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A b s t r a c t  : Our approach for verifying the equivalence of two VHDL architectures 
consists in translating these descriptions into functional forms and then in proving 
the equivalence of these functions. As far as replicated or parallel architectures are 
concerned, an induction-based method is used for verifying generic n-bit 
descriptions. This technique takes advantage of the regular structure of these devices 
and can give better results than the BDD-based approaches. However, induction 
requires complete specifications, whereas the designers usually supply partial 
specifications. Therefore, we propose a specialized automatic method for 
generalizing such incomplete statements, before the Boyer-Moore proof process. 

I. INTRODUCTION 

The concept of formal verification includes various aspects [9], this paper focuses on 
verifying that the function implemented by a given VLSI circuit implies or is 
equivalent to its specification. Our system PREVAIL" ,  that is being developed in 
cooperation with Imag/Artemis, is a prototype proof environment which includes a set 
of verification tools [5]. It takes as input VHDL descriptions [13] and verifies the 
equivalence (or the implication) of two different architectures of the same entity (two 
descriptions given at different abstraction levels, or a description and its optimization, 
etc...). The most appropriate verification tool is selected with the help of the designer, 
and the descriptions are automatically translated into the formalism of this proof 
system. One of the included proof tools is the Boyer-Moore system, Nqthm [3][4]. 

This system, which is essentially based on the induction principle, is particularly 
useful for the verification of generic replicated or parallel architectures. In effect, such a 
theorem prover bring several advantages : 

- we do not have to care about the size of the device, we recursively describe generic 
n-bit architectures and we prove generic properties, 

- the specification can be given at the arithmetic level, and we can use conversion 
functions between bit-vectors and integers. 
This feature is very important for the hierarchical verification of large arithmetic 
devices : after being verified, each elementary component can be replaced by its 
arithmetic specification. Thus, the whole system verification is performed at the 
arithmetic level, and the efficiency is significantly improved. 

This approach circumvents some drawbacks of the well-known tautology-checking 
techniques based on BDD-like representations [6] (see for instance [10], [17]), where : 
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the size of the circuit must be fixed to 16, 32, 64... bits, and the proof system 
verifies the correctness of each output independently, 

the "specification" of the circuit must be another implementation of the same 
arithmetical function, also considered at the boolean level. Usually, even if the 
specification is given at the arithmetical level, it has to be transformed into an 
equivalent bit-level implementation, using a library of simple basic modules 
(adders, multipliers .... ). 

Nevertheless, a correct recursive model cannot be deduced from a simple netlist of the 
circuit, and our approach requires a particular description methodology. The automatic 
translation task is feasible provided that some description rules are respected. In 
particular, the genericity of the architecture must be expressed by a declaration of the 
form g e n e r i c  ( N : p o s i t i v e ) ,  and the regularity must be described using a fo r  ... 
g e n e r a t e  construct. Moreover, the theorems to be verified are usually expressed in 
terms of given values for the incoming boolean signals (input carries). It means that 
induction cannot be applied, unless we are able to provide a generalized version where 
carries are considered as symbolic variables. Generalization is a well-known problem in 
the framework of induction-based proofs, and no general-purpose method can be found. 
Conversely, it may be possible to mechanize some specialized methods. Here, we 
propose an automatic technique for generalizing the partial specifications of one- 
dimensional, as well as two-dimensional, replicated structures. This method extends a 
previous work on simple one-dimensional regular devices [19]. 

Finally, our methodology is able to give a positive answer to one of the questions that 
have been asked in the presentation of the N-bit adder TPCD benchmark [14] : "Is the 
verification done for arbitrary N?". We will use this simple ripple-carry adder as 
rumfing example throughout this paper; its VHDL description is given by Figure 1. 
More elaborate examples can be found in paragraph V. 

e n t i t y  r o a  i s  
generic(N:positive); 

port(a,b:in bit_vector(0 to N-I); c:in bit; 
z:out bit_vector(0 to N)); 

e n d  roa; 

arohite=tura stru=t of r=a is 
component fulladd 

port(a,b,carry:in bit; fout,fcarry:out bit); 
end component; 

signal carry:bit_vector(0 to N); 
begin 

addblock:block 

for all:fulladd use entity work.fulladd(stadd); 
begin --- Regular part : 

fadd:for I in 0 to N-I generate 

fl:fulladd port map(a(I},b(I),carry(I),z(I),carry(i+l)); 
end generate; 
carry(0) <= c; 
z(N) <= carry(N); 

end block; 
end struct; 

FIGURE 1 : V H D L  DESCRIPTION OF THE RIPPLE.CARRY ADDER 



74 

H. BRIEF OVERVIEW OF THE BOYER-MOORE SYSTEM 

All along this paper, we only have to suppose that the proofs are performed in an 
induction-based environment. In fact, we use Nqthm and the reader will find some lines 
of Boyer-Moore code. Therefore, we give a brief overview of this system. 

The Boyer-Moore theorem prover is based on a quantifier-free first order logic with 
equality. The three basic principles of this prover are [3][4] : 

- The  "shel l"  principle  : 
Inductive abstract data types - called "shells" - can be built by means of a bottom 
object, a constructor, and one or more acccssors. A boolean function, called a 
recognizer, recognizes if an object belongs to the shell. 
The type of "natural numbers" is a well-known example : the bottom is 0, the 
constructor is 3. x. x+] ,  and the accesser is 3. x. x - l ;  the predicate recognizer of 
this type in Boyer-Moore is numberp. 

