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Abstract. The ability to systematically evaluate the results of automated image 
processing systems has been problematic. It remains so.  In this work we ad-
dress two issues in testing: 1) the use of incomplete and inaccurate reference
data; and 2) we introduce a new, somewhat faster method of evaluating systems
that recognize linear structures. We illustrate the latter using road and lines-of-
communication recognition systems.  We describe past work on evaluation sys-
tems and compare their strengths and weaknesses relative to the current work. 

Introduction

This work addresses two issues germane to testing image recognition systems. The
first issue is the availability of correct, comprehensive test regions. The second intro-
duces a potentially faster way to test the correctness of linear structures.

The history of image recognition systems development is replete with examples in
which testing of the systems consists of a limited number of test images created under
laboratory conditions. However, systems intended for application must be tested ex-
tensively under conditions that occur in the “real-world”. For example, in automated
road extraction/recognition from high altitude imagery, images are captured using
many sensors with diverse characteristics. Image quality, contrast, resolution, spec-
tral content are just a few of the characteristics. A  rigorous testing program must ad-
dress the availability of high quality “ground truth”, i.e. reference, data reflecting all
of these qualities.

The development of automated methods to evaluate and diagnose image recogni-
tion systems is a significant challenge. In the absence of high quality recognition sys-
tems, authors have had to generate reference data sets by hand. These reference sets
are subject to errors of interpretation.

The second concern of this work is that of performance. Traditional testing has
been done for relatively small images with few roads. However, performance has not
been a principal concern as the development of evaluation systems has received rela-
tively little attention. Here we introduce a  somewhat faster algorithm to perform
evaluation.

Throughout this work we will illustrate our discussion with examples using auto-
mated road recognition. Roads are characterized as polylines. In many cases, it is
difficult for people to identify roads from the imagery and existing databases fre-
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quently exhibit errors in the data that might be used for ‘ground truth”.  Indeed, there
are not a great number of instances where the ground truth data has been verified.

Past Work

Issue 1: Availability of correct, comprehensive test regions

Fig. 1 illustrates a common problem in the use of existing databases as references
for testing purposes. Fig. 1a is an image of a suburban region and a road network
overlay (blue lines).  The data sets are high resolution and the vector data is derived
using standard semi-automated methods. The disagreement between the imagery and
the vector data illustrates the difficulty of using existing vector data sets as the basis
of a testing program.

 Fig. 1a.  1b. 

Fig. 1a.  Image of  Ohio River bridge and approaches.  The image and vector
data (blue lines) sets are from U.S.G.S.  Error notes are added by the authors.

Fig. 1b. This example shows a case in which the reference vector data (blue lines)
have completely missed one of the spans of the bridges, while the automated road
recognition system (green lines) has identified both spans of the bridges. There are
several other errors found in both the reference data and the automatically generated
data.

To address the problem of incomplete and incorrect reference data sets, many au-
thors have generated reference data by hand, i.e. identifying vectors using standard
drawing tools. In some cases, e.g. ambiguous objects, one-lane roads in low to mod-
erate resolution images or low contrast images, human judgment is fallible and it is
problematic to use such data as reference data for evaluation.

Issue 2: A potentially faster way to test the correctness of linear structures 

The evaluation system proposed and developed in [Wiederman] compares the results
of the automatically generated road axes (vectors) with the reference vectors they use
several principal measures including:  completeness, correctness, and quality.  We use
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completeness, false positive rate, and false negative rate. A simple transform relates
the two sets of measures. They also introduce the ability to evaluate sufficiently
“good” fit of the found road segments by encasing the vectors in a region or buffer.
This was a significant advance in evaluation methodology.

However, the evaluation technique used in works such as [Weiderman] is O(N^2),
where N is the number of vectors (road segments). Pre-sorting the polylines can re-
duce the coefficient of the N^2 term. However, in large data sets, dense with poly-
lines, the time to compute the principal measures can be considerable.

