
UML Framework for the Design of Real-Time

Robot Controllers

L. Carroll, B. Tondu, C. Baron, and J.C. Geffroy

LESIA - INSA, Complexe Scientifique de Rangueil
31077 Toulouse Cedex 4, France
Luis.Carroll@insa-tlse.fr

Abstract. New types of robotic applications, where tasks are accom-
plished in cooperation with humans and under unstructured environ-
ments, have led researchers to consider dependability requirements as
fundamental design criteria. Particularly, robot controllers must include
additional features allowing to cope with system failures in order to im-
prove reliability and safety. In this article, we suggest the use of the
UML within a development method including dependability means, for
the design of real-time robot controllers.

1 Introduction

Robot controllers integrate the set of high level processes (robot programming
languages and task elementary motion planning) and low-level processes (tra-
jectory generation and joint control). Specific properties coming from electronic
and mechanical components and specific properties from the application envi-
ronment lead industry to develop dedicated controllers without generic consider-
ations (flexibility according to upgrade evolutions or environment perturbations,
etc.). In addition, the growing complexity of robot functionalities (integration of
external data, management of redundant joints, position and force control, etc.)
implies the mastering of the design of evolutionary systems. Moreover, in new
types of applications, robots have to cooperate with human operators and to
share an unstructured workspace. Therefore, safety performances are required.

2 Robotic Systems Requirements

We consider a robotic system as composed of a robot and its controller, and the
service it delivers as the completion of a task. The controller provides the ma-
nipulator with the intelligence to perform tasks as described by its user. These
tasks generally consist of a set of actions intended to position the robot’s end-
effector for the manipulation of objects. A failure occurs when the robot deviates
from the desired trajectory. This failure can be the result of changes in the robot
kinematic parameters or problems in the system software or hardware. Failures
resulting from changes in robot parameters can be avoided by implementing

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 511–514, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

512 L. Carroll et al.

highly robust control laws. Failures due to hardware or software call for a par-
ticular analysis on the critical components of the system. Recent research has
been done on different aspects of dependability in the field of robotics [1], [2].

The basic robotic systems requirements deal with the final static and dynamic
performances and with dependability criteria: availability, reliability, maintain-
ability and safety. Particularly, robot safety is concerned with preventing the
occurrence of damage to the robot itself and preventing the robot from dam-
aging its environment, e.g., human operators [3]. Rules and guidelines of safety
standards and a selective use of engineering technologies may be used in order
to guarantee a safe robot behavior according to its environment. Besides, we
identify two other groups of criteria associated with the robustness of the soft-
ware architecture (reusability, modifiability and traceability) and the quality of
the development process (verifiability, understandability, development ease and
expression capability).

3 Means for Dependability

A fault can cause the system to get into an error state. This error state will lead
the system into an undesirable behavior considered as a failure. Faults can be
introduced during the development of the system or they can occur during the
useful lifetime. In both cases, we must identify the possible techniques to cope
with them, and the system components potentially involved in its origins.

Concerning development faults, fault avoidance and fault removal methods
must be used during the specification, design and implementation of the con-
troller. These techniques reduce the faults introduced during the system devel-
opment by humans and the tools they use. Concerning faults occurring during
the useful lifetime, we must implement a real-time controller able to cope with
system failures. This controller acquires information data of the current system
state from the robot sensors or other sensors located in its workspace and from
the controller itself. The different software modules inside the controller make
the robot react in the desired way. It is then suitable to include on-line testing
for fault detection, aimed at detecting faults not only from sensors or actuators,
but also from the controller itself.

In order to develop a dependable robot controller, we consider that the use
of a real-time system development method must be associated to a depend-
able methodology including fault prevention, fault removal and fault tolerance
processes as proposed by [4]. This methodology deals with the avoidance and re-
moval of faults during the development phase, and also enables the introduction
of fault tolerant routines inside the normal life cycle of the controller.