The  def in i t ion  p r i n c i p l e :  
Prior to accepting a recursive function definition, the system verifies that there 
exists a measure which decreases according to a "well-founded" relation. 
For example, we can define the following function "times" over natural numbers : 

times ( i , j )  =de.[ i f  i = 0 then 0 else j + times (i-l,  j )  

The term i-I  decreases at each recursive call, and the recursion stops when i=0. 
Thus, this recursive definition is correct. Much more elaborate function templates 
can also be accepted. 

The  induct ion  p r i n c i p l e :  
It allows to prove inductive theorems over recursive functions. Induction schemes 
are automatically generated according to the definitions of the reeursive functions 
involved in the theorems. For example, let us assume that we want to verify the 
following proposition P(x,y) : 

numberp(x) and numberp(y) ~ times(x, y+ l ) = x + times(x, y) 

The induction scheme generated for the proof of P(x,y) is : 
1. x = 0 ~ P(x,y) 
2. (x ~ 0) and P(x-l,y) ~ P(x,y) 

A brief state of the art about Nqthm and the formal proof of software/hardware can be 

found in [201. 

Remark : In the following, we will have to use bit-vectors. The bit-vector "shell" has 
been proposed in [11]. It is defined by means of : the boUom (btm), the constructor 
bitv,  the accessors bi t  (least significant bit) and vee (rest of the vector), and the 

recognizer bitvp. 

I I I .  MODELLING AND VERIFYING REPLICATED DEVICES 

In this paragraph, we give recursive models for regular architectures. Recursion is well- 
suited for describing the duplication of a same hardware motif. Throughout this 
section, recursive functional forms are associated with the outputs of replicated 

structures : 
- the parameters are the inpnts of the system, and carry propagation is translated by 

the updating of the corresponding parameter(s) with the value(s) computed by the 
function(s) that express this propagation, 
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if the output is vectorial, the function builds this vector by means of bitv, which 
appends a bit to a bit-vector. 

II l .1  A recurs ive  mode l  for  one -d imens iona l  repl icated circuits  

Here, we  give recursive functional models for representing the output(s) of  one- 
dimensional regular architectures. These devices usually take as inputs several bit- 
vectors of  identical length N, which is given as a q e n e r i c  parameter o f  the 
description. Since we deal with bit-vectors of  the same length, only one of them is 
used as recursion parameter in our definitions. In the following, we use the term 
"carry" for describing any boolean result computed in the i th module and passed to the 
(i+ 1) th one. 

: the vectorial inputs are denoted vI1 . . . . .  v i i ,  and the scalar inputs (which 
include the propagated carries) are denoted s i  1 . . . . .  s i  k. 

First, we give the function which corresponds to a vectorial output vo i ,  1 ~; i ,: ivo, 
where ivo is usually < j. The function REC-Fvo i builds the bit-vector formed by the 
result of  Vvo i (the function associated with the corresponding boolean output of  the 
basic cell), catenated to the result of  the recursive call to REC-Fvo i with the vectorial 
inputs of  one element less and the scalar inputs updated by the functions F S I  1 . . . .  , 
F S I  k (which express the carry propagation) : 

REC-Fvoi(VI 1 ..... VIj, SI 1 ...... SIk) =def 

if bitvp(VIl) ~-- if VII is a bit-vector 

then if VI I = (btm) --- if Vl I is empty, the result 

them FSI/EI 1 ..... Sik) --- is a function of 8II, _, $I k. 

--- if VI I is not empty, we recursiwely call REC-FvO i t 

else bitv(Fvoi(bit(Vil) ..... bit(Vii), SI 1 ..... Sik), 

REC-Fvoi(Vec(VI I) ..... vec(VIj), 

FsIl(bit(VI I) ..... bit(vIjJ, SI 1 ..... Sik) ' 

Fsik(bit(VIl) ..... bit(VIj), SI 1 ..... Sik)) ) 
else FSI(SI 1 ..... Sik ) 

i 

The model which is associated with a scalar output  SOl, 1 ~ i ~ iso, is similar, 
except that it does not bu~d a vectorial reset  : 

REC-Fsoi(VI 1 ..... Vii, SI 1 ..... Slk) =def 

if bitvp(VIl) --- if VI 1 is a bit-vector 

then if VI I = (btm) --- if VI 1 is empty, the result 

then Fs!(SIi) --- is a function of SI i 

--- if VII is not empty, we recursively call REC-Fso i = 

else REC-Fsoi(Vec(VII) ..... vec(VIj), 

Fsil(bit(VIl) ..... bit(Vii), SI 1 ..... Sik) ' 

FsIk(bit(VIl) ..... bit(vii), SI 1 ..... Sik) ) 
else FSI(SIi) 
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Example : The description of the ripple-carry adder ~ igure  1) has one vectorial 
output z. It is expressed by the following recursive function RCA-z (given in the 
Boyer-Moore syntax), which is of the form of REC-Fvo i where A and B are the 
vectorial inputs and c is a scalar input (the carry to be propagated) : 

(defn RCA-z (A B c) 
(if (bitvp A) 

(if (equal A (btm)) 
(bitv c (btm)) 
(bitv (fulladd-fout (bit A) (bit B) c) 

(RCA-z (vec A) 
(vec B) 
(fulladd-fcarry (bit A) (bit B) c)))) 

(bitv c (btm)))) 

where ful ladd- fout and ful I add- fcarry are the non-recursive functions assodated 
with the outputs lout and fcarry of the component fulladd. 

III.2 A recursive model  for two.d imens ional  replicated circuits 

Now, let us focus on two-dimensional regular structures. More precisely, we are 
interested in parallel systems Which are built from N instances of the same row, where 
each row is also a replicated device. Thus, the outputs of the basic row are represented 
by functional forms which correspond to the templates of w III. 1. 

