
A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 601 – 612, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Services-Oriented Computing in a Ubiquitous
Computing Platform

Ji Hyun Kim1, Won Il Lee1, Jonathan Munson2, and Young Ju Tak1

1 IBM Ubiquitous Computing Laboratory, Seoul
2 IBM T. J. Watson Research Center, Hawthorne, New York

jihkim@kr.ibm.com, wilee@kr.ibm.com, jpmunson@us.ibm.com,
yjtak@kr.ibm.com

Abstract. Current telematics services platforms are tightly integrated, relatively
fixed-function systems that manage the entire end-to-end infrastructure of
devices, wireless communications, device management, subscriber management,
and other functions. This closed nature prevents the infrastructure from being
shared by other applications, which inhibits the development of new ubiquitous
computing services that may not in themselves justify the cost of an entire end-
to-end infrastructure. Services-oriented computing offers means to better expose
the value of such infrastructures. We have developed a services-oriented,
specification-based, ubiquitous computing platform called TOPAZ that abstracts
common ubiquitous computing functions and makes them accessible to any
application provider through Web-service interfaces. The nature of the TOPAZ
services, as enabling long-running sessions between applications and remote
clients, presents peculiar challenges to the generic issues of service metering and
resource management. In this paper we describe these challenges and discuss the
approach we have taken to them in TOPAZ. We first motivate and describe the
TOPAZ application model and its service set. We then describe TOPAZ’s
resource management and service metering functions, and its three-party session
model that forms the basis for them.

Keywords: Ubiquitous computing, telematics, resource management, service
metering.

1 Introduction

The term “ubiquitous computing” is often applied to the applications that serve
mobile users such as drivers, healthcare workers, and emergency personnel. They
typically link personal or embedded devices with centrally operated services, using
information (context) gathered from the devices. These applications are particularly
popular in the automotive world, having millions users worldwide, and are now
appearing in other domains as well. In the Republic of Korea, for example, several
municipalities are launching ubiquitous computing initiatives under the collective
name “u-City.” The term encompasses a general vision where information systems for
healthcare, education, and even private residences are responsive to collective
contextual data, and these information systems have a pervasive presence in homes,
streets, buildings, and public places such as convention centers.

602 J.H. Kim et al.

Meeting the diverse and changing needs of these user communities can be
prohibitively expensive given the cost of developing, building, and operating
ubiquitous computing systems serving millions of users, over wireless networks,
using a diverse set of devices. Organizations that could provide valuable services to
telematics or other ubiquitous-computing consumers face a high barrier of entry,
because they must either integrate their service with an existing service provider, or
provide their own end-to-end solution. As a result, business models that can be
supported in this kind of ecosystem are limited.

Fig. 1. The role of TOPAZ in the ubiquitous computing applications marketplace

We envision a marketplace in which application providers are able to easily
compete for the business of users and user communities. They would be able to
inexpensively develop, operate, and maintain the applications, and they would be able
to quickly make them available to end users. In this paper we describe a ubiquitous
computing framework named TOPAZ that we designed to enable this kind of
marketplace. TOPAZ is a platform of core services for ubiquitous-computing
applications, the purpose of which is to factor out the telematics-intensive parts of
telematics applications and make them available in a uniform way to all application
providers, through public applications-programming interfaces. The TOPAZ service
set is provided by TOPAZ Platform Operators (TPOs), who make the services
available to any application provider. Fig. 1 illustrates.

We designed TOPAZ based on this vision and the technology of services-oriented
computing. At the outset of the project we identified services-oriented computing as
the model that would enable us to realize our vision of a new kind of ubiquitous
computing marketplace. Service interfaces would allow us to abstract out ubiquitous-
computing infrastructure functions and provide them to applications through
standards-based interfaces. Web services, in particular, would enable us to clearly
separate the execution environments of the TOPAZ Platform Operator and the
application providers, and enable TPOs to provide their services to any application
provider on the Internet.

The position of TOPAZ with respect to applications and ubiquitous-computing
clients (e.g., cell phones, telematics devices) is illustrated in Fig. 2.

