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Abstract. Among the branching-time temporal logics used for the spec-
ification and verification of systems, CTL+, FCTL and ECTL+ are the
most notable logics for which the precise computational complexity of
model checking is not known. We answer this longstanding open prob-
lem and show that model checking these (and some related) logics is
∆p

2-complete.

1 Introduction

Temporal Logic. Since [Pnu77], temporal logic is a widely used formalism for
reasoning about reactive systems. Temporal logic allows model checking, i.e.
the automatic verification that (a finite state model of) the system under
study satisfies (the temporal formulae formalizing) its expected behavioral
specifications. We refer to [Eme90,CGP99] for more motivations and background.

There exists a wide variety of different temporal logics, and it is still debated
what should be the temporal logic of choice. However, it is fair to say that
the three most popular temporal logics are PLTL, CTL and CTL∗. PLTL is the
linear-time logic built on U (“until”) and X (“next”) while CTL is the branching-
time logic built on these same modalities (hence the notations PLTL = L(U,X)
and CTL = B(U,X) in [Eme90]). CTL∗, introduced in [EH86], was designed to
be more expressive than both PLTL and CTL.

CTL and fairness properties. Several fragments of CTL∗ are defined and studied
in [EH85,EH86,ES89,Eme90] and other papers, where their expressive powers are
compared. Clearly, what CTL really lacks in practice is the ability to express
fairness properties, and this is what motivates the introduction in [EH86] of

ECTL 1, or B(U,X,
∞
F), an extension of CTL with the E

∞
F modality for stating

fairness conditions. ECTL sits between CTL and CTL∗ and, like CTL, it admits
a polynomial-time model checking algorithm (while model checking CTL∗ is
PSPACE-complete).
1 For “Extended CTL”. There are two standard ways of denoting the logics we con-

sider in this paper: [ES89] and [EH83] use the names ECTL, ECTL+, etc., while
[EH86] and [Eme90] use the notation B(. . . ). Here we use preferably the first series.
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One thing ECTL lacks is the ability to combine fairness properties, and this is
what motivated the introduction in [EH86] 2 of ECTL+, where several temporal
modalities can be combined in a boolean way (but not nested) under a path

quantifier. Hence ECTL+ allows stating E(
∞
FA ∧ ∞

FB), i.e. “there exists a path

where A and B occur infinitely often”, and A
(∞
FA ⇒ BUC

)
, i.e. “all paths

with infinitely many A satisfy BUC”. This makes ECTL+ expressive enough in
practical situations.

There exist other proposals aiming at extending CTL so that it can express
fairness properties. These are FCTL, GFCTL (both from [EL87]), and CTLF

(from [CES86]), all of them logics where the fairness constraints are stated more
or less outside of the temporal property itself (see section 2.4).

CTL and CTL+. The idea of allowing boolean combinations of temporal modal-
ities has also been applied to CTL (and other logics). In CTL+ one can state
A

(
GC ∧ XD ⇒ BUC

)
, i.e. “all paths with C everywhere and D in next state,

satisfy BUC”.
A surprising result is that CTL+ is not more expressive than CTL [EH85]

while ECTL+ is more expressive than ECTL [EH86] (see also [RS00]). How-
ever CTL+ can be much more succinct than CTL, a fact that was conjectured
since [EH85] but has only been proved recently [Wil99].

The complexity of model checking. That CTL+ can be exponentially more suc-
cinct than CTL suggests that model checking can be harder for CTL+ than
for CTL. Indeed, while model checking CTL (or ECTL) is P-complete, model
checking CTL+ (or ECTL+) is NP-hard and coNP-hard. This lower bound is
a consequence of well-known results (from [ON80,SC85]) on the complexity of
L(F). These same results entail that model checking CTL+ can be done in PNP

(that is, in ∆p
2, see section 3) as was observed in [CES86, Theo. 6.2]. Clearly, the

same lower and upper bounds apply to FCTL and GFCTL.
Beyond these observations, nothing more is known about the complexity of

model checking CTL+, FCTL and ECTL+, three notable branching-time log-
ics for which the computational complexity of model checking has not been
characterized precisely. Also note that [EL87, Coro. 4.8] incorrectly states that
model-checking FCTL is NP-complete 3.

