
An automatic generalization method for the inductive
proof of replicated and parallel architectures

Laurence HERRE

Laboratoire d'[nformatiqne de Marseille - URA CNRS 1"787
CMI / Universit6 de Provence

Teclmoptle de Cl~teau-Gombert, 39 rue Joliot-Curie
13453 Marseille Cedex 13 - FRANCE
e-mail : laurence@gyptis.univ-mrs.fr

A b s t r a c t : Our approach for verifying the equivalence of two VHDL architectures
consists in translating these descriptions into functional forms and then in proving
the equivalence of these functions. As far as replicated or parallel architectures are
concerned, an induction-based method is used for verifying generic n-bit
descriptions. This technique takes advantage of the regular structure of these devices
and can give better results than the BDD-based approaches. However, induction
requires complete specifications, whereas the designers usually supply partial
specifications. Therefore, we propose a specialized automatic method for
generalizing such incomplete statements, before the Boyer-Moore proof process.

I. INTRODUCTION

The concept of formal verification includes various aspects [9], this paper focuses on
verifying that the function implemented by a given VLSI circuit implies or is
equivalent to its specification. Our system PREVAIL" , that is being developed in
cooperation with Imag/Artemis, is a prototype proof environment which includes a set
of verification tools [5]. It takes as input VHDL descriptions [13] and verifies the
equivalence (or the implication) of two different architectures of the same entity (two
descriptions given at different abstraction levels, or a description and its optimization,
etc...). The most appropriate verification tool is selected with the help of the designer,
and the descriptions are automatically translated into the formalism of this proof
system. One of the included proof tools is the Boyer-Moore system, Nqthm [3][4].

This system, which is essentially based on the induction principle, is particularly
useful for the verification of generic replicated or parallel architectures. In effect, such a
theorem prover bring several advantages :

- we do not have to care about the size of the device, we recursively describe generic
n-bit architectures and we prove generic properties,

- the specification can be given at the arithmetic level, and we can use conversion
functions between bit-vectors and integers.
This feature is very important for the hierarchical verification of large arithmetic
devices : after being verified, each elementary component can be replaced by its
arithmetic specification. Thus, the whole system verification is performed at the
arithmetic level, and the efficiency is significantly improved.

This approach circumvents some drawbacks of the well-known tautology-checking
techniques based on BDD-like representations [6] (see for instance [10], [17]), where :

73

the size of the circuit must be fixed to 16, 32, 64... bits, and the proof system
verifies the correctness of each output independently,

the "specification" of the circuit must be another implementation of the same
arithmetical function, also considered at the boolean level. Usually, even if the
specification is given at the arithmetical level, it has to be transformed into an
equivalent bit-level implementation, using a library of simple basic modules
(adders, multipliers).

Nevertheless, a correct recursive model cannot be deduced from a simple netlist of the
circuit, and our approach requires a particular description methodology. The automatic
translation task is feasible provided that some description rules are respected. In
particular, the genericity of the architecture must be expressed by a declaration of the
form g e n e r i c (N : p o s i t i v e) , and the regularity must be described using a fo r ...
g e n e r a t e construct. Moreover, the theorems to be verified are usually expressed in
terms of given values for the incoming boolean signals (input carries). It means that
induction cannot be applied, unless we are able to provide a generalized version where
carries are considered as symbolic variables. Generalization is a well-known problem in
the framework of induction-based proofs, and no general-purpose method can be found.
Conversely, it may be possible to mechanize some specialized methods. Here, we
propose an automatic technique for generalizing the partial specifications of one-
dimensional, as well as two-dimensional, replicated structures. This method extends a
previous work on simple one-dimensional regular devices [19].

Finally, our methodology is able to give a positive answer to one of the questions that
have been asked in the presentation of the N-bit adder TPCD benchmark [14] : "Is the
verification done for arbitrary N?". We will use this simple ripple-carry adder as
rumfing example throughout this paper; its VHDL description is given by Figure 1.
More elaborate examples can be found in paragraph V.

e n t i t y r o a i s
generic(N:positive);

port(a,b:in bit_vector(0 to N-I); c:in bit;
z:out bit_vector(0 to N));

e n d roa;

arohite=tura stru=t of r=a is
component fulladd

port(a,b,carry:in bit; fout,fcarry:out bit);
end component;

signal carry:bit_vector(0 to N);
begin

addblock:block

for all:fulladd use entity work.fulladd(stadd);
begin --- Regular part :

fadd:for I in 0 to N-I generate

fl:fulladd port map(a(I},b(I),carry(I),z(I),carry(i+l));
end generate;
carry(0) <= c;
z(N) <= carry(N);

end block;
end struct;

FIGURE 1 : V H D L DESCRIPTION OF THE RIPPLE.CARRY ADDER

74

H. BRIEF OVERVIEW OF THE BOYER-MOORE SYSTEM

All along this paper, we only have to suppose that the proofs are performed in an
induction-based environment. In fact, we use Nqthm and the reader will find some lines
of Boyer-Moore code. Therefore, we give a brief overview of this system.

The Boyer-Moore theorem prover is based on a quantifier-free first order logic with
equality. The three basic principles of this prover are [3][4] :

- The "shel l" principle :
Inductive abstract data types - called "shells" - can be built by means of a bottom
object, a constructor, and one or more acccssors. A boolean function, called a
recognizer, recognizes if an object belongs to the shell.
The type of "natural numbers" is a well-known example : the bottom is 0, the
constructor is 3. x. x+] , and the accesser is 3. x. x - l ; the predicate recognizer of
this type in Boyer-Moore is numberp.

The def in i t ion p r i n c i p l e :
Prior to accepting a recursive function definition, the system verifies that there
exists a measure which decreases according to a "well-founded" relation.
For example, we can define the following function "times" over natural numbers :

times (i , j) =de.[i f i = 0 then 0 else j + times (i-l, j)

The term i-I decreases at each recursive call, and the recursion stops when i=0.
Thus, this recursive definition is correct. Much more elaborate function templates
can also be accepted.