Here, we give a recursive model for representing the output of the whole parallel 
architecture; this function will be defined in terms of the REC-Fvo i,  1 < i < ivo. 

Notation : the vectorial inputs are denoted vI 1 . . . . .  Vlp, and the scalar inputs are 
denoted s I1  . . . . .  SIq. Typically, p > j where j is the index used in w III.1. A 
necessary condition is ivo <j.  Usually, the architecture is such that ivo = j - l ,  q = k-l ,  
and p = j+ l  (i.e. r ip  expresses the second dimension). In order to simplify the model 
given below, we will assume these equalities (but it can easily be transformed into a 
more general one). 

The following function Fpa r models the output of such a parallel circuit : 

Fpar(VIl ..... VIp, SII, ..., SIq) =def 
if bitvp(VIp) --- if VIp is a bit-vector 
then if VIp = (btm) --- if VIp is empty, the result is 

--- output by the last component 

then Last-comp(VIl, ..-, VIp-I, SII ..... SIq) 
--- if VIp is not empty, we recursively call Fpa r : 

else bitv(Fb(bit(VI2) ..... bit(VIp-l))' 

Fpar(VIl, 
REC_FvoI(VII ..... bit(VIp), SI 1 ..... SIq), 

REC_Fvoivo(VII, ..., bit(VIp), SII, -.., SIq), 

vec(VIp), SII ..... SIq)) 

else Last-comp(VIl ..... VIp-I, SII ..... SIq) 
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This function builds the bit-vector formed by the result of F b (bit (VI 2 ) . . . . .  

b i t  ( r i p - l ) )  where Fb is a boolean function (the function associated with the 
corresponding output of the basic row), catenated to the result of the recursive call to 
Fpar  with the vectorial input VIp of one element less and the vectorial inputs updated 
by the functions Rv.C-Fvo 1 . . . . .  ~EC-Fvoiv o (which express, if needed, the carry 
propagation through the rows). 

Remark : Last-camp is a vectorial function which represents the last row, in particular 
it can be different from the other ones. 

An illustrative example of this modelling method can be found in w V.2. 

111.3 The induction-based proof method 

1. As far as one-dimensional  circuits are concerned, the proof process consists in 
verifying the equivalence between each function REC-vvo i or REC-Fso i (or a 
combination of these functions) and a function which expresses the arithmetic specifi- 
cation. In order to (formally) compare the results computed by these functions, we have 
to abstract the first one to the arithmetic level, using the function b y - t o - n a t  which 
converts bit-vectors into natural numbers, starting from the LSB. 

The theorem to be proved generally states the equivalence between the result of the 
function REC-FvO i converted into a natural number and a specification function, 

denoted below SPECvo i . This property is generally given in terms of particular initial 
values for the scalar inputs, referred to as i v - s I  1 . . . . .  IV-Slk : 

bitvp(VI I) and ... and bitvp(VIj) --- the VI i are bit-vectors 

and size(VIl) = size(VI 2) --- the vectors have the same length 

... and size(VIl) = si2e(VIj) 

bv-to-nat(REC-Fvo i(VI 1 ..... VI3, IV-SI 1 ..... IV-SIk)) 

- SPECvo i (by-to-nat (VII) ..... by-to-nat (VIj)) 

Th I 

Remarks : * In the case where we have to reason o n  REC-Fsoi,  we use t h e  same 
statement, except that we do not have to ca/1 on the function b y - t o - n a t  since REC- 
FSO i gives a boolean result. 

�9 I f  the property to be proved is an equivalence between a combination of 
the results of the functions r~EC-Fvo 1 . . . . .  REC-SVO j and a specification expression, 
we use the same kind of theorem except that the term b v - t o - n a t  ( R E C - F v o  i (VI 1 . . . . .  

v i i ,  i v - s i  1 .... , IV-SIk) ) is replaced by a term of the form F ( b v - t o - n a t  (REC- 
FVO1 (VI1  . . . . .  I V - S I k )  ) ,  .... b v - t o - n a t  ( R E C - F v o  j (VI 1 . . . . .  I V - S I k )  ) ).  

Example : The correctness theorem for the circuit of Figure 1 is the theorem p r o o f -  
of-RCA-z which verifies that this device outputs the sum of the two bit-vectors A and 
B, provided that the carry-in is set to f a l s e  : 

(prove-lemma proof-of-RCA-z (rewrite) 

(implies (and (bitvp A) (bitvp B) (equal (size A) (size B))) 
(equal (bv-to-nat (RCA-z A B f)) 

(plus (by-to-nat A) (by-to-nat B))))) 
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We will see in section V that other significant examples can be verified using the same 
modelling and proof methodology. 

2, With respect to two-dimensional architectures, the verification process is 
hierarchically decomposed into sub-proofs �9 first we verify the correctness of the basic 
row, and then it is possible to validate the whole device. 

The first necessary step consists in giving pieces of information about the size(s) of 
the bit-vector(s) output by the one-dimensional row. One theorem per row output 
indicates the size of this vectorial output in terms of the input size(s). Then, the 
correctness of this row is verified using one or several theorems of the form of Th 1, 
provided that they have previously been generalized. Finally, a theorem of the form of 
Th 2 below allows to validate the two-dimensional structure : 

bitvp(VI I) a n d  bitvp(VIp) --- vI 1 and Vlp are bit-vectors 

and size(VI I) = size(VIp) --- They have the same length 

bv-to-nat(Fpar(VIl, Finitl(VIl, rip), ..., 

Finitp_2(VI I, VIp), VIp, IV-SI I ..... IV-SIq)) 

. SPEC(bv-to-nat(VIl) ..... bv-to-nat(VIp)) 

Th 2 

where - SPEC corresponds to the specification, 
Finit I is the function which computes the initial value of vl 2 . . . . .  and 
F i n i t p - 2  is the function which computes the initial value of w p _  1, 

- and Iv-sz•  l s  i aq, is the initial value of s I i .  