 Services-Oriented Computing in a Ubiquitous Computing Platform 603

The services that TOPAZ provides include managing content flows from the
applications to the clients; managing user-interaction flows from the clients to the
applications; managing the flow of sensor data from clients to applications; detecting
application-specific situations involving clients; and supporting peer-to-peer flows of
data and content among clients. All of these services are accessed through industry-
standard Web-service interfaces. Like other Web-service-based platforms of
application services, TOPAZ has the same concerns of service metering, quality of
service guarantees, and resource management. However, while we have been able to
use some existing models for these functions, we have had to adapt them to the
peculiar nature of our services, and we have had to develop our own implementations
of them. In this paper we describe the nature of our specific application model and
discuss the particular services our platform offers. We then describe our approaches to
the utility-computing issues of resource management, quality-of-service guarantees,
and service metering.

2 TOPAZ Application Services

The set of application services offered by TOPAZ was defined by a process of
requirements gathering and factoring. We sought to define a platform that met the
needs of a wide range of applications with a relatively small number of services.
Automotive and fleet telematics was the applications domain of initial focus. We
began by compiling a large set of application scenarios through surveying a number
of existing telematics systems and industrial telematics consortia. Then, through
analyzing their requirements, we factored out a set of core services that would support
the applications. The services are implemented as WSDL-based Web services.

TOPAZTOPAZ

Web Service APIs

Interaction Flow

Content Flow

Services

Telemetry Flow

Event-detection Flow

ClientClient

Base Platform

TOPAZ Agents Wireless Wireless
NetworkNetwork

Internet

Application Server,
Wireless Gateway,
other infrastructure

Application
Provider

Application
Provider

Application

Application
Provider

Application
Provider

Application

Service ProviderService Provider

Component
Service

Service ProviderService Provider

Component
Service

Service ProviderService Provider

Component
Service

Service ProviderService Provider

Component
Service

Fig. 2. TOPAZ in End-to-end System

TOPAZ services are in general concerned with facilitating and managing data
flows between applications and clients or between peer clients, where the data may be
content flowing from applications to clients, or data and events from clients to

604 J.H. Kim et al.

applications. The services include Telemetry Subscription, Content Push, Client-to-
Client Communication, Spatiotemporal Event Detection, and Event-Based Content
Push. We describe these services in more detail below.

Telemetry Subscription. This service enables service providers to receive dynamic
vehicle data (a.k.a. telemetry data) from individual vehicles or groups of vehicles.
Service providers specify the data that is to be sampled, simple conditions under
which the data is to be sent, the period at which the conditions are to be evaluated,
and an address of a Web service that will receive the data. A TOPAZ Telemetry
Agent fulfils the subscription at the vehicle end and sends to a TOPAZ telemetry
receiver server. The server collects the telemetry from multiple vehicles for a short
time and then forwards it to the requesting application.

Content Push. The Content Push service enables application providers to push
multimedia messages, map features, Web forms, and other content to customers’ in-
vehicle displays. This may be used, for example, by real-time navigation applications
to push routes, route information, and just-in-time turn instructions to drivers. The
Content Push service offers different priority levels and different reliability levels to
the application programmer. Content received from multiple applications concurrently
is aggregated for delivery to the client, for greater efficiency in wireless networks.

Client-to-Client. TOPAZ also provides a service enabling application providers to
connect groups of users directly, for message- or connection-oriented communications.
This service enables applications to link communication applications with the
interactive viewers provided by a TOPAZ client, and it eliminates the need for them to
act as their own communications hub.

Spatiotemporal Event Detection. The Spatiotemporal Event Detection Service
serves those ubiquitous-computing applications that involve sensing conditions in a
user’s physical context and responding to those conditions in real time. Examples
include fleet-management services that alert drivers when they are off-route or off-
schedule, and employee safety applications that notify plant staff that a new employee
has entered a restricted area without an accompanying supervisor. Programmers
represent events of interest in the form of rules that “trigger” when the situations are
detected.

Event-Based Content Push is an extension of Spatiotemporal Event Detection
that enables application providers to associate content with a rule. The ECPS will
push the content to a user that caused the rule to trigger.

Resource Services. TOPAZ provides several services for managing specific kinds of
resources. The User Group service enables applications (and application providers,
through a portal) to create groups and assign users to groups. Each of the services
above allows groups, as well as individual users, to be subjects of service calls. The
Rule Resource service enables applications to create, update, and delete data objects
(such as geographical polygons) that are referenced in rules of the Spatiotemporal
Event Detection service. The User/Device Resources service enables applications to
associate arbitrary data with a user or device, for general-purpose use.