Our contribution. In this paper, we prove that model checking CTL+, ECTL+

and FCTL (and some related logics) is ∆p
2-complete, thereby solving a long-

standing open problem.
The result is surprising since ∆p

2 is a class for which very few complete prob-
lems are known. Indeed, in the polynomial-time hierarchy, the classes Σp

k or Πp
k

are more populated than the ∆p
k. As far as we know, our result provides the first

2 The logic called CTF in [EC80] is essentially ECTL+.
3 It seems that [EL87] implicitly assumes Turing or Cook reductions, instead of the

usual many-one reductions. Turing reductions are too general for problems in NP
and [EL87] does not prove membership in NP.
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examples of ∆p
2-complete problems from the field of temporal model checking

and we believe it can be interesting outside of that field.

Plan of the paper. We first recall the necessary preliminary notions from tempo-
ral logic (section 2) and ∆p

2-completeness (section 3). Sections 4 and 5 contain
the main result, a reduction from SNSAT into model checking problems. Then
section 6 shows that model checking for ECTL+ is in ∆p

2. Finally, a conclusion
summarizes what has been proved.

2 Branching-Time Temporal Logic

2.1 Syntax

We write N for the set of natural numbers, and AP = {P1, P2, . . . } for a count-
able set of atomic propositions.

The formulae of ECTL+ are given by the following grammar:

ϕ,ψ ::= Eϕp | ¬ϕ | ϕ ∧ ψ | P1 | P2 | . . .
and ϕp, ψp ::= ϕUψ | Xϕ | ∞

F ϕ | ¬ϕp | ϕp ∧ ψp | P1 | P2 | . . .

where only state formulae (ranged over by ϕ,ψ, . . . ) are considered as bona fide
ECTL+ formulae, while path formulae (ranged over by ϕp, ψp, . . . ) only occur
as subformulae.

We use the standard abbreviations >, ⊥, ϕ∨ψ, ϕ ⇒ ψ, as well as Aϕp (for

¬E¬ϕp), Fϕ (for >Uϕ), Gϕ (for ¬F¬ϕ) and
∞
G ϕ (for ¬ ∞

F ¬ϕ).

Remark 2.1. Classical definitions of CTL+ and ECTL+ do not allow atomic
propositions P1, ... as path formulae. We use such path formulae for clarity but
will avoid them in the proof of our main hardness result. Hence all our results
also hold with the restricted definition.

2.2 Semantics

ECTL+ formulae are interpreted over states (also called nodes) in Kripke struc-
tures. Formally

Definition 2.2. A Kripke structure (a “KS”) is a tuple S = 〈QS , q0, RS , lS〉
where QS = {q, . . . } is a non-empty set of nodes, RS ⊆ QS × QS is a total
transition relation, and lS : QS → 2AP labels every node with the propositions it
satisfies.

We only consider finite KSs, i.e. KSs where QS and all lS(q) are finite. The
size of a finite KS, written |S|, is defined as |QS | + |RS |, i.e. the size of the
underlying directed graph.

Below, we drop the “S” subscript in our notations whenever no ambiguity
will arise. A computation (or a path) in a KS is an infinite sequence π of the
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form q0q1 . . . s.t. (qi, qi+1) ∈ R for all i ∈ N. For i ∈ N, π(i) denotes qi, the i-th
node of π. We write Π(q) for the set of all computations starting from q. Π(q)
is never empty since R is total.

Fig. 1 defines when a node q (a path π) in some KS S, satisfies an ECTL+

formula ϕ (resp. path formula ϕp), written q |=S ϕ (resp. π |=S ϕp), by induction
over the structure of the formulae. As usual, we write S |= ϕ when q0 |=S ϕ.

Fig. 1. Semantics of ECTL+

2.3 Fragments of ECTL+

Several branching-time logics can be seen as fragments of ECTL+:

– ECTL, denoted B(U,X,
∞
F) in [Eme90], is the fragment of ECTL+ where the

path quantifiers E or A are immediately over a temporal modality U, X or
∞
F

(no boolean combinator is allowed in between).
– CTL [CE81], or B(U,X), is the fragment of ECTL where

∞
F is not allowed.

– UB [BPM83], or B(X,F), is the fragment of CTL where U is only allowed in
the weaker form of F.

– BTL [Lam80], or B(F), is the fragment of UB where X is not allowed.