Current Work

Issue 1: Availability of correct, comprehensive test regions

We contend that extensive testing of recognition systems under a broad number of
environments is currently not done. Often, this is due to the lack of availability of suf-
ficient ground truth data [Forstner].  Until such reference data is available, we propose
another mode of testing, evaluation of systems using high quality - but not fully veri-
fied - reference data.  Doing so implies application of statistical measures not com-
monly used. 

We consider three distributions, ground truth (GT) – an idealized distribution, REF
– the reference data distribution, and TEST – the output of the recognition system be-
ing tested.

In most work it is assumed that P(GTL | REFL) = 1 and P(GTNL  | REFNL  ) =1,
where the superscript, L (NL), indicates the presence of a line (non-line) object.
Here, we drop that assumption that the reference and ground truth are identical, and
examine testing in the presence of inexact reference data.

The universe of measurement than consists of eight(8) states:
S1 = GTL  &  REFL  &   TESTL  S5 = GTL &  REFL & TESTNL

S2 = GTNL  & REFL  &  TESTL     S6 = GTNL  & REFL & TESTNL

S3 = GTL  &  REFNL  &  TESTL    S7 = GTL &  REFNL &  TESTNL

S4 = GTNL  & REFNL &  TESTL S8 = GTNL &  REFNL  &  TESTNL

(1)

Let P(GTL|REFL) be the probability that a pixel is in the set of objects to be recog-
nized under the condition that the reference data set assigns that pixel to the object
set.  For example, this would correspond to the case where a pixel corresponds to a 
road pixel when the reference data assigns the pixel to a road (non-road).  Further, let
P(GTL |TESTL ) correspond to the condition that the extraction program assigns the
pixel to the object set and the pixel is in the object set.  This is just the measure that
we are interested in calculating, along with: P(GTNL |TESTL ), the false positive rate;
P(GTL |TESTNL ), the false negative rate. P(GTNL |TESTNL ) is either measured or de-
rivable from the others.

As we will see below, we measure the 4 quantities, REFL(NL) & TESTL(NL) . Thus,
we can calculate the joint probability distribution using Bayes’ rule. 

( | ) ( | ) ( ) / ( | ) ( )
i

P B j A P A B j P B j P A B i P B i=
ÿ

(2)
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In the example of road recognition, readily available vector maps with accuracy
rates ~ 90% are available and can be used to extend the testing of image recognition
systems to a large set of diverse image conditions. 

Example

Suppose the  reference data set is assumed 90% accurate, P(GTL |REFL) =0.9.
Then P(GTNL |REFL) =0.1. Further, suppose the test program proportions are P(REFL

|TESTL) =0.8, P(GTL | REFNL) = 0.1 and P(REFNL |TESTL) =0.2.  Finally, assume
P(GTL) ~ 0.1, P(REFL) ~ 0.09, P(TESTL) ~ 0.085.

P(TESTL|GTL) =  { P(GTL|REFL) P(REFL|TESTL)  
+ P(GTL|REFNL)P(REFNL|TESTL)}P(TESTL)/ P(GTL) 

=   { 0.9 * 0.8 + 0.1 * 0.2} *0.08/0.1
= 0.69

(3)

Thus, if we use a reference set with 90% accuracy and the test data agrees with the
reference data in 80% of the finding, we can expect that the extraction data is correct
approximately 69% of the time.  Conversely, assuming the reference set was identical
to GT would result in claim of 90% accuracy.

The Kappa statistic is a better measure of classifier accuracy in the case where the
underlying reference set is not known with absolute precision. The interclass agree-
ment [Fitzgerald] is the ratio of the actual agreement (beyond chance) and the poten-
tial agreement (beyond chance). Here it is used to assess the evaluation system using
uncertain reference data.

The Kappa statistic may be computed as follows:
Let Vij be the number of pixels whose truth class is j but classified as i.  The diago-

nal elements of the matrix V correspond to those pixels that have been correctly clas-
sified.

If a ii

i

V V= ÿ   is the overall agreement between the reference and evaluation sys-

tem data and
k

c ko okV V V= þ is the expected agreement by chance.  Here, ok jk

j

V V= ý . 

