n3 by activable nodes then (n1,n3) E ES
and (n2, n3) E ES =* n1 = n2· Consider that n1 i= n2, we will show that
this leads to a contradiction with Activables(nd /\ Activables(n2) /\
Activables(n3). From (nI, n3), (n2, n3) E Es, we get that there are two
nodes 01 E Ss(n1) and 02 E Ss(n2) and two edges (01, n3) and (02, n3)
in Es. From 01 E Ss(n1) we get that there is a path from n1 to 01 in Gs
entirely contained in Ss(n1). Identically, there is a path from n2 to 02

entirely contained in Ss(n2). From the last fact, we can conclude that
As(n3) As(n1) and As(n3) As(n2). Now from Lemma 1 we get
three cases to consider:

(i) As(n1) n As(n2) = 0. This hypothesis is in contradiction with
As(n3) As(nd and As(n3) As(n2).

(ii) As(n2) As(n1). We have As(n3) As(n2) that is n3 E
As(n2). We also have a path from n1 to 01 entirely contained in Ss(nl)
and an edge from 01 to n3 that is a path from anode that is not in
As(n2) (because there is no cycle between two activable nodes) to a
node that is in As (n2) (this node is n3) and that does not pass through
n2. This is in contradiction with Activables(n2).

(iii) As(n1) As(n2). This case is the same as the previous one,
inverting n1 and n2. 0

In the case where asynchronous calls performed by a method execution
are not in a loop, because the topology of processes is a tree, the vari­
ous parallel activities triggered have disjoint read/write domains. They
satisfy the Bernstein's conditions [10]. Actually, they verify a stronger
version of Bernstein's conditions where the union of read and write do­
mains of each process are disjoint.

Because subsystems are disjoint (Propositions 2 and 3), a subsystem
and the subsystems that it refers to have disjoint read/write domains so
any operation performed by a subsystem and any operation performed
by a refered subsystem satisfy Bernstein's condition.

If an asynchronous call1ies in a loop, the successive execution of that
call may not be independent. Because execution of subsystems is sequen-

A Step Toward Automatie Distribution oi Java Programs 155

tial and processes achieve a FIFO service of request2 , the successive calls
are executed one after another, in the order they have been requested
by the referencing subsystem so that the possible dependence between
successive executions of a method are respected.

The activable property as expressed so far is quite restrictive. However
it is possible to re lax it in various ways. First, in the second part of
Definition 1, we can ignore dead variables because objects they point to
will not be accessed through those variables. Second, we can allow in
the sequential side non-mutable objects (Integer, String in the Java
core classes) to be shared by several subsystems. In the parallel version,
those shared objects are copied on asynchronous calls so that they are
not actually shared and because they are not mutable the subsystems
still verify the Bernstein's conditions.

4. STATIC CHECKING OF THE CRITERION
AND IMPLEMENTATION

A condition for parallelization and distribution expressed on states of
an interpreter is useful to understand the model of distribution and to
guarantee the correctness of program transformations. However it is far
from being sufficient because it is not possible to directly use it to find
activable objects in programs because the execution traces of programs
may be infinite.

We have designed and implemented a static analysis of Java programs
that computes an approximated representation of object graphs associ­
ated to program points. It is written in Java itself.

This analysis is an inter-procedural extension of the shape analysis
of Sagiv et al. [33] that applies to an object-oriented language and in­
cludes abstract garbage collection capabilities (abstract garbage collec­
tion makes it possible to detect tree/list shape invariants when removing
operations are performed on such structures). We have also designed a
test [6] that detects, on the results of this static analysis, instantiation
points where created instances fulfill the condition for the parallelization
described in Section 3.

In the general case, we cannot find all of the instantiation points that
could be transformed to create active instances because static analy­
sis only provides an approximated representation of the object graphs.
However, we get a conservative algorithm that computes a sufficient con-

2this is the default service policy in ProActive.

156

PPro(199Mhz) PlI (300Mhz) Ultra5 (300Mhz)
Btree 2,4 1,6 1,0
List 1,4 0,9 0,6

Sieve 2,1 1,5 0,9
RecursiveBtree 6,4 4,0 2,3

Table 1 CPU Time for the analysis (in seconds)

dition for the condition given in Section 3 to be satisfied. Because we
have designed the analysis by abstract interpretation [16] of our opera­
tional semantics of Java programs [6], we can formally relate a test on
abstract representation of states to the properties we give in Section 3
through an implication relation.