Here, as well as in the case of one-dimensional devices, the presence of particular 
values for the incoming carries implies that an inductive proof is not feasible. Such a 
theorem must be generalized, this is the purpose of section IV. 

IV. THE GENERALIZATION METHOD 

IV.I Motivation 

In the fields of software as well as hardware verification, generalization is often 
necessary as soon as induction-based techniques are applied. For instance, Manna and 
Waldinger describe the problem of "generalization of specifications" in the framework 
of program synthesis [16]. Finding general-purpose generalization methods that can be 
fully mechanized is almost impossible. Some interesting heuristics, that require user- 
interaction, have been proposed. Among them, let us recall the following approaches : 

J Moore, one of the authors of the Boyer-Moore prover, proposed an interesting 
generalization heuristics for recursive functions with accumulating parameters 
[15]. However, there is a step where the user has to "guess" the term by which a 
certain variable must be replaced. In fact, this heuristics has not been implemented 
in the Boyer-Moore system. 

- R.Aubin also worked on such generalization heuristics. With respect to the 
problem of verifying the equivalence between recursive functions and 
corresponding iterative ones, he gave a method called "indirect generalization" [2]. 
This method introduces, in the expression to be proved, a new function call 
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associated with its neutral element, and then generalizes this constant. Here also, 
the appropriate function has to be intuitively determined by the user. 

Our goal is not to propose a general-purpose technique. We give a specialized method 
for our problem, and this special-purpose algorithm can be mechanized. A prototype 
implementation has been included in PREVAIL".  

IV.2 Generalization algorithm 

The algorithm below is devoted to regular replicated architectures. Starting from a 
theorem of the form of Th 1 or Th 2, this method yields a more general lemma which is 
provable by induction. The generalization algorithm is : 

Unfold once the definition associated with the implementation (i.e. REC-Fvo i or 8EC- 
FSO i or  F p a r )  in the left-hand side of the equality ; 

While the new expression includes terms of the form b i t  (VI n) (or b i t  (GVIn) )  do 

Perform a case analysis on the vMue of bit (VI n) : bit (VIn) =f 

bit (VI n ) = l 
F or  each case do 

Simplify the resulting equality ; 

Unfold once the definition of "bv-t  o-nat"  ; 

Apply simplification rules ; 

Generalize the term v e c  (VIn)  in to  GVI n , 

E n d F o r  ; 

E n d W h i l e  ; 

From the set of expressions obtained from the previous case analysis, deduce a single 
(possibly conditional) expression E ; 

If the implementation function corresponds to a two-dimensional architecture 

T h e n  use theorems Th 1 to transform the left-hand side of this equality (and the 
right-hand side accordingly) : 

E is of the form : 

bv-t~ REC-FvoI(VII, VI2', -, Vip', SIl, _, SIq), 

-, REC-Fvoivo(VII, VI2', -, rip', SII, _, SIq), 
Vlp, Sll, _, Slq)) 

- G(bv-to-nat(Vil), 

F l(bv-to-nat(vI I), .., bv-to-nat(VIp_ I'), rip', SI I, .., SIq), 

Fivo(bv-t~ -, bv-to-nat(VIp_ I'), Vip', SIl,.. , SIq), 
by-to-nat (VIp)) 

and theorems Th 1 give equalities of the form : 

bv-t~ -, VIp_ I, Vip, SII, .., SIq)) 

= SPECvoi(bv-t~ -, bv-to-nat(VIp_l), rip, SI1, _, SIq) 

w h e r e  Vip plays the role of bit (VII)) . 
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By re~acing vI  2 by vI 2 ' ,  . . . .  V I p _  1 by VIp_l ' ,  Vip by v i p ' ,  in these equalities, 
w e  get equalities such as : 

bv-to-nat(REC-Fvoi(VIl, -, VIp_l', vip', SIl, _, SIq)) 

= SPECvoi(bv-to-nat(VI1), -,bv-to-nat(VIp_l'),vip',SI1, _,SIq) 

w~ch is preeisdy of the form of 

Fi(bv-to-nat(VIl), -,bv-to-nat(VIp_l'),vip', SI 1, -, SIq) 

It ~ l o w s  to r e w f i ~  E i n ~  the following expression : 

bv-to-nat(Fpar(Vll, REC-FvoI(VII, VI2' , --, rip', SIl, .., Slq), 

..., REC-Fvoivo(VI1, VI2' , .., rip', SI 1, -, SIq), VIp, 

sl I, _, Slq)) 

= G(bv-to-nat(VIl) , 
bv-to-nat(REC-Fvol(VI1, _, VIp_l', rip,, SI 1, -, SIq))), 

0., �9 

bv-to-nat(REC-FvOivo(VI1, _, VIp_l' , rip', SI1, --, SIq))), 

bv-to-nat(VIp)) 

w~ch is finally generalized into : 

bv-to-nat(Fpar(Vll, Xl, .., Xivo, VIp, SI I, -, SIq)) 

= G (bv-to-nat(VIl), bv-to-nat(Xl), -, bv-to-nat(Xivo), 

bv-to-nat(VIp)) 

Reset  := this expression ; 

E l s e  Resul t  := E; 

E n d I s  

E x a m p l e  : As far as the tipple-carry adder is concerned, the flgofithm stops at the end 
of the While loop. Starting from : 
(prove-lemma proof-of-RCA-z (rewrite) 