The induct ion p r i n c i p l e :
It allows to prove inductive theorems over recursive functions. Induction schemes
are automatically generated according to the definitions of the reeursive functions
involved in the theorems. For example, let us assume that we want to verify the
following proposition P(x,y) :

numberp(x) and numberp(y) ~ times(x, y+ l) = x + times(x, y)

The induction scheme generated for the proof of P(x,y) is :
1. x = 0 ~ P(x,y)
2. (x ~ 0) and P(x-l,y) ~ P(x,y)

A brief state of the art about Nqthm and the formal proof of software/hardware can be

found in [201.

Remark : In the following, we will have to use bit-vectors. The bit-vector "shell" has
been proposed in [11]. It is defined by means of : the boUom (btm), the constructor
bitv, the accessors bi t (least significant bit) and vee (rest of the vector), and the

recognizer bitvp.

I I I . MODELLING AND VERIFYING REPLICATED DEVICES

In this paragraph, we give recursive models for regular architectures. Recursion is well-
suited for describing the duplication of a same hardware motif. Throughout this
section, recursive functional forms are associated with the outputs of replicated

structures :
- the parameters are the inpnts of the system, and carry propagation is translated by

the updating of the corresponding parameter(s) with the value(s) computed by the
function(s) that express this propagation,

75

if the output is vectorial, the function builds this vector by means of bitv, which
appends a bit to a bit-vector.

II l .1 A recurs ive mode l for one -d imens iona l repl icated circuits

Here, we give recursive functional models for representing the output(s) of one-
dimensional regular architectures. These devices usually take as inputs several bit-
vectors of identical length N, which is given as a q e n e r i c parameter o f the
description. Since we deal with bit-vectors of the same length, only one of them is
used as recursion parameter in our definitions. In the following, we use the term
"carry" for describing any boolean result computed in the i th module and passed to the
(i+ 1) th one.

: the vectorial inputs are denoted vI1 v i i , and the scalar inputs (which
include the propagated carries) are denoted s i 1 s i k.

First, we give the function which corresponds to a vectorial output vo i , 1 ~; i ,: ivo,
where ivo is usually < j. The function REC-Fvo i builds the bit-vector formed by the
result of Vvo i (the function associated with the corresponding boolean output of the
basic cell), catenated to the result of the recursive call to REC-Fvo i with the vectorial
inputs of one element less and the scalar inputs updated by the functions F S I 1 ,
F S I k (which express the carry propagation) :

REC-Fvoi(VI 1 VIj, SI 1 SIk) =def

if bitvp(VIl) ~-- if VII is a bit-vector

then if VI I = (btm) --- if Vl I is empty, the result

them FSI/EI 1 Sik) --- is a function of 8II, _, $I k.

--- if VI I is not empty, we recursiwely call REC-FvO i t

else bitv(Fvoi(bit(Vil) bit(Vii), SI 1 Sik),

REC-Fvoi(Vec(VI I) vec(VIj),

FsIl(bit(VI I) bit(vIjJ, SI 1 Sik) '

Fsik(bit(VIl) bit(VIj), SI 1 Sik)))
else FSI(SI 1 Sik)

i

The model which is associated with a scalar output SOl, 1 ~ i ~ iso, is similar,
except that it does not bu~d a vectorial reset :

REC-Fsoi(VI 1 Vii, SI 1 Slk) =def

if bitvp(VIl) --- if VI 1 is a bit-vector

then if VI I = (btm) --- if VI 1 is empty, the result

then Fs!(SIi) --- is a function of SI i

--- if VII is not empty, we recursively call REC-Fso i =

else REC-Fsoi(Vec(VII) vec(VIj),

Fsil(bit(VIl) bit(Vii), SI 1 Sik) '

FsIk(bit(VIl) bit(vii), SI 1 Sik))
else FSI(SIi)

76

Example : The description of the ripple-carry adder ~ igure 1) has one vectorial
output z. It is expressed by the following recursive function RCA-z (given in the
Boyer-Moore syntax), which is of the form of REC-Fvo i where A and B are the
vectorial inputs and c is a scalar input (the carry to be propagated) :

(defn RCA-z (A B c)
(if (bitvp A)

(if (equal A (btm))
(bitv c (btm))
(bitv (fulladd-fout (bit A) (bit B) c)

(RCA-z (vec A)
(vec B)
(fulladd-fcarry (bit A) (bit B) c))))

(bitv c (btm))))

where ful ladd- fout and ful I add- fcarry are the non-recursive functions assodated
with the outputs lout and fcarry of the component fulladd.

III.2 A recursive model for two.d imens ional replicated circuits

Now, let us focus on two-dimensional regular structures. More precisely, we are
interested in parallel systems Which are built from N instances of the same row, where
each row is also a replicated device. Thus, the outputs of the basic row are represented
by functional forms which correspond to the templates of w III. 1.

Here, we give a recursive model for representing the output of the whole parallel
architecture; this function will be defined in terms of the REC-Fvo i, 1 < i < ivo.

Notation : the vectorial inputs are denoted vI 1 Vlp, and the scalar inputs are
denoted s I1 SIq. Typically, p > j where j is the index used in w III.1. A
necessary condition is ivo <j. Usually, the architecture is such that ivo = j - l , q = k-l ,
and p = j+ l (i.e. r ip expresses the second dimension). In order to simplify the model
given below, we will assume these equalities (but it can easily be transformed into a
more general one).