4 A Real-Time Robot Controller

We have chosen the UML [5] for the modeling of a real-time robot controller.
The comparative study we have presented in [6] highlights the qualities of the
UML for the design of the controller. Besides its description and representation

UML Framework for the Design of Real-Time Robot Controllers 513

Program task

Robot Controller

Perform task

Scale controller

Robot

Operator

Learn point

<< extends >>

<< interface >>
Sensor

<< interface >>
Actuator

Plan task

Generate movementControl tool

Control
movement

Detect
actuators faults

Detect
sensors faults

Manage
motion

<< uses >>

<< uses >>
<< uses >>

<< extends >>

<< uses >>
<< uses >>

<< uses >>

Fig. 1. Robot controller Use Cases Diagram.

capabilities, it offers large possibilities for the improvement of dependability.
Particularly, Use Case Diagrams are well dedicated to the capture of require-
ments [7]. They drive the designer during the development process and assist
the functional testing of the software. Figure 1 shows the Use Cases of the robot
controller considered (each one represented by an ellipse). Use Cases may stand
on their own, they may use capabilities specified in other Use Cases and they
may be extended by other Use Cases. These relations (”uses” and ”extends”)
are represented by arrows. Actors (operator and robot) are people or things that
interact with the system (robot controller). They may communicate with Use
Cases by the way of interfaces (robot sensor and actuators).

A scenario, generally represented by a Sequence Diagram where objects inter-
act for the accomplishment of the requirement, expresses each Use Case. Figure
2 shows the interaction between different objects performing the ”Control move-
ment” Use Case. This Use Case is extended by the ”Detect sensor faults” Use
Case as represented in figure 1. This scenario is particularly interesting because
it shows on-line detection of sensor faults within the sampling period of the con-
trol loop. The use of functionally redundant sensors allows the Fault detector
objet to verify data and communicate faults to the Task Planner object.

These UML visual elements are well adapted to capture dependability re-
quirements. For example, Sequence Diagrams facilitate functional test and help
to represent temporal constraints and behavior of objects. This feature is useful
during the implementation stage in RTOS.

5 Conclusions and Future Work

The evolution of robot systems leads to new types of applications where hu-
man beings can actively interact with robots. Dependability must be considered
as an important design criterion, providing people with safety inside the robot
workspace. The choice of a development process, from the initial specification to

514 L. Carroll et al.

: Position
sensor

: Velocity
sensor

: Fault
detector

: Task
planner

: Actuator: Joint
Controller

control_
joint ()

control_
joint ()

read_
position ()

read_
velocity ()

verify_data ()
sampling

time

[fault]
update ()

calculate_
command ()

get_
command ()

time

extension

Fig. 2. Sequence diagram for the control of joints including sensors fault detec-
tion.

the final robot controller implementation, is important in relation to the func-
tionality and dependability of the whole system. Fault avoidance, fault removal
and fault tolerance techniques complement this process during all the system’s
life cycle.

We have developed a robot controller based on a VxWorks RTOS using the
proposed method for the control of a 2 DOF SCARA-type robot. The use of
the UML resulted to be appropriated for the controller development and main-
tainability. It is important to mention that adaptive and perfective maintenance
becomes easier for the removal of specification faults and improvement and test
of different detection and tolerance routines. This allows the implementation
of the different techniques proposed by other authors in the field of fault tol-
erant robotic systems. Anyhow, it must be completed with formal methods or
simulation tools aimed at the verification and validation of the system.

References

[1] Visinsky M.L., Cavallaro J.R., Walker I.D.: Robotic Fault Detection and Fault
Tolerance: a Survey, Int. J. Reliability Eng. and System Safety, Vol. 46 (1994)
139-158

[2] Tso K.S., Hecht M., Marzwell N.: Fault-Tolerant Robotic System for Critical Ap-
plications, IEEE Int. Conf. Robotics and Automation, Atlanta, GA, USA (1993)
691-696

[3] Dhillon B.S.: Robot Reliability and Safety, Springer-Verlag (1991)
[4] Laprie J.C.: Dependability of Computer Systems: Concepts, limits, improvements,

IEEE Int. Workshop CAD, Test and Evaluation for Dependability, Beijing, China
(1996) 23-33

[5] Booch G., Jacobson I., Rumbaugh J.: The Unified Modeling Language for Object-
Oriented Development, Version 1.0, Rational Software Corporation (1997)

[6] Carroll L., Tondu B., Baron C., Geffroy J.C.: Comparison of Two Significant De-
velopment Methods applied to the Design of Real-time Robot Controllers, IEEE
Int. Conf. Systems, Man and Cybernetics, LaJolla, USA (1998) 3394-3399

[7] Jacobson, I.: Object-Oriented Software Engineering: an use case driven approach,
Addison-Wesley, New York (1992)

	Introduction
	Robotic Systems Requirements
	Means for Dependability
	A Real-Time Robot Controller
	Conclusions and Future Work