(implies (and (bitvp A) (bitvp B) (equal (size A) (size B))) 
(equal (by-to-nat (RCA-z A B f)) 

(plus (bv-to-nat A) (by-to-nat B))))) 

with 
(defn by-to-nat (x) 

(if (bitvp x) 
(if (equal x (btm) 

0 
(plus (if (bit x) i 0) (times 2 (bv-to-nat (vec x))))) 

0)) 

the gener~izafon process is : 

Assuming that we are not in the basis case, and unfolding the definition of RcA-z gives : 

(equal (by-to-nat 
(bitv (xor f (xor (bit A) (bit B))) 

(RCA-Z (vec A) (vec B) 
(or (and (bit A) (bit B)) 

(or (and (bit A) f) (and (bit B} f))))) 

(plus (by-to-nat A) (by-to-nat B))) 
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which simplif ies into : 

(equal (bv-to-nat 
(bitv (xor (bit A) (bit B)) 

(RCA-z (vec A) (vec B) (and (bit A) (bit B))))) 
(plus (by-to-nat A) (by-to-nat B))) 

and thecaseana lys~  ~ : 

t .  I f  ( b i t  a ~ = ~ue  
(equal (by-to-nat 

(bitv (not (bit b)) (RCA-z (vec A) (vec B) (bit B)))) 
(plus (add1 (times 2 (by-to-nat (vec A)))) (by-to-nat B))) 

i.e. 
(equal (by-to-nat (bitv (not (bit b)) (RCA-z GA (vec B) (bit B)))) 

(plus (addl (times 2 (by-to-nat GA))) (bv-to-nat B))) 

1 . 1 . 1 f ~ b i t  b~ = true 
(equal (by-to-nat (bitv f (RCA-z GA (vec B) t))) 

(plus (addl (times 2 (by-to-nat GA))) 
(addl (times 2 (by-to-nat (wec B)))))) 

i.e. 
(equal (times 2 (by-to-nat (RCA-z GA (vec B) t))) 

(times 2 (addl (plus (by-to-nat GA)) 
(by-to-nat (u B))))) 

whwh ~ s impl i f iedandgeneral izedinto  
(equal (by-to-nat (RCA-z GA GB t)) 

(addl (plus (by-to-nat GA)) (by-to-nat GB)))) 

1.2. I f  ~ b i t  b ~ = f a k e  
(equal (by-to-nat (bitv t (RCA-z GA (vec B) f)))) 

(plus (add1 (times 2 (bv-to-nat GA))) 
(times 2 (by-to-nat (vec B))))) 

i.e. 
(equal (add1 (times 2 (by-to-nat (RCA-z GA (vec B) f)))) 

(add1 (plus (times 2 (by-to-nat GA)) 
(times 2 (by-to-nat (vec B))))) 

which ~ s impl i f iedandgenera~zedinto  
(equal (by-to-nat (RCA-z GA GB f)) 

(plus (by-to-nat GA) (by-to-nat GB)) 

2 .  i f ( b i t  a ~  = / a b e  
(equal (by-to-nat (bitv (bit b) (RCA-z (vec A) (vec B) f))) 

(plus (times 2 (by-to-nat (vec A))) (by-to-nat B))) 
i.e. 
(equal (by-to-nat (bitw (bit b) (RCA-z GA (vec B) f))) 

(plus (times 2 (by-to-nat GA)) (by-to-.at B))) 

Similar~,  we get in that case : 

2.1. I f  l b i t  b~ = true 
(equal (by-to-nat (RCA-z GA GB f)) 

(plus (by-to-nat GA) (by-to-nat GB)) 

2.2. I f  t b i t  b ~ = f a k e  
(equal (by-to-nat (RCA-z GA GB f)) 

(plus (by-to-nat GA) (by-to-nat GB))) 
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Then, from sub-cases 1.2, 2.1 and 2.2, we have : 
(equal (by-to-nat (RCA-z GA GB f)) 

(plus (by-to-nat GA) (by-to-nat GB))) 

and from sub-case 1.1, we have : 
(equal (by-to-nat (RCA-z GA GB t)) 

(addl (plus (by-to-nat GA} (by-to-nat GB)))) 

Thus, we deduce the comple~ generalized theorem : 

(prove-lemma proof-of-RCA-z-gen (rewrite) 
(implies (and (bitvp GA) (bitvp GB) (boolp c) 

(equal (size GA) (size GB))) 
(equal (by-to-nat (RCA-z GA GB c)) 

(if c (addl (plus (bv-to:nat GA) (by-to-nat GB))) 
(plus (bv-to-nat GA) (bv-to-nat GB)))))) 

V. APPLICATION TO THE TPCD BENCHMARKS 

Among the devices to which this technique applies, some of them have been proposed 
as TPCD benchmarks, or parts of these benchmarks [14]. Apart from the N-bit ripple- 
carry adder, some sub-modules of the Min-Max circuit, as well as the parallel 
multiplier can be given as illustrative examples. 

V.1 Min-Max 

A specification of this benchmark has been proposed for the IFIP WG 10.2 
International Workshop on "Applied Formal Methods for Correct VLSI Design" [22]. 
We have designed an implementation (with arithmetic modules for unsigned bit-vectors 
only) and we have realized a hierarchical proof of this circuit [18]. 

The specification is that the Min-Max unit has 3 boolean control signals CLEAR, 
RESET and ENABLE. The unit produces an output sequence OUT at the same rate as IN" 

- if CLEAR is true, then OUT equals 0, independent of the other control signals, 

- if CLEAR is false and ENABLE is false, then OUT equals the last value of ZN before 
ENABLE became false, 
if CLEAR is false, ENABLE is true, and RESET is true, then OUT follows IN, 

- if RESET becomes false, then OUT holds, on each time point t, the mean value of 
the maximum mad minimum value of IN until that time point, since RESET 
beeame false. 