The following function Fpa r models the output of such a parallel circuit :

Fpar(VIl VIp, SII, ..., SIq) =def
if bitvp(VIp) --- if VIp is a bit-vector
then if VIp = (btm) --- if VIp is empty, the result is

--- output by the last component

then Last-comp(VIl, ..-, VIp-I, SII SIq)
--- if VIp is not empty, we recursively call Fpa r :

else bitv(Fb(bit(VI2) bit(VIp-l))'

Fpar(VIl,
REC_FvoI(VII bit(VIp), SI 1 SIq),

REC_Fvoivo(VII, ..., bit(VIp), SII, -.., SIq),

vec(VIp), SII SIq))

else Last-comp(VIl VIp-I, SII SIq)

77

This function builds the bit-vector formed by the result of F b (bit (VI 2)

b i t (r i p - l)) where Fb is a boolean function (the function associated with the
corresponding output of the basic row), catenated to the result of the recursive call to
Fpar with the vectorial input VIp of one element less and the vectorial inputs updated
by the functions Rv.C-Fvo 1 ~EC-Fvoiv o (which express, if needed, the carry
propagation through the rows).

Remark : Last-camp is a vectorial function which represents the last row, in particular
it can be different from the other ones.

An illustrative example of this modelling method can be found in w V.2.

111.3 The induction-based proof method

1. As far as one-dimensional circuits are concerned, the proof process consists in
verifying the equivalence between each function REC-vvo i or REC-Fso i (or a
combination of these functions) and a function which expresses the arithmetic specifi-
cation. In order to (formally) compare the results computed by these functions, we have
to abstract the first one to the arithmetic level, using the function b y - t o - n a t which
converts bit-vectors into natural numbers, starting from the LSB.

The theorem to be proved generally states the equivalence between the result of the
function REC-FvO i converted into a natural number and a specification function,

denoted below SPECvo i . This property is generally given in terms of particular initial
values for the scalar inputs, referred to as i v - s I 1 IV-Slk :

bitvp(VI I) and ... and bitvp(VIj) --- the VI i are bit-vectors

and size(VIl) = size(VI 2) --- the vectors have the same length

... and size(VIl) = si2e(VIj)

bv-to-nat(REC-Fvo i(VI 1 VI3, IV-SI 1 IV-SIk))

- SPECvo i (by-to-nat (VII) by-to-nat (VIj))

Th I

Remarks : * In the case where we have to reason o n REC-Fsoi, we use t h e same
statement, except that we do not have to ca/1 on the function b y - t o - n a t since REC-
FSO i gives a boolean result.

�9 I f the property to be proved is an equivalence between a combination of
the results of the functions r~EC-Fvo 1 REC-SVO j and a specification expression,
we use the same kind of theorem except that the term b v - t o - n a t (R E C - F v o i (VI 1

v i i , i v - s i 1 , IV-SIk)) is replaced by a term of the form F (b v - t o - n a t (REC-
FVO1 (VI1 I V - S I k)) , b v - t o - n a t (R E C - F v o j (VI 1 I V - S I k))).

Example : The correctness theorem for the circuit of Figure 1 is the theorem p r o o f -
of-RCA-z which verifies that this device outputs the sum of the two bit-vectors A and
B, provided that the carry-in is set to f a l s e :

(prove-lemma proof-of-RCA-z (rewrite)

(implies (and (bitvp A) (bitvp B) (equal (size A) (size B)))
(equal (bv-to-nat (RCA-z A B f))

(plus (by-to-nat A) (by-to-nat B)))))

78

We will see in section V that other significant examples can be verified using the same
modelling and proof methodology.

2, With respect to two-dimensional architectures, the verification process is
hierarchically decomposed into sub-proofs �9 first we verify the correctness of the basic
row, and then it is possible to validate the whole device.

The first necessary step consists in giving pieces of information about the size(s) of
the bit-vector(s) output by the one-dimensional row. One theorem per row output
indicates the size of this vectorial output in terms of the input size(s). Then, the
correctness of this row is verified using one or several theorems of the form of Th 1,
provided that they have previously been generalized. Finally, a theorem of the form of
Th 2 below allows to validate the two-dimensional structure :

bitvp(VI I) a n d bitvp(VIp) --- vI 1 and Vlp are bit-vectors

and size(VI I) = size(VIp) --- They have the same length

bv-to-nat(Fpar(VIl, Finitl(VIl, rip), ...,

Finitp_2(VI I, VIp), VIp, IV-SI I IV-SIq))

. SPEC(bv-to-nat(VIl) bv-to-nat(VIp))

Th 2

where - SPEC corresponds to the specification,
Finit I is the function which computes the initial value of vl 2 and
F i n i t p - 2 is the function which computes the initial value of w p _ 1,

- and Iv-sz• l s i aq, is the initial value of s I i .

Here, as well as in the case of one-dimensional devices, the presence of particular
values for the incoming carries implies that an inductive proof is not feasible. Such a
theorem must be generalized, this is the purpose of section IV.

IV. THE GENERALIZATION METHOD

IV.I Motivation

In the fields of software as well as hardware verification, generalization is often
necessary as soon as induction-based techniques are applied. For instance, Manna and
Waldinger describe the problem of "generalization of specifications" in the framework
of program synthesis [16]. Finding general-purpose generalization methods that can be
fully mechanized is almost impossible. Some interesting heuristics, that require user-
interaction, have been proposed. Among them, let us recall the following approaches :

J Moore, one of the authors of the Boyer-Moore prover, proposed an interesting
generalization heuristics for recursive functions with accumulating parameters
[15]. However, there is a step where the user has to "guess" the term by which a
certain variable must be replaced. In fact, this heuristics has not been implemented
in the Boyer-Moore system.

- R.Aubin also worked on such generalization heuristics. With respect to the
problem of verifying the equivalence between recursive functions and
corresponding iterative ones, he gave a method called "indirect generalization" [2].
This method introduces, in the expression to be proved, a new function call

79

associated with its neutral element, and then generalizes this constant. Here also,
the appropriate function has to be intuitively determined by the user.

Our goal is not to propose a general-purpose technique. We give a specialized method
for our problem, and this special-purpose algorithm can be mechanized. A prototype
implementation has been included in PREVAIL".