All these logics can be extended so that boolean combinations of path formu-
lae are allowed. [Eme90] denotes them by B(. . . ,∧,¬), so that ECTL+ really

is B(U,X,
∞
F ,∧,¬). We let CTL+, UB+, BTL+ denote the logics obtained by

extending CTL, UB and BTL in the corresponding way. It is well known [EH85,
EH86] that we have the following hierarchy:

where L < L′ means that L′ is strictly more expressive than L, and L = L′

means that L and L′ have the same expressive power.
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2.4 CTL with Fairness

ECTL+ is not the only logic where one can mix CTL formulae with fairness
constraints, but other proposals can all be seen as fragments of ECTL+:

– GFCTL [EL87] is CTL where every path quantifier is indexed with a fairness
constraint. One write EΦϕp to state that there exists a fair path satisfying ϕp.

The fairness constraint Φ can be any boolean combination of
∞
F ϕi’s where

the ϕi are state formulae. E.g. E
(
∞
F A ∧ ∞

GEXB)
CUD is a GFCTL formula.

– FCTL [EL87] is GFCTL where the fairness constraint Φ is restricted to

boolean combinations of
∞
F ±Ai for atomic propositions Ais, and where Φ is

the same for all occurrences of a path quantifier. Then it is more customary
to see a FCTL formula as a pair (ϕs, Φ) of a CTL path formula and a global
fairness constraint.

– CTLF [CES86] is FCTL where the fairness constraint Φ is further restricted

to a conjunctive
∧

i(
∞
F

∨
j ±Ai,j).

2.5 Complexity of Model Checking

The model checking problem for a temporal logic L is to decide, given a KS
S with distinguished node q0, and a (state) formula ϕ ∈ L, whether q0 |=S ϕ.
Model checking temporal logics has many practical applications [Eme90,McM93,
CGP99] and it is important to be able to classify the most common temporal
logics according to the computational complexity of their model checking prob-
lems.

Model checking for CTL and CTL∗ is known to be P-complete and PSPACE-
complete respectively. Model checking for ECTL and CTLF is P-complete too.
For logics like CTL+, FCTL, and ECTL+, the exact complexity is not known.
It has been observed [CES86, Theo. 6.2] that for CTL+ the problem is NP-hard
and coNP-hard and is in ∆p

2 (and thus believed to be easier than PSPACE-
complete problems). The same applies to FCTL and GFCTL despite the wrong
claim that model checking is NP-complete for FCTL [EL87, Coro. 4.8].

3 SNSAT and ∆p
2-Complete Problems

∆p
2 is the class PNP, i.e. the class of problems solvable by a deterministic polyno-

mial-time Turing machine querying an NP set oracle [Sto76]. This class is above
NP and coNP in the polynomial-time hierarchy.

The class of problems complete for ∆p
2 does not contain many natural exam-

ples [Pap84,Kre88,Wag87]. In fact, in the polynomial-time hierarchy, it is easier
to come up with problems complete for theΣp

k orΠp
k levels than for the∆p

k levels.

In this paper we introduce SNSAT (for sequentially nested satisfiability), a
logical problem with nested satisfiability questions, that is a convenient basis for
our reducibility proof.
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Definition 3.1. An instance I of SNSAT is given by a set X = {x1, . . . , xn}
of boolean variables together with a list L of equivalences

x1 :⇔ ∃Z1 F1(Z1),
x2 :⇔ ∃Z2 F2(x1, Z2),

...
xn :⇔ ∃Zn Fn(x1, . . . , xn−1, Zn),

where, for i = 1, . . . , n, Zi is a set {z1
i , . . . , z

pi

i } of boolean variables, and Fi is
a boolean formula with variables among Zi ∪ {x1, . . . , xi−1}.
Note that in I the sets X, Z1, . . . , and Zn are pairwise disjoint. We write
Z = {z1, . . . , zp} for Z1 ∪ · · · ∪ Zn, and Var = {u, . . . } for X ∪ Z.

The equivalences L in I define a unique valuation vI of the variables in X:

vI(xi) = > def⇔ Fi(vI(x1), . . . , vI(xi−1), Zi) is satisfiable. (1)

Observe that there exists a simple algorithm in ∆p
2 that computes vI one

value at a time. When vI is known over {x1, . . . , xi−1}, the value of vI(xi) is
computed by solving a boolean satisfiability problem, “is Fi satisfiable with the
given values of x1, . . . , xi−1?”, for which a SAT oracle is sufficient.