 Services-Oriented Computing in a Ubiquitous Computing Platform 605

Application Example. A typical TOPAZ application is one offering drivers turn-by-
turn driving instructions to a given destination. Use of the application by a client
involves three flows: one for application requests from the user to the application,
another for telemetry data (the vehicle’s position) from the vehicle to the application,
and another for content from the application to the user: routes and turn instructions.
Fig. 3 illustrates. Execution begins with a request from the user to start navigation, the
request including the destination. The request takes the form of an HTTP Post, using
an HTML form provided by the application.

Navigation
Service Provider

TOPAZ

Telemetry
Subscription

Content
Push

Service
Application

Request for
position

Position
updates

Session
Manager

Start navigation
request

Routes, real-time
turn instructions

Fig. 3. Application execution using Telemetry Subscription and Content Push services

When the application receives the request, it invokes the Telemetry Subscription
service, which initiates the second flow, of position data from the vehicle to the
application.

When the application decides it needs to notify the driver of an upcoming turn, or
if it has determined that the driver is off-route, and it needs to send the driver new
instructions, it will compose the content and invoke the Content Push service to do so.
These pushes constitute the third flow.

3 TOPAZ Session Model

The data flows (of content, application requests, telemetry data, and rule-triggering
events) managed by TOPAZ services take place in the context of sessions. TOPAZ
provides a multi-layered session model, shown in Fig. 4. A session may be a device
session, user session, or application session. Each session has a parent session. For
application sessions, the parent session is a user session; for user sessions, the parent
session is a device session. For device sessions, the parent session is the System
session, not shown. Parent relationships of the sessions in Fig. 4 are shown by the tree
in the figure.

A device session is created when a device first connects to a TOPAZ Session
Manager. The Session Manager automatically creates a user session for the device
owner. Then the Session Manager will start any device-dependent auto-startup
applications, creating application sessions for them. Normal user sessions are started
when users log in. Non-device-dependent applications set for auto-startup are then
started at this time. Users can manually start and stop applications at any time following
this. When a device is shutdown, all children sessions of the device session are closed.

606 J.H. Kim et al.

Fig. 4. TOPAZ Session Model

4 Resource Reclamation in TOPAZ

A variety of resources are involved in the facilitation of any given flow in TOPAZ.
What we term a resource is a data object residing on the server relating to the
operation of an application, that lasts at least as long as an application session. A user
group is an example of a resource, as is the internal record of a telemetry subscription.
Resources may be created explicitly through service invocations, such as user groups
created through calls to the User Group Service, or may be created implicitly by
services, such as when telemetry subscriptions are created as the result a rule
subscription to the Spatiotemporal Event Detection Service. Resources may be
passive data objects, such as telemetry subscription records, or they may be active
objects, such as the objects in the Content Push Service that manage content pushes to
individual clients. Applications can elect to manage the lifetimes of resources
themselves, or they can allow TOPAZ to manage the lifetime for them.

Table 1. Resource lifetimes

Lifetime Name Duration

DEVSESSION The life of the associated device session.

USERSESSION The life of the associated user session.

APPSESSION The life of the associated application session.

APPLICATION The life of the application that created the resource.

PROVIDER The life of the provider of the application that created the
resource.

Automatic resource reclamation is an important function in TOPAZ because
forcing applications to do it explicitly is too great a burden on programmers. They
may not properly clean up; the client or the application may quit unexpectedly, or
clients or applications may suffer long periods of disconnection. Without automatic
resource reclamation, dead resources would grow continuously with no way to
reclaim them.

 Services-Oriented Computing in a Ubiquitous Computing Platform 607

Table 2. Resource types

Service Resources Allowable Lifetimes

Telemetry subscriptions APPSESSION or APPLICATION,
chosen by application

Telemetry
Subscription

Per-client subscription
optimizers

DEVSESSION

Content Push Per-client content-push
priority managers

DEVSESSION

User Group User groups APPSESSION, APPLICATION, or
PROVIDER, chosen by application

Client-To-Client Telemetry subscriptions APPSESSION

Rules APPSESSION or APPLICATION,
chosen by application

Rule subscriptions APPSESSION or APPLICATION,
chosen by application

Spatiotemporal
Event Detection

Telemetry subscriptions APPSESSION or APPLICATION,
chosen by application

Rule resources APPLICATION Rule Resources

User rule resources APPSESSION or APPLICATION,
chosen by application

Rules APPLICATION

Rule subscriptions APPLICATION

Telemetry subscriptions APPLICATION

Event-based
Content Push

Event/content table APPLICATION

User/Device
Resources

User/device resources APPLICATION

To facilitate the reclaiming of resource objects, each resource is associated with the
lifetime of a session, an application, or a provider. Table 1 lists the possible resource
lifetimes. Programmers declare the lifetime of resources they create explicitly, while
TOPAZ services declare the lifetime of resources that are created implicitly, as the
result of creation of other resources.