On the example from Figure 1, our prototype could detect that all in­
stantiation sites of the Btree class can be safely turned active, including
the sites within the method createChildren.

Shape analysis is a generic name for analysis that aims at statically
inferring properties on dynamically allocated structures. One trend of
work in that area consists in using a finite naming scheme for objects
or equivalently partitioning objects into a finite number of equivalence
classes. Several analysis algorithms use a finite naming scheme that
induces a partition of nodes. Identifiers of abstract nodes can be the
classes of objects. Chase, Wegman and Zadeck [15] use allocation sites
to further partition the set of concrete nodes. However, properties that
they can extract from programs are not powerful enough for us to check
the Property 1. On the other hand, the algorithm of Sagiv et aL is
powerful enough to precisely represent tree structures and cyclic lists
among other things. The key features of this static analysis is to use sets
of referring variables for naming abstract objects and a boolean attribute
that explicitly represents sharing of objects. These features allow the
algorithm to precisely represent operations that delete references into the
heap (operations of the form x. s = y) which no other known method
can do systematically.

A few experiments have been conducted on the prototype analyser
we have developed. The prototype first computes a system of equations
that represents the program to analyse, and then iteratively solve the
system of equations. Table 1 summarises the results of a few measures
we have done on various typical programs, running on a Java Virtual
Machine with a JIT.

A Step Toward Automatie Distribution 0/ Java Programs 157

Btree is an iterative implement at ion of binary search trees (with in­
sertion only). List is an iterative implementation of singly linked lists.
Sieve is a recursive prime number generator that builds up a singly
linked list of prime numbers. Finally, Recursi veBtree is the recursive
implementation of binary search trees as given in Figure 1.

From those first figures, one can notiee (not surprisingly) that recur­
sive programs are inherently more complex to analyse.

In addition to those small programs, we conducted some experiments
on a bigger one (in the range of 550 lines of Java code). The program
automatieally derives and simplifies arithmetic expressions using some
rewriting rules. It is based on the visitor pattern [20] and is massively
recursive and polymorphie. As such, it represents some sort of stress test
for our analysis. We currently manage to analyse it within 10 minutes
or so, and the memory consumption stays within reasonable values (20
MB).

5. RELATED WORK

The seminal paper of Bernstein [10] introduced the conditions known
as Bernstein's conditions for (semi-)automated parallelization. These
conditions state that two segments of code that have disjoint write do­
mains and such that the read domain of one is disjoint from the write
domain of the other one, can be executed concurrently. Then, a trans­
formed program where these segments are executed concurrently pro­
duces the same result as the sequential one and terminates if and only
if the sequential program terminates.

Number of works use these conditions to establish the correctness of
automatie parallelization for various languages. Among others, Hendren
and Nieolau [26] parallelize C programs with dynamically allocated ob­
jects (with the limitation of no cyclie structures). This work has been
pursued by Hendren [25], and gave rise to multiple analyses of dynami­
cally allocated structures and pointers [22, 17, 21] that are the basis of
a checking algorithm for Bernstein's conditions. Other authors [24, 28]
have also investigated the use of shape analysis for the detection of par­
allelism. These works differ from ours for two main reasons: the par­
allelization happens at the procedure level, not at the object level and
distribution issues are not addressed.

We also have to cite the corpus of work devoted to automatie par­
allelization of Fortran programs [8, 18, 19] whieh, in a large part, con­
sists in the definition of data dependence tests, with the goal of tar­
geting distributed memory architectures. Detection of parallelism and
automatie distribution are traditionally two different tasks in compil-

158

ersjparallelizers since data structures, usually arrays of numerie data,
are not amenable for distribution. In contrast, thanks to the object data
structure and specific features of ProActive, we can detect parallelism
and possibility for distribution with the same algorithm.

Rinard and Diniz [31] present a method for the detection of paral­
lelism into object-oriented programs. Beside the fact that they do not
address distribution, the way they detect parallelism is radieally differ­
ent from other works: instead of testing Bernstein's conditions, they look
for operations that commute (for instance, associative operations).