The most important component of our implementation is a sub-module "MeanValue" 
whieh is supposed to correspond to the last part of the specification : OUT holds, on 
each time point t, the mean value of  the maximum and minimum value of  IS  until 
that time point, since RES~.T became false. This device is depicted on Figure 2. 
PASTMAX and PASTMIN are two registers, and the other components are N-bit arithmetic 
modules : 

- GREAT_N and LESS_ N implement the ">" and "<" comparisons on N-bit vectors, 

MUX_N multiplexes two N-bit vectors according to a control bit, 

RCA is the ripple-carry adder, 
and RIGHTSHIFT shifts a N-bit vector to the fight, i.e. divides the corresponding 
imtural number by 2. 
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FIGURE 2 : MEANVALUE MODULE 

Because of the lack of place, we give neither all the pictures of the sub-modules nor the 
VHDL descriptions. We will only describe the Boyer-Moore verification of the most 
significant components. The Boyer-Moore code is automatically generated from the 
VHDL descriptions, with a limited user interaction (through a menu-directed interface). 

1. The rightshift component. 

Here, we give a more elaborate version of this device than in [18]. This drcuit inputs a 
N-bit vector A and a boolean signal c, and outpu~ a N-bit vector z which corresponds 
to A shifted to the fight, and the most significant bit of which takes the value of c. 
Thus, the Boyer-Moore function associated with z is : 

(defn rightshift-Z (A c) 
(if (bitvp A) 

(if (equal A (btm)) 
(btm) 
(if (equal (vec A) 

(bitv c (btm)) 

(btm))) 

(btm)) 

(bitv (bit (vec A)) (rightshift-Z (vec A) c)))) 

We have to verify that, when c equals f a l s e ,  the result corresponds to ( b v - t o - n a t  
A) divided by 2, i.e. : 
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(prove-lemma proof-of-rightshift-Z (rewrite) 
(implies (bitvp A) 

(equal (by-to-nat (rightshift-Z A f)) 
(quotient (bv-to-nat A) 2)))) 

Since c is not propagated through the shifter cells, generalization is not mandatory. 
However, this lemma can be generalized into the following one : 
(prove-lemma proof-of-rightshift-Z-gen (rewrite) 

(implies (and (bitvp A) (not (equal A (btm))) (boolp c)) 
(equal (by-to-nat (rightshift-Z A c)) 

(if c 
(plus (quotient (by-to-nat A) 2) 

(exp 2 (subl (size A)))) 
(quotient (by-to-nat A) 2))))) 

2. The modules GaSaT_N and LnSS_S. 

Each of these devices inputs two N-bit vectors A and B, and a carry-in X_IN, and 
compares the bit-vectors, starting from the least significant bit. The carry is propagated 
up to the last cell, where it finally represents the result of the comparison. Figure 3 
depicts the component GREAT_N, the other one is rather similar. We give the proof of 
this module GREAT_N, the verification of LESS_N is processed similarly. 

�9 �9 ~ 

FIGURE 3 : GREAT_N MODULE 

This circuit has a boolean output x, and the corresponding Buyer-Moore function is : 

(defn great_n-X (g B X_IN) 
(if (bitvp A) 

(if (equal A (btm)) 
X IN 
(great_n-X (vec A) (vec B) 

(or (and (bit A) (not (bit B) ) ) 
(and (eqv (bit A) (bit B)) X_IN)))) 

X_IN) ) 
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Then, we have to verify that this device implements correctly the associated 
comparison, provided that the input carry equals f a l s e .  Our system generates the 
following theorem : 

(prove-lemma proof-of-great_n-X (rewrite) 
(implies (and (bitvp A) (bitvp B) (equal (size A) (size B))) 

(equal (great_n-X A B f) 
(greaterp (by-to-nat A) (bv-to-nat B))))) 

Here, generalization is mandatory. The generalization algorithm generates 4 sub-cases 
and finally produces the following generalized lemma : 

(prove-lemma proof-of-great_n-X-gen (rewrite) 
(implies (and (bitvp A) (bitvp B) 

(equal (size A) (size B)) (boolp x)) 
(equal (great_n-X A B x) 

(if x 
(or (greaterp (bv-to-nat A) (bv-to-nat B)) 

(equal (by-to-nat A) (bv-to-nat B))) 
(greaterp (by-to-nat A) (bv-to-nat B)))))) 

V.2 Parallel multiplier 

This second benchmark will illustrate our methodology for two-dimensional 
architectures. This device is a combinational parallel multiplier. Many significant 
methodologies have been developed for the verification of parallel array multipliers. 
The most efficient ones are based on constraint logic programming [21], or have been 
inspired from the development of tautology-checking techniques based on BDD-like 
representations [8], [1]. However, R.Bryant has shown that the size of the BDD 
representing multiplication grows exponentially in the number of input bits [7]. Even 
though [8] and [1] try to overcome this problem, they do not take advantage of the fact 
that most of these circuits are completely (or at least partially) regular. 

The design that is proposed in [14] exactly corresponds to the circuit that is referred to 
as the "Braun's array multiplier" in [12]. The correspondence between the basic cell 
used in the TPCD design and the fulladder-based module used in [12] is given by 
Figure 4 below. 