Modular Resource Management. The model for resource management in TOPAZ is
that each application service manages its own set of resources. Each service module is
notified of lifetime events (e.g., session ended), and each module performs the
appropriate resource-management functions. The table below lists the resources
managed by each service.

The lifetime events that each module uses to dispose of resources (and in some
cases create them) originate with the Session Manager, the Applications Manager, and
the Provider Registration Manager. The Resource Manager is a component on the

608 J.H. Kim et al.

server that acts as a central clearinghouse for these events, distributing them to the
other server-side modules that require them.

Internally, the Resource Manager uses an asynchronous messaging mechanism
(J2EE Message-Driven Beans) to decouple the callers of the Resource Manager from
the execution of the management logic at the receivers of the Resource Manager’s
lifetime events.

Table 3. Quality of Service Parameters in TOPAZ Services

Service Parameter Description

Sampling interval Applications specify the sampling interval
of the requested telemetry data.

Telemetry
Subscription
Service Report aggregation Applications can request that the telemetry

reports be delivered in as large batches as
practically possible.

Content Push
Service

Push priority Applications set the priority of content
delivery, on a per-push basis.

User Group Service None

Client-To-Client
Service

Same as Telemetry
Subscription Service

Spatiotemporal
Event Detection
Service

Rule evaluation
interval

Applications specify how frequently rules
are evaluated.

Rule Resources
Service

None

Event-based
Content Push
Service

Same as STED Service
and Content Push
Service

User/Device
Resources Service

None

5 Quality-of-Service in TOPAZ

The conventional notion of quality-of-service in Web services is the response time of
a service invocation. However, since TOPAZ services are client-session-oriented, not
request/response oriented, its notions of quality-of-service are correspondingly
different. Rather than requesting a certain response time, TOPAZ service callers
specify certain qualities of the client session, on a per-session, or finer, basis. Table 3
lists the quality-of-service parameters offered by each service.

In the sections following we discuss the quality-of-service parameters offered by
the Telemetry Subscription Service and the Content Push Service.

QoS for the Telemetry Subscription Service. The Telemetry Subscription Service
offers two parameters related to quality of service, sampling interval and report
aggregation.

 Services-Oriented Computing in a Ubiquitous Computing Platform 609

Sampling Interval. Applications express the sampling interval of a telemetry
subscription as minimum and maximum intervals between any two samples of the
telemetry requested. In order to make most efficient use of its bandwidth to the
TOPAZ server, a TOPAZ client will attempt to send the data for multiple
subscriptions at the same time, and so allowing some variance in the sampling period
of subscriptions is helpful.

Applications choose a maximum interval according to the response-latency
requirements of their application. The shorter the interval, the more quickly the
application can respond to changes in the client’s context. Applications set the
minimum interval to a level high enough to avoid unnecessary expenses due to too-
frequent telemetry reports (because more frequent telemetry result in increased
service charges from the TOPAZ platform operator). However, the usage fee structure
for the Telemetry Subscription service encourages applications to set a reasonably
wide range between the minimum and maximum intervals.

Report Aggregation. Group telemetry subscriptions offer a “maximize
aggregation” parameter, which, when true, instructs TOPAZ to aggregate client
telemetry destined to a single application as much as possible. This will result in
fewer telemetry transmissions to the application, each one aggregating more client
reports. The resulting load on the application server handling subscriber telemetry
should therefore be lower. However, the cost of transmitting data from clients may
increase because TOPAZ has less flexibility in scheduling transmissions from clients
to the TOPAZ servers. Thus the TOPAZ platform operator’s service charges to the
application provider may increase.

The mechanism for doing this is to approximately synchronize the sampling and
transmission of the application’s requested telemetry data at all clients in the group.
TOPAZ synchronizes (roughly) the telemetry streams by telling each client to start
sampling at a common UTM-specified time and to sample at a common interval
thereafter. Clients who miss the start time can synchronize with the group by
beginning sampling at any multiple of the specified maximum sampling interval.

Whether or not clients synchronize their sampling, the Telemetry Subscription
Service will buffer their telemetry reports for a short time before forwarding them
together to the application.

QoS for the Content Push Service. The Content Push service offers two parameters
related to quality of service: the priority of a push, and the reliability required for the
push.

