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Abstract. Motion planning is becoming an important topic in many ap-
plication areas, ranging from robotics to virtual environments and games.
In this paper I review some recent results in motion planning, concen-
trating on the probabilistic roadmap approach that has proven to be very
successful for many motion planning problems. After a brief description
of the approach I indicate how the technique can be applied to various
motion planning problems. Next I give a number of global techniques
for improving the approach, and finally I describe some recent results on
improving the quality of the resulting motions.

1 Introduction

Automated motion planning is rapidly gaining importance in various fields. Orig-
inally the problem was mainly studies in robotics. But in the past few years many
new applications arise in fields such as animation, computer games, virtual envi-
ronments, and maintenance planning and training in industrial CAD systems.

In its simplest form the motion planning problem can be formulated as fol-
lows: Given a moving object at a particular start position in an environment
with a (large) number of obstacles and a required goal position, compute a colli-
sion free path for the object to the goal. Such a path should preferably be short,
”nice”, and feasible for the object.

The motion planning problem is normally formulated in the configuration
space of the moving object. This is the space of all possible configurations of
the object. For example, for a translating and rotating object in the plane the
configuration space is a 3-dimensional space where the dimensions correspond
to the x and y coordinate of the object and the rotation angle θ. For a robot
arm consisting of n joints, the configuration space is n-dimensional space where
each dimension corresponds to a joint position. A motion for the robot can be
describes as a curve in the configuration space.

Over the years many different techniques for motion planning have been
devised. See the book of Latombe[16] for an extensive overview of the situation
up to 1991 and e.g. the proceedings of the yearly IEEE International Conference
on Robotics and Automation for many more recent results.

Motion planning approaches can globally be subdivided in three classes: cell-
decomposition methods, roadmap methods, and potential field (or local) meth-
ods. Cell decomposition methods try to divide the free part of the configuration
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space (that is, those configurations that do not cause collisions) into a number
of cells. Motion is than planned through these cells. Unfortunately, when the
dimension of the configuration space gets higher or when the complexity of the
scene is large, the number of cells required becomes too large to be practical.
Roadmap methods try to construct a network of roads through the configuration
space along which the object can move without collision. This roadmap can be
seen as a graph, and the problem is reduced to graph searching. Unfortunately,
computing an effective roadmap is very difficult. Potential field methods and
other local methods steer the object by determining a direction of motion based
on local properties of the scene around the moving object. The object tries to
move in the direction of the goal while being pushed away by nearby obstacles.
Because only local properties are used the object might move in the wrong di-
rection, which can lead to dead-lock situations. Also there are some approaches
based on neural networks (e.g. [26]) and genetic algorithms (e.g. [3]).

The probabilistic roadmap planner (PRM), also called the probabilistic path
planner (PPP), is a relatively new approach to motion planning, developed inde-
pendently at different sites [2, 11, 13, 18, 22]. It is a roadmap technique but rather
than constructing the roadmap in a deterministic way, a probabilistic technique
is used. A big advantage of PRM is that its complexity tends to be dependent
on the difficulty of the path, and much less on the global complexity of the scene
or the dimension of the configuration space.

In the past few years the method has been successfully applied in many
motion planning problems dealing with robot arms[14], car-like robots[23, 25],
multiple robots[24], manipulation tasks[21] and even flexible objects[9, 15]. In all
these cases the method is very efficient but, due to the probabilistic nature, it is
difficult to analyze (see e.g. [12]).

In this paper I will give an overview of the probabilistic roadmap approach
and indicate some of the recent achievements. After a brief description of the
basic technique in Sect. 2 I will show how the approach can be used for solving
various types of motion planning problems. Then, in Sect. 4, I will describe a
number of interesting improvements that have been suggested. Finally, in Sect.
5, I will discuss a number of issues related to the quality of the resulting motions.

2 Probabilistic Roadmap Planner

The motion planning problem is normally formulated in terms of the configura-
tion space C, the space of all possible configurations of the robot. Each degree
of freedom of the robot corresponds to a dimension of the configuration space.
Each obstacle in the workspace, in which the robot moves, transforms into an
obstacle in the configuration space. Together they form the forbidden part Cforb

of the configuration space. A path of the robot corresponds to a curve in the
configuration space connecting the start and the goal configuration. A path is
collision-free if the corresponding curve does not intersect Cforb, that is, it lies
completely in the free part of the configuration space, denoted with Cfree.
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Fig. 1. A typical graph produced by PRM.

The probabilistic roadmap planner samples the configuration space for free
configurations and tries to connect these configurations into a roadmap of feasible
motions. There are a number of versions of PRM, but they all use the same
underlying concepts. Here we base ourselves on the description in [22].