Then, the Kappa statistic is given by ( ) /(1 )a c cK V V V= − − . The Kappa statistic is
used to compute the combined accuracy of several classifiers [Fitzgerald], quantifying
the difference between each classifier and ground truth.  This is a particularly impor-
tant measurement when the likelihood of chance agreement between the reference and
test data sets is high.  A t-test of K can then be used to evaluate the accuracy of the 
reference data and the test data.

 Issue 2: A potentially faster way to test the correctness of linear structures 

Our proposed method is image based, not vector based. We convert the vector ref-
erence data to an image, REF, by “burning in”, or scan-converting, the vector data.
Similarly, the automatically extracted vectors are scan converted to an image, TEST.
The images REF and TEST are binary and of the same dimensions, A = Width x 
Height, pixels.  We generate the principal attributes – correctness, false positives rate,
percent false negatives rate, using the following:
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( )
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(4a) 

(4b) 

(4c) 

(4d)

where L(image) is the total length of the roads in image.  Each of the ratios lie in
the range 0.0.. 1.0.

Note that
False-positives-rate = 1 - correctness, and
False-negatives-rate = 1 - completeness 

These operations in equation 4 are O(A).  Usually, the area of the image is much
greater than the number of vector segments. However, since the comparison among
vectors is O(N^2), then it will often be the case that equation 4 will provide (slightly)
better performance than those previously proposed. Improved performance can be
achieved by converting the images to 1-bit/pixel format.  Utilizing 32-bit integers for
comparison yields in a 32-fold reduction in the number of logical operations. 

Equation 1a-c puts very stringent conditions on the criteria for successful extrac-
tion of roads.  We can relax those conditions by allowing tolerances associated with
the reference and test data sets.  Suppose we wish to count as a successful road pixel,
a pixel that is within w/2 units of the reference road. Then we must scan convert the
road to an image and also convert those pixels in the buffer of width w centered on
the road segments.  If we denote REF(w) and TEST(w) as images with the buffer and
REF(1) and TEST(1) as images with no additional buffer, then the corresponding
equations become:

( )

( )

_ ( ) & (1) /

_ ( ) & (1) /

TEST

REF

correctness measure REF w TEST L

completenss measure REF w TEST L

=
=

( )

( )

_ _ ! ( ) & (1) /

_ _ (1) & ! ( ) /

T E ST

R E F

fa lse pos m easure R E F w T E ST L

false neg m easure R E F T E ST w L

=
=

(5a)

(5b)

 (5c) 

(5d)

We note that the method admits small errors in the evaluation process.  In [Wei-
derman] the authors note “ A suitable setting of the buffer width has to consider the
expected internal accuracy of the road extraction algorithm. … if the width is too
large, false extractions … are considered as roads …too small .. only slightly geomet-
rically inexact will be rejected.”  They also set a maximum direction difference be-
tween the extracted vectors and the reference vectors.  Here, we do not  use the direc-
tion information.  Hence, small errors exist when an extracted road crosses a reference
road at a large angle. A second source of potential error occurs if the test road “wan-
ders” or oscillates around the reference road.
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Examples and Results 

The TEST images were extracted by a fully automated road extraction system, Road-
Finder Front End (RFFE).  RFFE is designed to have a very low false negative rate
over a wide range of image and cartographic parameters. Its principal application is
as a front end of an image registration system that is sensitive to incorrectly placed
road segments.  In the first set of images, the reference data is drawn by hand.

  Fig. 2a. Original image Fig. 2b. TEST extracted Fig. 2c. REF reference data
 by the system

Fig. 2d.  TEST  image inverted Fig 2e REF image inverted

Fig. 2a is 256x150 (=38,400)  pixels of a rural area. 2b – 2e are the reference and test
images and their inverted forms.  The resulting data are:

Correctness = REF & TEST(1) = 61%  REF(3) & TEST(1) = 64%
False positive rate = TEST(1) & !REF(1)   = 10 %  TEST(1) & !REF(3) = 3%
False negative rate = !TEST(1) & REF(1) = 30 %     !TEST(3) & REF(1) = 28% 

The time to compute these quantities is less than 1 second (essentially instantaneous)
on a 1.2 GHz PC running Linux. On 1024 x 866 images the computation time was ~ 2
seconds.
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