Priority. The Content Push Service is used for content that is time-sensitive, such
as a message from a real-time navigation service instructing a user turn right in 50
meters, and for content that is not time-sensitive, such as telemetry requests. Because
it must handle content push requests from multiple applications simultaneously, it
must therefore make decisions about which content goes first. A simple first-come,
first-served approach would mean that time-sensitive content may unnecessarily wait
for non-time-sensitive content. Therefore, in order to serve applications more
effectively, the Content Push Service offers a “push priority” parameter that can take
on the values URGENT and NORMAL. Callers use URGENT for content that
represents a time-sensitive communication. NORMAL delivery should be used for all
other content. Content sent with NORMAL delivery may experience slight delays for

610 J.H. Kim et al.

efficiency reasons. Content sent as URGENT will not suffer these delays, but will be
charged a higher rate.

Reliability. Not all content has the same importance, and the Content Push Service
offers two levels of reliable delivery: BESTEFFORT and ASSURED. With
BESTEFFORT delivery, the CPS will attempt delivery a limited number of times
before it gives up and discards the push request. With ASSURED delivery the CPS
will retry delivery unless it is clear that delivery is not possible (e.g., user has
unsubscribed from the application).

6 Service Metering

TOPAZ does not mandate a particular business model used by a TOPAZ Platform
Operator, but it does provide models for service metering that a TPO can use as a
basis for its business model. We expect a typical business model for a TPO to be one
in which it charges users for subscriptions to applications, and it charges application
providers for the use of TOPAZ application services. TOPAZ’s service metering
models provide a basis for a TPO’s charges to an application provider.

Rather than metering per service invocation, as do some Web-services platforms
(for example, ESRI’s ArcWeb services [6]), or using monthly or annual fees (for
example Microsoft’s MapPoint services [11]) TOPAZ’s metering models are based
on the aggregated cost of providing flows. In this section we describe how this
orientation toward flows has determined out metering models. Our work in this area is
not complete; we are currently refining our models and determining the various
constants in them empirically.

Each application service has its own metering model, according to how flows in
the service consume system resources. A service’s metering model is a function
whose inputs are the parameters used in invoking the service that generated the flow
and any statistics recorded for the flow, and whose outputs are abstract “cost units”.
These cost units translate directly to monetary charges. The terms in the formulas for
the models reflect how invocation parameters impact the consumption of particular
system resources.

In this section we focus on two services, Telemetry Subscription and Content Push.

Metering Telemetry Subscription. The various parameters used in invoking the
Telemetry Subscription service impact its consumption of system resources in various
ways, but the most important are the minimum and maximum sampling intervals. For
each telemetry report received by the server, it must allocate a thread and a database
connection. Relatively few CPU cycles are consumed in processing the data. In order
to not block the client while sending the data to the application, the TSS decouples the
process of receiving the telemetry from the process of sending it, but this means the
service must allocate another thread for sending. In order to reduce the number of
threads required for this, the service will batch reports together for a short time before
sending them to the application.

The initial TSS metering model we are working with now charges application
providers according to how their subscriptions consume bandwidth, modified by how
the subscriptions impact other system resources. The charge to any one application for

 Services-Oriented Computing in a Ubiquitous Computing Platform 611

a telemetry session is a simple summation of the charges for handling each report,
where the charge for each report is a product of the size of the report and the sampling
parameters in the application’s subscription. Applications reduce their charges by
specifying a generous tolerance between minimum and maximum sampling intervals,
thus allowing the client more flexibility in combining telemetry reports destined for
different applications in the same message sent to the server. Therefore the server
needs to allocate only one thread and one database connection to process multiple
reports. This is reflected in the metering model by applying a discount to the per-
report charges, where the discount is a function of the range between minimum and
maximum sampling intervals.

Metering Content Push. Threads are the primary resources consumed by the Content
Push service. For each URGENT push a thread must be allocated to invoke the
transport mechanism that will carry the data. NORMAL pushes, however, are queued
for a short time before the entire queue is emptied and sent to the client. Therefore,
the metering model for Content Push is a function of the priority used, as well as the
size of the content pushed.

