
Fault Tolerance for Cluster Computing

Based on Functional Tasks�

Wolfgang Schreiner, Gabor Kusper, and Karoly Bosa

Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, Linz, Austria

FirstName.LastName @risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at

Abstract. We have extended the parallel computer algebra system Dis-
tributed Maple by fault tolerance mechanisms such that computations
are not any more limited by the meantime between failures. This is com-
plicated by the fact that task arguments and results may embed task han-
dles and that the system’s scheduling layer has only a little information
about the computing layer. Nevertheless, the mostly functional parallel
programming model makes it possible with relatively simple means.

1 Introduction

Distributed Maple is a portable system for implementing parallel computer al-
gebra algorithms [5]. We have used it for parallelizing various applications in al-
gebraic geometry [6] and executed them in numerous distributed environments.
However, as we began to attack larger and larger problems, the meantime be-
tween failures became a limiting factor in the applicability of the system.

Most parallel programming environments pursue fault tolerance by check-
pointing [1,2]. These approaches are complex because they deal with general
parallel computations; for special problems much simpler solutions exist [3].
However, also parallel programming models that are more abstract than mes-
sage passing allow to deal with fault tolerance in a simpler way. In particular,
the functional programming model has this potential [4].

Distributed Maple runs programs in the imperative language of Maple, but
its parallel programming model is essentially functional: it provides the ability
to spawn function applications as concurrent tasks and to wait for their results
(extended by a non-deterministic synchronization facility and single assignment
shared data objects). Our primary goal is to extend the scheduling layer of Dis-
tributed Maple to provide fault-tolerance in a way that is transparent to the
application. However, computation layer and scheduling layer are clearly sepa-
rated by a communication protocol such that the scheduling layer is completely
unaware of the actual nature of the computation. Our secondary goal is to pre-
serve this distinction such that the use of the scheduling layer for different kinds
of computing engines is not compromised. We thus have to deal with the limited
information that the scheduling layer has about the computation.
� Supported by grant SFB F013/F1304 of the Austrian Science Foundation (FWF).

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 712–717, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Fault Tolerance for Cluster Computing Based on Functional Tasks 713

2 System and Execution Model

A session comprises a set of nodes each of which holds a pair of processes: a kernel
which performs the actual computation, and a scheduler which coordinates the
created tasks. The scheduler communicates with the kernel on the same node and
with the schedulers on other nodes. The root is that node from which the session
was established. Initially, a single task runs on the root kernel; this task may
create new tasks which are distributed to other kernels and may in turn create
new tasks. A kernel emits messages task :〈t, d〉 where t identifies the task and d
describes it. The task needs to be forwarded to some idle kernel which eventually
returns a message result :〈t, r〉 where r represents the computed result. When a
kernel emits wait :〈t〉, this task is blocked until the scheduler responds with the
result of t. Thus, if this result not yet available, the scheduler may submit to the
now idle kernel another task; when this task has returned its result, the kernel
may receive the result waited for or yet another task.

scheduler

.....

user interface

root

interface

scheduler

kernel

interface

scheduler

kernel

interface

kernel

Fig. 1. System Model

A task identifier t encodes a pair 〈n, i〉 where n identifies the node on which
the task was created and i is a running index. The node n thus serves as the ren-
dezvous point between node n′ computing the result of t and node n′′ requesting
this result. When the scheduler on n receives a task :〈t, d〉 from its kernel, it thus
allocates a result descriptor that will eventually hold the result r; the task itself
is scheduled for execution on some node n′. When a kernel on some node n′′

issues a wait :〈t〉, the scheduler on n′′ forwards a request :〈t, n′′〉 to n. If r is not
yet available on n, this request is queued in the result descriptor. When the
kernel on n′ eventually returns the result :〈t, r〉, the scheduler on n′ forwards this
message to n, which constructs a reply :〈t, r〉 and sends it to n′′.