The computational problem called SNSAT is, given an instance I as above,
to decide whether vI(xn) = > (in which case we say I is a positive instance).

Theorem 3.2. SNSAT is ∆p
2-complete.

Proof. Membership in ∆p
2 has been explained above. ∆p

2-hardness of SNSAT
is shown incidentally in [Got95, proof of Theorem 3.4] where SNSAT is not
identified as an interesting subproblem. (Alternatively, there are simple direct
reductions from our SNSAT to the DSAT problem of [Pap84] and vice versa,
but explaining DSAT requires a lot of notations.) ut

The equivalences in I can be seen as a large satisfiability problem where we
have to find correct values for the boolean variables in Z, aiming at satisfying
the Fi’s as much as possible, while respecting the values of the xi’s across equiv-
alences. With this in mind, we say a valuation w of Var is:
safe: if, for all i = 1, . . . , n, w(xi) implies Fi(vI(x1), . . . , vI(xi−1), w(Zi)),
correct: if, for all i = 1, . . . , n, w(xi) = Fi(vI(x1), . . . , vI(xi−1), w(Zi)),
admissible: if w is correct and coincide with vI over X.
Thus a safe valuation only assigns positive values to some xi if this is consistent
with the values given to x1, . . . , xi−1 and the variables in Zi. A correct valuation
is safe and is also consistent for negative values assigned to some xi. Still, there
is no guarantee that the values of variables in Z are best possible. An arbitrary
valuation over Z extends into a correct valuation in a unique way, and checking
that a given w is correct can be done in polynomial-time.

An admissible valuation is just a valuation for Z that yields vI for X. Hence
it is optimal over Z. Clearly, admissible valuations exist for any SNSAT instance,
positive or negative, but checking that a given w is admissible is ∆p

2-complete.
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4 Hardness of Model Checking CTL+

In this section we show that there exists a logspace transformation from SNSAT
into model checking for BTL+. Aiming at improved clarity, we proceed in two
steps: first we give a reduction of SNSAT to a model checking problem for
CTL+, then we adapt the construction and obtain a model checking problem
for BTL+.

From now on we assume that we are given an instance I of SNSAT with
the notations of Def. 3.1. W.l.o.g. we assume that every Fi is a CNF, i.e. a
conjunction of disjunctions of literals, and write Fi under the form

∧
l

∨
m αi,l,m

where αi,l,m is a literal ±u built with a variable u from Zi ∪ {x1, . . . , xi−1}.

With I we associate a Kripke structure SI and a CTL+ formula ΦI s.t.
vI(xn) = > iff SI |= ΦI (see Coro 4.2). Figure 2 depicts SI .

Fig. 2. Kripke structure SI associated with SNSAT instance I

As shown in Fig. 2, the nodes of SI are of two kinds: (1) one node per
literal u and u with u ∈ Var , and (2) one C-node between a xi-node and the
corresponding xi-node.

The nodes are labeled with propositions taken from {C}∪{Pα | α a literal}.
The labeling is given by Fig. 2 where we shortly wrote α for Pα. Below we
sometimes call α the literal-node labeled by Pα.

The transitions of SI are of two kinds: (1) transitions from a literal ±u
to a literal ±u′ if u′ immediately follows u in the left-to-rigth sequence xn,
xn−1, . . . , x2, x1, z1, z2, . . . , zp, (2) transitions from xi to the ith C-node, and
from there to xi. Additionally, two self-loops on the ±zp-nodes ensure that the
transition relation is total.

The structure of SI is such that a path π from ±xn that never visits a C-
node visits exactly one literal for every u ∈ Var so that there is a valuation wπ

associated with π in the obvious way. Reciprocally, we can associate a path πw

with any valuation w in such a way that πw starts from xn or xn (depending on
w(xn)) and never visits a C-node.
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Furthermore, some properties of w can be stated as temporal properties of
πw: if π |= G¬c then wπ is defined, and then wπ is safe iff π |= ∧n

i=1

[(
F Pxi

) ⇒∧
l

∨
m F Pαi,l,m

]
.