IV.2 Generalization algorithm

The algorithm below is devoted to regular replicated architectures. Starting from a
theorem of the form of Th 1 or Th 2, this method yields a more general lemma which is
provable by induction. The generalization algorithm is :

Unfold once the definition associated with the implementation (i.e. REC-Fvo i or 8EC-
FSO i or F p a r) in the left-hand side of the equality ;

While the new expression includes terms of the form b i t (VI n) (or b i t (GVIn)) do

Perform a case analysis on the vMue of bit (VI n) : bit (VIn) =f

bit (VI n) = l
F or each case do

Simplify the resulting equality ;

Unfold once the definition of "bv-t o-nat" ;

Apply simplification rules ;

Generalize the term v e c (VIn) in to GVI n ,

E n d F o r ;

E n d W h i l e ;

From the set of expressions obtained from the previous case analysis, deduce a single
(possibly conditional) expression E ;

If the implementation function corresponds to a two-dimensional architecture

T h e n use theorems Th 1 to transform the left-hand side of this equality (and the
right-hand side accordingly) :

E is of the form :

bv-t~ REC-FvoI(VII, VI2', -, Vip', SIl, _, SIq),

-, REC-Fvoivo(VII, VI2', -, rip', SII, _, SIq),
Vlp, Sll, _, Slq))

- G(bv-to-nat(Vil),

F l(bv-to-nat(vI I), .., bv-to-nat(VIp_ I'), rip', SI I, .., SIq),

Fivo(bv-t~ -, bv-to-nat(VIp_ I'), Vip', SIl,.. , SIq),
by-to-nat (VIp))

and theorems Th 1 give equalities of the form :

bv-t~ -, VIp_ I, Vip, SII, .., SIq))

= SPECvoi(bv-t~ -, bv-to-nat(VIp_l), rip, SI1, _, SIq)

w h e r e Vip plays the role of bit (VII)) .

80

By re~acing vI 2 by vI 2 ' , V I p _ 1 by VIp_l ' , Vip by v i p ' , in these equalities,
w e get equalities such as :

bv-to-nat(REC-Fvoi(VIl, -, VIp_l', vip', SIl, _, SIq))

= SPECvoi(bv-to-nat(VI1), -,bv-to-nat(VIp_l'),vip',SI1, _,SIq)

w~ch is preeisdy of the form of

Fi(bv-to-nat(VIl), -,bv-to-nat(VIp_l'),vip', SI 1, -, SIq)

It ~ l o w s to r e w f i ~ E i n ~ the following expression :

bv-to-nat(Fpar(Vll, REC-FvoI(VII, VI2' , --, rip', SIl, .., Slq),

..., REC-Fvoivo(VI1, VI2' , .., rip', SI 1, -, SIq), VIp,

sl I, _, Slq))

= G(bv-to-nat(VIl) ,
bv-to-nat(REC-Fvol(VI1, _, VIp_l', rip,, SI 1, -, SIq))),

0., �9

bv-to-nat(REC-FvOivo(VI1, _, VIp_l' , rip', SI1, --, SIq))),

bv-to-nat(VIp))

w~ch is finally generalized into :

bv-to-nat(Fpar(Vll, Xl, .., Xivo, VIp, SI I, -, SIq))

= G (bv-to-nat(VIl), bv-to-nat(Xl), -, bv-to-nat(Xivo),

bv-to-nat(VIp))

Reset := this expression ;

E l s e Resul t := E;

E n d I s

E x a m p l e : As far as the tipple-carry adder is concerned, the flgofithm stops at the end
of the While loop. Starting from :
(prove-lemma proof-of-RCA-z (rewrite)

(implies (and (bitvp A) (bitvp B) (equal (size A) (size B)))
(equal (by-to-nat (RCA-z A B f))

(plus (bv-to-nat A) (by-to-nat B)))))

with
(defn by-to-nat (x)

(if (bitvp x)
(if (equal x (btm)

0
(plus (if (bit x) i 0) (times 2 (bv-to-nat (vec x)))))

0))

the gener~izafon process is :

Assuming that we are not in the basis case, and unfolding the definition of RcA-z gives :

(equal (by-to-nat
(bitv (xor f (xor (bit A) (bit B)))

(RCA-Z (vec A) (vec B)
(or (and (bit A) (bit B))

(or (and (bit A) f) (and (bit B} f)))))

(plus (by-to-nat A) (by-to-nat B)))

81

which simplif ies into :

(equal (bv-to-nat
(bitv (xor (bit A) (bit B))

(RCA-z (vec A) (vec B) (and (bit A) (bit B)))))
(plus (by-to-nat A) (by-to-nat B)))

and thecaseana lys~ ~ :

t . I f (b i t a ~ = ~ue
(equal (by-to-nat

(bitv (not (bit b)) (RCA-z (vec A) (vec B) (bit B))))
(plus (add1 (times 2 (by-to-nat (vec A)))) (by-to-nat B)))

i.e.
(equal (by-to-nat (bitv (not (bit b)) (RCA-z GA (vec B) (bit B))))

(plus (addl (times 2 (by-to-nat GA))) (bv-to-nat B)))

1 . 1 . 1 f ~ b i t b~ = true
(equal (by-to-nat (bitv f (RCA-z GA (vec B) t)))

(plus (addl (times 2 (by-to-nat GA)))
(addl (times 2 (by-to-nat (wec B))))))

i.e.
(equal (times 2 (by-to-nat (RCA-z GA (vec B) t)))

(times 2 (addl (plus (by-to-nat GA))
(by-to-nat (u B)))))

whwh ~ s impl i f iedandgeneral izedinto
(equal (by-to-nat (RCA-z GA GB t))

(addl (plus (by-to-nat GA)) (by-to-nat GB))))

1.2. I f ~ b i t b ~ = f a k e
(equal (by-to-nat (bitv t (RCA-z GA (vec B) f))))

(plus (add1 (times 2 (bv-to-nat GA)))
(times 2 (by-to-nat (vec B)))))

i.e.
(equal (add1 (times 2 (by-to-nat (RCA-z GA (vec B) f))))