7 Related Work

Our technique for resource reclamation is similar to the “soft state” approach used in
management of network-entity state in Internet protocols[5, 13, 14], RMI and Jini
[12], and more recently the Open Grid Services Architecture [8], in that each
reclaimable resource is associated with a lifetime. In our technique, however, the
lifetime is not an actual time, but instead a link to the lifetime of an entity in the
system—a session, application, or application provider. Resources are known to be
reclaimable when the entity to which they are associated has ceased to exist. In this
respect our technique is similar to reference counting in a distributed system [2],
except that references point in the other direction. Thus, knowing the ID of a deceased
entity, we can query a resource set directly for resources whose lifetime is associated
with it.

Work in quality of service for Web services—how to specify it, measure it, and
monitor it—focuses, for performance metrics, on generic qualities such as response
time, throughput, availability, and reliability [3, 10]. However, our flow-oriented
services require different performance metrics, such as sampling regularity in the
Telemetry Subscription service. In this respect our concerns are more nearly aligned
with multimedia systems, but with looser real-time constraints. See [4].

The abstract cost units our metering models are based on are similar to the credits
used by ESRI’s ArcWeb Services [6]. Our cost units, however, are based on how a
particular service’s flows consume critical resources, and the cost of providing those
resources. We have based our models partly on the modeling of thread and database
connection resources in [7]. While we have implemented our own metering
subsystem, we could also use metering services such as that in the UMI utility
infrastructure [1].

612 J.H. Kim et al.

8 Conclusions

TOPAZ is a Web-services-based platform of services designed to facilitate a
marketplace of ubiquitous computing applications, by making these applications
radically less expensive to develop, deploy, and operate. As with any utility-
computing infrastructure, it faces challenges on how to manage the objects and
resources consumed in the delivery of its services, how to meter the use of its
services, and what quality-of-service parameters to offer to applications. We have
presented our own approaches to these challenges, which take into account the nature
of TOPAZ services as providing “flows” of content, data, and event-detection
between clients and applications. We continue to refine our metering models based on
observations of our system’s runtime characteristics.

We have developed a number of applications for TOPAZ, and external developers
have developed others. We are currently in the process of measuring the performance
of TOPAZ when serving large numbers of clients.

References

1. Albaugh, V., Madduri, H., The Utility Metering Service of the Universal Management
Infrastructure. IBM Systems Journal, Vol. 43, No. 1, 2004, 179–189.

2. Bevan, D.I., Distributed Garbage Collection Using Reference Counting. In Parallel
Architectures and Languages Europe, 1987, Springer-Verlag, LNCS 259, 176–187.

3. Bhoj, P., Singhal, S., Chutani, S., SLA Management in Federated Environments. In
Proceedings of the Sixth IFIP/IEEE Symposium on Integrated Network Management (IM
’99), IEEE, 1999, 293–308.

4. Campbell, A., Coulson, G., Garcia, F., Hutchison, D., Leopold, H., Integrated Quality of
Service For Multimedia Communications. In Proceedings of the 12th Annual Joint
Conference of the IEEE Computer and Communications Societies - IEEE INFOCOM '93;
1993, 732–739.

5. Clark, D.D. The Design Philosophy of the DARPA Internet Protocols. In SIGCOMM
Symposium on Communications Architectures and Protocols, 1988, ACM Press, 106–114.

6. ESRI ArcWeb Services. http://www.esri.com/software/arcwebservices/index.html
7. Ferrari, G., Ezhilchelvan, E., Mitrani, I. Performance Modeling and Evaluation of E-

Business Systems. CS-TR 954, School of Computing Science, University of Newcastle,
March 2006.

8. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S. Grid Services for Distributed Systems
Integration. Computer, Vol. 35, No. 6, 2002.

9. Frølund, S., Koistinen, J. 1998. Quality-of-Service Specification in Distributed Object
Systems, Distributed System Engineering 5: 179–202.

10. Keller, A., Ludwig, H., The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management, Vol. 11,
No. 1, March 2003, 57–81.

11. Microsoft MapPoint. http://www.microsoft.com/mappoint/default.mspx
12. Oaks, S., and Wong, H. Jini in a Nutshell. O’Reilly, 2000.
13. Sharma, P., Estrin, D., Floyd, S., Jacobson, V., Scalable Timers for Soft State Protocols. In

IEEE Infocom ’97, 1997, IEEE Press.
14. Zhang, L., Braden, B., Estrin, D., Herzog, S., Jamin, S., RSVP: A New Resource

Reservation Protocol. In IEEE Network, 1993, 8–18.

	Introduction
	TOPAZ Application Services
	TOPAZ Session Model
	Resource Reclamation in TOPAZ
	Quality-of-Service in TOPAZ
	Service Metering
	Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