We are now ready for the main technical difficulties: we define a sequence

ϕ0, ϕ1, ϕ2, . . . of CTL+ formulae by ϕ0
def= > and, for k > 0,

ϕk
def= E


 G

[(
Px1 ∨ · · · ∨ Pxn

) ⇒ EX
(
C ∧ EX(¬ϕk−1)

)]
∧ G¬C ∧ ∧n

i=1

[(
F Pxi

) ⇒ ∧
l

∨
m F Pαi,l,m

]

 .

Thus ϕk has the form E[ψk−1 ∧ G¬C ∧ ρ] where ψk−1 and ρ are complex path
formulae, and where G¬C ∧ ρ was used above to state that wπ is safe.

The next lemma states how ϕk is satisfied in nodes xi and xi of SI , justifying
the whole construction:

Lemma 4.1 (Correctness of the reduction). For k ∈ N and r = 1, . . . , n:
(a) if k ≥ 2r − 1 then

(
vI(xr) = > iff xr |= ϕk

)
,

(b) if k ≥ 2r then
(
vI(xr) = ⊥ iff xr |= ϕk

)
.

Proof. By induction on k. The case k = 0 holds vacuously. We now assume that
k > 0 and that Lemma 4.1 holds for k − 1.
i. We prove the “⇒” direction of both “iff”s:

Let w be an admissible valuation and π be the suffix of πw that starts
from xr (or xr, depending on the value of w(xr)). We claim that if k ≥ 2r − 1
(resp. k ≥ 2r) then π is a witness for xr |= ϕk (resp. for xr |= ϕk). Clearly
π |= G¬C and π |= ρ (because w is admissible) so that we only have to show
π |= ψk−1, for which the xi nodes must be checked. Now, whenever π visits a
xi for some 1 ≤ i ≤ r, we have vI(xi) = ⊥ because w is admissible. We know
k ≥ 2i: if i = r then we are proving the (b) part and k ≥ 2r, and otherwise
i < r. Hence k − 1 ≥ 2i − 1 and the ind. hyp. entails xi 6|= ϕk−1 so that
xi |= EX(C ∧ EX(¬ϕk−1)).

ii. We now prove the “⇐” direction of both “iff”s:
Assume k ≥ 2r − 1 and xr |= ϕk (or k ≥ 2r and xr |= ϕk). Thus there is

a path π from xr (resp. from xr) s.t. π |= ψk−1 ∧ G¬C ∧ ρ. We claim that the
valuation wπ induced by π is such that wπ(xi) = vI(xi) for i = 1, . . . , r, and
prove this by induction on i. There are two cases:
(1) if wπ(xi) = > then

∧
l

∨
m w(αi,l,m) = > since π |= ρ, i.e. w is safe. Thus, by

ind. hyp., Fi(vI(x1), . . . , vI(xi−1), wπ(Zi)) = > so that vI(xi) = >.
(2) if wπ(xi) = ⊥ then xi |= EX(C ∧ EX(¬ϕk−1)) since π |= ψk−1 and thus
xi 6|= ϕk−1. Now if i < r, we have k − 1 ≥ 2i− 1 and, by ind. hyp., vI(xi) = ⊥.
If i = r we must be in the case where k ≥ 2r and xr |= ϕk, so that k−1 ≥ 2i−1
and again vI(xi) = ⊥ by ind. hyp. ut
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With Lemma 4.1, we get:

Corollary 4.2. For any instance I of SNSAT, vI(xn) = > iff xn |=SI ϕ2n−1.

The size of ϕ2n−1 is in O(n× |I|). Since SI and ϕ2n−1 can be built in logspace
from I, Coro. 4.2 effectively provides a transformation from SNSAT into model
checking for CTL+ (in fact, for UB+), proving model checking for CTL+ is
∆p

2-hard.

The definition of the ϕk’s uses EX and AX (in the ψk−1 part) with the con-
sequence that ϕk is a UB+ and not a BTL+ formula. However, a similar albeit
clumsier construction can be given, proving the following

Theorem 4.3. Model checking for BTL+ is ∆p
2-hard.

Proof (Idea). We define a structure S′
I by modifying SI : Fig. 3 shows how so-

called stop nodes, labeled with s, are inserted in SI , and how self-loops are added
on the xi-nodes.

We also modify the definition of ϕk by replacing EX(C ∧ EX(¬ϕk−1)) in the
ψk−1 part with

E
[
¬Fs ∧ F

(
(Px1 ∨ . . . ∨ Pxn

) ∧ ¬ϕk−1

)]
.