(add1 (plus (times 2 (by-to-nat GA))
(times 2 (by-to-nat (vec B)))))

which ~ s impl i f iedandgenera~zedinto
(equal (by-to-nat (RCA-z GA GB f))

(plus (by-to-nat GA) (by-to-nat GB))

2 . i f (b i t a ~ = / a b e
(equal (by-to-nat (bitv (bit b) (RCA-z (vec A) (vec B) f)))

(plus (times 2 (by-to-nat (vec A))) (by-to-nat B)))
i.e.
(equal (by-to-nat (bitw (bit b) (RCA-z GA (vec B) f)))

(plus (times 2 (by-to-nat GA)) (by-to-.at B)))

Similar~, we get in that case :

2.1. I f l b i t b~ = true
(equal (by-to-nat (RCA-z GA GB f))

(plus (by-to-nat GA) (by-to-nat GB))

2.2. I f t b i t b ~ = f a k e
(equal (by-to-nat (RCA-z GA GB f))

(plus (by-to-nat GA) (by-to-nat GB)))

82

Then, from sub-cases 1.2, 2.1 and 2.2, we have :
(equal (by-to-nat (RCA-z GA GB f))

(plus (by-to-nat GA) (by-to-nat GB)))

and from sub-case 1.1, we have :
(equal (by-to-nat (RCA-z GA GB t))

(addl (plus (by-to-nat GA} (by-to-nat GB))))

Thus, we deduce the comple~ generalized theorem :

(prove-lemma proof-of-RCA-z-gen (rewrite)
(implies (and (bitvp GA) (bitvp GB) (boolp c)

(equal (size GA) (size GB)))
(equal (by-to-nat (RCA-z GA GB c))

(if c (addl (plus (bv-to:nat GA) (by-to-nat GB)))
(plus (bv-to-nat GA) (bv-to-nat GB))))))

V. APPLICATION TO THE TPCD BENCHMARKS

Among the devices to which this technique applies, some of them have been proposed
as TPCD benchmarks, or parts of these benchmarks [14]. Apart from the N-bit ripple-
carry adder, some sub-modules of the Min-Max circuit, as well as the parallel
multiplier can be given as illustrative examples.

V.1 Min-Max

A specification of this benchmark has been proposed for the IFIP WG 10.2
International Workshop on "Applied Formal Methods for Correct VLSI Design" [22].
We have designed an implementation (with arithmetic modules for unsigned bit-vectors
only) and we have realized a hierarchical proof of this circuit [18].

The specification is that the Min-Max unit has 3 boolean control signals CLEAR,
RESET and ENABLE. The unit produces an output sequence OUT at the same rate as IN"

- if CLEAR is true, then OUT equals 0, independent of the other control signals,

- if CLEAR is false and ENABLE is false, then OUT equals the last value of ZN before
ENABLE became false,
if CLEAR is false, ENABLE is true, and RESET is true, then OUT follows IN,

- if RESET becomes false, then OUT holds, on each time point t, the mean value of
the maximum mad minimum value of IN until that time point, since RESET
beeame false.

The most important component of our implementation is a sub-module "MeanValue"
whieh is supposed to correspond to the last part of the specification : OUT holds, on
each time point t, the mean value of the maximum and minimum value of IS until
that time point, since RES~.T became false. This device is depicted on Figure 2.
PASTMAX and PASTMIN are two registers, and the other components are N-bit arithmetic
modules :

- GREAT_N and LESS_ N implement the ">" and "<" comparisons on N-bit vectors,

MUX_N multiplexes two N-bit vectors according to a control bit,

RCA is the ripple-carry adder,
and RIGHTSHIFT shifts a N-bit vector to the fight, i.e. divides the corresponding
imtural number by 2.

83.

IN_M
RESET

!

I ! - -

Zero

li!iiiiiii<iiii iiii!!!iiiiiiii J
t

tOUT_M

H

Tf--

I

l PASTMIN

'-7

FIGURE 2 : MEANVALUE MODULE

Because of the lack of place, we give neither all the pictures of the sub-modules nor the
VHDL descriptions. We will only describe the Boyer-Moore verification of the most
significant components. The Boyer-Moore code is automatically generated from the
VHDL descriptions, with a limited user interaction (through a menu-directed interface).

1. The rightshift component.

Here, we give a more elaborate version of this device than in [18]. This drcuit inputs a
N-bit vector A and a boolean signal c, and outpu~ a N-bit vector z which corresponds
to A shifted to the fight, and the most significant bit of which takes the value of c.
Thus, the Boyer-Moore function associated with z is :

(defn rightshift-Z (A c)
(if (bitvp A)

(if (equal A (btm))
(btm)
(if (equal (vec A)

(bitv c (btm))

(btm)))

(btm))

(bitv (bit (vec A)) (rightshift-Z (vec A) c))))

We have to verify that, when c equals f a l s e , the result corresponds to (b v - t o - n a t
A) divided by 2, i.e. :

84

(prove-lemma proof-of-rightshift-Z (rewrite)
(implies (bitvp A)

(equal (by-to-nat (rightshift-Z A f))
(quotient (bv-to-nat A) 2))))

Since c is not propagated through the shifter cells, generalization is not mandatory.
However, this lemma can be generalized into the following one :
(prove-lemma proof-of-rightshift-Z-gen (rewrite)

(implies (and (bitvp A) (not (equal A (btm))) (boolp c))
(equal (by-to-nat (rightshift-Z A c))

(if c
(plus (quotient (by-to-nat A) 2)

(exp 2 (subl (size A))))
(quotient (by-to-nat A) 2)))))

2. The modules GaSaT_N and LnSS_S.

Each of these devices inputs two N-bit vectors A and B, and a carry-in X_IN, and
compares the bit-vectors, starting from the least significant bit. The carry is propagated
up to the last cell, where it finally represents the result of the comparison. Figure 3
depicts the component GREAT_N, the other one is rather similar. We give the proof of
this module GREAT_N, the verification of LESS_N is processed similarly.