The global idea of PRM is to pick a collection of (random) configurations
in the free space Cfree. These free configurations form the nodes of a graph
G = (V,E). A number of pairs of nodes are chosen and a simple local motion
planner is used to try to connect these configurations by a path. When the local
planner succeeds an edge is added to the graph. The local planner must be very
fast, but is allowed to fail on difficult instances. (It must also be deterministic.)
A typical choice is to use a simple interpolation between the two configurations,
and then check whether the path is collision-free. See Fig. 1 for an example
of a graph created with PRM in a simple 2-dimensional scene. (Because the
configuration space is 3-dimensional, the graph should actually be drawn in this
3-dimensional space. In the figure and in all other figures in this paper we project
the graph back into the workspace.)

Once the graph reflects the connectivity of Cfree it can be used to answer
motion planning queries. To find a motion between a start configuration and a
goal configuration, both are added to the graph using the local planner. (Some
authors use more complicated techniques to connect the start and goal to the
graph, e.g. using bouncing motion.) Then a path in the graph is found which
corresponds to a motion for the robot. In a post-processing step this path is
then smoothed to improve its quality. The pseudo code for the algorithm for
constructing the graph is shown in Algorithm ConstructRoadmap.

There are many details to fill in in this global scheme: which local planner to
use, how to select promising pairs of nodes to connect, what distance measure to
use, how to improve the resulting paths, etc. These typically depend on the type
of motion planning problem we want to solve. See Sect. 3 for some information
about this.

If we already know the start and goal configuration, we can first add them
to the graph and continue the loop until a path between start and goal exists.
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Algorithm 1 ConstructRoadmap

Let: V ← ∅; E ← ∅;
1: loop
2: c ← a (random) configuration in Cfree

3: V ← V ∪ {c}
4: Nc ← a set of nodes chosen from V
5: for all c′ ∈ Nc, in order of increasing distance from c do
6: if c′ and c are not connected in G then
7: if the local planner finds a path between c′ and c then
8: add the edge c′c to E

Note that the test in line 6 guarantees that we never connect two nodes that
are already connected in the graph. Although such connections are indeed not
necessary to solve the problem, they can still be useful for creating shorter paths.
See Sect. 5 for details.

The two time-consuming steps in this algorithm are line 2 where a free sam-
ple is generated, and line 7 where we test whether the local method can find a
path between the new sample and a configuration in the graph. The geometric
operations required for these steps dominate the work. So to improve the effi-
ciency of PRM we need to implement these steps very efficiently and we need
to avoid calls to them as much as possible. That is, we need to place samples at
“useful” places and need to compute only “useful” edges. The problem is that
it is not clear how to determine whether a node or edge is “useful”. Many of the
improvements described in Sect. 4 work this way.

Because of the probabilistic nature of the algorithm it is difficult to analyze
it. The algorithm is not complete. It can never report that for certain no solution
exists. But fortunately for most applications the algorithm is probabilistically
complete, that is, when the running time goes to infinity, the chance that a
solution is found goes to 1 (assuming a solution exists). Little is known about
the speed of convergence[12]. In practice though solutions tend to be found fast
in most cases.

3 Applications

The simplest application of PRM is an object that moves freely (translating and
rotating) through a 2- or 3-dimensional workspace. In this case the configura-
tion spaces is either 3-dimensional or 6-dimensional. As a local planner we can
use a straight-line interpolation between the two configuration. (An interesting
question here is how to represent the rotational degrees of freedom and how to
interpolate between them but we won’t go into detail here.) As distance between
two configurations we must use a weighted sum of the translational distance and
the amount of rotation. Typically, the rotation becomes more important when
the moving object is large. With these details filled in the PRM approach can be
applied without much difficulty. (See though the remarks in the next sections.)
For other types of moving objects there is some more work to be done.
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Car-like Robots A car-like robot has special so-called non-holonomic constraints
than restrict its motion. For example, a car cannot move sideways. Still the
configuration space is 3-dimensional because, given enough space, the car can get
in each position in any orientation. Using a simple straight-line interpolation for
the local planner no longer leads to valid paths for the robot. So we need to use a
different local planner. One choice, used e.g. in [22, 23], is to let the local planner
compute paths consisting of a circle arc of minimal turning radius, followed by
a straight-line motion, followed by another circle arc. It was shown in [23] that
such a local planner is powerful enough to solve the problem. The approach is
probabilistically complete. Extensions have also been proposed towards other
types of robots with non-holonomic constraints, like trucks with trailers[25].

Robot Arms A robot arm has a number of degrees of freedom depending on
the number of joints. Typical robot arms have up to 6 joints, resulting in a 6-
dimensional configuration space. Most of these are rotational degrees of freedom,
often with limits on the angle. The PRM approach can be applied rather easily
in this situation. As local method we can interpolate between the configurations
(although there exist better methods, see [14]). When computing distances it is
best to let the major axis of the robot play a larger role than the minor axis.
Again the approach is probabilistically complete.