This gives BTL+ formulae for which we can prove Lemma 4.1 adapted to S′
I . ut

Fig. 3. S′
I , a variant of SI with stop nodes

5 Hardness of Model Checking FCTL

The ideas underlying the construction of SI can be adapted in order to show
∆p

2-hardness of model-checking for FCTL. Figure 4 describes S′′
I .

One sees that, because of the outermost loop, an infinite path π in S′′
I may

visit both u and u for any variable u (even if it never visits a C-node), so that
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Fig. 4. S′′
I , a variant of SI with outermost loop

there is no direct corresponding valuation wπ: we need more assumptions over
paths.

Consider the following fairness constraint:

Φ
def=

∧
u∈Var

(∞
G ¬Pu ∨ ∞

G ¬Pu

)
.

Now an infinite path π that verifies Φ defines a natural valuation: there exists
a suffix π′ of π s.t. for any u ∈ Var , π′ never visits u (and then π′ visits only
u) or π′ never visits u (and then π′ visits only u). Note that G¬C holds for π′.
Reciprocally, with any valuation w, we can associate a path πw satisfying Φ in
such a way that πw visits infinitely often u or u depending on w(u).

We now define FCTL formulae inspired by the ϕks from the previous section.

First we define ECTL+ formulae ξk by ξ0
def= > and, for k > 0,

ξk
def= E


 G

[(
Px1 ∨ · · · ∨ Pxn

) ⇒ EX
(
C ∧ EX(¬ξk−1)

)]
∧∧n

i=1

[(∞
F Pxi

) ⇒ ∧
l

∨
m

∞
F Pαi,l,m

]
∧ ∧

u∈V ar

[∞
G ¬Pu∨ ∞

G ¬Pu

]

.

Note that ξk has the form E[χk−1 ∧ ρ′ ∧ Φ] where ρ′ and Φ are fairness
constraints which are used in any ξk. Clearly, in S′′

I one can prove a variant of
Lemma 4.1 for the ξks, but the ξks are not FCTL formulae.

Now observe that in S′′
I the subformula EX(C ∧ EX(¬ξk−1)) is equivalent to

the following formula

E
[
Φ ∧ ρ′ ∧ X

(
C ∧ E(Φ ∧ ρ′ ∧ X(¬ξk−1))

)]

where we inserted the fairness constraint Φ ∧ ρ′ under the two path quantifiers.
The equivalence holds because, from any node in S′′

I , there exists an infinite fair
path (it is sufficient to visit only u nodes).

We now have a variant of the ξks where the same simple fairness constraint
is used everywhere, that is, we have a FCTL formula! Formally, we define ϕ′

k

by ϕ′
0

def= > and ϕ′
k

def= EG
[(
Px1 ∨ · · · ∨ Pxn

) ⇒ EX
(
C ∧ EX(¬ϕ′

k−1)
)]

and
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we couple this CTL formula with the fairness constraint (Φ ∧ ρ′). Following the
notations of section 2.4 we have:

ηk
def=



ϕs : EG

[(
Px1 ∨ · · · ∨ Pxn

) ⇒ EX
(
C ∧ EX(¬ϕ′

k−1)
)]
,

Φ :
∧

u∈V ar

[∞
G ¬Pu∨ ∞

G ¬Pu

]
∧

n∧
i=1

[(∞
F Pxi

) ⇒
∧
l

∨
m

∞
F Pαi,l,m

]
.

Now, Lemma 4.1 and corollary 4.2 can be reformulated for S′′
I and ηk, proving

the ∆p
2-harness of FCTL model checking:

Theorem 5.1. Model checking for FCTL is ∆p
2-hard.

6 Upper Bounds

In this section we show that model checking for ECTL+ is in ∆p
2. This is a slight

extension of the corresponding result for CTL+ (a result not widely known).

A path π = q0q1 . . . (in some KS S) is ultimately periodic if there exist
m, k ∈ N (k > 0) s.t. qi+k = qi for all i ≥ m. Then π is written under the form
q0 . . . qm−1(qm . . . qm+k−1)ω and we say π has size m+ k.

A path π′ is extracted from π if it has the form π′ = qi0 . . . qip−1(qip . . . qis)
ω

where the sequence i0, i1, . . . is such that

0 ≤ i0 < i1 < . . . < ip−1 ≤ m− 1 < ip < ip+1 < . . . < is ≤ m+ k − 1.