�9 �9 ~

FIGURE 3 : GREAT_N MODULE

This circuit has a boolean output x, and the corresponding Buyer-Moore function is :

(defn great_n-X (g B X_IN)
(if (bitvp A)

(if (equal A (btm))
X IN
(great_n-X (vec A) (vec B)

(or (and (bit A) (not (bit B)))
(and (eqv (bit A) (bit B)) X_IN))))

X_IN))

85

Then, we have to verify that this device implements correctly the associated
comparison, provided that the input carry equals f a l s e . Our system generates the
following theorem :

(prove-lemma proof-of-great_n-X (rewrite)
(implies (and (bitvp A) (bitvp B) (equal (size A) (size B)))

(equal (great_n-X A B f)
(greaterp (by-to-nat A) (bv-to-nat B)))))

Here, generalization is mandatory. The generalization algorithm generates 4 sub-cases
and finally produces the following generalized lemma :

(prove-lemma proof-of-great_n-X-gen (rewrite)
(implies (and (bitvp A) (bitvp B)

(equal (size A) (size B)) (boolp x))
(equal (great_n-X A B x)

(if x
(or (greaterp (bv-to-nat A) (bv-to-nat B))

(equal (by-to-nat A) (bv-to-nat B)))
(greaterp (by-to-nat A) (bv-to-nat B))))))

V.2 Parallel multiplier

This second benchmark will illustrate our methodology for two-dimensional
architectures. This device is a combinational parallel multiplier. Many significant
methodologies have been developed for the verification of parallel array multipliers.
The most efficient ones are based on constraint logic programming [21], or have been
inspired from the development of tautology-checking techniques based on BDD-like
representations [8], [1]. However, R.Bryant has shown that the size of the BDD
representing multiplication grows exponentially in the number of input bits [7]. Even
though [8] and [1] try to overcome this problem, they do not take advantage of the fact
that most of these circuits are completely (or at least partially) regular.

The design that is proposed in [14] exactly corresponds to the circuit that is referred to
as the "Braun's array multiplier" in [12]. The correspondence between the basic cell
used in the TPCD design and the fulladder-based module used in [12] is given by
Figure 4 below.

C X Y C
I I I

Cout] IS F

Cin

S

Figure 4a. TPCD module Figure 4b. FullAdder-based module

FIGURE 4 : CORRESPONDENCE BETWEEN BASIC MODULES

A 4-bit version of the Braun multiplier is depicted by Figure 5. A generic N-bit VHDL
description and a detailed Nqthm proof can be found in [20]. Here we propose an
outline of this verification. This device is made of a succession of similar rows, and

86

the last row is a ripple-carry adder. Its hierarchical proof consists in validating the basic
row, the tipple-carry adder (proof already presented), and then the whole multiplier.

a 3 a 2 al a O

Z7 Z 6 Z 5 Z 5 Z 3 z ~ ~

FIGURE 5 : 4.BIT BRAUN MULTIPLIER

Two functions are associated with the two vectorial outputs of the basic row. The case
where (vec A) = (btm) must be processed separately (irregularity on the last cell) :

(defn Row-x out (A X Y b)
(if (bitvp A)

(if (equal A (btm))
(btm)
(if (equal (vec A) (btm))

(bitv (and (bit A) b) (btm))
(bitv (fulladd-fout (bit X)

(Row-x out (vec A)

(btm)))

(defn Row-y out (A X Y b)
(if (bitvD A)

(if (equal A (btm))
(btm)
(if (equal (vec A) (btm))

(btm)
(bitv (fulladd-fcarry (bit X)

(btm)))

(bit Y) (and (bit A) b))
(vec X) (vec Y) b)))

(bit Y) (and (bit A) b))

(Row-y_out (vec A~ (vec X) (vec Y) b))))

87

The following function Mult-Z corresponds to the vectorial output of the multiplier,
where l e f t - s h i f t is the function which specifies a left-shifter, i.e. a multiplication
by two (in our system, its definition and associated properties are included in a library
of pre-proven and re-usable basic components) :

(defn Mult-Z (A X Y B)
(if (bitvp B)

(if (equal B (btm))
(RCA-z X (left-shift Y) f)
(bitv (bit X)

(Mult-Z A
(Row-x out A (vec X) Y (bit B))
(Row-y_out A (vec X) Y (bit B))
(vec B))))

X))

The first verification step corresponds to the following theorems size-of-Row-x_out
and size-of-Row-y_out :

(prove-lemma size-of-Row-x_out (rewrite)
(equal (size (Row-x_out A X Y b)) (size A)))))

(prove-lemma size-of-Row-y_out (rewrite)
(equal (size (Row-y_out A X Y b)) (subl (size A))))

Then, we verify the functional specification of the basic row which depends on
the initial value of b. It is given by the table below, where X' and Y' represent the bit-
vectors output by the row �9

value of b by-to-nat (X') + 2 by-to-nat (Y')

f bv-to-nat (x) + bv-to-nat (y)

t by-to-nat (x) + by-to-nat (y) + by-to-nat (a)

The Boyer-Moore theorem which ~anslates this specification is of the form of Thl
where we consider the appropriate com~nation of the row outpu~ :

(prove-lemma proof-of-Row-x_out-y_out (rewrite)
(implies (and (bitvp X) (bitvp Y) (bitvp A) (boolp b)

(equal (size Y) (size X))
(equal (size X) (subl (size A))))

(equal (plus (by-to-nat (Row-x_out A X Y b))
(times 2 (bv-to-nat (Row-y_out A X Y b))))

(plus (plus (bv-to-nat X) (by-to-nat Y))
(if b (by-to-nat A) 0)))))

After this proof, we should ~y to verify the correctness of the multiplier, i.e.
thelemma proof-of-Mult-zbelow:

(prove-lemma proof-of-Mult-z (rewrite)
(implies (and (bitvp A) (bitvp B)

(equal (size B) (size A)))
(equal (bv-to-nat (Mult-Z A

(initan d A (bit B))

(all-zeros (subl (size A)))
(vee B)))

(times (by-to-nat A) (by-to-nat B)))))

88

where the functions i n i t a n d and a l l - z e r o s are used to initialize the vectorial inputs
x and Y : the initial value of x is the result of "and-ing" each bit of A with the first bit
o f 8, and the initial value of Y is a vector each bit of which is equal to f a l s e .