Multiple Robots When there are multiple moving robots or objects in the same
environment we need to coordinate their motions. There are two basic approaches
for this (see e.g. the book of Latombe[16]). When applying centralized planning
the robots together are considered as one robotic system with many degrees of
freedom. For example in the situation in Fig. 2 there are 6 robot arms with a total
of 36 degrees of freedom. When applying decoupled planning we first compute
the individual motions of the robots and then try to coordinate these over time.
This is faster but can lead to deadlock. In [24] a solution based on PRM is
proposed that lies between these two. Rather that coordinate the paths, the
roadmaps themselves are coordinated, leading to a faster and probabilistically
complete planner.

In a recent paper Sánchez and Latombe[19] show that with a number of im-
provements the PRM approach can be successfully applied to solve complicated
motion planning with up to 6 robot arms, as shown in Fig. 2. When the number
of robots is much larger the problem though remains unsolved.

Other Applications The PRM approach has been successfully applied in many
other situations. Applications include motion planning for flexible objects[9, 15],
motion planning with closed kinematic loops[7, 6], like two mobile robot arms
that together hold an object, motion planning in the presence of dangerzones
that preferably should be avoided[20], and manipulation tasks[21]. In all these
cases one need to find the right representation of the degrees of freedom of the
problem, construct an appropriate local planner and fill in the parameters of the
PRM approach. It shows the versatility of the method.
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Fig. 2. An example where 6 robots must plan their motions together (taken from
Sánchez and Latombe[19]).

4 Improving the Approach

Although the PRM approach can solve many different types of motion planning
problems effectively there are a number of problematic issues. Here we discuss
some improvements that have been proposed.

Sampling Strategy The default sampling approach samples the free space in a
uniform way. This is fine when obstacle density is rather uniform over the scene
but in practice this assumption is not correct. Some areas tend to be wide open
while at other places there are narrow passages (in particular in configuration
space). To obtain enough random samples in such narrow passages one would
need way too many samples in total. So a number of authors have suggested
ways to obtain more samples in difficult areas.

One of the early papers[14] suggested to maintain information on how often
the local planner fails for certain nodes in the graph. When this number is large
for a particular node this suggest that this node is located in a difficult area. The
same is true when two nodes lie near to each other but no connection has been
found between them. One can increase the number of samples in such areas.

Another approach is to place addition samples near to edges and vertices
of obstacles[1, 23] or to allow for samples inside obstacles and pushing them to
the outside[27, 10]. Such methods though require more complicated geometric
operations on the obstacles.

An approach that avoids such geometric computations is the Gaussian sam-
pling technique[5]. The approach works as follows. Rather than one sample we
take two samples where the distance between the two samples is taken with re-
spect to a Gaussian distribution. When both samples are forbidden we obviously
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Fig. 3. A motion planning problem in a complex industrial environment with over 4000
obstacles. The left picture shows the nodes obtained with uniform sampling, and the
right picture the nodes obtained with Gaussian sampling.

remove them. When both lie in the free space we also remove them because there
is a high probability that they lie in an open area. When only one of the two
samples is free we add this sample to the graph. It can be shown (see [5]) that
this approach results in a sample distribution that corresponds to a Gaussian
blur of the obstacles (in configuration space). The closer you are to an obstacle,
the higher the change that a sample is placed there. See Fig. 3 for an example.

Roadmap Size As indicated above, computing paths using the local planner is the
most time-consuming step in the PRM algorithm. We would like to avoid such
computations as much as possible. One way to do this is to keep the roadmap as
small as possible. The visibility based PRM[17] only adds a node to the roadmap
if it either can be connected to two components of the graph or to no component
at all. The reason is that a node that can be connected to just one component
represents an area that can already be ”seen” by the roadmap. It can be shown
that the approach converges to a roadmap that covers the entire free space. The
number of nodes tends to remain very small, unless the free space has a very
complicated structure.

Another idea is not to test whether the paths are collision free unless they
are really needed[4]. Such a lazy approach only checks whether the nodes are
collision free and when nodes are close to each other they are connected with
an edge. Only when an actual motion planning query must be solved we test
whether the edges on the shortest path in the graph are collision-free. If not we
try other edges, until a path is found. The rational behind this is that for most
paths we only need to consider a small part of the graph before a solution is
found. In [19] a similar idea is used. Here it is also argued and demonstrated
that the chance that an edge is collision-free is large when the endpoints (the
nodes) are collision-free and the length of the edge is short.
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Fig. 4. The left picture shows the graph in the default algorithm. Here a long detour
is made. In the right picture cycles are added and the length of the path is reduced
considerably.