Let ϕ be an ECTL+ formula of the form Eϕp where ϕp is flat, i.e. does not
contain any path quantifier. The principal subformulae of ϕp are all subformulae

of the form ψ1Uψ2 or
∞
F ψ or Xψ, i.e. subformulae that have a modality at their

root.
With π = q0 . . . qm−1(qm . . . qm+k−1)ω and ϕp we associate a set w(π, ϕp) ⊆

{0, 1, . . . ,m+k−1} of witness positions along π: w(π, ϕp) has one (or sometimes
zero) position for every principal subformula of ϕp. Specifically:
- if Xψ is a principal subformula, then the witness position is 1,
- if

∞
F ψ is a principal subformula, then there is a witness position only if π |=∞

F ψ
and it is the first i ≥ m s.t. that qi |= ψ,
- if ψ1Uψ2 is a principal subformula, then there are three cases: if π |= ψ1Uψ2,
then the witness position is the first i ≥ 0 s.t. qi |= ψ2, if π 6|= ψ1Uψ2 and
π |= Fψ2, then it is the first i ≥ 0 s.t. qi |= ¬(ψ1 ∧ ψ2), if π 6|= Fψ2, then there is
no witness position for this subformula.

Lemma 6.1. Assume π′ = qi0qi1 . . . is an ultimately periodic path extracted
from π, with i0 = 0 and such that w(π, ϕp) ⊆ {i0, i1, . . . , is}. Then π′ |= ϕp iff
π |= ϕp.

Proof. By construction π′ agrees with π on all principal subformulae, then on
all subformulae, of ϕp. ut
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Lemma 6.2 (Small witnesses for ECTL+). Let S be a Kripke structure with
n nodes, and Eϕp be a ECTL+ formula where ϕp is flat. Then if S |= Eϕp,
there is a path π ∈ Π(q0) satisfying ϕp that is ultimately periodic and has size
in O(n× |ϕp|).
Proof. Assume S |= Eϕp. Since ϕp is a PLTL formula, it is known (e.g. [SC85])
that there exists an ultimately periodic π ∈ Π(q0) s.t. π |= ϕp. Now we extract
from π an ultimately periodic π′ by keeping only positions in w(π, ϕp) and the
smallest number of intermediary positions that are required to ensure connectiv-
ity between the positions from w(π, ϕp) (i.e. we want π′ to be a path in S). Since
w(π, ϕp) has O(|ϕp|) positions and since at most n−1 intermediary positions are
required between any two positions in w(π, ϕp), the size of π′ is in O(n× |ϕp|).
Finally, π′ |= ϕp by Lemma 6.1. ut
The corollary is that there is an NP-algorithm for model checking ECTL+

formulae of the form Eϕp with flat ϕp: one non-deterministically guesses an
ultimately periodic π path of size O(n × |ϕp|) and then checks π |= ϕp in time
O(n × |ϕp|), e.g. seeing π as a deterministic Kripke structure on which ϕp can
be read as a CTL formula.

Now, for model checking non-flat ECTL+ formulae, we can use the gen-
eral algorithm given in [EL87, Section 6] for branching-time logics of the form
B(L(. . . )), i.e., logics obtained by adding path quantifiers to linear-time logics
L(. . . ). This algorithm is a simple polynomial-time procedure calling an oracle
for model checking L(. . . ). In the case of ECTL+, we end with a PNP algorithm,
hence

Theorem 6.3. Model checking for ECTL+ is in ∆p
2.

7 Conclusions

Combining Theorems 4.3, 5.1 and 6.3, we obtain

Theorem 7.1. The model checking problems for BTL+, UB+, CTL+, FCTL,
GFCTL and ECTL+ are all ∆p

2-complete.

We also deduce

Theorem 7.2. The model checking problem for BT∗ is ∆p
2-complete.

where BT∗ is the fragment of CTL∗ where F is the only allowed temporal modal-
ity (U and X are forbidden, G and

∞
F are allowed since they can be written with

F).

Proof (of Theo. 7.2). Since BT∗ contains BTL+, model checking BT∗ is ∆p
2-

hard. Since model checking flat Eϕp formulae is in NP when ϕp is in L(F) [SC85,
DS98], a reasoning similar to the proof of Theo. 6.3 shows membership in ∆p

2
(already indicated in [CES86]). ut
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