The lemma proof-of-Mult-Zis generalized intothetheoremproof-of-Mult-Z-gen:

(prove-lemma proof-of-Mult-Z-gen (rewrite)
(implies (and (bitvp A) (bitvp B) (bitvp X) (bitvp Y)

(equal (size Y) (subl (size A)))
(equal (size X) (size A)) (lessp (size B) (size A)))

(equal (bv-to-nat (Mult-Z A X Y B))
(plus (times 2 (times (bv-to-nat A) (bv-to-nat B)))

(plus (times 2 (bv-to-nat Y))
(bv-to-nat X))))))

The f i~t phase of the generalization algorithm generals 8 sub-cases, from which the
following equalities are deduced :

(equal (bv-to-nat (Mult-Z A
(Row-x out A (all-zeros (subl (size A)))

(all-zeros (subl (size A))) c)
(Row-y out A (all-zeros (subl (size A)))

(all-zeros (subl (size A)) c)

B))
(plus (times 2 (times (bv-to-nat A) (by-to-nat B)))

(if c (bv-to-nat A) 0)))
~d
(equal (bv-to-nat (Mult-Z A

(Row-x_out A (vec A)
(all-zeros (subl (size A)) c)

(Row-y_out A (vec A)
(all-zeros (subl (size A)) c)

B))
(plus (plus (times 2 (times (bv-to-nat A) (by-to-nat B))

(bv-to-nat (vec A)))
(if c (bv-to-nat A) 0)))

With regard to the first one, an ad hoc instanfiafion of theorem proof-of-Row-x_out-

y_out ~ves:
(equal (plus (by-to-nat (Row-x out A (all-zeros (subl (size A)))

(all-zeros (subl (size A))) c))

(times 2 (bv-to-nat
(Row-y_out A (all-zeros (subl (size A)))

(all-zeros (subl (size A)))
e))))

(plus (plus (by-to-nat (all-zeros (subl (size A))))
(bvito-nat (all-zeros (subl (size A)))))

(if c (bv-to-nat A) 0)))

i.e.
(equal (plus (by-to-nat (Row-x_out A (all-zeros (subl (size A)))

(all-zeros (subl (size A))) c))

(times 2 (by-to-nat
(Row-y_out A (all-zeros (subl (size A)))

(all-zeros (subl (size A)))

c))))
(if c (bv-to-nat A) 0))

89

Thus, replacing (i f c (bv-to-nat A) O) by the equivalent expression in the first
equality above produces :

(equal (by-to-nat (Mult-Z A
(Row-x_out A (all-zeros (subl (size A)))

(all-zeros (subl (size A))) c)
(Row-y_out A (all-zeros (subl (size A)))

(all-zeros (subl (size A))) c)
B))

(plus (times 2 (times (by-to-nat A) (bv-to-nat B)))
(plus (bv-to-nat (Row-x_out A (all-zeros (subl (size A))

(all-zeros (subl (size A))) c)
(times 2

(bv-to-nat (Row-y_out A
(all-zeros (subl (size A))
(all-zeros (subl (size A))
c))))

and generalizing the terms (Row-x_out . . .) and (Row-y_out . . .) finally gives :

(equal (bv-to-nat (Mult-z A X Y B))
(plus (times 2 (times (by-to-nat A) (by-to-nat B)))

(plus (bv-to-nat X) (times 2 (bv-to-nat Y)))))

Similarly, for the second one, an ad hoc instantiation of theorem proof-of-Row-
x_out-y_out gives :

(equal (plus (bv-to-nat (Row-x_out A (vec A)
(all-zeros (subl (size A))) c))

(times 2 (bv-to-nat (Row-y_out A (vec A)

(all-zeros (subl (size A)))
c))))

(plus (plus (bv-to-nat (vec A))
(bv-to-nat (all-zeros (subl (size A)))))

(if c (bv-to-nat A) 0)))

which finally produces, after generalization :

(equal (bv-to-nat (Mult-Z A X Y B))
(plus (times 2 (times (by-to-nat A) (by-to-nat B)))

(plus (bv-to-nat X) (times 2 (bv-to-nat Y)))))

Both equalities produce the same expression which becomes, with the appropriate
hypotheses, the lemma proof-of-Mult-Z-gen.

Now, let us compare the efficiency of our approach with results given in significant
articles referenced at the beginning of section V.2. The following table gives the
number of theorems to be proved and the total CPU times (on a SUN Spare2, with 32
Mb of memory) for the complete Boyer-Moore proof of this Braun multiplier, as well
as for the verification of a simpler multiplier architecture given as example in [8].

Simple N-bit multiplier N-bit BRAUN multiplier
Number of theorems 3 5

Total CPU time 14.6 seconds 99.2 seconds

90

In the table below, we recall some of the experimental results presented in the
referem~.d papers :

Paper

[211

[11

[8]

Multiplier size Proof time

44-bit ,,,100s on a Sun 3/260

32-bit output #31 in 533mn, and output #15 in 25h,
on a IBM 6000/320 (with 256 Mb of memory)

16-bit ,,,40mn on a Sun 3/60 (with 12 Mb of memory)
(C6288, ISCAS'85 bench.)

The comparison of these tables demonstrates that our technique allows the verification
of N-bit architectures within satisfying CPU times.