Almeida presented in [2] a type-system that relies on an abstract in­
terpretation of object-oriented programs as a checking mechanism. This
type system classifies objects in two categories, standard types and baZ­
Zoon types where objects of the second type must have a self-contained
accessibility and must not be shared. With our notion of subsystems,
we only impose that activable objects have a self-contained accessibility.

6. CONCLUSION
This article intends to make some contribution to the automatie dis­

tribution of object-oriented programs. We presented a criterion for the
detection of distribution in Java programs: a set of properties that al­
low to turn standard objects into active objects to be distributed. This
criterion can be used in the context of ProActive, a Java library for
distributed, concurrent and parallel programming.

One contribution of this work can also be stated as it follows: given
a graph of objects corresponding to a sequential program at execution,
how can we partition it into a tree-shaped quotient graph that can be
easily distributed? To statieally achieve such a partitioning, we have
designed, and implemented in Java a prototype system that analyses
sequential programs. It is an extension of the shape analysis proposed
by Sagiv et al. [33].

The work presented here has to be extended in various ways. First,
we want to further investigate the extensions of the criterion, in order
to provide more flexibility. In partieular, we want to find an extended
criterion that allows the distribution of some programs for whieh the
topology of processes forms a DAG instead of a tree. We will also in­
vestigate the possibility of designing a statie analysis, derived from the
shape analysis of Sagiv et al., that directly finds activable objects instead
of relying on an algorithm that finds in shape graphs activable objects
(this is what we currently do). The parametrie view of shape analysis
presented in [32] provides a good starting point for this.

A Step Toward Automatie Distribution 0/ Java Programs 159

References

[1] Gul A. Agha. ACTORS: A Model 0/ Concurrent Computation in
Distributed Systems. MIT Press, 1986.

[2] P. S. Almeida. Balloon types: controlling sharing of states in data
types. In Proc. ECOOP), LNCS 1241, pages 32-59. Springer Verlag,
1997.

[3] P. Ameriea. Inheritance and subtyping in a parallel object-oriented
language. In Proc. ECOOP '81, LNCS 276, pages 234-242, Paris,
France, June 1987.

[4] I. Attali, D. Caromel, and S. O. Ehmety. About the automatie
continuations in the Eiffel/ / Model. In Proc. 0/ the 1998 Int. Con/.
on Parallel and Distributed Processing Techniques and Applications
(PDPTA '98), July 1998.

[5] I. Attali, D. Caromel, and S. O. Ehmety. Formal Properties of the
Eiffel/ / Model. In Parallel and Distributed Objects. Hermes Science
Publications, 1999.

[6] I. Attali, D. Caromel, and R. Guider. Statie analysis of Java for
distributed and parallel programming. rapport de recherche 3634,
INRIA, March 1999.

[7] I. Attali, D. Caromel, and S. Lippi. From a specification to an
equivalence proof in object-oriented parallelism. In FMPPTA '99:
Modeling and Proving, volume 1586. Springer, LNCS, 1999.

[8] Utpal Banerjee. Dependence analysis tor supercomputing. Kluwer
Academie Publishers, Boston, MA, USA, 1988.

[9] J. K. Bennett. The design and implement at ion of Distributed
Smalltalk. In Proc. OOPSLA '81, ACM SIGPLAN Notices 22 (12),
pages 318-330, December 1987.

[10] A. J. Bernstein. Analysis of programs for parallel processing. IEEE
Transactions on Electronic Computers, 15:757-762, October 1966.

[11] D. Caromel. Concurrency and reusability: From sequential to par­
allel. Journal 0/ Object-Oriented Programming, 3(3), 1990.

[12] D. Caromel. Towards a Method of Object-Oriented Concurrent Pro­
gramming. Communications 0/ the ACM, 36(9):90-102, September
1993.

[13] D. Caromel, F. Belloncle, and Y. Roudier. The C++/ / Language.
In Parallel Programming using C++, pages 257-296. MIT Press,
1996.

[14] D. Caromel, W. Klauser, and J. Vayssiere. Towards Seamless Com­
puting and Metacomputing in Java. Concurrency Practice and Ex­
perience, 10(11-13):1043-1061, November 1998.