5 Path Quality

One of the problems of the PRM approach is that the resulting motions are
ugly. This is due to the random nature of the samples. A resulting path can
make long detours and contain many redundant motions. Also the path normally
consists of straight-line motions (in the configuration space) leading to first-order
discontinuities at the nodes of the graph. In most applications such ugly paths
are unacceptable.

The standard method used to remedy these problems is to smooth the re-
sulting path in a post-processing phase. This smoothing technique consists of
taking random pairs (c1, c2) of configurations on the path (not necessarily nodes
of the graph) and trying to replace the path between c1 and c2 by the path
resulting from calling the local planner on (c1, c2), if this new path is collision
free. Unfortunately, smoothing only partially solves the problem. It does reduce
the length of the path in open areas but it often cannot correct long detours
around obstacles. Also it does not make the path first-order continuous and the
path can still include many redundant (rotational) motions, in particular in a
3-dimensional workspace.

In this section we will discuss some recent approaches to improving the path
quality. More details will be given in an upcoming paper[8].

Length A prime reason why paths computed with PRM are too long is that
a tree (or to be more precise, a forest) is used as roadmap. The advantage of
this is that it will save computation time, because less calls to the local planner
are required, while connectivity is maintained. So the obvious solution is to add
additional edges, leading to cycles in the roadmap. This is easier said than done
because we want to avoid calls to the local planner as much as possible (because
this is the most time consuming operation in the algorithm). So we only want
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to create a cycle when it is “useful”. We define useful as follows: Assume the
algorithm is trying to add configuration c to the graph. Let c′ be a node in the
neighbor set Nc. We try to add an edge between c and c′ when they are not yet
connected in the graph or when the current distance dG of the shortest path in
the graph is larger than k.d(c, c′) for some given constant parameter k. So we
only try to add the edge when it would improve the length of the shortest path
with a factor at least k. The parameter k will determine how dense the graph
will be. See Fig. 4 for an example.

There is one algorithmic problem left. To implement the approach we need to
be able to compute a shortest path in the graph whenever we try to add an edge.
This is rather expensive and would dominate the cost of the algorithm when the
graph gets large (it will be called a quadratic number of times). The solution is
based on the observation that we can stop searching the graph when shortest
paths in the graph become longer than k.d(c, c′). We can than immediately
decide to add the edge. This will prune the graph quite a bit. We can take this
one step further by also taking the distance between the current node in the
graph search and c′ into account. This leads to some sort of A* algorithm that
is a lot faster.

Smoothness Nodes in the graph introduce first-order discontinuities in the mo-
tion. We would like to avoid this. This can be achieved as follows. Let e and e′

be two consecutive edges in the final path. Let pm be the midpoint of e and p′m
be the midpoint of e′. We replace the part of the path between pm and p′m by
a circle arc. This arc will have its center on the bisecting line of e and e′, will
touch e and e′ and have either pm or p′m on its boundary. Doing this for each
consecutive pair of edges results in a smooth path. The only problem is that
the motion along the circle arc might collide with an obstacle. In this case we
make the circle smaller, pushing it more towards the node between the edges.
It is easy to verify that there always exists a circle arc between the edges that
does not introduce collisions. Hence, the method is complete. See Fig. 5 for an
example.

When the angle between two consecutive edges becomes small, the radius of
the circle becomes small as well. We often like to avoid this. We are currently
investigating how we can produce roadmaps that keep the angles as large as
possible.

Redundant Motions Allowing cycles in graphs and smoothing the path improves
the motion a lot. Still redundant motions can occur. For example, the object
can continuously spin around its center. Such motion does not really increase
the time it takes to execute the motion. Hence standard smoothing techniques
tend not to work. One could add a penalty factor in the length of the path but
this again does often not help.

There are a number of techniques that try to remedy this problem. One is
to add many nodes with the same orientation. (Or stated in a more generic
way, divide the degrees of freedom in major degrees of freedom and minor ones
and generate many configurations with the same values for the minor degrees of
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Fig. 5. An example of a part of a path with circular blends.

freedom.) A similar idea was used in a paper by Lamiraux and Kavraki on moving
flexible objects[15]. A second approach is to do the smoothing in a different way.
The standard smoothing technique replaces pieces of the path by calls to the
local planner, that is, by a straight line in the configuration space. In this way
all degrees of freedom are smoothed at the same moment. But some of them
might be necessary while others are not. For example, the translational degrees
of freedom might be necessary to get the object around an obstacle while the
rotational degrees of freedom are not necessary. By smoothing the degrees of
freedom one at a time we create better paths. Finally, we can try to find a
better path by resampling the configuration space in a tube around the original
path, similar to the technique in [25].
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