C X Y C 
I I I 

Cout ] IS F 

Cin 

S 

Figure 4a. TPCD module Figure 4b. FullAdder-based module 

FIGURE 4 : CORRESPONDENCE BETWEEN BASIC MODULES 

A 4-bit version of the Braun multiplier is depicted by Figure 5. A generic N-bit VHDL 
description and a detailed Nqthm proof can be found in [20]. Here we propose an 
outline of this verification. This device is made of a succession of similar rows, and 
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the last row is a ripple-carry adder. Its hierarchical proof consists in validating the basic 
row, the tipple-carry adder (proof already presented), and then the whole multiplier. 

a 3  a 2  al a O  

Z7  Z 6  Z 5  Z 5  Z 3  z ~  ~ 

FIGURE 5 : 4.BIT BRAUN MULTIPLIER 

Two functions are associated with the two vectorial outputs of the basic row. The case 
where (vec A) = (btm) must be processed separately (irregularity on the last cell) : 

(defn Row-x out (A X Y b) 
(if (bitvp A) 

(if (equal A (btm)) 
(btm) 
(if (equal (vec A) (btm)) 

(bitv (and (bit A) b) (btm)) 
(bitv (fulladd-fout (bit X) 

(Row-x out (vec A) 

(btm))) 

(defn Row-y out (A X Y b) 
(if (bitvD A) 

(if (equal A (btm)) 
(btm) 
(if (equal (vec A) (btm)) 

(btm) 
(bitv (fulladd-fcarry (bit X) 

(btm)) ) 

(bit Y) (and (bit A) b)) 
(vec X) (vec Y) b) )) 

(bit Y) (and (bit A) b)) 

(Row-y_out (vec A~ (vec X) (vec Y) b) ) ) ) 
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The following function Mult-Z corresponds to the vectorial output of the multiplier, 
where l e f t - s h i f t  is the function which specifies a left-shifter, i.e. a multiplication 
by two (in our system, its definition and associated properties are included in a library 
of pre-proven and re-usable basic components) : 

(defn Mult-Z (A X Y B) 
(if (bitvp B) 

(if (equal B (btm)) 
(RCA-z X (left-shift Y) f) 
(bitv (bit X) 

(Mult-Z A 
(Row-x out A (vec X) Y (bit B)) 
(Row-y_out A (vec X) Y (bit B)) 
(vec B) ) ) ) 

X)) 

The first verification step corresponds to the following theorems size-of-Row-x_out 
and size-of-Row-y_out : 

(prove-lemma size-of-Row-x_out (rewrite) 
(equal (size (Row-x_out A X Y b)) (size A))))) 

(prove-lemma size-of-Row-y_out (rewrite) 
(equal (size (Row-y_out A X Y b)) (subl (size A)))) 

Then, we verify the functional specification of the basic row which depends on 
the initial value of b. It is given by the table below, where X' and Y' represent the bit- 
vectors output by the row �9 

value of b by-to-nat  (X') + 2 by-to-nat  (Y') 

f bv-to-nat (x) + bv-to-nat (y) 

t by-to-nat (x) + by-to-nat (y) + by-to-nat (a) 

The Boyer-Moore theorem which ~anslates this specification is of the form of Thl 
where we consider the appropriate com~nation of the row outpu~ : 

(prove-lemma proof-of-Row-x_out-y_out (rewrite) 
(implies (and (bitvp X) (bitvp Y) (bitvp A) (boolp b) 

(equal (size Y) (size X)) 
(equal (size X) (subl (size A)))) 

(equal (plus (by-to-nat (Row-x_out A X Y b)) 
(times 2 (bv-to-nat (Row-y_out A X Y b)))) 

(plus (plus (bv-to-nat X) (by-to-nat Y)) 
(if b (by-to-nat A) 0))))) 

After this proof, we should ~y  to verify the correctness of the multiplier, i.e. 
thelemma proof-of-Mult-zbelow: 

(prove-lemma proof-of-Mult-z (rewrite) 
(implies (and (bitvp A) (bitvp B) 

(equal (size B) (size A))) 
(equal (bv-to-nat (Mult-Z A 

(initan d A (bit B)) 

(all-zeros (subl (size A))) 
(vee B))) 

(times (by-to-nat A) (by-to-nat B))))) 
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where the functions i n i t a n  d and a l l - z e r o s  are used to initialize the vectorial inputs 
x and Y : the initial value of  x is the result of  "and-ing" each bit of  A with the first bit 
o f  8, and the initial value of  Y is a vector each bit of  which is equal to f a l s e .  

The lemma proof-of-Mult-Zis generalized intothetheoremproof-of-Mult-Z-gen: 

(prove-lemma proof-of-Mult-Z-gen (rewrite) 
(implies (and (bitvp A) (bitvp B) (bitvp X) (bitvp Y) 

(equal (size Y) (subl (size A))) 
(equal (size X) (size A)) (lessp (size B) (size A))) 

(equal (bv-to-nat (Mult-Z A X Y B)) 
(plus (times 2 (times (bv-to-nat A) (bv-to-nat B))) 

(plus (times 2 (bv-to-nat Y)) 
(bv-to-nat X)))))) 

The f i~t  phase of  the generalization algorithm generals  8 sub-cases, from which the 
following equalities are deduced : 

(equal (bv-to-nat (Mult-Z A 
(Row-x out A (all-zeros (subl (size A))) 

(all-zeros (subl (size A))) c) 
(Row-y out A (all-zeros (subl (size A))) 

(all-zeros (subl (size A) ) c) 

B)) 
(plus (times 2 (times (bv-to-nat A) (by-to-nat B))) 

(if c (bv-to-nat A) 0))) 
~d 
(equal (bv-to-nat (Mult-Z A 

(Row-x_out A (vec A) 
(all-zeros (subl (size A) ) c) 