714 Wolfgang Schreiner et al.

3 Logging Results: First-Order Tasks

Our first step towards fault tolerance is to log task results on stable storage.
If the session fails, we can thus re-run the session and read the logged results
without re-executing the corresponding tasks. Our only assumption is that the
root has access to a writable file system; this file system implements the stable
storage and the root becomes in charge of maintaining the log. We now restrict
our consideration to programs whose tasks are first order : no task description d
and no task result r contains any task identifier t, i.e., task identifiers are not
passed as parts of task arguments and or parts of task results. The logging
mechanism utilizes the fact that the root is in charge of task distribution: every
new task :〈t, d〉 is forwarded to the root which eventually assigns it to some node
for execution. The result logging and failure recovery operations are as follows:

Logging When the root receives a task :〈t, d〉, it computes a hash code h(d) and
appends to file taskid.h(d) the task identifier t. Then the root starts an
asynchronous thread to write the task description d into a new file descr.t.
When a node sends a result :〈t, r〉 to some node n different from the root, it
forwards a copy to the root. When the root receives this result, it creates an
asynchronous thread to write the task result r into a new file result.t. All
data are written in a format that enables a reader to recognize incomplete
writes. At any time, taskid.h(d) holds a sequence of task identifiers t for
which there may exist description files descr.t and/or result files result.t.
When the session terminates without failure, the files are discarded.

Recovery When a session is re-started after a failure, the root may receive
from a node n a task :〈t, d〉 such that a file taskid.h(d) exists. If for some
complete task identifier t′ in this file there exist file descr.t′ with a complete
description identical to d and file result.t′ with a complete result r, the
root need not schedule the task but may immediately return result :〈t, r〉 to n.
The comparison of task descriptions is required because task identifiers are
not valid across sessions; since the result r of a task only depends on its
description d, the identity of descriptions ensures the identity of results.

4 Logging Results: Higher-Order Tasks

Assume that a task t creates another task and embeds its identifier t′ in result r.
If r is logged and the session fails, in the recovery session this result may be read
from the log such that task identifier t′ is re-created. A task may subsequently
issue a wait :〈t′〉 referring to a no more existing task or, even worse, to a task
that computes a different result than in the failed session. Similar situations may
occur if t′ is passed as an argument to another task.

To support such higher-order tasks, we introduce a session identifier which
distinguishes task identifiers from different sessions. In an original session, the
session identifier is initialized to 0 and a file session is written with content 0.
In a recovery session, the previous identifier s is read from session, the new

Fault Tolerance for Cluster Computing Based on Functional Tasks 715

identifier is taken as s + 1 and overwrites session. If the recovery session also
fails, a new recovery session may be initiated. A task identifier now encodes a
triple 〈s, n, i〉 that embeds the number s of the session in which the corresponding
task was created. We generalize the mechanism of the previous section as follows:

Logging As long as the description of a task t created on node n is not com-
pletely logged, the root does not schedule the task for execution and does
not start the logging of any other task created on n. As long as n has not
received the confirmation that the description has been logged, it does not
return the result of t to any other task. In this way, we make sure that the
identifier of a task is not propagated across tasks before its description has
been logged such that a later recovery session can restart the task.

Recovery The root is in charge of tasks whose identifiers refer to previous
sessions. If a kernel on node n issues a wait :〈t〉 where t refers to a previous
session, the scheduler on n sends a request :〈t, n〉 to the root. If the root
receives this request, it looks up whether it holds a result descriptor for t;
if yes, it responds with the result or, if this is not yet available, queues the
request in the descriptor. If the root does not hold a result descriptor for t, it
creates one and queues the request there. It then looks up file result.t for
the result of t. If this file exists and holds a complete result r, the scheduler
writes r into the descriptor and responds with reply :〈t, r〉. Otherwise, the
scheduler looks up descr.t for the description d of t. The scheduler creates
a new task :〈t, d〉 which is handled as usual. When a kernel issues a result :〈t, r〉
for a task t of a previous session, the scheduler forwards it to the root.