VI. CONCLUSION

We have proposed an inductive proof methodology devoted to the formal verification of
one-dimensional, as well as two-dimensional, replicated structures. This method has
been mechanized in the Boyer-Moore logic. We have also described an associated
generalization teclufique for transforming the properties to be verified, before the proof
process. The automatic translator between VHDL and Boyer-Moore and the
generalization algorithm are being implemented. The examples that illustrate this paper
demonstrate the feasibility and the efficiency of the method for validating generic N-bit
devices.

Our proof techifique requires a particular design methodology; it is not applicable
starting from a simple neflist of such a parallel circuit. The translation task between
VHDL and Boyer-Moore is feasible if precise description rules have been respected. The
illustrative examples show that the circuit descriptions must be hierarchically
organized, and the regularity must be expressed by for ... genera te and fo r ... loop
statements. Future work will aim at defining a "Design For Verifiability" methodology
for such parallel arrays.

In the case where the circnit under consideration consists of all intercommction of
various components, this hierarchical aspect can be taken into account within
PREVAIL" : several proof tools are integrated, and each component can be verified
using the most appropriate system. The team of Flavio Wagner is developing a real
framework-based enviromnent for supporting hierarchical proof, library malmgement,

etc... [23].

REFERENCES
[1] P.ASHAR, AIGHOSH, S.DEVADAS, A.NEWTON : "Combinational and sequential logic

verification using general binary decision diagrams". Proc. Int. Workshop on Logic
Synthesis, Research Triangle Park (NC), May 1991.

[2] R.AUBlN : "Mechanizing structural induction-Part 11 : Strategies". Theoretical Computer
Science 9. North-Holland,1979. pp. 347-362.

[3] R.S.BOYER, J S.MOORE : "A Computational Logic". ACM Monograph Series.
Academic Press, Inc. 1979.

[4l R.S.BOYER, J S.MOORE : "A Computational Logic Handbook". Perspectives in
Computing, Vol. 23. Academic Press, Inc. 1988.

81

[5] D.BORRIONE, L.PIERRE, A.SALEM : "Formal Verification of VHDL Descriptions in the
PREVAIL Environment". IEEE Design&Test magazine, voi. 9, n~ June 1992.

[6] R.E.BRYANT : "Graph-based Algorithms for Boolean Function Manipulation". IEEE
Transactions on Computers, Vol. C-35, n~ August 1986.

[7] R.E.BRYANT : "On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Application to Integer Multiplication".
IEEE Transactions on Computers, Vol. 40, n~ February 1991.

[8] J.ILBURCH : "Using BDDs to verify multipliers". Proc. DAU91, San Francisco (CA),
June 1991.

[9] P.CAMURATI, P.PRINE]'TO : "Formal Verification of Hardware Correctness : Intro-
duction and Survey of Current Research". IEEE Computer, Vol.21, nO"/. July 1988.

[10] M.FUJITA, H.FUJISAWA, N.KAWATO : "Evaluation and Improvements of Boolean
Comparison Method based on Binary Decision Diagrams". Proc. Int. Conference on
Computer-Aided Design ICCAD'88, 1988.

[11] W.A.HUNT : "FM8501 : A verified microprocessor". Institute for Computing Science,
University of Texas, Austin (USA). Technical Report n~ February 1986.

[12] K.HWANG : "Computer arithmetic : principles, architecture and design", John Wiley &
sons Inc., New-York, 1979.

[13] IEEE Standard VHDL Language Reference Manual, IEEE. 1988.
[14] T.KROPF : "Benchmark-Circuits for Hardware Verification, 2nd TPCD Conference". 2nd

Conference on Theorem Proving in Circuit Design, Bad Herrenalb (Germany), 1994.
[15] J.S.MOORE : "Introducing Iteration into the Pure Lisp Theorem Prover". IEEE

Transactions on Software Engineering, Vol. SE-1, nO3. September 1975.
[16] Z. MANNA, R. WALDINGER : "Knowledge and Reasoning in Program Synthesis".

Artificial Intelligence Journal. Vol 6, 2. 1975.
[17] S.MALIK, A.R.WANG, R.K.BRAYTON, A.SANGIOVANNI-VINCENTELLI : "Logic

Verification using Binary Decision Diagrams in a Logic Synthesis Environment". Proc.
Int. Conference on Computer-Aided Design ICCAD'88, 1988.

[18] L.PIERRE : "The Formal Proof of the Min-Max sequential benchmark described in
CASCADE using the Boyer-Moore Theorem Prover". Proc. IFIP WG 10.2 Int. Workshop
Nov. 1989. In "Formal VLSI Correctness Verification", L.Claesen ed., North Holland,
1990.

[19] L.PIERRE : "One Aspect of Mechanizing Formal Proof of Hardware : the Generalization
of Partial Specifications". Proc. ACM International Workshop on Formal Methods in
VLSI Design. Miami (FI). 9-11 January 1991.

[20] L.PIERRE : "VHDL Description and Formal Verification of Systolic Multipliers". In
"CHDL and their Applications", D.Agnew, L.Claesen & R.Camposano Eds, North
Holland, 1993.

[21] H.SIMONIS : "Formal verification of multipliers". Proc. IFIP WG 10.2 Int. Workshop
Nov. 1989. In "Formal VLSI Correctness Verification", L.Claesen ed., North Holland,
1990.

[22] D.VERKEST, L.CLAESEN, H.DE MAN : "Special Benchmark Session on Formal
System Design". Proc. IFIP WG 10.2 Int. Workshop Nov. 1989. In "Formal VLSI
Correctness Verification", L.Claesen ed., North Holland, 1990.

[23] F.WAGNER : "prevaiI-DM : a framework-based environment for formal hardware
verification". In "CHDL and their Applications", D.Agnew, L.Claesen & R.Camposano
Eds, North Holland, 1993.

ACKNOWLEDGEMENTS

This work has been supported by the EEC under Charme-II ESPRIT Basic Research
Working Group n~

The author is grateful to the anonymous reviewers for their fruitful comments.