(Row-y_out A (vec A) 
(all-zeros (subl (size A) ) c) 

B)) 
(plus (plus (times 2 (times (bv-to-nat A) (by-to-nat B) ) 

(bv-to-nat (vec A))) 
(if c (bv-to-nat A) 0))) 

With regard to the first one, an ad hoc instanfiafion of theorem proof-of-Row-x_out- 

y_out ~ves: 
(equal (plus (by-to-nat (Row-x out A (all-zeros (subl (size A))) 

(all-zeros (subl (size A))) c)) 

(times 2 (bv-to-nat 
(Row-y_out A (all-zeros (subl (size A))) 

(all-zeros (subl (size A))) 
e)))) 

(plus (plus (by-to-nat (all-zeros (subl (size A)))) 
(bvito-nat (all-zeros (subl (size A))))) 

(if c (bv-to-nat A) 0))) 

i.e. 
(equal (plus (by-to-nat (Row-x_out A (all-zeros (subl (size A))) 

(all-zeros (subl (size A))) c)) 

(times 2 (by-to-nat 
(Row-y_out A (all-zeros (subl (size A))) 

(all-zeros (subl (size A))) 

c)))) 
(if c (bv-to-nat A) 0)) 
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Thus, replacing ( i f  c (bv-to-nat A) O) by the equivalent expression in the first 
equality above produces : 

(equal (by-to-nat (Mult-Z A 
(Row-x_out A (all-zeros (subl (size A))) 

(all-zeros (subl (size A))) c) 
(Row-y_out A (all-zeros (subl (size A))) 

(all-zeros (subl (size A))) c) 
B)) 

(plus (times 2 (times (by-to-nat A) (bv-to-nat B))) 
(plus (bv-to-nat (Row-x_out A (all-zeros (subl (size A)) 

(all-zeros (subl (size A))) c) 
(times 2 

(bv-to-nat (Row-y_out A 
(all-zeros (subl (size A)) 
(all-zeros (subl (size A)) 
c)))) 

and generalizing the terms ( Row-x_out . . .  ) and ( Row-y_out . . . )  finally gives : 

(equal (bv-to-nat (Mult-z A X Y B)) 
(plus (times 2 (times (by-to-nat A) (by-to-nat B) )) 

(plus (bv-to-nat X) (times 2 (bv-to-nat Y))))) 

Similarly, for the second one, an ad hoc instantiation of theorem proof-of-Row- 
x_out-y_out gives : 

(equal (plus (bv-to-nat (Row-x_out A (vec A) 
(all-zeros (subl (size A))) c)) 

(times 2 (bv-to-nat (Row-y_out A (vec A) 

(all-zeros (subl (size A))) 
c)))) 

(plus (plus (bv-to-nat (vec A)) 
(bv-to-nat (all-zeros (subl (size A))))) 

(if c (bv-to-nat A) 0))) 

which finally produces, after generalization : 

(equal (bv-to-nat (Mult-Z A X Y B)) 
(plus (times 2 (times (by-to-nat A) (by-to-nat B))) 

(plus (bv-to-nat X) (times 2 (bv-to-nat Y))))) 

Both equalities produce the same expression which becomes, with the appropriate 
hypotheses, the lemma proof-of-Mult-Z-gen. 

Now, let us compare the efficiency of our approach with results given in significant 
articles referenced at the beginning of section V.2. The following table gives the 
number of theorems to be proved and the total CPU times (on a SUN Spare2, with 32 
Mb of memory) for the complete Boyer-Moore proof of this Braun multiplier, as well 
as for the verification of a simpler multiplier architecture given as example in [8]. 

Simple N-bit multiplier N-bit BRAUN multiplier 
Number of theorems 3 5 

Total CPU time 14.6 seconds 99.2 seconds 
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In the table below, we recall some of the experimental results presented in the 
referem~.d papers : 

Paper 

[211 

[11 

[8] 

Multiplier size Proof time 

44-bit ,,,100s on a Sun 3/260 

32-bit output #31 in 533mn, and output #15 in 25h, 
on a IBM 6000/320 (with 256 Mb of memory) 

16-bit ,,,40mn on a Sun 3/60 (with 12 Mb of memory) 
(C6288, ISCAS'85 bench.) 

The comparison of these tables demonstrates that our technique allows the verification 
of N-bit architectures within satisfying CPU times. 

VI. CONCLUSION 

We have proposed an inductive proof methodology devoted to the formal verification of 
one-dimensional, as well as two-dimensional, replicated structures. This method has 
been mechanized in the Boyer-Moore logic. We have also described an associated 
generalization teclufique for transforming the properties to be verified, before the proof 
process. The automatic translator between VHDL and Boyer-Moore and the 
generalization algorithm are being implemented. The examples that illustrate this paper 
demonstrate the feasibility and the efficiency of the method for validating generic N-bit 
devices. 

Our proof techifique requires a particular design methodology; it is not applicable 
starting from a simple neflist of such a parallel circuit. The translation task between 
VHDL and Boyer-Moore is feasible if precise description rules have been respected. The 
illustrative examples show that the circuit descriptions must be hierarchically 
organized, and the regularity must be expressed by for  ... genera te  and fo r  ... loop 
statements. Future work will aim at defining a "Design For Verifiability" methodology 
for such parallel arrays. 

In the case where the circnit under consideration consists of all intercommction of 
various components, this hierarchical aspect can be taken into account within 
PREVAIL" :  several proof tools are integrated, and each component can be verified 
using the most appropriate system. The team of Flavio Wagner is developing a real 
framework-based enviromnent for supporting hierarchical proof, library malmgement, 

etc... [23]. 
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