5 Tolerating Node Failures

We have also introduced a mechanism that enables a session to cope with faults
without aborting. We restrict our attention to the scenario where a non-root node
becomes unreachable (stop failure) and the root continues operation with the
remaining nodes (if the root fails, the session also fails). A necessary condition
to detect this failure is that the root cannot contact a node for a certain period
of time. We thus let the root periodically check whether a message has been
recently received from every node and, if not, send a ping message that has to
be acknowledged. If no acknowledgement arrives within a certain time bound,
this node is considered as dead. However, we must assume that an allegedly dead
node may still send messages to the root or to any other node. Thus, when the
root designates a node as dead, it informs all other nodes correspondingly: every
node closes the connection to the dead node and ignores any buffered messages
from this node.

There are two main problem that the root now has to deal with:

1. the management of all result descriptors that have been stored on the dead
node, and

2. the rescheduling of all tasks that were executing on the node at the time of
its alleged death.

716 Wolfgang Schreiner et al.

Since the root is in charge of task scheduling, the root sees every task created
in the session. Furthermore, by the logging mechanism discussed in the previous
sections, the root sees every result computed in the session. For every node n,
the root can therefore maintain two sets Tn and Sn:

1. Tn denotes all tasks scheduled on n; for a subset T r
n the results are available

(in the logging files). All tasks in Tn − T r
n have to be executed again; the

root puts them back into the pool of tasks to be scheduled for execution.
2. Sn denotes all tasks whose descriptors are stored on n; for a subset Sr

n the
results are available (in the logging files). The root becomes the owner of
elements in Sn; it allocates the corresponding result descriptors and, for all
elements of Sr

n, fills them with results.
Subsequently, every node will send requests for a result in Sn to the root.
However, there may be still outstanding requests sent to n but not yet an-
swered at the time of its death. Every node n′ therefore holds a table Rn of all
request :〈t, n′〉 messages sent to node n but not yet answered by a reply :〈t, r〉.
When n is marked dead, the node re-sends all messages in Rn to the root
which will eventually answer them.

Thus all tasks scheduled on an eventually dead node n are executed (possibly
on a different node n′) and every descriptor originally housed by n finds a new
home on the root to which all open and all future requests are redirected.

More details on the fault tolerance mechanisms can be found in the long ver-
sion of this paper on http://www.risc.uni-linz.ac.at/software/distmaple.

References

1. A. Clematis and V. Gianuzzi. CPVM — Extending PVM for Consistent Check-
pointing. In 4th Euromicro Workshop on Parallel and Distributed Processinge
(PDP’96), pages 67–76, Braga, Portugal, January 24–26, 1996. IEEE CS Press.
712

2. G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tolerant MPI, Supporting Dynamic
Applications in a Dynamic World. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Proceedings of the 7th European PVM/MPI Users’
Group Meeting, volume 1908 of Lecture Notes in Computer Science, pages 346–353,
Balatonfüred, Hungary, September 10–13, 2000. Springer. 712

3. A. Iamnitchi and I. Foster. A Problem Specific Fault Tolerance Mechanism for
Asynchronous, Distributed Systems. In 29th International Conference on Parallel
Processing (ICPP), Toronto, Canada, August 21–24, 2000. Ohio State University.
712

4. R. Jagannathan and E. A. Ashcroft. Fault Tolerance in Parallel Implementations
of Functional Languages. In 21st International Symposium on Fault-Tolerant Com-
puting, pages 256–263, Montreal, Canada, June, June 1991. IEEE CS Press. 712

5. W. Schreiner. Distributed Maple — User and Reference Manual. Technical Re-
port 98-05, RISC-Linz, Johannes Kepler University, Linz, Austria, May 1998.
http://www.risc.uni-linz.ac.at/software/distmaple. 712

Fault Tolerance for Cluster Computing Based on Functional Tasks 717

6. W. Schreiner, C. Mittermaier, and F. Winkler. On Solving a Problem in Algebraic
Geometry by Cluster Computing. In Euro-Par 2000, 6th International Euro-Par
Conference, volume 1900 of Lecture Notes in Computer Science, pages 1196–1200,
Munich, Germany, August 29 - September 1, 2000. Springer, Berlin. 712

	Fault Tolerance for Cluster Computing Based on Functional Tasks
	Introduction
	System and Execution Model
	Logging Results: First-Order Tasks
	Logging Results: Higher-Order Tasks
	Tolerating Node Failures