160

[15] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointer and
structures. In Proc. PLDI90, volume 25(6), pages 296-310. ACM,
june 1990.

[16] P. Cousot and R. Cousot. Abstract interpretation: a unified lattiee
model for static analysis ofprograms. In Proc. POPL77, pages 238-
252. ACM press, 1977.

[17] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive inter­
procedural points-to analysis in the presence of function pointers.
In Proc. PLDI94, pages 242-256, 1994.

[18] P. Feautrier. Datafiow analysis of scalar and array references. In­
ternational Journal of Parallel Programming, 20(1):23-52, February
1991.

[19] P. Feautrier. Toward automatie partitioning of arrays for dis­
tributed memory computers. In Proceedings of the 1993 A CM Inter­
national Conference on Supercomputing, Tokyo, Japan, July 1993.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison Wesley, Reading, MA, 1995.

[21] R. Ghiya and L. J. Hendren. Connection analysis: A practieal inter­
procedural heap analysis for C. Lecture Notes in Computer Science,
1033, 1996.

[22] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a
cyclie graph? A shape analysis for heap-directed pointers in C. In
Proc. POPL'96, pages 1-15, jan. 1996.

[23] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, 1996.

[24] V. A. Guarna. A technique for analysing pointer and structure
references in parallel restructuring compilers. In Proceedings of the
International Conference on Parallel Processing, volume 11, pages
212-220, 1988.

[25] L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Srid­
haran. Designing the McCAT compiler based on a family of struc­
tured intermediate representations. In Proc. of the 5th Interna­
tional Workshop on Languages and Compilers for Parallel Comput­
ing, LNCS 757, 1993.

[26] L. J. Hendren and A. Nieolau. Parallelizing programs with recur­
sive data structures. IEEE Transactions on Parallel and Distributed
Systems, 1(1):35-47, 1990.

[27] S. Hodges and C. B. Jones. Non-interference properties of a con­
current object-based language: Proofs based on an operational se­
mantics. In Object Orientation with Parallelism and Persistance.
Kluwer Academie Publishers, 1996.

A Step Toward Automatie Distribution 0/ Java Programs 161

[28] J.R. Larus and P. N. Hilfinger. Detecting conflicts between structure
accesses. In Proc. PLDI88, pages 21-34, june 1988.

[29] X. Liu and D. Walker. Confluence of processes and systems of
objects. In Proc. TAPSOFT95 6th International Joint Con/erence
CAAP /FASE, 1995.

[30] O. Nierstrasz. Active objects in hybrid. In Proc. OOPSLA '87,
ACM SIGPLAN Notices 22 (12), pages 243-253, 1987.

[31] M. C. Rinard and P. C. Diniz. Commutativity analysis: a new
analysis technique for parallelizing compilers. TOPLAS, 19(6):942-
991, 1997.

[32] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. In Proc. POPL99, pages pp. 105-118, San Antonio,
TX, Jan. 1999.

[33] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape­
analysis problems in languages with destructive updating. ACM
TOPLAS, 20(1):1-50, January 1998.

[34] M. Tokoro and K. Takashio. Toward languages and formal systems
for distributed computing. In Proc. 0/ the ECOOP '93 Workshop
on Object-Based Distributed Programming, LNCS 791, pages 93-110,
1994.

[35] Y. Yokote and M. Tokoro. The design and implementation of Con­
current Smalltalk. In Proc. OOPSLA '86, ACM SIGPLAN Notices,
21 (11), pages 331-340, November 1986.

	A STEP TOWARD AUTOMATIC
DISTRIBUTION OF JAVA PROGRAMS
	1. INTRODUCTION
	2. DISTRIBUTION OF OBJECT-ORIENTED PROGRAMS
	3. A CRITERION FOR DISTRIBUTION OF OBJECT-ORIENTED PROGRAMS
	3.1. ACCESSIBILITY OF OBJECTS
	3.2. ACTIVABLE OBJECTS
	3.3. TOPOLOGY OF SUBSYSTEMS

	4. STATIC CHECKING OF THE CRITERION
AND IMPLEMENTATION
	5. RELATED WORK
	6. CONCLUSION
	References

